1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RuntimeDyldELF.h"
14#include "RuntimeDyldCheckerImpl.h"
15#include "Targets/RuntimeDyldELFMips.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/BinaryFormat/ELF.h"
19#include "llvm/Object/ELFObjectFile.h"
20#include "llvm/Object/ObjectFile.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/MemoryBuffer.h"
23#include "llvm/TargetParser/Triple.h"
24
25using namespace llvm;
26using namespace llvm::object;
27using namespace llvm::support::endian;
28
29#define DEBUG_TYPE "dyld"
30
31static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32
33static void or32AArch64Imm(void *L, uint64_t Imm) {
34  or32le(L, (Imm & 0xFFF) << 10);
35}
36
37template <class T> static void write(bool isBE, void *P, T V) {
38  isBE ? write<T, llvm::endianness::big>(P, V)
39       : write<T, llvm::endianness::little>(P, V);
40}
41
42static void write32AArch64Addr(void *L, uint64_t Imm) {
43  uint32_t ImmLo = (Imm & 0x3) << 29;
44  uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45  uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47}
48
49// Return the bits [Start, End] from Val shifted Start bits.
50// For instance, getBits(0xF0, 4, 8) returns 0xF.
51static uint64_t getBits(uint64_t Val, int Start, int End) {
52  uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53  return (Val >> Start) & Mask;
54}
55
56namespace {
57
58template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60
61  typedef typename ELFT::uint addr_type;
62
63  DyldELFObject(ELFObjectFile<ELFT> &&Obj);
64
65public:
66  static Expected<std::unique_ptr<DyldELFObject>>
67  create(MemoryBufferRef Wrapper);
68
69  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
70
71  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
72
73  // Methods for type inquiry through isa, cast and dyn_cast
74  static bool classof(const Binary *v) {
75    return (isa<ELFObjectFile<ELFT>>(v) &&
76            classof(cast<ELFObjectFile<ELFT>>(v)));
77  }
78  static bool classof(const ELFObjectFile<ELFT> *v) {
79    return v->isDyldType();
80  }
81};
82
83
84
85// The MemoryBuffer passed into this constructor is just a wrapper around the
86// actual memory.  Ultimately, the Binary parent class will take ownership of
87// this MemoryBuffer object but not the underlying memory.
88template <class ELFT>
89DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
90    : ELFObjectFile<ELFT>(std::move(Obj)) {
91  this->isDyldELFObject = true;
92}
93
94template <class ELFT>
95Expected<std::unique_ptr<DyldELFObject<ELFT>>>
96DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
97  auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
98  if (auto E = Obj.takeError())
99    return std::move(E);
100  std::unique_ptr<DyldELFObject<ELFT>> Ret(
101      new DyldELFObject<ELFT>(std::move(*Obj)));
102  return std::move(Ret);
103}
104
105template <class ELFT>
106void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
107                                               uint64_t Addr) {
108  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
109  Elf_Shdr *shdr =
110      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
111
112  // This assumes the address passed in matches the target address bitness
113  // The template-based type cast handles everything else.
114  shdr->sh_addr = static_cast<addr_type>(Addr);
115}
116
117template <class ELFT>
118void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
119                                              uint64_t Addr) {
120
121  Elf_Sym *sym = const_cast<Elf_Sym *>(
122      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
123
124  // This assumes the address passed in matches the target address bitness
125  // The template-based type cast handles everything else.
126  sym->st_value = static_cast<addr_type>(Addr);
127}
128
129class LoadedELFObjectInfo final
130    : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
131                                    RuntimeDyld::LoadedObjectInfo> {
132public:
133  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
134      : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
135
136  OwningBinary<ObjectFile>
137  getObjectForDebug(const ObjectFile &Obj) const override;
138};
139
140template <typename ELFT>
141static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
142createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
143                      const LoadedELFObjectInfo &L) {
144  typedef typename ELFT::Shdr Elf_Shdr;
145  typedef typename ELFT::uint addr_type;
146
147  Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
148      DyldELFObject<ELFT>::create(Buffer);
149  if (Error E = ObjOrErr.takeError())
150    return std::move(E);
151
152  std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153
154  // Iterate over all sections in the object.
155  auto SI = SourceObject.section_begin();
156  for (const auto &Sec : Obj->sections()) {
157    Expected<StringRef> NameOrErr = Sec.getName();
158    if (!NameOrErr) {
159      consumeError(NameOrErr.takeError());
160      continue;
161    }
162
163    if (*NameOrErr != "") {
164      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
165      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
166          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
167
168      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
169        // This assumes that the address passed in matches the target address
170        // bitness. The template-based type cast handles everything else.
171        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
172      }
173    }
174    ++SI;
175  }
176
177  return std::move(Obj);
178}
179
180static OwningBinary<ObjectFile>
181createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
182  assert(Obj.isELF() && "Not an ELF object file.");
183
184  std::unique_ptr<MemoryBuffer> Buffer =
185    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
186
187  Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
188  handleAllErrors(DebugObj.takeError());
189  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
190    DebugObj =
191        createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
192  else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
193    DebugObj =
194        createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
195  else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
196    DebugObj =
197        createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
198  else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
199    DebugObj =
200        createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
201  else
202    llvm_unreachable("Unexpected ELF format");
203
204  handleAllErrors(DebugObj.takeError());
205  return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
206}
207
208OwningBinary<ObjectFile>
209LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
210  return createELFDebugObject(Obj, *this);
211}
212
213} // anonymous namespace
214
215namespace llvm {
216
217RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
218                               JITSymbolResolver &Resolver)
219    : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
220RuntimeDyldELF::~RuntimeDyldELF() = default;
221
222void RuntimeDyldELF::registerEHFrames() {
223  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
224    SID EHFrameSID = UnregisteredEHFrameSections[i];
225    uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
226    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
227    size_t EHFrameSize = Sections[EHFrameSID].getSize();
228    MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
229  }
230  UnregisteredEHFrameSections.clear();
231}
232
233std::unique_ptr<RuntimeDyldELF>
234llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
235                             RuntimeDyld::MemoryManager &MemMgr,
236                             JITSymbolResolver &Resolver) {
237  switch (Arch) {
238  default:
239    return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
240  case Triple::mips:
241  case Triple::mipsel:
242  case Triple::mips64:
243  case Triple::mips64el:
244    return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
245  }
246}
247
248std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
249RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
250  if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
251    return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
252  else {
253    HasError = true;
254    raw_string_ostream ErrStream(ErrorStr);
255    logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
256    return nullptr;
257  }
258}
259
260void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
261                                             uint64_t Offset, uint64_t Value,
262                                             uint32_t Type, int64_t Addend,
263                                             uint64_t SymOffset) {
264  switch (Type) {
265  default:
266    report_fatal_error("Relocation type not implemented yet!");
267    break;
268  case ELF::R_X86_64_NONE:
269    break;
270  case ELF::R_X86_64_8: {
271    Value += Addend;
272    assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
273    uint8_t TruncatedAddr = (Value & 0xFF);
274    *Section.getAddressWithOffset(Offset) = TruncatedAddr;
275    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
276                      << format("%p\n", Section.getAddressWithOffset(Offset)));
277    break;
278  }
279  case ELF::R_X86_64_16: {
280    Value += Addend;
281    assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
282    uint16_t TruncatedAddr = (Value & 0xFFFF);
283    support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
284        TruncatedAddr;
285    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
286                      << format("%p\n", Section.getAddressWithOffset(Offset)));
287    break;
288  }
289  case ELF::R_X86_64_64: {
290    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
291        Value + Addend;
292    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
293                      << format("%p\n", Section.getAddressWithOffset(Offset)));
294    break;
295  }
296  case ELF::R_X86_64_32:
297  case ELF::R_X86_64_32S: {
298    Value += Addend;
299    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
300           (Type == ELF::R_X86_64_32S &&
301            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
302    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
303    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
304        TruncatedAddr;
305    LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
306                      << format("%p\n", Section.getAddressWithOffset(Offset)));
307    break;
308  }
309  case ELF::R_X86_64_PC8: {
310    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
311    int64_t RealOffset = Value + Addend - FinalAddress;
312    assert(isInt<8>(RealOffset));
313    int8_t TruncOffset = (RealOffset & 0xFF);
314    Section.getAddress()[Offset] = TruncOffset;
315    break;
316  }
317  case ELF::R_X86_64_PC32: {
318    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
319    int64_t RealOffset = Value + Addend - FinalAddress;
320    assert(isInt<32>(RealOffset));
321    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
322    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
323        TruncOffset;
324    break;
325  }
326  case ELF::R_X86_64_PC64: {
327    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
328    int64_t RealOffset = Value + Addend - FinalAddress;
329    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
330        RealOffset;
331    LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
332                      << format("%p\n", FinalAddress));
333    break;
334  }
335  case ELF::R_X86_64_GOTOFF64: {
336    // Compute Value - GOTBase.
337    uint64_t GOTBase = 0;
338    for (const auto &Section : Sections) {
339      if (Section.getName() == ".got") {
340        GOTBase = Section.getLoadAddressWithOffset(0);
341        break;
342      }
343    }
344    assert(GOTBase != 0 && "missing GOT");
345    int64_t GOTOffset = Value - GOTBase + Addend;
346    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
347    break;
348  }
349  case ELF::R_X86_64_DTPMOD64: {
350    // We only have one DSO, so the module id is always 1.
351    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
352    break;
353  }
354  case ELF::R_X86_64_DTPOFF64:
355  case ELF::R_X86_64_TPOFF64: {
356    // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
357    // offset in the *initial* TLS block. Since we are statically linking, all
358    // TLS blocks already exist in the initial block, so resolve both
359    // relocations equally.
360    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
361        Value + Addend;
362    break;
363  }
364  case ELF::R_X86_64_DTPOFF32:
365  case ELF::R_X86_64_TPOFF32: {
366    // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
367    // be resolved equally.
368    int64_t RealValue = Value + Addend;
369    assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
370    int32_t TruncValue = RealValue;
371    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
372        TruncValue;
373    break;
374  }
375  }
376}
377
378void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
379                                          uint64_t Offset, uint32_t Value,
380                                          uint32_t Type, int32_t Addend) {
381  switch (Type) {
382  case ELF::R_386_32: {
383    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
384        Value + Addend;
385    break;
386  }
387  // Handle R_386_PLT32 like R_386_PC32 since it should be able to
388  // reach any 32 bit address.
389  case ELF::R_386_PLT32:
390  case ELF::R_386_PC32: {
391    uint32_t FinalAddress =
392        Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
393    uint32_t RealOffset = Value + Addend - FinalAddress;
394    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
395        RealOffset;
396    break;
397  }
398  default:
399    // There are other relocation types, but it appears these are the
400    // only ones currently used by the LLVM ELF object writer
401    report_fatal_error("Relocation type not implemented yet!");
402    break;
403  }
404}
405
406void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
407                                              uint64_t Offset, uint64_t Value,
408                                              uint32_t Type, int64_t Addend) {
409  uint32_t *TargetPtr =
410      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
411  uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
412  // Data should use target endian. Code should always use little endian.
