1//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/ModuloSchedule.h"
10#include "llvm/ADT/StringExtras.h"
11#include "llvm/Analysis/MemoryLocation.h"
12#include "llvm/CodeGen/LiveIntervals.h"
13#include "llvm/CodeGen/MachineInstrBuilder.h"
14#include "llvm/CodeGen/MachineLoopInfo.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
16#include "llvm/InitializePasses.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/raw_ostream.h"
21
22#define DEBUG_TYPE "pipeliner"
23using namespace llvm;
24
25void ModuloSchedule::print(raw_ostream &OS) {
26  for (MachineInstr *MI : ScheduledInstrs)
27    OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28}
29
30//===----------------------------------------------------------------------===//
31// ModuloScheduleExpander implementation
32//===----------------------------------------------------------------------===//
33
34/// Return the register values for  the operands of a Phi instruction.
35/// This function assume the instruction is a Phi.
36static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
37                       unsigned &InitVal, unsigned &LoopVal) {
38  assert(Phi.isPHI() && "Expecting a Phi.");
39
40  InitVal = 0;
41  LoopVal = 0;
42  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
43    if (Phi.getOperand(i + 1).getMBB() != Loop)
44      InitVal = Phi.getOperand(i).getReg();
45    else
46      LoopVal = Phi.getOperand(i).getReg();
47
48  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
49}
50
51/// Return the Phi register value that comes from the incoming block.
52static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
53  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
54    if (Phi.getOperand(i + 1).getMBB() != LoopBB)
55      return Phi.getOperand(i).getReg();
56  return 0;
57}
58
59/// Return the Phi register value that comes the loop block.
60static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
61  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
62    if (Phi.getOperand(i + 1).getMBB() == LoopBB)
63      return Phi.getOperand(i).getReg();
64  return 0;
65}
66
67void ModuloScheduleExpander::expand() {
68  BB = Schedule.getLoop()->getTopBlock();
69  Preheader = *BB->pred_begin();
70  if (Preheader == BB)
71    Preheader = *std::next(BB->pred_begin());
72
73  // Iterate over the definitions in each instruction, and compute the
74  // stage difference for each use.  Keep the maximum value.
75  for (MachineInstr *MI : Schedule.getInstructions()) {
76    int DefStage = Schedule.getStage(MI);
77    for (const MachineOperand &Op : MI->all_defs()) {
78      Register Reg = Op.getReg();
79      unsigned MaxDiff = 0;
80      bool PhiIsSwapped = false;
81      for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
82        MachineInstr *UseMI = UseOp.getParent();
83        int UseStage = Schedule.getStage(UseMI);
84        unsigned Diff = 0;
85        if (UseStage != -1 && UseStage >= DefStage)
86          Diff = UseStage - DefStage;
87        if (MI->isPHI()) {
88          if (isLoopCarried(*MI))
89            ++Diff;
90          else
91            PhiIsSwapped = true;
92        }
93        MaxDiff = std::max(Diff, MaxDiff);
94      }
95      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
96    }
97  }
98
99  generatePipelinedLoop();
100}
101
102void ModuloScheduleExpander::generatePipelinedLoop() {
103  LoopInfo = TII->analyzeLoopForPipelining(BB);
104  assert(LoopInfo && "Must be able to analyze loop!");
105
106  // Create a new basic block for the kernel and add it to the CFG.
107  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
108
109  unsigned MaxStageCount = Schedule.getNumStages() - 1;
110
111  // Remember the registers that are used in different stages. The index is
112  // the iteration, or stage, that the instruction is scheduled in.  This is
113  // a map between register names in the original block and the names created
114  // in each stage of the pipelined loop.
115  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
116
117  // The renaming destination by Phis for the registers across stages.
118  // This map is updated during Phis generation to point to the most recent
119  // renaming destination.
120  ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
121
122  InstrMapTy InstrMap;
123
124  SmallVector<MachineBasicBlock *, 4> PrologBBs;
125
126  // Generate the prolog instructions that set up the pipeline.
127  generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128  MF.insert(BB->getIterator(), KernelBB);
129
130  // Rearrange the instructions to generate the new, pipelined loop,
131  // and update register names as needed.
132  for (MachineInstr *CI : Schedule.getInstructions()) {
133    if (CI->isPHI())
134      continue;
135    unsigned StageNum = Schedule.getStage(CI);
136    MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137    updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138    KernelBB->push_back(NewMI);
139    InstrMap[NewMI] = CI;
140  }
141
142  // Copy any terminator instructions to the new kernel, and update
143  // names as needed.
144  for (MachineInstr &MI : BB->terminators()) {
145    MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
146    updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
147    KernelBB->push_back(NewMI);
148    InstrMap[NewMI] = &MI;
149  }
150
151  NewKernel = KernelBB;
152  KernelBB->transferSuccessors(BB);
153  KernelBB->replaceSuccessor(BB, KernelBB);
154
155  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
156                       InstrMap, MaxStageCount, MaxStageCount, false);
157  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
158               InstrMap, MaxStageCount, MaxStageCount, false);
159
160  LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
161
162  SmallVector<MachineBasicBlock *, 4> EpilogBBs;
163  // Generate the epilog instructions to complete the pipeline.
164  generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
165                 PrologBBs);
166
167  // We need this step because the register allocation doesn't handle some
168  // situations well, so we insert copies to help out.
169  splitLifetimes(KernelBB, EpilogBBs);
170
171  // Remove dead instructions due to loop induction variables.
172  removeDeadInstructions(KernelBB, EpilogBBs);
173
174  // Add branches between prolog and epilog blocks.
175  addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
176
177  delete[] VRMap;
178  delete[] VRMapPhi;
179}
180
181void ModuloScheduleExpander::cleanup() {
182  // Remove the original loop since it's no longer referenced.
183  for (auto &I : *BB)
184    LIS.RemoveMachineInstrFromMaps(I);
185  BB->clear();
186  BB->eraseFromParent();
187}
188
189/// Generate the pipeline prolog code.
190void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191                                            MachineBasicBlock *KernelBB,
192                                            ValueMapTy *VRMap,
193                                            MBBVectorTy &PrologBBs) {
194  MachineBasicBlock *PredBB = Preheader;
195  InstrMapTy InstrMap;
196
197  // Generate a basic block for each stage, not including the last stage,
198  // which will be generated in the kernel. Each basic block may contain
199  // instructions from multiple stages/iterations.
200  for (unsigned i = 0; i < LastStage; ++i) {
201    // Create and insert the prolog basic block prior to the original loop
202    // basic block.  The original loop is removed later.
203    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204    PrologBBs.push_back(NewBB);
205    MF.insert(BB->getIterator(), NewBB);
206    NewBB->transferSuccessors(PredBB);
207    PredBB->addSuccessor(NewBB);
208    PredBB = NewBB;
209
210    // Generate instructions for each appropriate stage. Process instructions
211    // in original program order.
212    for (int StageNum = i; StageNum >= 0; --StageNum) {
213      for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214                                       BBE = BB->getFirstTerminator();
215           BBI != BBE; ++BBI) {
216        if (Schedule.getStage(&*BBI) == StageNum) {
217          if (BBI->isPHI())
218            continue;
219          MachineInstr *NewMI =
220              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221          updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222          NewBB->push_back(NewMI);
223          InstrMap[NewMI] = &*BBI;
224        }
225      }
226    }
227    rewritePhiValues(NewBB, i, VRMap, InstrMap);
228    LLVM_DEBUG({
229      dbgs() << "prolog:\n";
230      NewBB->dump();
231    });
232  }
233
234  PredBB->replaceSuccessor(BB, KernelBB);
235
236  // Check if we need to remove the branch from the preheader to the original
237  // loop, and replace it with a branch to the new loop.
238  unsigned numBranches = TII->removeBranch(*Preheader);
239  if (numBranches) {
240    SmallVector<MachineOperand, 0> Cond;
241    TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
242  }
243}
244
245/// Generate the pipeline epilog code. The epilog code finishes the iterations
246/// that were started in either the prolog or the kernel.  We create a basic
247/// block for each stage that needs to complete.
248void ModuloScheduleExpander::generateEpilog(
249    unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
250    ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
251    MBBVectorTy &PrologBBs) {
252  // We need to change the branch from the kernel to the first epilog block, so
253  // this call to analyze branch uses the kernel rather than the original BB.
254  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
255  SmallVector<MachineOperand, 4> Cond;
256  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
257  assert(!checkBranch && "generateEpilog must be able to analyze the branch");
258  if (checkBranch)
259    return;
260
261  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
262  if (*LoopExitI == KernelBB)
263    ++LoopExitI;
264  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
265  MachineBasicBlock *LoopExitBB = *LoopExitI;
266
267  MachineBasicBlock *PredBB = KernelBB;
268  MachineBasicBlock *EpilogStart = LoopExitBB;
269  InstrMapTy InstrMap;
270
271  // Generate a basic block for each stage, not including the last stage,
272  // which was generated for the kernel.  Each basic block may contain
273  // instructions from multiple stages/iterations.
274  int EpilogStage = LastStage + 1;
275  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
276    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
277    EpilogBBs.push_back(NewBB);
278    MF.insert(BB->getIterator(), NewBB);
279
280    PredBB->replaceSuccessor(LoopExitBB, NewBB);
281    NewBB->addSuccessor(LoopExitBB);
282
283    if (EpilogStart == LoopExitBB)
284      EpilogStart = NewBB;
285
286    // Add instructions to the epilog depending on the current block.
287    // Process instructions in original program order.
288    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
289      for (auto &BBI : *BB) {
290        if (BBI.isPHI())
291          continue;
292        MachineInstr *In = &BBI;
293        if ((unsigned)Schedule.getStage(In) == StageNum) {
294          // Instructions with memoperands in the epilog are updated with
295          // conservative values.
296          MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
297          updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
298          NewBB->push_back(NewMI);
299          InstrMap[NewMI] = In;
300        }
301      }
302    }
303    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
304                         InstrMap, LastStage, EpilogStage, i == 1);
305    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
306                 InstrMap, LastStage, EpilogStage, i == 1);
307    PredBB = NewBB;
308
309    LLVM_DEBUG({
310      dbgs() << "epilog:\n";
311      NewBB->dump();
312    });
313  }
314
315  // Fix any Phi nodes in the loop exit block.
316  LoopExitBB->replacePhiUsesWith(BB, PredBB);
317
318  // Create a branch to the new epilog from the kernel.
319  // Remove the original branch and add a new branch to the epilog.
320  TII->removeBranch(*KernelBB);
321  assert((OrigBB == TBB || OrigBB == FBB) &&
322         "Unable to determine looping branch direction");
323  if (OrigBB != TBB)
324    TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
325  else
326    TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
327  // Add a branch to the loop exit.
328  if (EpilogBBs.size() > 0) {
329    MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
330    SmallVector<MachineOperand, 4> Cond1;
331    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
332  }
333}
334
335/// Replace all uses of FromReg that appear outside the specified
336/// basic block with ToReg.
337static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
338                                    MachineBasicBlock *MBB,
339                                    MachineRegisterInfo &MRI,
340                                    LiveIntervals &LIS) {
341  for (MachineOperand &O :
342       llvm::make_early_inc_range(MRI.use_operands(FromReg)))
343    if (O.getParent()->getParent() != MBB)
344      O.setReg(ToReg);
345  if (!LIS.hasInterval(ToReg))
346    LIS.createEmptyInterval(ToReg);
347}
348
349/// Return true if the register has a use that occurs outside the
350/// specified loop.
351static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352                            MachineRegisterInfo &MRI) {
353  for (const MachineOperand &MO : MRI.use_operands(Reg))
354    if (MO.getParent()->getParent() != BB)
355      return true;
356  return false;
357}
358
359/// Generate Phis for the specific block in the generated pipelined code.
360/// This function looks at the Phis from the original code to guide the
361/// creation of new Phis.
362void ModuloScheduleExpander::generateExistingPhis(
363    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
364    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
365    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
366  // Compute the stage number for the initial value of the Phi, which
367  // comes from the prolog. The prolog to use depends on to which kernel/
368  // epilog that we're adding the Phi.
369  unsigned PrologStage = 0;
370  unsigned PrevStage = 0;
371  bool InKernel = (LastStageNum == CurStageNum);
372  if (InKernel) {
373    PrologStage = LastStageNum - 1;
374    PrevStage = CurStageNum;
375  } else {
376    PrologStage = LastStageNum - (CurStageNum - LastStageNum);
377    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
378  }
379
380  for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
381                                   BBE = BB->getFirstNonPHI();
382       BBI != BBE; ++BBI) {
383    Register Def = BBI->getOperand(0).getReg();
384
385    unsigned InitVal = 0;
386    unsigned LoopVal = 0;
387    getPhiRegs(*BBI, BB, InitVal, LoopVal);
388
389    unsigned PhiOp1 = 0;
390    // The Phi value from the loop body typically is defined in the loop, but
391    // not always. So, we need to check if the value is defined in the loop.
392    unsigned PhiOp2 = LoopVal;
393    if (VRMap[LastStageNum].count(LoopVal))
394      PhiOp2 = VRMap[LastStageNum][LoopVal];
395
396    int StageScheduled = Schedule.getStage(&*BBI);
397    int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
398    unsigned NumStages = getStagesForReg(Def, CurStageNum);
399    if (NumStages == 0) {
400      // We don't need to generate a Phi anymore, but we need to rename any uses
401      // of the Phi value.