413  bool isBE = Arch == Triple::aarch64_be;
414
415  LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
416                    << format("%llx", Section.getAddressWithOffset(Offset))
417                    << " FinalAddress: 0x" << format("%llx", FinalAddress)
418                    << " Value: 0x" << format("%llx", Value) << " Type: 0x"
419                    << format("%x", Type) << " Addend: 0x"
420                    << format("%llx", Addend) << "\n");
421
422  switch (Type) {
423  default:
424    report_fatal_error("Relocation type not implemented yet!");
425    break;
426  case ELF::R_AARCH64_NONE:
427    break;
428  case ELF::R_AARCH64_ABS16: {
429    uint64_t Result = Value + Addend;
430    assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
431           (Result >> 16) == 0);
432    write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
433    break;
434  }
435  case ELF::R_AARCH64_ABS32: {
436    uint64_t Result = Value + Addend;
437    assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
438           (Result >> 32) == 0);
439    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
440    break;
441  }
442  case ELF::R_AARCH64_ABS64:
443    write(isBE, TargetPtr, Value + Addend);
444    break;
445  case ELF::R_AARCH64_PLT32: {
446    uint64_t Result = Value + Addend - FinalAddress;
447    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
448           static_cast<int64_t>(Result) <= INT32_MAX);
449    write(isBE, TargetPtr, static_cast<uint32_t>(Result));
450    break;
451  }
452  case ELF::R_AARCH64_PREL16: {
453    uint64_t Result = Value + Addend - FinalAddress;
454    assert(static_cast<int64_t>(Result) >= INT16_MIN &&
455           static_cast<int64_t>(Result) <= UINT16_MAX);
456    write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
457    break;
458  }
459  case ELF::R_AARCH64_PREL32: {
460    uint64_t Result = Value + Addend - FinalAddress;
461    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
462           static_cast<int64_t>(Result) <= UINT32_MAX);
463    write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
464    break;
465  }
466  case ELF::R_AARCH64_PREL64:
467    write(isBE, TargetPtr, Value + Addend - FinalAddress);
468    break;
469  case ELF::R_AARCH64_CONDBR19: {
470    uint64_t BranchImm = Value + Addend - FinalAddress;
471
472    assert(isInt<21>(BranchImm));
473    *TargetPtr &= 0xff00001fU;
474    // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
475    or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
476    break;
477  }
478  case ELF::R_AARCH64_TSTBR14: {
479    uint64_t BranchImm = Value + Addend - FinalAddress;
480
481    assert(isInt<16>(BranchImm));
482
483    uint32_t RawInstr = *(support::little32_t *)TargetPtr;
484    *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
485
486    // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
487    or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
488    break;
489  }
490  case ELF::R_AARCH64_CALL26: // fallthrough
491  case ELF::R_AARCH64_JUMP26: {
492    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
493    // calculation.
494    uint64_t BranchImm = Value + Addend - FinalAddress;
495
496    // "Check that -2^27 <= result < 2^27".
497    assert(isInt<28>(BranchImm));
498    or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
499    break;
500  }
501  case ELF::R_AARCH64_MOVW_UABS_G3:
502    or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
503    break;
504  case ELF::R_AARCH64_MOVW_UABS_G2_NC:
505    or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
506    break;
507  case ELF::R_AARCH64_MOVW_UABS_G1_NC:
508    or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
509    break;
510  case ELF::R_AARCH64_MOVW_UABS_G0_NC:
511    or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
512    break;
513  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
514    // Operation: Page(S+A) - Page(P)
515    uint64_t Result =
516        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
517
518    // Check that -2^32 <= X < 2^32
519    assert(isInt<33>(Result) && "overflow check failed for relocation");
520
521    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
522    // from bits 32:12 of X.
523    write32AArch64Addr(TargetPtr, Result >> 12);
524    break;
525  }
526  case ELF::R_AARCH64_ADD_ABS_LO12_NC:
527    // Operation: S + A
528    // Immediate goes in bits 21:10 of LD/ST instruction, taken
529    // from bits 11:0 of X
530    or32AArch64Imm(TargetPtr, Value + Addend);
531    break;
532  case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
533    // Operation: S + A
534    // Immediate goes in bits 21:10 of LD/ST instruction, taken
535    // from bits 11:0 of X
536    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
537    break;
538  case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
539    // Operation: S + A
540    // Immediate goes in bits 21:10 of LD/ST instruction, taken
541    // from bits 11:1 of X
542    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
543    break;
544  case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
545    // Operation: S + A
546    // Immediate goes in bits 21:10 of LD/ST instruction, taken
547    // from bits 11:2 of X
548    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
549    break;
550  case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
551    // Operation: S + A
552    // Immediate goes in bits 21:10 of LD/ST instruction, taken
553    // from bits 11:3 of X
554    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
555    break;
556  case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
557    // Operation: S + A
558    // Immediate goes in bits 21:10 of LD/ST instruction, taken
559    // from bits 11:4 of X
560    or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
561    break;
562  case ELF::R_AARCH64_LD_PREL_LO19: {
563    // Operation: S + A - P
564    uint64_t Result = Value + Addend - FinalAddress;
565
566    // "Check that -2^20 <= result < 2^20".
567    assert(isInt<21>(Result));
568
569    *TargetPtr &= 0xff00001fU;
570    // Immediate goes in bits 23:5 of LD imm instruction, taken
571    // from bits 20:2 of X
572    *TargetPtr |= ((Result & 0xffc) << (5 - 2));
573    break;
574  }
575  case ELF::R_AARCH64_ADR_PREL_LO21: {
576    // Operation: S + A - P
577    uint64_t Result = Value + Addend - FinalAddress;
578
579    // "Check that -2^20 <= result < 2^20".
580    assert(isInt<21>(Result));
581
582    *TargetPtr &= 0x9f00001fU;
583    // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
584    // from bits 20:0 of X
585    *TargetPtr |= ((Result & 0xffc) << (5 - 2));
586    *TargetPtr |= (Result & 0x3) << 29;
587    break;
588  }
589  }
590}
591
592void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
593                                          uint64_t Offset, uint32_t Value,
594                                          uint32_t Type, int32_t Addend) {
595  // TODO: Add Thumb relocations.
596  uint32_t *TargetPtr =
597      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
598  uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
599  Value += Addend;
600
601  LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
602                    << Section.getAddressWithOffset(Offset)
603                    << " FinalAddress: " << format("%p", FinalAddress)
604                    << " Value: " << format("%x", Value)
605                    << " Type: " << format("%x", Type)
606                    << " Addend: " << format("%x", Addend) << "\n");
607
608  switch (Type) {
609  default:
610    llvm_unreachable("Not implemented relocation type!");
611
612  case ELF::R_ARM_NONE:
613    break;
614    // Write a 31bit signed offset
615  case ELF::R_ARM_PREL31:
616    support::ulittle32_t::ref{TargetPtr} =
617        (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
618        ((Value - FinalAddress) & ~0x80000000);
619    break;
620  case ELF::R_ARM_TARGET1:
621  case ELF::R_ARM_ABS32:
622    support::ulittle32_t::ref{TargetPtr} = Value;
623    break;
624    // Write first 16 bit of 32 bit value to the mov instruction.
625    // Last 4 bit should be shifted.
626  case ELF::R_ARM_MOVW_ABS_NC:
627  case ELF::R_ARM_MOVT_ABS:
628    if (Type == ELF::R_ARM_MOVW_ABS_NC)
629      Value = Value & 0xFFFF;
630    else if (Type == ELF::R_ARM_MOVT_ABS)
631      Value = (Value >> 16) & 0xFFFF;
632    support::ulittle32_t::ref{TargetPtr} =
633        (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
634        (((Value >> 12) & 0xF) << 16);
635    break;
636    // Write 24 bit relative value to the branch instruction.
637  case ELF::R_ARM_PC24: // Fall through.
638  case ELF::R_ARM_CALL: // Fall through.
639  case ELF::R_ARM_JUMP24:
640    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
641    RelValue = (RelValue & 0x03FFFFFC) >> 2;
642    assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
643    support::ulittle32_t::ref{TargetPtr} =
644        (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
645    break;
646  }
647}
648
649void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
650  if (Arch == Triple::UnknownArch ||
651      !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
652    IsMipsO32ABI = false;
653    IsMipsN32ABI = false;
654    IsMipsN64ABI = false;
655    return;
656  }
657  if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
658    unsigned AbiVariant = E->getPlatformFlags();
659    IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
660    IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
661  }
662  IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
663}
664
665// Return the .TOC. section and offset.
666Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
667                                          ObjSectionToIDMap &LocalSections,
668                                          RelocationValueRef &Rel) {
669  // Set a default SectionID in case we do not find a TOC section below.
670  // This may happen for references to TOC base base (sym@toc, .odp
671  // relocation) without a .toc directive.  In this case just use the
672  // first section (which is usually the .odp) since the code won't
673  // reference the .toc base directly.
674  Rel.SymbolName = nullptr;
675  Rel.SectionID = 0;
676
677  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
678  // order. The TOC starts where the first of these sections starts.
679  for (auto &Section : Obj.sections()) {
680    Expected<StringRef> NameOrErr = Section.getName();
681    if (!NameOrErr)
682      return NameOrErr.takeError();
683    StringRef SectionName = *NameOrErr;
684
685    if (SectionName == ".got"
686        || SectionName == ".toc"
687        || SectionName == ".tocbss"
688        || SectionName == ".plt") {
689      if (auto SectionIDOrErr =
690            findOrEmitSection(Obj, Section, false, LocalSections))
691        Rel.SectionID = *SectionIDOrErr;
692      else
693        return SectionIDOrErr.takeError();
694      break;
695    }
696  }
697
698  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
699  // thus permitting a full 64 Kbytes segment.
700  Rel.Addend = 0x8000;
701
702  return Error::success();
703}
704
705// Returns the sections and offset associated with the ODP entry referenced
706// by Symbol.
707Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
708                                          ObjSectionToIDMap &LocalSections,
709                                          RelocationValueRef &Rel) {
710  // Get the ELF symbol value (st_value) to compare with Relocation offset in
711  // .opd entries
712  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
713       si != se; ++si) {
714
715    Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
716    if (!RelSecOrErr)
717      report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
718
719    section_iterator RelSecI = *RelSecOrErr;
720    if (RelSecI == Obj.section_end())
721      continue;
722
723    Expected<StringRef> NameOrErr = RelSecI->getName();
724    if (!NameOrErr)
725      return NameOrErr.takeError();
726    StringRef RelSectionName = *NameOrErr;
727
728    if (RelSectionName != ".opd")
729      continue;
730
731    for (elf_relocation_iterator i = si->relocation_begin(),
732                                 e = si->relocation_end();
733         i != e;) {
734      // The R_PPC64_ADDR64 relocation indicates the first field
735      // of a .opd entry
736      uint64_t TypeFunc = i->getType();
737      if (TypeFunc != ELF::R_PPC64_ADDR64) {
738        ++i;
739        continue;
740      }
741
742      uint64_t TargetSymbolOffset = i->getOffset();
743      symbol_iterator TargetSymbol = i->getSymbol();
744      int64_t Addend;
745      if (auto AddendOrErr = i->getAddend())
746        Addend = *AddendOrErr;
747      else
748        return AddendOrErr.takeError();
749
750      ++i;
751      if (i == e)
752        break;
753
754      // Just check if following relocation is a R_PPC64_TOC
755      uint64_t TypeTOC = i->getType();
756      if (TypeTOC != ELF::R_PPC64_TOC)
757        continue;
758
759      // Finally compares the Symbol value and the target symbol offset
760      // to check if this .opd entry refers to the symbol the relocation
761      // points to.
762      if (Rel.Addend != (int64_t)TargetSymbolOffset)
763        continue;
764
765      section_iterator TSI = Obj.section_end();
766      if (auto TSIOrErr = TargetSymbol->getSection())
767        TSI = *TSIOrErr;
768      else
769        return TSIOrErr.takeError();
770      assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
771
772      bool IsCode = TSI->isText();
773      if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
774                                                  LocalSections))
775        Rel.SectionID = *SectionIDOrErr;
776      else
777        return SectionIDOrErr.takeError();
778      Rel.Addend = (intptr_t)Addend;
779      return Error::success();
780    }
781  }
782  llvm_unreachable("Attempting to get address of ODP entry!");
783}
784
785// Relocation masks following the #lo(value), #hi(value), #ha(value),
786// #higher(value), #highera(value), #highest(value), and #highesta(value)
787// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
788// document.
789
790static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
791
792static inline uint16_t applyPPChi(uint64_t value) {
793  return (value >> 16) & 0xffff;
794}
795
796static inline uint16_t applyPPCha (uint64_t value) {
797  return ((value + 0x8000) >> 16) & 0xffff;
798}
799
800static inline uint16_t applyPPChigher(uint64_t value) {
801  return (value >> 32) & 0xffff;
802}
803
804static inline uint16_t applyPPChighera (uint64_t value) {
805  return ((value + 0x8000) >> 32) & 0xffff;
806}
807
808static inline uint16_t applyPPChighest(uint64_t value) {
809  return (value >> 48) & 0xffff;
810}
811
812static inline uint16_t applyPPChighesta (uint64_t value) {
813  return ((value + 0x8000) >> 48) & 0xffff;
814}
815
816void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
817                                            uint64_t Offset, uint64_t Value,
818                                            uint32_t Type, int64_t Addend) {
819  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
820  switch (Type) {
821  default:
822    report_fatal_error("Relocation type not implemented yet!");
823    break;
824  case ELF::R_PPC_ADDR16_LO:
825    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
826    break;
827  case ELF::R_PPC_ADDR16_HI:
828    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
829    break;
830  case ELF::R_PPC_ADDR16_HA:
831    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
832    break;
833  }
834}
835
836void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
837                                            uint64_t Offset, uint64_t Value,
838                                            uint32_t Type, int64_t Addend) {
839  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
840  switch (Type) {
841  default:
842    report_fatal_error("Relocation type not implemented yet!");
843    break;
844  case ELF::R_PPC64_ADDR16:
845    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
846    break;
847  case ELF::R_PPC64_ADDR16_DS:
848    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
849    break;
850  case ELF::R_PPC64_ADDR16_LO:
851    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
852    break;
853  case ELF::R_PPC64_ADDR16_LO_DS:
854    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
855    break;
856  case ELF::R_PPC64_ADDR16_HI:
857  case ELF::R_PPC64_ADDR16_HIGH:
858    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
859    break;
860  case ELF::R_PPC64_ADDR16_HA:
861  case ELF::R_PPC64_ADDR16_HIGHA:
862    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
863    break;
864  case ELF::R_PPC64_ADDR16_HIGHER:
865    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
866    break;
867  case ELF::R_PPC64_ADDR16_HIGHERA:
868    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
869    break;
870  case ELF::R_PPC64_ADDR16_HIGHEST:
871    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
872    break;
873  case ELF::R_PPC64_ADDR16_HIGHESTA:
874    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
875    break;
876  case ELF::R_PPC64_ADDR14: {
877    assert(((Value + Addend) & 3) == 0);
878    // Preserve the AA/LK bits in the branch instruction
879    uint8_t aalk = *(LocalAddress + 3);
880    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
881  } break;
882  case ELF::R_PPC64_REL16_LO: {
883    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
884    uint64_t Delta = Value - FinalAddress + Addend;
885    writeInt16BE(LocalAddress, applyPPClo(Delta));
886  } break;
887  case ELF::R_PPC64_REL16_HI: {
888    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
889    uint64_t Delta = Value - FinalAddress + Addend;
890    writeInt16BE(LocalAddress, applyPPChi(Delta));
891  } break;
892  case ELF::R_PPC64_REL16_HA: {
893    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
894    uint64_t Delta = Value - FinalAddress + Addend;
895    writeInt16BE(LocalAddress, applyPPCha(Delta));
896  } break;
897  case ELF::R_PPC64_ADDR32: {
898    int64_t Result = static_cast<int64_t>(Value + Addend);
899    if (SignExtend64<32>(Result) != Result)
900      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
901    writeInt32BE(LocalAddress, Result);
902  } break;
903  case ELF::R_PPC64_REL24: {
904    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
905    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
906    if (SignExtend64<26>(delta) != delta)
907      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
908    // We preserve bits other than LI field, i.e. PO and AA/LK fields.
909    uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
910    writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
911  } break;
912  case ELF::R_PPC64_REL32: {
913    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
914    int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
915    if (SignExtend64<32>(delta) != delta)
916      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
917    writeInt32BE(LocalAddress, delta);
918  } break;
919  case ELF::R_PPC64_REL64: {
920    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
921    uint64_t Delta = Value - FinalAddress + Addend;
922    writeInt64BE(LocalAddress, Delta);
923  } break;
924  case ELF::R_PPC64_ADDR64:
925    writeInt64BE(LocalAddress, Value + Addend);
926    break;
927  }
928}
929
930void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
931                                              uint64_t Offset, uint64_t Value,
932                                              uint32_t Type, int64_t Addend) {
933  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
934  switch (Type) {
935  default:
936    report_fatal_error("Relocation type not implemented yet!");
937    break;
938  case ELF::R_390_PC16DBL:
939  case ELF::R_390_PLT16DBL: {
940    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
941    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
942    writeInt16BE(LocalAddress, Delta / 2);
943    break;
944  }
945  case ELF::R_390_PC32DBL:
946  case ELF::R_390_PLT32DBL: {
947    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
948    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
949    writeInt32BE(LocalAddress, Delta / 2);
950    break;
951  }
952  case ELF::R_390_PC16: {
953    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
954    assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
955    writeInt16BE(LocalAddress, Delta);
956    break;
957  }
958  case ELF::R_390_PC32: {
959    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
960    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
961    writeInt32BE(LocalAddress, Delta);
962    break;
963  }
964  case ELF::R_390_PC64: {
965    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
966    writeInt64BE(LocalAddress, Delta);
967    break;
968  }
969  case ELF::R_390_8:
970    *LocalAddress = (uint8_t)(Value + Addend);
971    break;
972  case ELF::R_390_16:
973    writeInt16BE(LocalAddress, Value + Addend);
974    break;
975  case ELF::R_390_32:
976    writeInt32BE(LocalAddress, Value + Addend);
977    break;
978  case ELF::R_390_64:
979    writeInt64BE(LocalAddress, Value + Addend);
980    break;
981  }
982}
983
984void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
985                                          uint64_t Offset, uint64_t Value,
986                                          uint32_t Type, int64_t Addend) {
987  bool isBE = Arch == Triple::bpfeb;
988
989  switch (Type) {
990  default:
991    report_fatal_error("Relocation type not implemented yet!");
992    break;
993  case ELF::R_BPF_NONE:
994  case ELF::R_BPF_64_64:
995  case ELF::R_BPF_64_32:
996  case ELF::R_BPF_64_NODYLD32:
997    break;
998  case ELF::R_BPF_64_ABS64: {
999    write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
1000    LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1001                      << format("%p\n", Section.getAddressWithOffset(Offset)));
1002    break;
1003  }
1004  case ELF::R_BPF_64_ABS32: {
1005    Value += Addend;
1006    assert(Value <= UINT32_MAX);
1007    write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1008    LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1009                      << format("%p\n", Section.getAddressWithOffset(Offset)));
1010    break;
1011  }
1012  }
1013}
1014
1015// The target location for the relocation is described by RE.SectionID and
1016// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1017// SectionEntry has three members describing its location.
1018// SectionEntry::Address is the address at which the section has been loaded
1019// into memory in the current (host) process.  SectionEntry::LoadAddress is the
1020// address that the section will have in the target process.
1021// SectionEntry::ObjAddress is the address of the bits for this section in the
1022// original emitted object image (also in the current address space).
1023//
1024// Relocations will be applied as if the section were loaded at
1025// SectionEntry::LoadAddress, but they will be applied at an address based
1026// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1027// Target memory contents if they are required for value calculations.
1028//
1029// The Value parameter here is the load address of the symbol for the
1030// relocation to be applied.  For relocations which refer to symbols in the
1031// current object Value will be the LoadAddress of the section in which
1032// the symbol resides (RE.Addend provides additional information about the
1033// symbol location).  For external symbols, Value will be the address of the
1034// symbol in the target address space.
1035void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1036                                       uint64_t Value) {
1037  const SectionEntry &Section = Sections[RE.SectionID];
1038  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1039                           RE.SymOffset, RE.SectionID);
1040}
1041
1042void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1043                                       uint64_t Offset, uint64_t Value,
1044                                       uint32_t Type, int64_t Addend,
1045                                       uint64_t SymOffset, SID SectionID) {
1046  switch (Arch) {
1047  case Triple::x86_64:
1048    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1049    break;
1050  case Triple::x86:
1051    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1052                         (uint32_t)(Addend & 0xffffffffL));
1053    break;
1054  case Triple::aarch64:
1055  case Triple::aarch64_be:
1056    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1057    break;
1058  case Triple::arm: // Fall through.
1059  case Triple::armeb:
1060  case Triple::thumb:
1061  case Triple::thumbeb:
1062    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1063                         (uint32_t)(Addend & 0xffffffffL));
1064    break;
1065  case Triple::ppc: // Fall through.
1066  case Triple::ppcle:
1067    resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1068    break;
1069  case Triple::ppc64: // Fall through.