402      unsigned NewReg = VRMap[PrevStage][LoopVal];
403      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
404                            InitVal, NewReg);
405      if (VRMap[CurStageNum].count(LoopVal))
406        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
407    }
408    // Adjust the number of Phis needed depending on the number of prologs left,
409    // and the distance from where the Phi is first scheduled. The number of
410    // Phis cannot exceed the number of prolog stages. Each stage can
411    // potentially define two values.
412    unsigned MaxPhis = PrologStage + 2;
413    if (!InKernel && (int)PrologStage <= LoopValStage)
414      MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
415    unsigned NumPhis = std::min(NumStages, MaxPhis);
416
417    unsigned NewReg = 0;
418    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
419    // In the epilog, we may need to look back one stage to get the correct
420    // Phi name, because the epilog and prolog blocks execute the same stage.
421    // The correct name is from the previous block only when the Phi has
422    // been completely scheduled prior to the epilog, and Phi value is not
423    // needed in multiple stages.
424    int StageDiff = 0;
425    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
426        NumPhis == 1)
427      StageDiff = 1;
428    // Adjust the computations below when the phi and the loop definition
429    // are scheduled in different stages.
430    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
431      StageDiff = StageScheduled - LoopValStage;
432    for (unsigned np = 0; np < NumPhis; ++np) {
433      // If the Phi hasn't been scheduled, then use the initial Phi operand
434      // value. Otherwise, use the scheduled version of the instruction. This
435      // is a little complicated when a Phi references another Phi.
436      if (np > PrologStage || StageScheduled >= (int)LastStageNum)
437        PhiOp1 = InitVal;
438      // Check if the Phi has already been scheduled in a prolog stage.
439      else if (PrologStage >= AccessStage + StageDiff + np &&
440               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
441        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
442      // Check if the Phi has already been scheduled, but the loop instruction
443      // is either another Phi, or doesn't occur in the loop.
444      else if (PrologStage >= AccessStage + StageDiff + np) {
445        // If the Phi references another Phi, we need to examine the other
446        // Phi to get the correct value.
447        PhiOp1 = LoopVal;
448        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
449        int Indirects = 1;
450        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
451          int PhiStage = Schedule.getStage(InstOp1);
452          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
453            PhiOp1 = getInitPhiReg(*InstOp1, BB);
454          else
455            PhiOp1 = getLoopPhiReg(*InstOp1, BB);
456          InstOp1 = MRI.getVRegDef(PhiOp1);
457          int PhiOpStage = Schedule.getStage(InstOp1);
458          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
459          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
460              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
461            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
462            break;
463          }
464          ++Indirects;
465        }
466      } else
467        PhiOp1 = InitVal;
468      // If this references a generated Phi in the kernel, get the Phi operand
469      // from the incoming block.
470      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
471        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
472          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
473
474      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
475      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
476      // In the epilog, a map lookup is needed to get the value from the kernel,
477      // or previous epilog block. How is does this depends on if the
478      // instruction is scheduled in the previous block.
479      if (!InKernel) {
480        int StageDiffAdj = 0;
481        if (LoopValStage != -1 && StageScheduled > LoopValStage)
482          StageDiffAdj = StageScheduled - LoopValStage;
483        // Use the loop value defined in the kernel, unless the kernel
484        // contains the last definition of the Phi.
485        if (np == 0 && PrevStage == LastStageNum &&
486            (StageScheduled != 0 || LoopValStage != 0) &&
487            VRMap[PrevStage - StageDiffAdj].count(LoopVal))
488          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
489        // Use the value defined by the Phi. We add one because we switch
490        // from looking at the loop value to the Phi definition.
491        else if (np > 0 && PrevStage == LastStageNum &&
492                 VRMap[PrevStage - np + 1].count(Def))
493          PhiOp2 = VRMap[PrevStage - np + 1][Def];
494        // Use the loop value defined in the kernel.
495        else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
496                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
497          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
498        // Use the value defined by the Phi, unless we're generating the first
499        // epilog and the Phi refers to a Phi in a different stage.
500        else if (VRMap[PrevStage - np].count(Def) &&
501                 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
502                  (LoopValStage == StageScheduled)))
503          PhiOp2 = VRMap[PrevStage - np][Def];
504      }
505
506      // Check if we can reuse an existing Phi. This occurs when a Phi
507      // references another Phi, and the other Phi is scheduled in an
508      // earlier stage. We can try to reuse an existing Phi up until the last
509      // stage of the current Phi.
510      if (LoopDefIsPhi) {
511        if (static_cast<int>(PrologStage - np) >= StageScheduled) {
512          int LVNumStages = getStagesForPhi(LoopVal);
513          int StageDiff = (StageScheduled - LoopValStage);
514          LVNumStages -= StageDiff;
515          // Make sure the loop value Phi has been processed already.
516          if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
517            NewReg = PhiOp2;
518            unsigned ReuseStage = CurStageNum;
519            if (isLoopCarried(*PhiInst))
520              ReuseStage -= LVNumStages;
521            // Check if the Phi to reuse has been generated yet. If not, then
522            // there is nothing to reuse.
523            if (VRMap[ReuseStage - np].count(LoopVal)) {
524              NewReg = VRMap[ReuseStage - np][LoopVal];
525
526              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
527                                    Def, NewReg);
528              // Update the map with the new Phi name.
529              VRMap[CurStageNum - np][Def] = NewReg;
530              PhiOp2 = NewReg;
531              if (VRMap[LastStageNum - np - 1].count(LoopVal))
532                PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
533
534              if (IsLast && np == NumPhis - 1)
535                replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
536              continue;
537            }
538          }
539        }
540        if (InKernel && StageDiff > 0 &&
541            VRMap[CurStageNum - StageDiff - np].count(LoopVal))
542          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
543      }
544
545      const TargetRegisterClass *RC = MRI.getRegClass(Def);
546      NewReg = MRI.createVirtualRegister(RC);
547
548      MachineInstrBuilder NewPhi =
549          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
550                  TII->get(TargetOpcode::PHI), NewReg);
551      NewPhi.addReg(PhiOp1).addMBB(BB1);
552      NewPhi.addReg(PhiOp2).addMBB(BB2);
553      if (np == 0)
554        InstrMap[NewPhi] = &*BBI;
555
556      // We define the Phis after creating the new pipelined code, so
557      // we need to rename the Phi values in scheduled instructions.
558
559      unsigned PrevReg = 0;
560      if (InKernel && VRMap[PrevStage - np].count(LoopVal))
561        PrevReg = VRMap[PrevStage - np][LoopVal];
562      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
563                            NewReg, PrevReg);
564      // If the Phi has been scheduled, use the new name for rewriting.