1070  case Triple::ppc64le:
1071    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1072    break;
1073  case Triple::systemz:
1074    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1075    break;
1076  case Triple::bpfel:
1077  case Triple::bpfeb:
1078    resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1079    break;
1080  default:
1081    llvm_unreachable("Unsupported CPU type!");
1082  }
1083}
1084
1085void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1086  return (void *)(Sections[SectionID].getObjAddress() + Offset);
1087}
1088
1089void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1090  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1091  if (Value.SymbolName)
1092    addRelocationForSymbol(RE, Value.SymbolName);
1093  else
1094    addRelocationForSection(RE, Value.SectionID);
1095}
1096
1097uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1098                                                 bool IsLocal) const {
1099  switch (RelType) {
1100  case ELF::R_MICROMIPS_GOT16:
1101    if (IsLocal)
1102      return ELF::R_MICROMIPS_LO16;
1103    break;
1104  case ELF::R_MICROMIPS_HI16:
1105    return ELF::R_MICROMIPS_LO16;
1106  case ELF::R_MIPS_GOT16:
1107    if (IsLocal)
1108      return ELF::R_MIPS_LO16;
1109    break;
1110  case ELF::R_MIPS_HI16:
1111    return ELF::R_MIPS_LO16;
1112  case ELF::R_MIPS_PCHI16:
1113    return ELF::R_MIPS_PCLO16;
1114  default:
1115    break;
1116  }
1117  return ELF::R_MIPS_NONE;
1118}
1119
1120// Sometimes we don't need to create thunk for a branch.
1121// This typically happens when branch target is located
1122// in the same object file. In such case target is either
1123// a weak symbol or symbol in a different executable section.
1124// This function checks if branch target is located in the
1125// same object file and if distance between source and target
1126// fits R_AARCH64_CALL26 relocation. If both conditions are
1127// met, it emits direct jump to the target and returns true.
1128// Otherwise false is returned and thunk is created.
1129bool RuntimeDyldELF::resolveAArch64ShortBranch(
1130    unsigned SectionID, relocation_iterator RelI,
1131    const RelocationValueRef &Value) {
1132  uint64_t Address;
1133  if (Value.SymbolName) {
1134    auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1135
1136    // Don't create direct branch for external symbols.
1137    if (Loc == GlobalSymbolTable.end())
1138      return false;
1139
1140    const auto &SymInfo = Loc->second;
1141    Address =
1142        uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1143            SymInfo.getOffset()));
1144  } else {
1145    Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1146  }
1147  uint64_t Offset = RelI->getOffset();
1148  uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1149
1150  // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1151  // If distance between source and target is out of range then we should
1152  // create thunk.
1153  if (!isInt<28>(Address + Value.Addend - SourceAddress))
1154    return false;
1155
1156  resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1157                    Value.Addend);
1158
1159  return true;
1160}
1161
1162void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1163                                          const RelocationValueRef &Value,
1164                                          relocation_iterator RelI,
1165                                          StubMap &Stubs) {
1166
1167  LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1168  SectionEntry &Section = Sections[SectionID];
1169
1170  uint64_t Offset = RelI->getOffset();
1171  unsigned RelType = RelI->getType();
1172  // Look for an existing stub.
1173  StubMap::const_iterator i = Stubs.find(Value);
1174  if (i != Stubs.end()) {
1175    resolveRelocation(Section, Offset,
1176                      (uint64_t)Section.getAddressWithOffset(i->second),
1177                      RelType, 0);
1178    LLVM_DEBUG(dbgs() << " Stub function found\n");
1179  } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1180    // Create a new stub function.
1181    LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1182    Stubs[Value] = Section.getStubOffset();
1183    uint8_t *StubTargetAddr = createStubFunction(
1184        Section.getAddressWithOffset(Section.getStubOffset()));
1185
1186    RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1187                              ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1188    RelocationEntry REmovk_g2(SectionID,
1189                              StubTargetAddr - Section.getAddress() + 4,
1190                              ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1191    RelocationEntry REmovk_g1(SectionID,
1192                              StubTargetAddr - Section.getAddress() + 8,
1193                              ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1194    RelocationEntry REmovk_g0(SectionID,
1195                              StubTargetAddr - Section.getAddress() + 12,
1196                              ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1197
1198    if (Value.SymbolName) {
1199      addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1200      addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1201      addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1202      addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1203    } else {
1204      addRelocationForSection(REmovz_g3, Value.SectionID);
1205      addRelocationForSection(REmovk_g2, Value.SectionID);
1206      addRelocationForSection(REmovk_g1, Value.SectionID);
1207      addRelocationForSection(REmovk_g0, Value.SectionID);
1208    }
1209    resolveRelocation(Section, Offset,
1210                      reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1211                          Section.getStubOffset())),
1212                      RelType, 0);
1213    Section.advanceStubOffset(getMaxStubSize());
1214  }
1215}
1216
1217Expected<relocation_iterator>
1218RuntimeDyldELF::processRelocationRef(
1219    unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1220    ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1221  const auto &Obj = cast<ELFObjectFileBase>(O);
1222  uint64_t RelType = RelI->getType();
1223  int64_t Addend = 0;
1224  if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1225    Addend = *AddendOrErr;
1226  else
1227    consumeError(AddendOrErr.takeError());
1228  elf_symbol_iterator Symbol = RelI->getSymbol();
1229
1230  // Obtain the symbol name which is referenced in the relocation
1231  StringRef TargetName;
1232  if (Symbol != Obj.symbol_end()) {
1233    if (auto TargetNameOrErr = Symbol->getName())
1234      TargetName = *TargetNameOrErr;
1235    else
1236      return TargetNameOrErr.takeError();
1237  }
1238  LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1239                    << " TargetName: " << TargetName << "\n");
1240  RelocationValueRef Value;
1241  // First search for the symbol in the local symbol table
1242  SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1243
1244  // Search for the symbol in the global symbol table
1245  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1246  if (Symbol != Obj.symbol_end()) {
1247    gsi = GlobalSymbolTable.find(TargetName.data());
1248    Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1249    if (!SymTypeOrErr) {
1250      std::string Buf;
1251      raw_string_ostream OS(Buf);
1252      logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1253      report_fatal_error(Twine(OS.str()));
1254    }
1255    SymType = *SymTypeOrErr;
1256  }
1257  if (gsi != GlobalSymbolTable.end()) {
1258    const auto &SymInfo = gsi->second;
1259    Value.SectionID = SymInfo.getSectionID();
1260    Value.Offset = SymInfo.getOffset();
1261    Value.Addend = SymInfo.getOffset() + Addend;
1262  } else {
1263    switch (SymType) {
1264    case SymbolRef::ST_Debug: {
1265      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1266      // and can be changed by another developers. Maybe best way is add
1267      // a new symbol type ST_Section to SymbolRef and use it.
1268      auto SectionOrErr = Symbol->getSection();
1269      if (!SectionOrErr) {
1270        std::string Buf;
1271        raw_string_ostream OS(Buf);
1272        logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1273        report_fatal_error(Twine(OS.str()));
1274      }
1275      section_iterator si = *SectionOrErr;
1276      if (si == Obj.section_end())
1277        llvm_unreachable("Symbol section not found, bad object file format!");
1278      LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1279      bool isCode = si->isText();
1280      if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1281                                                  ObjSectionToID))
1282        Value.SectionID = *SectionIDOrErr;
1283      else
1284        return SectionIDOrErr.takeError();
1285      Value.Addend = Addend;
1286      break;
1287    }
1288    case SymbolRef::ST_Data:
1289    case SymbolRef::ST_Function:
1290    case SymbolRef::ST_Other:
1291    case SymbolRef::ST_Unknown: {
1292      Value.SymbolName = TargetName.data();
1293      Value.Addend = Addend;
1294
1295      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1296      // will manifest here as a NULL symbol name.
1297      // We can set this as a valid (but empty) symbol name, and rely
1298      // on addRelocationForSymbol to handle this.
1299      if (!Value.SymbolName)
1300        Value.SymbolName = "";
1301      break;
1302    }
1303    default:
1304      llvm_unreachable("Unresolved symbol type!");
1305      break;
1306    }
1307  }
1308
1309  uint64_t Offset = RelI->getOffset();
1310
1311  LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1312                    << "\n");
1313  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1314    if ((RelType == ELF::R_AARCH64_CALL26 ||
1315         RelType == ELF::R_AARCH64_JUMP26) &&
1316        MemMgr.allowStubAllocation()) {
1317      resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1318    } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1319      // Create new GOT entry or find existing one. If GOT entry is
1320      // to be created, then we also emit ABS64 relocation for it.
1321      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1322      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1323                                 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1324
1325    } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1326      uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1327      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1328                                 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1329    } else {
1330      processSimpleRelocation(SectionID, Offset, RelType, Value);
1331    }
1332  } else if (Arch == Triple::arm) {
1333    if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1334      RelType == ELF::R_ARM_JUMP24) {
1335      // This is an ARM branch relocation, need to use a stub function.
1336      LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1337      SectionEntry &Section = Sections[SectionID];
1338
1339      // Look for an existing stub.
1340      StubMap::const_iterator i = Stubs.find(Value);
1341      if (i != Stubs.end()) {
1342        resolveRelocation(
1343            Section, Offset,
1344            reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1345            RelType, 0);
1346        LLVM_DEBUG(dbgs() << " Stub function found\n");
1347      } else {
1348        // Create a new stub function.
1349        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1350        Stubs[Value] = Section.getStubOffset();
1351        uint8_t *StubTargetAddr = createStubFunction(
1352            Section.getAddressWithOffset(Section.getStubOffset()));
1353        RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1354                           ELF::R_ARM_ABS32, Value.Addend);
1355        if (Value.SymbolName)
1356          addRelocationForSymbol(RE, Value.SymbolName);
1357        else
1358          addRelocationForSection(RE, Value.SectionID);
1359
1360        resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1361                                               Section.getAddressWithOffset(
1362                                                   Section.getStubOffset())),
1363                          RelType, 0);
1364        Section.advanceStubOffset(getMaxStubSize());
1365      }
1366    } else {
1367      uint32_t *Placeholder =
1368        reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1369      if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1370          RelType == ELF::R_ARM_ABS32) {
1371        Value.Addend += *Placeholder;
1372      } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1373        // See ELF for ARM documentation
1374        Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1375      }
1376      processSimpleRelocation(SectionID, Offset, RelType, Value);
1377    }
1378  } else if (IsMipsO32ABI) {
1379    uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1380        computePlaceholderAddress(SectionID, Offset));
1381    uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1382    if (RelType == ELF::R_MIPS_26) {
1383      // This is an Mips branch relocation, need to use a stub function.
1384      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1385      SectionEntry &Section = Sections[SectionID];
1386
1387      // Extract the addend from the instruction.
1388      // We shift up by two since the Value will be down shifted again
1389      // when applying the relocation.
1390      uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1391
1392      Value.Addend += Addend;
1393
1394      //  Look up for existing stub.
1395      StubMap::const_iterator i = Stubs.find(Value);
1396      if (i != Stubs.end()) {
1397        RelocationEntry RE(SectionID, Offset, RelType, i->second);
1398        addRelocationForSection(RE, SectionID);
1399        LLVM_DEBUG(dbgs() << " Stub function found\n");
1400      } else {
1401        // Create a new stub function.
1402        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1403        Stubs[Value] = Section.getStubOffset();
1404
1405        unsigned AbiVariant = Obj.getPlatformFlags();
1406
1407        uint8_t *StubTargetAddr = createStubFunction(
1408            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1409
1410        // Creating Hi and Lo relocations for the filled stub instructions.
1411        RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1412                             ELF::R_MIPS_HI16, Value.Addend);
1413        RelocationEntry RELo(SectionID,
1414                             StubTargetAddr - Section.getAddress() + 4,
1415                             ELF::R_MIPS_LO16, Value.Addend);
1416
1417        if (Value.SymbolName) {
1418          addRelocationForSymbol(REHi, Value.SymbolName);
1419          addRelocationForSymbol(RELo, Value.SymbolName);
1420        } else {
1421          addRelocationForSection(REHi, Value.SectionID);
1422          addRelocationForSection(RELo, Value.SectionID);
1423        }
1424
1425        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1426        addRelocationForSection(RE, SectionID);
1427        Section.advanceStubOffset(getMaxStubSize());
1428      }
1429    } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1430      int64_t Addend = (Opcode & 0x0000ffff) << 16;
1431      RelocationEntry RE(SectionID, Offset, RelType, Addend);
1432      PendingRelocs.push_back(std::make_pair(Value, RE));
1433    } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1434      int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1435      for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1436        const RelocationValueRef &MatchingValue = I->first;
1437        RelocationEntry &Reloc = I->second;
1438        if (MatchingValue == Value &&
1439            RelType == getMatchingLoRelocation(Reloc.RelType) &&
1440            SectionID == Reloc.SectionID) {
1441          Reloc.Addend += Addend;
1442          if (Value.SymbolName)
1443            addRelocationForSymbol(Reloc, Value.SymbolName);
1444          else
1445            addRelocationForSection(Reloc, Value.SectionID);
1446          I = PendingRelocs.erase(I);
1447        } else
1448          ++I;
1449      }
1450      RelocationEntry RE(SectionID, Offset, RelType, Addend);
1451      if (Value.SymbolName)
1452        addRelocationForSymbol(RE, Value.SymbolName);
1453      else
1454        addRelocationForSection(RE, Value.SectionID);
1455    } else {
1456      if (RelType == ELF::R_MIPS_32)
1457        Value.Addend += Opcode;
1458      else if (RelType == ELF::R_MIPS_PC16)
1459        Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1460      else if (RelType == ELF::R_MIPS_PC19_S2)
1461        Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1462      else if (RelType == ELF::R_MIPS_PC21_S2)
1463        Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1464      else if (RelType == ELF::R_MIPS_PC26_S2)
1465        Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1466      processSimpleRelocation(SectionID, Offset, RelType, Value);
1467    }
1468  } else if (IsMipsN32ABI || IsMipsN64ABI) {
1469    uint32_t r_type = RelType & 0xff;
1470    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1471    if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1472        || r_type == ELF::R_MIPS_GOT_DISP) {
1473      StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1474      if (i != GOTSymbolOffsets.end())
1475        RE.SymOffset = i->second;
1476      else {
1477        RE.SymOffset = allocateGOTEntries(1);
1478        GOTSymbolOffsets[TargetName] = RE.SymOffset;
1479      }
1480      if (Value.SymbolName)
1481        addRelocationForSymbol(RE, Value.SymbolName);
1482      else
1483        addRelocationForSection(RE, Value.SectionID);
1484    } else if (RelType == ELF::R_MIPS_26) {
1485      // This is an Mips branch relocation, need to use a stub function.
1486      LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1487      SectionEntry &Section = Sections[SectionID];
1488
1489      //  Look up for existing stub.
1490      StubMap::const_iterator i = Stubs.find(Value);
1491      if (i != Stubs.end()) {
1492        RelocationEntry RE(SectionID, Offset, RelType, i->second);
1493        addRelocationForSection(RE, SectionID);
1494        LLVM_DEBUG(dbgs() << " Stub function found\n");
1495      } else {
1496        // Create a new stub function.
1497        LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1498        Stubs[Value] = Section.getStubOffset();
1499
1500        unsigned AbiVariant = Obj.getPlatformFlags();
1501
1502        uint8_t *StubTargetAddr = createStubFunction(
1503            Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1504
1505        if (IsMipsN32ABI) {
1506          // Creating Hi and Lo relocations for the filled stub instructions.
1507          RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1508                               ELF::R_MIPS_HI16, Value.Addend);
1509          RelocationEntry RELo(SectionID,
1510                               StubTargetAddr - Section.getAddress() + 4,
1511                               ELF::R_MIPS_LO16, Value.Addend);
1512          if (Value.SymbolName) {
1513            addRelocationForSymbol(REHi, Value.SymbolName);
1514            addRelocationForSymbol(RELo, Value.SymbolName);
1515          } else {
1516            addRelocationForSection(REHi, Value.SectionID);
1517            addRelocationForSection(RELo, Value.SectionID);
1518          }
1519        } else {
1520          // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1521          // instructions.
1522          RelocationEntry REHighest(SectionID,
1523                                    StubTargetAddr - Section.getAddress(),
1524                                    ELF::R_MIPS_HIGHEST, Value.Addend);
1525          RelocationEntry REHigher(SectionID,
1526                                   StubTargetAddr - Section.getAddress() + 4,
1527                                   ELF::R_MIPS_HIGHER, Value.Addend);
1528          RelocationEntry REHi(SectionID,
1529                               StubTargetAddr - Section.getAddress() + 12,
1530                               ELF::R_MIPS_HI16, Value.Addend);
1531          RelocationEntry RELo(SectionID,
1532                               StubTargetAddr - Section.getAddress() + 20,
1533                               ELF::R_MIPS_LO16, Value.Addend);
1534          if (Value.SymbolName) {
1535            addRelocationForSymbol(REHighest, Value.SymbolName);
1536            addRelocationForSymbol(REHigher, Value.SymbolName);
1537            addRelocationForSymbol(REHi, Value.SymbolName);
1538            addRelocationForSymbol(RELo, Value.SymbolName);
1539          } else {
1540            addRelocationForSection(REHighest, Value.SectionID);
1541            addRelocationForSection(REHigher, Value.SectionID);
1542            addRelocationForSection(REHi, Value.SectionID);
1543            addRelocationForSection(RELo, Value.SectionID);
1544          }
1545        }
1546        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1547        addRelocationForSection(RE, SectionID);
1548        Section.advanceStubOffset(getMaxStubSize());
1549      }
1550    } else {
1551      processSimpleRelocation(SectionID, Offset, RelType, Value);
1552    }
1553
1554  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1555    if (RelType == ELF::R_PPC64_REL24) {
1556      // Determine ABI variant in use for this object.
1557      unsigned AbiVariant = Obj.getPlatformFlags();
1558      AbiVariant &= ELF::EF_PPC64_ABI;
1559      // A PPC branch relocation will need a stub function if the target is
1560      // an external symbol (either Value.SymbolName is set, or SymType is
1561      // Symbol::ST_Unknown) or if the target address is not within the
1562      // signed 24-bits branch address.
1563      SectionEntry &Section = Sections[SectionID];
1564      uint8_t *Target = Section.getAddressWithOffset(Offset);
1565      bool RangeOverflow = false;
1566      bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1567      if (!IsExtern) {
1568        if (AbiVariant != 2) {
1569          // In the ELFv1 ABI, a function call may point to the .opd entry,
1570          // so the final symbol value is calculated based on the relocation
1571          // values in the .opd section.
1572          if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1573            return std::move(Err);
1574        } else {
1575          // In the ELFv2 ABI, a function symbol may provide a local entry
1576          // point, which must be used for direct calls.
1577          if (Value.SectionID == SectionID){
1578            uint8_t SymOther = Symbol->getOther();
1579            Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1580          }
1581        }
1582        uint8_t *RelocTarget =
1583            Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1584        int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1585        // If it is within 26-bits branch range, just set the branch target
1586        if (SignExtend64<26>(delta) != delta) {
1587          RangeOverflow = true;
1588        } else if ((AbiVariant != 2) ||
1589                   (AbiVariant == 2  && Value.SectionID == SectionID)) {
1590          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1591          addRelocationForSection(RE, Value.SectionID);
1592        }
1593      }
1594      if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1595          RangeOverflow) {
1596        // It is an external symbol (either Value.SymbolName is set, or
1597        // SymType is SymbolRef::ST_Unknown) or out of range.
1598        StubMap::const_iterator i = Stubs.find(Value);
1599        if (i != Stubs.end()) {
1600          // Symbol function stub already created, just relocate to it
1601          resolveRelocation(Section, Offset,
1602                            reinterpret_cast<uint64_t>(
1603                                Section.getAddressWithOffset(i->second)),
1604                            RelType, 0);
1605          LLVM_DEBUG(dbgs() << " Stub function found\n");
1606        } else {
1607          // Create a new stub function.
1608          LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1609          Stubs[Value] = Section.getStubOffset();
1610          uint8_t *StubTargetAddr = createStubFunction(
1611              Section.getAddressWithOffset(Section.getStubOffset()),
1612              AbiVariant);
1613          RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1614                             ELF::R_PPC64_ADDR64, Value.Addend);
1615
1616          // Generates the 64-bits address loads as exemplified in section
1617          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1618          // apply to the low part of the instructions, so we have to update
1619          // the offset according to the target endianness.
1620          uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1621          if (!IsTargetLittleEndian)
1622            StubRelocOffset += 2;
1623
1624          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1625                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1626          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1627                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1628          RelocationEntry REh(SectionID, StubRelocOffset + 12,
1629                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
1630          RelocationEntry REl(SectionID, StubRelocOffset + 16,
1631                              ELF::R_PPC64_ADDR16_LO, Value.Addend);
1632
1633          if (Value.SymbolName) {
1634            addRelocationForSymbol(REhst, Value.SymbolName);
1635            addRelocationForSymbol(REhr, Value.SymbolName);
1636            addRelocationForSymbol(REh, Value.SymbolName);
1637            addRelocationForSymbol(REl, Value.SymbolName);
1638          } else {
1639            addRelocationForSection(REhst, Value.SectionID);
1640            addRelocationForSection(REhr, Value.SectionID);
1641            addRelocationForSection(REh, Value.SectionID);
1642            addRelocationForSection(REl, Value.SectionID);
1643          }
1644
1645          resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1646                                                 Section.getAddressWithOffset(
1647                                                     Section.getStubOffset())),
1648                            RelType, 0);
1649          Section.advanceStubOffset(getMaxStubSize());
1650        }
1651        if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1652          // Restore the TOC for external calls
1653          if (AbiVariant == 2)
1654            writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1655          else
1656            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1657        }
1658      }
1659    } else if (RelType == ELF::R_PPC64_TOC16 ||
1660               RelType == ELF::R_PPC64_TOC16_DS ||
1661               RelType == ELF::R_PPC64_TOC16_LO ||
1662               RelType == ELF::R_PPC64_TOC16_LO_DS ||
1663               RelType == ELF::R_PPC64_TOC16_HI ||
1664               RelType == ELF::R_PPC64_TOC16_HA) {
1665      // These relocations are supposed to subtract the TOC address from
1666      // the final value.  This does not fit cleanly into the RuntimeDyld
1667      // scheme, since there may be *two* sections involved in determining
1668      // the relocation value (the section of the symbol referred to by the
1669      // relocation, and the TOC section associated with the current module).