565      if (VRMap[CurStageNum - np].count(Def)) {
566        unsigned R = VRMap[CurStageNum - np][Def];
567        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
568                              NewReg);
569      }
570
571      // Check if we need to rename any uses that occurs after the loop. The
572      // register to replace depends on whether the Phi is scheduled in the
573      // epilog.
574      if (IsLast && np == NumPhis - 1)
575        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
576
577      // In the kernel, a dependent Phi uses the value from this Phi.
578      if (InKernel)
579        PhiOp2 = NewReg;
580
581      // Update the map with the new Phi name.
582      VRMap[CurStageNum - np][Def] = NewReg;
583    }
584
585    while (NumPhis++ < NumStages) {
586      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
587                            NewReg, 0);
588    }
589
590    // Check if we need to rename a Phi that has been eliminated due to
591    // scheduling.
592    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
593      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
594  }
595}
596
597/// Generate Phis for the specified block in the generated pipelined code.
598/// These are new Phis needed because the definition is scheduled after the
599/// use in the pipelined sequence.
600void ModuloScheduleExpander::generatePhis(
601    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
602    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
603    InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
604    bool IsLast) {
605  // Compute the stage number that contains the initial Phi value, and
606  // the Phi from the previous stage.
607  unsigned PrologStage = 0;
608  unsigned PrevStage = 0;
609  unsigned StageDiff = CurStageNum - LastStageNum;
610  bool InKernel = (StageDiff == 0);
611  if (InKernel) {
612    PrologStage = LastStageNum - 1;
613    PrevStage = CurStageNum;
614  } else {
615    PrologStage = LastStageNum - StageDiff;
616    PrevStage = LastStageNum + StageDiff - 1;
617  }
618
619  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
620                                   BBE = BB->instr_end();
621       BBI != BBE; ++BBI) {
622    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
623      MachineOperand &MO = BBI->getOperand(i);
624      if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
625        continue;
626
627      int StageScheduled = Schedule.getStage(&*BBI);
628      assert(StageScheduled != -1 && "Expecting scheduled instruction.");
629      Register Def = MO.getReg();
630      unsigned NumPhis = getStagesForReg(Def, CurStageNum);
631      // An instruction scheduled in stage 0 and is used after the loop
632      // requires a phi in the epilog for the last definition from either
633      // the kernel or prolog.
634      if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
635          hasUseAfterLoop(Def, BB, MRI))
636        NumPhis = 1;
637      if (!InKernel && (unsigned)StageScheduled > PrologStage)
638        continue;
639
640      unsigned PhiOp2;
641      if (InKernel) {
642        PhiOp2 = VRMap[PrevStage][Def];
643        if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644          if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645            PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
646      }
647      // The number of Phis can't exceed the number of prolog stages. The
648      // prolog stage number is zero based.
649      if (NumPhis > PrologStage + 1 - StageScheduled)
650        NumPhis = PrologStage + 1 - StageScheduled;
651      for (unsigned np = 0; np < NumPhis; ++np) {
652        // Example for
653        // Org:
654        //   %Org = ... (Scheduled at Stage#0, NumPhi = 2)
655        //
656        // Prolog0 (Stage0):
657        //   %Clone0 = ...
658        // Prolog1 (Stage1):
659        //   %Clone1 = ...
660        // Kernel (Stage2):
661        //   %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
662        //   %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
663        //   %Clone2 = ...
664        // Epilog0 (Stage3):
665        //   %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
666        //   %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
667        // Epilog1 (Stage4):
668        //   %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
669        //
670        // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
671        // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
672        // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
673
674        unsigned PhiOp1 = VRMap[PrologStage][Def];
675        if (np <= PrologStage)
676          PhiOp1 = VRMap[PrologStage - np][Def];
677        if (!InKernel) {
678          if (PrevStage == LastStageNum && np == 0)
679            PhiOp2 = VRMap[LastStageNum][Def];
680          else
681            PhiOp2 = VRMapPhi[PrevStage - np][Def];
682        }
683
684        const TargetRegisterClass *RC = MRI.getRegClass(Def);
685        Register NewReg = MRI.createVirtualRegister(RC);
686
687        MachineInstrBuilder NewPhi =
688            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
689                    TII->get(TargetOpcode::PHI), NewReg);
690        NewPhi.addReg(PhiOp1).addMBB(BB1);
691        NewPhi.addReg(PhiOp2).addMBB(BB2);
692        if (np == 0)
693          InstrMap[NewPhi] = &*BBI;
694
695        // Rewrite uses and update the map. The actions depend upon whether
696        // we generating code for the kernel or epilog blocks.
697        if (InKernel) {
698          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
699                                NewReg);
700          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
701                                NewReg);
702
703          PhiOp2 = NewReg;
704          VRMapPhi[PrevStage - np - 1][Def] = NewReg;
705        } else {
706          VRMapPhi[CurStageNum - np][Def] = NewReg;
707          if (np == NumPhis - 1)
708            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
709                                  NewReg);
710        }
711        if (IsLast && np == NumPhis - 1)
712          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
713      }
714    }
715  }
716}
717
718/// Remove instructions that generate values with no uses.
719/// Typically, these are induction variable operations that generate values
720/// used in the loop itself.  A dead instruction has a definition with
721/// no uses, or uses that occur in the original loop only.
722void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
723                                                    MBBVectorTy &EpilogBBs) {
724  // For each epilog block, check that the value defined by each instruction
725  // is used.  If not, delete it.
726  for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
727    for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
728                                                   ME = MBB->instr_rend();
729         MI != ME;) {
730      // From DeadMachineInstructionElem. Don't delete inline assembly.
731      if (MI->isInlineAsm()) {
732        ++MI;
733        continue;
734      }
735      bool SawStore = false;
736      // Check if it's safe to remove the instruction due to side effects.
737      // We can, and want to, remove Phis here.
738      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
739        ++MI;
740        continue;
741      }
742      bool used = true;
743      for (const MachineOperand &MO : MI->all_defs()) {
744        Register reg = MO.getReg();
745        // Assume physical registers are used, unless they are marked dead.
746        if (reg.isPhysical()) {
747          used = !MO.isDead();
748          if (used)
749            break;
750          continue;
751        }
752        unsigned realUses = 0;
753        for (const MachineOperand &U : MRI.use_operands(reg)) {
754          // Check if there are any uses that occur only in the original
755          // loop.  If so, that's not a real use.