1670      //
1671      // Fortunately, these relocations are currently only ever generated
1672      // referring to symbols that themselves reside in the TOC, which means
1673      // that the two sections are actually the same.  Thus they cancel out
1674      // and we can immediately resolve the relocation right now.
1675      switch (RelType) {
1676      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1677      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1678      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1679      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1680      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1681      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1682      default: llvm_unreachable("Wrong relocation type.");
1683      }
1684
1685      RelocationValueRef TOCValue;
1686      if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1687        return std::move(Err);
1688      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1689        llvm_unreachable("Unsupported TOC relocation.");
1690      Value.Addend -= TOCValue.Addend;
1691      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1692    } else {
1693      // There are two ways to refer to the TOC address directly: either
1694      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1695      // ignored), or via any relocation that refers to the magic ".TOC."
1696      // symbols (in which case the addend is respected).
1697      if (RelType == ELF::R_PPC64_TOC) {
1698        RelType = ELF::R_PPC64_ADDR64;
1699        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1700          return std::move(Err);
1701      } else if (TargetName == ".TOC.") {
1702        if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1703          return std::move(Err);
1704        Value.Addend += Addend;
1705      }
1706
1707      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1708
1709      if (Value.SymbolName)
1710        addRelocationForSymbol(RE, Value.SymbolName);
1711      else
1712        addRelocationForSection(RE, Value.SectionID);
1713    }
1714  } else if (Arch == Triple::systemz &&
1715             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1716    // Create function stubs for both PLT and GOT references, regardless of
1717    // whether the GOT reference is to data or code.  The stub contains the
1718    // full address of the symbol, as needed by GOT references, and the
1719    // executable part only adds an overhead of 8 bytes.
1720    //
1721    // We could try to conserve space by allocating the code and data
1722    // parts of the stub separately.  However, as things stand, we allocate
1723    // a stub for every relocation, so using a GOT in JIT code should be
1724    // no less space efficient than using an explicit constant pool.
1725    LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1726    SectionEntry &Section = Sections[SectionID];
1727
1728    // Look for an existing stub.
1729    StubMap::const_iterator i = Stubs.find(Value);
1730    uintptr_t StubAddress;
1731    if (i != Stubs.end()) {
1732      StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1733      LLVM_DEBUG(dbgs() << " Stub function found\n");
1734    } else {
1735      // Create a new stub function.
1736      LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1737
1738      uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1739      StubAddress =
1740          alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1741      unsigned StubOffset = StubAddress - BaseAddress;
1742
1743      Stubs[Value] = StubOffset;
1744      createStubFunction((uint8_t *)StubAddress);
1745      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1746                         Value.Offset);
1747      if (Value.SymbolName)
1748        addRelocationForSymbol(RE, Value.SymbolName);
1749      else
1750        addRelocationForSection(RE, Value.SectionID);
1751      Section.advanceStubOffset(getMaxStubSize());
1752    }
1753
1754    if (RelType == ELF::R_390_GOTENT)
1755      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1756                        Addend);
1757    else
1758      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1759  } else if (Arch == Triple::x86_64) {
1760    if (RelType == ELF::R_X86_64_PLT32) {
1761      // The way the PLT relocations normally work is that the linker allocates
1762      // the
1763      // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1764      // entry will then jump to an address provided by the GOT.  On first call,
1765      // the
1766      // GOT address will point back into PLT code that resolves the symbol. After
1767      // the first call, the GOT entry points to the actual function.
1768      //
1769      // For local functions we're ignoring all of that here and just replacing
1770      // the PLT32 relocation type with PC32, which will translate the relocation
1771      // into a PC-relative call directly to the function. For external symbols we
1772      // can't be sure the function will be within 2^32 bytes of the call site, so
1773      // we need to create a stub, which calls into the GOT.  This case is
1774      // equivalent to the usual PLT implementation except that we use the stub
1775      // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1776      // rather than allocating a PLT section.
1777      if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1778        // This is a call to an external function.
1779        // Look for an existing stub.
1780        SectionEntry *Section = &Sections[SectionID];
1781        StubMap::const_iterator i = Stubs.find(Value);
1782        uintptr_t StubAddress;
1783        if (i != Stubs.end()) {
1784          StubAddress = uintptr_t(Section->getAddress()) + i->second;
1785          LLVM_DEBUG(dbgs() << " Stub function found\n");
1786        } else {
1787          // Create a new stub function (equivalent to a PLT entry).
1788          LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1789
1790          uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1791          StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1792                                getStubAlignment());
1793          unsigned StubOffset = StubAddress - BaseAddress;
1794          Stubs[Value] = StubOffset;
1795          createStubFunction((uint8_t *)StubAddress);
1796
1797          // Bump our stub offset counter
1798          Section->advanceStubOffset(getMaxStubSize());
1799
1800          // Allocate a GOT Entry
1801          uint64_t GOTOffset = allocateGOTEntries(1);
1802          // This potentially creates a new Section which potentially
1803          // invalidates the Section pointer, so reload it.
1804          Section = &Sections[SectionID];
1805
1806          // The load of the GOT address has an addend of -4
1807          resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1808                                     ELF::R_X86_64_PC32);
1809
1810          // Fill in the value of the symbol we're targeting into the GOT
1811          addRelocationForSymbol(
1812              computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1813              Value.SymbolName);
1814        }
1815
1816        // Make the target call a call into the stub table.
1817        resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1818                          Addend);
1819      } else {
1820        Value.Addend += support::ulittle32_t::ref(
1821            computePlaceholderAddress(SectionID, Offset));
1822        processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1823      }
1824    } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1825               RelType == ELF::R_X86_64_GOTPCRELX ||
1826               RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1827      uint64_t GOTOffset = allocateGOTEntries(1);
1828      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1829                                 ELF::R_X86_64_PC32);
1830
1831      // Fill in the value of the symbol we're targeting into the GOT
1832      RelocationEntry RE =
1833          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1834      if (Value.SymbolName)
1835        addRelocationForSymbol(RE, Value.SymbolName);
1836      else
1837        addRelocationForSection(RE, Value.SectionID);
1838    } else if (RelType == ELF::R_X86_64_GOT64) {
1839      // Fill in a 64-bit GOT offset.
1840      uint64_t GOTOffset = allocateGOTEntries(1);
1841      resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1842                        ELF::R_X86_64_64, 0);
1843
1844      // Fill in the value of the symbol we're targeting into the GOT
1845      RelocationEntry RE =
1846          computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1847      if (Value.SymbolName)
1848        addRelocationForSymbol(RE, Value.SymbolName);
1849      else
1850        addRelocationForSection(RE, Value.SectionID);
1851    } else if (RelType == ELF::R_X86_64_GOTPC32) {
1852      // Materialize the address of the base of the GOT relative to the PC.
1853      // This doesn't create a GOT entry, but it does mean we need a GOT
1854      // section.
1855      (void)allocateGOTEntries(0);
1856      resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1857    } else if (RelType == ELF::R_X86_64_GOTPC64) {
1858      (void)allocateGOTEntries(0);
1859      resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1860    } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1861      // GOTOFF relocations ultimately require a section difference relocation.
1862      (void)allocateGOTEntries(0);
1863      processSimpleRelocation(SectionID, Offset, RelType, Value);
1864    } else if (RelType == ELF::R_X86_64_PC32) {
1865      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1866      processSimpleRelocation(SectionID, Offset, RelType, Value);
1867    } else if (RelType == ELF::R_X86_64_PC64) {
1868      Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1869      processSimpleRelocation(SectionID, Offset, RelType, Value);
1870    } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1871      processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1872    } else if (RelType == ELF::R_X86_64_TLSGD ||
1873               RelType == ELF::R_X86_64_TLSLD) {
1874      // The next relocation must be the relocation for __tls_get_addr.
1875      ++RelI;
1876      auto &GetAddrRelocation = *RelI;
1877      processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1878                                 GetAddrRelocation);
1879    } else {
1880      processSimpleRelocation(SectionID, Offset, RelType, Value);
1881    }
1882  } else {
1883    if (Arch == Triple::x86) {
1884      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1885    }
1886    processSimpleRelocation(SectionID, Offset, RelType, Value);
1887  }
1888  return ++RelI;
1889}
1890
1891void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1892                                                     uint64_t Offset,
1893                                                     RelocationValueRef Value,
1894                                                     int64_t Addend) {
1895  // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1896  // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1897  // only mentions one optimization even though there are two different
1898  // code sequences for the Initial Exec TLS Model. We match the code to
1899  // find out which one was used.
1900
1901  // A possible TLS code sequence and its replacement
1902  struct CodeSequence {
1903    // The expected code sequence
1904    ArrayRef<uint8_t> ExpectedCodeSequence;
1905    // The negative offset of the GOTTPOFF relocation to the beginning of
1906    // the sequence
1907    uint64_t TLSSequenceOffset;
1908    // The new code sequence
1909    ArrayRef<uint8_t> NewCodeSequence;
1910    // The offset of the new TPOFF relocation
1911    uint64_t TpoffRelocationOffset;
1912  };
1913
1914  std::array<CodeSequence, 2> CodeSequences;
1915
1916  // Initial Exec Code Model Sequence
1917  {
1918    static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1919        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1920        0x00,                                    // mov %fs:0, %rax
1921        0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1922                                                 // %rax
1923    };
1924    CodeSequences[0].ExpectedCodeSequence =
1925        ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1926    CodeSequences[0].TLSSequenceOffset = 12;
1927
1928    static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1929        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1930        0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1931    };
1932    CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1933    CodeSequences[0].TpoffRelocationOffset = 12;
1934  }
1935
1936  // Initial Exec Code Model Sequence, II
1937  {
1938    static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1939        0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1940        0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00  // mov %fs:(%rax), %rax
1941    };
1942    CodeSequences[1].ExpectedCodeSequence =
1943        ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1944    CodeSequences[1].TLSSequenceOffset = 3;
1945
1946    static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1947        0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,             // 6 byte nop
1948        0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1949    };
1950    CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1951    CodeSequences[1].TpoffRelocationOffset = 10;
1952  }
1953
1954  bool Resolved = false;
1955  auto &Section = Sections[SectionID];
1956  for (const auto &C : CodeSequences) {
1957    assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1958           "Old and new code sequences must have the same size");
1959
1960    if (Offset < C.TLSSequenceOffset ||
1961        (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1962            Section.getSize()) {
1963      // This can't be a matching sequence as it doesn't fit in the current
1964      // section
1965      continue;
1966    }
1967
1968    auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1969    auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1970    if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1971        C.ExpectedCodeSequence) {
1972      continue;
1973    }
1974
1975    memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1976
1977    // The original GOTTPOFF relocation has an addend as it is PC relative,
1978    // so it needs to be corrected. The TPOFF32 relocation is used as an
1979    // absolute value (which is an offset from %fs:0), so remove the addend
1980    // again.
1981    RelocationEntry RE(SectionID,
1982                       TLSSequenceStartOffset + C.TpoffRelocationOffset,
1983                       ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1984
1985    if (Value.SymbolName)
1986      addRelocationForSymbol(RE, Value.SymbolName);
1987    else
1988      addRelocationForSection(RE, Value.SectionID);
1989
1990    Resolved = true;
1991    break;
1992  }
1993
1994  if (!Resolved) {
1995    // The GOTTPOFF relocation was not used in one of the sequences
1996    // described in the spec, so we can't optimize it to a TPOFF
1997    // relocation.
1998    uint64_t GOTOffset = allocateGOTEntries(1);
1999    resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2000                               ELF::R_X86_64_PC32);
2001    RelocationEntry RE =
2002        computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2003    if (Value.SymbolName)
2004      addRelocationForSymbol(RE, Value.SymbolName);
2005    else
2006      addRelocationForSection(RE, Value.SectionID);
2007  }
2008}
2009
2010void RuntimeDyldELF::processX86_64TLSRelocation(
2011    unsigned SectionID, uint64_t Offset, uint64_t RelType,
2012    RelocationValueRef Value, int64_t Addend,
2013    const RelocationRef &GetAddrRelocation) {
2014  // Since we are statically linking and have no additional DSOs, we can resolve
2015  // the relocation directly without using __tls_get_addr.
2016  // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2017  // to replace it with the Local Exec relocation variant.
2018
2019  // Find out whether the code was compiled with the large or small memory
2020  // model. For this we look at the next relocation which is the relocation
2021  // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2022  // small code model, with a 64 bit relocation it's the large code model.
2023  bool IsSmallCodeModel;
2024  // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2025  bool IsGOTPCRel = false;
2026
2027  switch (GetAddrRelocation.getType()) {
2028  case ELF::R_X86_64_GOTPCREL:
2029  case ELF::R_X86_64_REX_GOTPCRELX:
2030  case ELF::R_X86_64_GOTPCRELX:
2031    IsGOTPCRel = true;
2032    [[fallthrough]];
2033  case ELF::R_X86_64_PLT32:
2034    IsSmallCodeModel = true;
2035    break;
2036  case ELF::R_X86_64_PLTOFF64:
2037    IsSmallCodeModel = false;
2038    break;
2039  default:
2040    report_fatal_error(
2041        "invalid TLS relocations for General/Local Dynamic TLS Model: "
2042        "expected PLT or GOT relocation for __tls_get_addr function");
2043  }
2044
2045  // The negative offset to the start of the TLS code sequence relative to
2046  // the offset of the TLSGD/TLSLD relocation
2047  uint64_t TLSSequenceOffset;
2048  // The expected start of the code sequence
2049  ArrayRef<uint8_t> ExpectedCodeSequence;
2050  // The new TLS code sequence that will replace the existing code
2051  ArrayRef<uint8_t> NewCodeSequence;
2052
2053  if (RelType == ELF::R_X86_64_TLSGD) {
2054    // The offset of the new TPOFF32 relocation (offset starting from the
2055    // beginning of the whole TLS sequence)
2056    uint64_t TpoffRelocOffset;
2057
2058    if (IsSmallCodeModel) {
2059      if (!IsGOTPCRel) {
2060        static const std::initializer_list<uint8_t> CodeSequence = {
2061            0x66, // data16 (no-op prefix)
2062            0x48, 0x8d, 0x3d, 0x00, 0x00,
2063            0x00, 0x00,                  // lea <disp32>(%rip), %rdi
2064            0x66, 0x66,                  // two data16 prefixes
2065            0x48,                        // rex64 (no-op prefix)
2066            0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2067        };
2068        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2069        TLSSequenceOffset = 4;
2070      } else {
2071        // This code sequence is not described in the TLS spec but gcc
2072        // generates it sometimes.
2073        static const std::initializer_list<uint8_t> CodeSequence = {
2074            0x66, // data16 (no-op prefix)
2075            0x48, 0x8d, 0x3d, 0x00, 0x00,
2076            0x00, 0x00, // lea <disp32>(%rip), %rdi
2077            0x66,       // data16 prefix (no-op prefix)
2078            0x48,       // rex64 (no-op prefix)
2079            0xff, 0x15, 0x00, 0x00, 0x00,
2080            0x00 // call *__tls_get_addr@gotpcrel(%rip)
2081        };
2082        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2083        TLSSequenceOffset = 4;
2084      }
2085
2086      // The replacement code for the small code model. It's the same for
2087      // both sequences.
2088      static const std::initializer_list<uint8_t> SmallSequence = {
2089          0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2090          0x00,                                    // mov %fs:0, %rax
2091          0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2092                                                   // %rax
2093      };
2094      NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2095      TpoffRelocOffset = 12;
2096    } else {
2097      static const std::initializer_list<uint8_t> CodeSequence = {
2098          0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2099                                                    // %rdi
2100          0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2101          0x00,             // movabs $__tls_get_addr@pltoff, %rax
2102          0x48, 0x01, 0xd8, // add %rbx, %rax
2103          0xff, 0xd0        // call *%rax
2104      };
2105      ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2106      TLSSequenceOffset = 3;
2107
2108      // The replacement code for the large code model
2109      static const std::initializer_list<uint8_t> LargeSequence = {
2110          0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2111          0x00,                                     // mov %fs:0, %rax
2112          0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2113                                                    // %rax
2114          0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00        // nopw 0x0(%rax,%rax,1)
2115      };
2116      NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2117      TpoffRelocOffset = 12;
2118    }
2119
2120    // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2121    // The new TPOFF32 relocations is used as an absolute offset from
2122    // %fs:0, so remove the TLSGD/TLSLD addend again.
2123    RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2124                       ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2125    if (Value.SymbolName)
2126      addRelocationForSymbol(RE, Value.SymbolName);
2127    else
2128      addRelocationForSection(RE, Value.SectionID);
2129  } else if (RelType == ELF::R_X86_64_TLSLD) {
2130    if (IsSmallCodeModel) {
2131      if (!IsGOTPCRel) {
2132        static const std::initializer_list<uint8_t> CodeSequence = {
2133            0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2134            0x00, 0xe8, 0x00, 0x00, 0x00, 0x00  // call __tls_get_addr@plt
2135        };
2136        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2137        TLSSequenceOffset = 3;
2138
2139        // The replacement code for the small code model
2140        static const std::initializer_list<uint8_t> SmallSequence = {
2141            0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2142            0x64, 0x48, 0x8b, 0x04, 0x25,
2143            0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2144        };
2145        NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2146      } else {
2147        // This code sequence is not described in the TLS spec but gcc
2148        // generates it sometimes.
2149        static const std::initializer_list<uint8_t> CodeSequence = {
2150            0x48, 0x8d, 0x3d, 0x00,
2151            0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2152            0xff, 0x15, 0x00, 0x00,
2153            0x00, 0x00 // call
2154                       // *__tls_get_addr@gotpcrel(%rip)
2155        };
2156        ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2157        TLSSequenceOffset = 3;
2158
2159        // The replacement is code is just like above but it needs to be
2160        // one byte longer.
2161        static const std::initializer_list<uint8_t> SmallSequence = {
2162            0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2163            0x64, 0x48, 0x8b, 0x04, 0x25,
2164            0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2165        };
2166        NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2167      }
2168    } else {
2169      // This is the same sequence as for the TLSGD sequence with the large
2170      // memory model above
2171      static const std::initializer_list<uint8_t> CodeSequence = {
2172          0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2173                                                    // %rdi
2174          0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2175          0x48,       // movabs $__tls_get_addr@pltoff, %rax
2176          0x01, 0xd8, // add %rbx, %rax
2177          0xff, 0xd0  // call *%rax
2178      };
2179      ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2180      TLSSequenceOffset = 3;
2181
2182      // The replacement code for the large code model
2183      static const std::initializer_list<uint8_t> LargeSequence = {
2184          0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2185          0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2186          0x00,                                                // 10 byte nop
2187          0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2188      };
2189      NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2190    }
2191  } else {
2192    llvm_unreachable("both TLS relocations handled above");
2193  }
2194
2195  assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2196         "Old and new code sequences must have the same size");
2197
2198  auto &Section = Sections[SectionID];
2199  if (Offset < TLSSequenceOffset ||
2200      (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2201          Section.getSize()) {
2202    report_fatal_error("unexpected end of section in TLS sequence");
2203  }
2204
2205  auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2206  if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2207      ExpectedCodeSequence) {
2208    report_fatal_error(
2209        "invalid TLS sequence for Global/Local Dynamic TLS Model");
2210  }
2211
2212  memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2213}
2214
2215size_t RuntimeDyldELF::getGOTEntrySize() {
2216  // We don't use the GOT in all of these cases, but it's essentially free
2217  // to put them all here.