756          if (U.getParent()->getParent() != BB) {
757            realUses++;
758            used = true;
759            break;
760          }
761        }
762        if (realUses > 0)
763          break;
764        used = false;
765      }
766      if (!used) {
767        LIS.RemoveMachineInstrFromMaps(*MI);
768        MI++->eraseFromParent();
769        continue;
770      }
771      ++MI;
772    }
773  // In the kernel block, check if we can remove a Phi that generates a value
774  // used in an instruction removed in the epilog block.
775  for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
776    Register reg = MI.getOperand(0).getReg();
777    if (MRI.use_begin(reg) == MRI.use_end()) {
778      LIS.RemoveMachineInstrFromMaps(MI);
779      MI.eraseFromParent();
780    }
781  }
782}
783
784/// For loop carried definitions, we split the lifetime of a virtual register
785/// that has uses past the definition in the next iteration. A copy with a new
786/// virtual register is inserted before the definition, which helps with
787/// generating a better register assignment.
788///
789///   v1 = phi(a, v2)     v1 = phi(a, v2)
790///   v2 = phi(b, v3)     v2 = phi(b, v3)
791///   v3 = ..             v4 = copy v1
792///   .. = V1             v3 = ..
793///                       .. = v4
794void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
795                                            MBBVectorTy &EpilogBBs) {
796  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
797  for (auto &PHI : KernelBB->phis()) {
798    Register Def = PHI.getOperand(0).getReg();
799    // Check for any Phi definition that used as an operand of another Phi
800    // in the same block.
801    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
802                                                 E = MRI.use_instr_end();
803         I != E; ++I) {
804      if (I->isPHI() && I->getParent() == KernelBB) {
805        // Get the loop carried definition.
806        unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
807        if (!LCDef)
808          continue;
809        MachineInstr *MI = MRI.getVRegDef(LCDef);
810        if (!MI || MI->getParent() != KernelBB || MI->isPHI())
811          continue;
812        // Search through the rest of the block looking for uses of the Phi
813        // definition. If one occurs, then split the lifetime.
814        unsigned SplitReg = 0;
815        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
816                                    KernelBB->instr_end()))
817          if (BBJ.readsRegister(Def)) {
818            // We split the lifetime when we find the first use.
819            if (SplitReg == 0) {
820              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
821              BuildMI(*KernelBB, MI, MI->getDebugLoc(),
822                      TII->get(TargetOpcode::COPY), SplitReg)
823                  .addReg(Def);
824            }
825            BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
826          }
827        if (!SplitReg)
828          continue;
829        // Search through each of the epilog blocks for any uses to be renamed.
830        for (auto &Epilog : EpilogBBs)
831          for (auto &I : *Epilog)
832            if (I.readsRegister(Def))
833              I.substituteRegister(Def, SplitReg, 0, *TRI);
834        break;
835      }
836    }
837  }
838}
839
840/// Remove the incoming block from the Phis in a basic block.
841static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
842  for (MachineInstr &MI : *BB) {
843    if (!MI.isPHI())
844      break;
845    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
846      if (MI.getOperand(i + 1).getMBB() == Incoming) {
847        MI.removeOperand(i + 1);
848        MI.removeOperand(i);
849        break;
850      }
851  }
852}
853
854/// Create branches from each prolog basic block to the appropriate epilog
855/// block.  These edges are needed if the loop ends before reaching the
856/// kernel.
857void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
858                                         MBBVectorTy &PrologBBs,
859                                         MachineBasicBlock *KernelBB,
860                                         MBBVectorTy &EpilogBBs,
861                                         ValueMapTy *VRMap) {
862  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
863  MachineBasicBlock *LastPro = KernelBB;
864  MachineBasicBlock *LastEpi = KernelBB;
865
866  // Start from the blocks connected to the kernel and work "out"
867  // to the first prolog and the last epilog blocks.
868  SmallVector<MachineInstr *, 4> PrevInsts;
869  unsigned MaxIter = PrologBBs.size() - 1;
870  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
871    // Add branches to the prolog that go to the corresponding
872    // epilog, and the fall-thru prolog/kernel block.
873    MachineBasicBlock *Prolog = PrologBBs[j];
874    MachineBasicBlock *Epilog = EpilogBBs[i];
875
876    SmallVector<MachineOperand, 4> Cond;
877    std::optional<bool> StaticallyGreater =
878        LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
879    unsigned numAdded = 0;
880    if (!StaticallyGreater) {
881      Prolog->addSuccessor(Epilog);
882      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
883    } else if (*StaticallyGreater == false) {
884      Prolog->addSuccessor(Epilog);
885      Prolog->removeSuccessor(LastPro);
886      LastEpi->removeSuccessor(Epilog);
887      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
888      removePhis(Epilog, LastEpi);
889      // Remove the blocks that are no longer referenced.
890      if (LastPro != LastEpi) {
891        LastEpi->clear();
892        LastEpi->eraseFromParent();
893      }
894      if (LastPro == KernelBB) {
895        LoopInfo->disposed();
896        NewKernel = nullptr;
897      }
898      LastPro->clear();
899      LastPro->eraseFromParent();
900    } else {
901      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
902      removePhis(Epilog, Prolog);
903    }
904    LastPro = Prolog;
905    LastEpi = Epilog;
906    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
907                                                   E = Prolog->instr_rend();
908         I != E && numAdded > 0; ++I, --numAdded)
909      updateInstruction(&*I, false, j, 0, VRMap);
910  }
911
912  if (NewKernel) {
913    LoopInfo->setPreheader(PrologBBs[MaxIter]);
914    LoopInfo->adjustTripCount(-(MaxIter + 1));
915  }
916}
917
918/// Return true if we can compute the amount the instruction changes
919/// during each iteration. Set Delta to the amount of the change.
920bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
921  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
922  const MachineOperand *BaseOp;
923  int64_t Offset;
924  bool OffsetIsScalable;
925  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
926    return false;
927
928  // FIXME: This algorithm assumes instructions have fixed-size offsets.
929  if (OffsetIsScalable)
930    return false;
931
932  if (!BaseOp->isReg())
933    return false;
934
935  Register BaseReg = BaseOp->getReg();
936
937  MachineRegisterInfo &MRI = MF.getRegInfo();
938  // Check if there is a Phi. If so, get the definition in the loop.
939  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
940  if (BaseDef && BaseDef->isPHI()) {
941    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
942    BaseDef = MRI.getVRegDef(BaseReg);
943  }
944  if (!BaseDef)
945    return false;
946
947  int D = 0;
948  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
949    return false;
950
951  Delta = D;
952  return true;
953}
954
955/// Update the memory operand with a new offset when the pipeliner
956/// generates a new copy of the instruction that refers to a
957/// different memory location.
958void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
959                                               MachineInstr &OldMI,
960                                               unsigned Num) {
961  if (Num == 0)
962    return;
963  // If the instruction has memory operands, then adjust the offset
964  // when the instruction appears in different stages.