2218  size_t Result = 0;
2219  switch (Arch) {
2220  case Triple::x86_64:
2221  case Triple::aarch64:
2222  case Triple::aarch64_be:
2223  case Triple::ppc64:
2224  case Triple::ppc64le:
2225  case Triple::systemz:
2226    Result = sizeof(uint64_t);
2227    break;
2228  case Triple::x86:
2229  case Triple::arm:
2230  case Triple::thumb:
2231    Result = sizeof(uint32_t);
2232    break;
2233  case Triple::mips:
2234  case Triple::mipsel:
2235  case Triple::mips64:
2236  case Triple::mips64el:
2237    if (IsMipsO32ABI || IsMipsN32ABI)
2238      Result = sizeof(uint32_t);
2239    else if (IsMipsN64ABI)
2240      Result = sizeof(uint64_t);
2241    else
2242      llvm_unreachable("Mips ABI not handled");
2243    break;
2244  default:
2245    llvm_unreachable("Unsupported CPU type!");
2246  }
2247  return Result;
2248}
2249
2250uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2251  if (GOTSectionID == 0) {
2252    GOTSectionID = Sections.size();
2253    // Reserve a section id. We'll allocate the section later
2254    // once we know the total size
2255    Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2256  }
2257  uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2258  CurrentGOTIndex += no;
2259  return StartOffset;
2260}
2261
2262uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2263                                             unsigned GOTRelType) {
2264  auto E = GOTOffsetMap.insert({Value, 0});
2265  if (E.second) {
2266    uint64_t GOTOffset = allocateGOTEntries(1);
2267
2268    // Create relocation for newly created GOT entry
2269    RelocationEntry RE =
2270        computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2271    if (Value.SymbolName)
2272      addRelocationForSymbol(RE, Value.SymbolName);
2273    else
2274      addRelocationForSection(RE, Value.SectionID);
2275
2276    E.first->second = GOTOffset;
2277  }
2278
2279  return E.first->second;
2280}
2281
2282void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2283                                                uint64_t Offset,
2284                                                uint64_t GOTOffset,
2285                                                uint32_t Type) {
2286  // Fill in the relative address of the GOT Entry into the stub
2287  RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2288  addRelocationForSection(GOTRE, GOTSectionID);
2289}
2290
2291RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2292                                                   uint64_t SymbolOffset,
2293                                                   uint32_t Type) {
2294  return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2295}
2296
2297void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2298  // This should never return an error as `processNewSymbol` wouldn't have been
2299  // called if getFlags() returned an error before.
2300  auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2301
2302  if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2303    if (IFuncStubSectionID == 0) {
2304      // Create a dummy section for the ifunc stubs. It will be actually
2305      // allocated in finalizeLoad() below.
2306      IFuncStubSectionID = Sections.size();
2307      Sections.push_back(
2308          SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2309      // First 64B are reserverd for the IFunc resolver
2310      IFuncStubOffset = 64;
2311    }
2312
2313    IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2314    // Modify the symbol so that it points to the ifunc stub instead of to the
2315    // resolver function.
2316    Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2317                              Symbol.getFlags());
2318    IFuncStubOffset += getMaxIFuncStubSize();
2319  }
2320}
2321
2322Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2323                                  ObjSectionToIDMap &SectionMap) {
2324  if (IsMipsO32ABI)
2325    if (!PendingRelocs.empty())
2326      return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2327
2328  // Create the IFunc stubs if necessary. This must be done before processing
2329  // the GOT entries, as the IFunc stubs may create some.
2330  if (IFuncStubSectionID != 0) {
2331    uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2332        IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2333    if (!IFuncStubsAddr)
2334      return make_error<RuntimeDyldError>(
2335          "Unable to allocate memory for IFunc stubs!");
2336    Sections[IFuncStubSectionID] =
2337        SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2338                     IFuncStubOffset, 0);
2339
2340    createIFuncResolver(IFuncStubsAddr);
2341
2342    LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2343                      << IFuncStubSectionID << " Addr: "
2344                      << Sections[IFuncStubSectionID].getAddress() << '\n');
2345    for (auto &IFuncStub : IFuncStubs) {
2346      auto &Symbol = IFuncStub.OriginalSymbol;
2347      LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2348                        << " Offset: " << format("%p", Symbol.getOffset())
2349                        << " IFuncStubOffset: "
2350                        << format("%p\n", IFuncStub.StubOffset));
2351      createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2352                      Symbol.getSectionID(), Symbol.getOffset());
2353    }
2354
2355    IFuncStubSectionID = 0;
2356    IFuncStubOffset = 0;
2357    IFuncStubs.clear();
2358  }
2359
2360  // If necessary, allocate the global offset table
2361  if (GOTSectionID != 0) {
2362    // Allocate memory for the section
2363    size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2364    uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2365                                               GOTSectionID, ".got", false);
2366    if (!Addr)
2367      return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2368
2369    Sections[GOTSectionID] =
2370        SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2371
2372    // For now, initialize all GOT entries to zero.  We'll fill them in as
2373    // needed when GOT-based relocations are applied.
2374    memset(Addr, 0, TotalSize);
2375    if (IsMipsN32ABI || IsMipsN64ABI) {
2376      // To correctly resolve Mips GOT relocations, we need a mapping from
2377      // object's sections to GOTs.
2378      for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2379           SI != SE; ++SI) {
2380        if (SI->relocation_begin() != SI->relocation_end()) {
2381          Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2382          if (!RelSecOrErr)
2383            return make_error<RuntimeDyldError>(
2384                toString(RelSecOrErr.takeError()));
2385
2386          section_iterator RelocatedSection = *RelSecOrErr;
2387          ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2388          assert(i != SectionMap.end());
2389          SectionToGOTMap[i->second] = GOTSectionID;
2390        }
2391      }
2392      GOTSymbolOffsets.clear();
2393    }
2394  }
2395
2396  // Look for and record the EH frame section.
2397  ObjSectionToIDMap::iterator i, e;
2398  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2399    const SectionRef &Section = i->first;
2400
2401    StringRef Name;
2402    Expected<StringRef> NameOrErr = Section.getName();
2403    if (NameOrErr)
2404      Name = *NameOrErr;
2405    else
2406      consumeError(NameOrErr.takeError());
2407
2408    if (Name == ".eh_frame") {
2409      UnregisteredEHFrameSections.push_back(i->second);
2410      break;
2411    }
2412  }
2413
2414  GOTOffsetMap.clear();
2415  GOTSectionID = 0;
2416  CurrentGOTIndex = 0;
2417
2418  return Error::success();
2419}
2420
2421bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2422  return Obj.isELF();
2423}
2424
2425void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2426  if (Arch == Triple::x86_64) {
2427    // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2428    // (see createIFuncStub() for details)
2429    // The following code first saves all registers that contain the original
2430    // function arguments as those registers are not saved by the resolver
2431    // function. %r11 is saved as well so that the GOT2 entry can be updated
2432    // afterwards. Then it calls the actual IFunc resolver function whose
2433    // address is stored in GOT2. After the resolver function returns, all
2434    // saved registers are restored and the return value is written to GOT1.
2435    // Finally, jump to the now resolved function.
2436    // clang-format off
2437    const uint8_t StubCode[] = {
2438        0x57,                   // push %rdi
2439        0x56,                   // push %rsi
2440        0x52,                   // push %rdx
2441        0x51,                   // push %rcx
2442        0x41, 0x50,             // push %r8
2443        0x41, 0x51,             // push %r9
2444        0x41, 0x53,             // push %r11
2445        0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2446        0x41, 0x5b,             // pop %r11
2447        0x41, 0x59,             // pop %r9
2448        0x41, 0x58,             // pop %r8
2449        0x59,                   // pop %rcx
2450        0x5a,                   // pop %rdx
2451        0x5e,                   // pop %rsi
2452        0x5f,                   // pop %rdi
2453        0x49, 0x89, 0x03,       // mov %rax,(%r11)
2454        0xff, 0xe0              // jmp *%rax
2455    };
2456    // clang-format on
2457    static_assert(sizeof(StubCode) <= 64,
2458                  "maximum size of the IFunc resolver is 64B");
2459    memcpy(Addr, StubCode, sizeof(StubCode));
2460  } else {
2461    report_fatal_error(
2462        "IFunc resolver is not supported for target architecture");
2463  }
2464}
2465
2466void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2467                                     uint64_t IFuncResolverOffset,
2468                                     uint64_t IFuncStubOffset,
2469                                     unsigned IFuncSectionID,
2470                                     uint64_t IFuncOffset) {
2471  auto &IFuncStubSection = Sections[IFuncStubSectionID];
2472  auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2473
2474  if (Arch == Triple::x86_64) {
2475    // The first instruction loads a PC-relative address into %r11 which is a
2476    // GOT entry for this stub. This initially contains the address to the
2477    // IFunc resolver. We can use %r11 here as it's caller saved but not used
2478    // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2479    // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2480    // entry.
2481    //
2482    // The next instruction just jumps to the address contained in the GOT
2483    // entry. As mentioned above, we do this two-step jump by first setting
2484    // %r11 so that the IFunc resolver has access to it.
2485    //
2486    // The IFunc resolver of course also needs to know the actual address of
2487    // the actual IFunc resolver function. This will be stored in a GOT entry
2488    // right next to the first one for this stub. So, the IFunc resolver will
2489    // be able to call it with %r11+8.
2490    //
2491    // In total, two adjacent GOT entries (+relocation) and one additional
2492    // relocation are required:
2493    // GOT1: Address of the IFunc resolver.
2494    // GOT2: Address of the IFunc resolver function.
2495    // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2496    uint64_t GOT1 = allocateGOTEntries(2);
2497    uint64_t GOT2 = GOT1 + getGOTEntrySize();
2498
2499    RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2500                        IFuncResolverOffset, {});
2501    addRelocationForSection(RE1, IFuncStubSectionID);
2502    RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2503    addRelocationForSection(RE2, IFuncSectionID);
2504
2505    const uint8_t StubCode[] = {
2506        0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2507        0x41, 0xff, 0x23                          // jmpq *(%r11)
2508    };
2509    assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2510           "IFunc stub size must not exceed getMaxIFuncStubSize()");
2511    memcpy(Addr, StubCode, sizeof(StubCode));
2512
2513    // The PC-relative value starts 4 bytes from the end of the leaq
2514    // instruction, so the addend is -4.
2515    resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2516                               GOT1 - 4, ELF::R_X86_64_PC32);
2517  } else {
2518    report_fatal_error("IFunc stub is not supported for target architecture");
2519  }
2520}
2521
2522unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2523  if (Arch == Triple::x86_64) {
2524    return 10;
2525  }
2526  return 0;
2527}
2528
2529bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2530  unsigned RelTy = R.getType();
2531  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2532    return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2533           RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2534
2535  if (Arch == Triple::x86_64)
2536    return RelTy == ELF::R_X86_64_GOTPCREL ||
2537           RelTy == ELF::R_X86_64_GOTPCRELX ||
2538           RelTy == ELF::R_X86_64_GOT64 ||
2539           RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2540  return false;
2541}
2542
2543bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2544  if (Arch != Triple::x86_64)
2545    return true;  // Conservative answer
2546
2547  switch (R.getType()) {
2548  default:
2549    return true;  // Conservative answer
2550
2551
2552  case ELF::R_X86_64_GOTPCREL:
2553  case ELF::R_X86_64_GOTPCRELX:
2554  case ELF::R_X86_64_REX_GOTPCRELX:
2555  case ELF::R_X86_64_GOTPC64:
2556  case ELF::R_X86_64_GOT64:
2557  case ELF::R_X86_64_GOTOFF64:
2558  case ELF::R_X86_64_PC32:
2559  case ELF::R_X86_64_PC64:
2560  case ELF::R_X86_64_64:
2561    // We know that these reloation types won't need a stub function.  This list
2562    // can be extended as needed.
2563    return false;
2564  }
2565}
2566
2567} // namespace llvm
2568