965  if (NewMI.memoperands_empty())
966    return;
967  SmallVector<MachineMemOperand *, 2> NewMMOs;
968  for (MachineMemOperand *MMO : NewMI.memoperands()) {
969    // TODO: Figure out whether isAtomic is really necessary (see D57601).
970    if (MMO->isVolatile() || MMO->isAtomic() ||
971        (MMO->isInvariant() && MMO->isDereferenceable()) ||
972        (!MMO->getValue())) {
973      NewMMOs.push_back(MMO);
974      continue;
975    }
976    unsigned Delta;
977    if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
978      int64_t AdjOffset = Delta * Num;
979      NewMMOs.push_back(
980          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
981    } else {
982      NewMMOs.push_back(
983          MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
984    }
985  }
986  NewMI.setMemRefs(MF, NewMMOs);
987}
988
989/// Clone the instruction for the new pipelined loop and update the
990/// memory operands, if needed.
991MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
992                                                 unsigned CurStageNum,
993                                                 unsigned InstStageNum) {
994  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
995  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
996  return NewMI;
997}
998
999/// Clone the instruction for the new pipelined loop. If needed, this
1000/// function updates the instruction using the values saved in the
1001/// InstrChanges structure.
1002MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1003    MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1004  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1005  auto It = InstrChanges.find(OldMI);
1006  if (It != InstrChanges.end()) {
1007    std::pair<unsigned, int64_t> RegAndOffset = It->second;
1008    unsigned BasePos, OffsetPos;
1009    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1010      return nullptr;
1011    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1012    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1013    if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1014      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1015    NewMI->getOperand(OffsetPos).setImm(NewOffset);
1016  }
1017  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1018  return NewMI;
1019}
1020
1021/// Update the machine instruction with new virtual registers.  This
1022/// function may change the definitions and/or uses.
1023void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1024                                               bool LastDef,
1025                                               unsigned CurStageNum,
1026                                               unsigned InstrStageNum,
1027                                               ValueMapTy *VRMap) {
1028  for (MachineOperand &MO : NewMI->operands()) {
1029    if (!MO.isReg() || !MO.getReg().isVirtual())
1030      continue;
1031    Register reg = MO.getReg();
1032    if (MO.isDef()) {
1033      // Create a new virtual register for the definition.
1034      const TargetRegisterClass *RC = MRI.getRegClass(reg);
1035      Register NewReg = MRI.createVirtualRegister(RC);
1036      MO.setReg(NewReg);
1037      VRMap[CurStageNum][reg] = NewReg;
1038      if (LastDef)
1039        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1040    } else if (MO.isUse()) {
1041      MachineInstr *Def = MRI.getVRegDef(reg);
1042      // Compute the stage that contains the last definition for instruction.
1043      int DefStageNum = Schedule.getStage(Def);
1044      unsigned StageNum = CurStageNum;
1045      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1046        // Compute the difference in stages between the defintion and the use.
1047        unsigned StageDiff = (InstrStageNum - DefStageNum);
1048        // Make an adjustment to get the last definition.
1049        StageNum -= StageDiff;
1050      }
1051      if (VRMap[StageNum].count(reg))
1052        MO.setReg(VRMap[StageNum][reg]);
1053    }
1054  }
1055}
1056
1057/// Return the instruction in the loop that defines the register.
1058/// If the definition is a Phi, then follow the Phi operand to
1059/// the instruction in the loop.
1060MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1061  SmallPtrSet<MachineInstr *, 8> Visited;
1062  MachineInstr *Def = MRI.getVRegDef(Reg);
1063  while (Def->isPHI()) {
1064    if (!Visited.insert(Def).second)
1065      break;
1066    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1067      if (Def->getOperand(i + 1).getMBB() == BB) {
1068        Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1069        break;
1070      }
1071  }
1072  return Def;
1073}
1074
1075/// Return the new name for the value from the previous stage.
1076unsigned ModuloScheduleExpander::getPrevMapVal(
1077    unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1078    ValueMapTy *VRMap, MachineBasicBlock *BB) {
1079  unsigned PrevVal = 0;
1080  if (StageNum > PhiStage) {
1081    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1082    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1083      // The name is defined in the previous stage.
1084      PrevVal = VRMap[StageNum - 1][LoopVal];
1085    else if (VRMap[StageNum].count(LoopVal))
1086      // The previous name is defined in the current stage when the instruction
1087      // order is swapped.
1088      PrevVal = VRMap[StageNum][LoopVal];
1089    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1090      // The loop value hasn't yet been scheduled.
1091      PrevVal = LoopVal;
1092    else if (StageNum == PhiStage + 1)
1093      // The loop value is another phi, which has not been scheduled.
1094      PrevVal = getInitPhiReg(*LoopInst, BB);
1095    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1096      // The loop value is another phi, which has been scheduled.
1097      PrevVal =
1098          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1099                        LoopStage, VRMap, BB);
1100  }
1101  return PrevVal;
1102}
1103
1104/// Rewrite the Phi values in the specified block to use the mappings
1105/// from the initial operand. Once the Phi is scheduled, we switch
1106/// to using the loop value instead of the Phi value, so those names
1107/// do not need to be rewritten.
1108void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1109                                              unsigned StageNum,
1110                                              ValueMapTy *VRMap,
1111                                              InstrMapTy &InstrMap) {
1112  for (auto &PHI : BB->phis()) {
1113    unsigned InitVal = 0;
1114    unsigned LoopVal = 0;
1115    getPhiRegs(PHI, BB, InitVal, LoopVal);
1116    Register PhiDef = PHI.getOperand(0).getReg();
1117
1118    unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1119    unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1120    unsigned NumPhis = getStagesForPhi(PhiDef);
1121    if (NumPhis > StageNum)
1122      NumPhis = StageNum;
1123    for (unsigned np = 0; np <= NumPhis; ++np) {
1124      unsigned NewVal =
1125          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1126      if (!NewVal)
1127        NewVal = InitVal;
1128      rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1129                            NewVal);
1130    }
1131  }
1132}
1133
1134/// Rewrite a previously scheduled instruction to use the register value
1135/// from the new instruction. Make sure the instruction occurs in the
1136/// basic block, and we don't change the uses in the new instruction.
1137void ModuloScheduleExpander::rewriteScheduledInstr(
1138    MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1139    unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1140    unsigned PrevReg) {
1141  bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1142  int StagePhi = Schedule.getStage(Phi) + PhiNum;
1143  // Rewrite uses that have been scheduled already to use the new
1144  // Phi register.
1145  for (MachineOperand &UseOp :
1146       llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1147    MachineInstr *UseMI = UseOp.getParent();
1148    if (UseMI->getParent() != BB)
1149      continue;
1150    if (UseMI->isPHI()) {
1151      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1152        continue;
1153      if (getLoopPhiReg(*UseMI, BB) != OldReg)
1154        continue;
1155    }
1156    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1157    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1158    MachineInstr *OrigMI = OrigInstr->second;
1159    int StageSched = Schedule.getStage(OrigMI);
1160    int CycleSched = Schedule.getCycle(OrigMI);
1161    unsigned ReplaceReg = 0;
1162    // This is the stage for the scheduled instruction.
1163    if (StagePhi == StageSched && Phi->isPHI()) {
1164      int CyclePhi = Schedule.getCycle(Phi);
1165      if (PrevReg && InProlog)
1166        ReplaceReg = PrevReg;
1167      else if (PrevReg && !isLoopCarried(*Phi) &&
1168               (CyclePhi <= CycleSched || OrigMI->isPHI()))
1169        ReplaceReg = PrevReg;
1170      else
1171        ReplaceReg = NewReg;
1172    }
1173    // The scheduled instruction occurs before the scheduled Phi, and the
1174    // Phi is not loop carried.
1175    if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1176      ReplaceReg = NewReg;
1177    if (StagePhi > StageSched && Phi->isPHI())
1178      ReplaceReg = NewReg;
1179    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1180      ReplaceReg = NewReg;
1181    if (ReplaceReg) {
1182      const TargetRegisterClass *NRC =
1183          MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1184      if (NRC)
1185        UseOp.setReg(ReplaceReg);
1186      else {
1187        Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1188        BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1189                SplitReg)
1190            .addReg(ReplaceReg);
1191        UseOp.setReg(SplitReg);
1192      }
1193    }
1194  }
1195}
1196
1197bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1198  if (!Phi.isPHI())
1199    return false;
1200  int DefCycle = Schedule.getCycle(&Phi);
1201  int DefStage = Schedule.getStage(&Phi);
1202
1203  unsigned InitVal = 0;
1204  unsigned LoopVal = 0;
1205  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1206  MachineInstr *Use = MRI.getVRegDef(LoopVal);
1207  if (!Use || Use->isPHI())
1208    return true;
1209  int LoopCycle = Schedule.getCycle(Use);
1210  int LoopStage = Schedule.getStage(Use);
1211  return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1212}
1213
1214//===----------------------------------------------------------------------===//
1215// PeelingModuloScheduleExpander implementation
1216//===----------------------------------------------------------------------===//
1217// This is a reimplementation of ModuloScheduleExpander that works by creating
1218// a fully correct steady-state kernel and peeling off the prolog and epilogs.
1219//===----------------------------------------------------------------------===//
1220
1221namespace {
1222// Remove any dead phis in MBB. Dead phis either have only one block as input
1223// (in which case they are the identity) or have no uses.
1224void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1225                       LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1226  bool Changed = true;
1227  while (Changed) {
1228    Changed = false;
1229    for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1230      assert(MI.isPHI());
1231      if (MRI.use_empty(MI.getOperand(0).getReg())) {
1232        if (LIS)
1233          LIS->RemoveMachineInstrFromMaps(MI);
1234        MI.eraseFromParent();
1235        Changed = true;
1236      } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1237        const TargetRegisterClass *ConstrainRegClass =
1238            MRI.constrainRegClass(MI.getOperand(1).getReg(),
1239                                  MRI.getRegClass(MI.getOperand(0).getReg()));
1240        assert(ConstrainRegClass &&
1241               "Expected a valid constrained register class!");
1242        (void)ConstrainRegClass;
1243        MRI.replaceRegWith(MI.getOperand(0).getReg(),
1244                           MI.getOperand(1).getReg());
1245        if (LIS)
1246          LIS->RemoveMachineInstrFromMaps(MI);
1247        MI.eraseFromParent();
1248        Changed = true;
1249      }
1250    }
1251  }
1252}
1253
1254/// Rewrites the kernel block in-place to adhere to the given schedule.
1255/// KernelRewriter holds all of the state required to perform the rewriting.
1256class KernelRewriter {
1257  ModuloSchedule &S;
1258  MachineBasicBlock *BB;
1259  MachineBasicBlock *PreheaderBB, *ExitBB;
1260  MachineRegisterInfo &MRI;
1261  const TargetInstrInfo *TII;
1262  LiveIntervals *LIS;
1263
1264  // Map from register class to canonical undef register for that class.
1265  DenseMap<const TargetRegisterClass *, Register> Undefs;
1266  // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1267  // this map is only used when InitReg is non-undef.
1268  DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1269  // Map from LoopReg to phi register where the InitReg is undef.
1270  DenseMap<Register, Register> UndefPhis;
1271
1272  // Reg is used by MI. Return the new register MI should use to adhere to the
1273  // schedule. Insert phis as necessary.
1274  Register remapUse(Register Reg, MachineInstr &MI);
1275  // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1276  // If InitReg is not given it is chosen arbitrarily. It will either be undef
1277  // or will be chosen so as to share another phi.
1278  Register phi(Register LoopReg, std::optional<Register> InitReg = {},
1279               const TargetRegisterClass *RC = nullptr);
1280  // Create an undef register of the given register class.
1281  Register undef(const TargetRegisterClass *RC);
1282
1283public:
1284  KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1285                 LiveIntervals *LIS = nullptr);
1286  void rewrite();
1287};
1288} // namespace
1289
1290KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1291                               MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1292    : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1293      ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1294      TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1295  PreheaderBB = *BB->pred_begin();
1296  if (PreheaderBB == BB)
1297    PreheaderBB = *std::next(BB->pred_begin());
1298}
1299
1300void KernelRewriter::rewrite() {
1301  // Rearrange the loop to be in schedule order. Note that the schedule may
1302  // contain instructions that are not owned by the loop block (InstrChanges and
1303  // friends), so we gracefully handle unowned instructions and delete any
1304  // instructions that weren't in the schedule.
1305  auto InsertPt = BB->getFirstTerminator();
1306  MachineInstr *FirstMI = nullptr;
1307  for (MachineInstr *MI : S.getInstructions()) {
1308    if (MI->isPHI())
1309      continue;
1310    if (MI->getParent())
1311      MI->removeFromParent();
1312    BB->insert(InsertPt, MI);
1313    if (!FirstMI)
1314      FirstMI = MI;
1315  }
1316  assert(FirstMI && "Failed to find first MI in schedule");
1317
1318  // At this point all of the scheduled instructions are between FirstMI
1319  // and the end of the block. Kill from the first non-phi to FirstMI.
1320  for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1321    if (LIS)
1322      LIS->RemoveMachineInstrFromMaps(*I);
1323    (I++)->eraseFromParent();
1324  }
1325
1326  // Now remap every instruction in the loop.
1327  for (MachineInstr &MI : *BB) {
1328    if (MI.isPHI() || MI.isTerminator())
1329      continue;
1330    for (MachineOperand &MO : MI.uses()) {
1331      if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1332        continue;
1333      Register Reg = remapUse(MO.getReg(), MI);
1334      MO.setReg(Reg);
1335    }
1336  }
1337  EliminateDeadPhis(BB, MRI, LIS);
1338
1339  // Ensure a phi exists for all instructions that are either referenced by
1340  // an illegal phi or by an instruction outside the loop. This allows us to
1341  // treat remaps of these values the same as "normal" values that come from
1342  // loop-carried phis.
1343  for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1344    if (MI->isPHI()) {
1345      Register R = MI->getOperand(0).getReg();
1346      phi(R);
1347      continue;
1348    }
1349
1350    for (MachineOperand &Def : MI->defs()) {
1351      for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1352        if (MI.getParent() != BB) {
1353          phi(Def.getReg());
1354          break;
1355        }
1356      }
1357    }
1358  }
1359}
1360
1361Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1362  MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1363  if (!Producer)
1364    return Reg;
1365
1366  int ConsumerStage = S.getStage(&MI);
1367  if (!Producer->isPHI()) {
1368    // Non-phi producers are simple to remap. Insert as many phis as the
1369    // difference between the consumer and producer stages.
1370    if (Producer->getParent() != BB)
1371      // Producer was not inside the loop. Use the register as-is.
1372      return Reg;
1373    int ProducerStage = S.getStage(Producer);
1374    assert(ConsumerStage != -1 &&
1375           "In-loop consumer should always be scheduled!");
1376    assert(ConsumerStage >= ProducerStage);
1377    unsigned StageDiff = ConsumerStage - ProducerStage;
1378
1379    for (unsigned I = 0; I < StageDiff; ++I)
1380      Reg = phi(Reg);
1381    return Reg;
1382  }
1383
1384  // First, dive through the phi chain to find the defaults for the generated
1385  // phis.
1386  SmallVector<std::optional<Register>, 4> Defaults;
1387  Register LoopReg = Reg;
1388  auto LoopProducer = Producer;
1389  while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1390    LoopReg = getLoopPhiReg(*LoopProducer, BB);
1391    Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1392    LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1393    assert(LoopProducer);
1394  }
1395  int LoopProducerStage = S.getStage(LoopProducer);
1396
1397  std::optional<Register> IllegalPhiDefault;
1398
1399  if (LoopProducerStage == -1) {
1400    // Do nothing.
1401  } else if (LoopProducerStage > ConsumerStage) {
1402    // This schedule is only representable if ProducerStage == ConsumerStage+1.
1403    // In addition, Consumer's cycle must be scheduled after Producer in the
1404    // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1405    // functions.
1406#ifndef NDEBUG // Silence unused variables in non-asserts mode.
1407    int LoopProducerCycle = S.getCycle(LoopProducer);
1408    int ConsumerCycle = S.getCycle(&MI);
1409#endif
1410    assert(LoopProducerCycle <= ConsumerCycle);
1411    assert(LoopProducerStage == ConsumerStage + 1);
1412    // Peel off the first phi from Defaults and insert a phi between producer
1413    // and consumer. This phi will not be at the front of the block so we
1414    // consider it illegal. It will only exist during the rewrite process; it
1415    // needs to exist while we peel off prologs because these could take the
1416    // default value. After that we can replace all uses with the loop producer
1417    // value.
1418    IllegalPhiDefault = Defaults.front();
1419    Defaults.erase(Defaults.begin());
1420  } else {
1421    assert(ConsumerStage >= LoopProducerStage);
1422    int StageDiff = ConsumerStage - LoopProducerStage;
1423    if (StageDiff > 0) {
1424      LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1425                        << " to " << (Defaults.size() + StageDiff) << "\n");
1426      // If we need more phis than we have defaults for, pad out with undefs for
1427      // the earliest phis, which are at the end of the defaults chain (the
1428      // chain is in reverse order).
1429      Defaults.resize(Defaults.size() + StageDiff,
1430                      Defaults.empty() ? std::optional<Register>()
1431                                       : Defaults.back());
1432    }
1433  }
1434
1435  // Now we know the number of stages to jump back, insert the phi chain.
1436  auto DefaultI = Defaults.rbegin();
1437  while (DefaultI != Defaults.rend())
1438    LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1439
1440  if (IllegalPhiDefault) {
1441    // The consumer optionally consumes LoopProducer in the same iteration
1442    // (because the producer is scheduled at an earlier cycle than the consumer)
1443    // or the initial value. To facilitate this we create an illegal block here
1444    // by embedding a phi in the middle of the block. We will fix this up
1445    // immediately prior to pruning.
1446    auto RC = MRI.getRegClass(Reg);
1447    Register R = MRI.createVirtualRegister(RC);
1448    MachineInstr *IllegalPhi =
1449        BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1450            .addReg(*IllegalPhiDefault)
1451            .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1452            .addReg(LoopReg)
1453            .addMBB(BB); // Block choice is arbitrary and has no effect.
1454    // Illegal phi should belong to the producer stage so that it can be
1455    // filtered correctly during peeling.
1456    S.setStage(IllegalPhi, LoopProducerStage);
1457    return R;
1458  }
1459
1460  return LoopReg;
1461}
1462
1463Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
1464                             const TargetRegisterClass *RC) {
1465  // If the init register is not undef, try and find an existing phi.
1466  if (InitReg) {
1467    auto I = Phis.find({LoopReg, *InitReg});
1468    if (I != Phis.end())
1469      return I->second;
1470  } else {
1471    for (auto &KV : Phis) {
1472      if (KV.first.first == LoopReg)
1473        return KV.second;
1474    }
1475  }
1476
1477  // InitReg is either undef or no existing phi takes InitReg as input. Try and
1478  // find a phi that takes undef as input.
1479  auto I = UndefPhis.find(LoopReg);
1480  if (I != UndefPhis.end()) {
1481    Register R = I->second;
1482    if (!InitReg)
1483      // Found a phi taking undef as input, and this input is undef so return
1484      // without any more changes.
1485      return R;
1486    // Found a phi taking undef as input, so rewrite it to take InitReg.
1487    MachineInstr *MI = MRI.getVRegDef(R);
1488    MI->getOperand(1).setReg(*InitReg);
1489    Phis.insert({{LoopReg, *InitReg}, R});
1490    const TargetRegisterClass *ConstrainRegClass =
1491        MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1492    assert(ConstrainRegClass && "Expected a valid constrained register class!");
1493    (void)ConstrainRegClass;
1494    UndefPhis.erase(I);
1495    return R;
1496  }
1497
1498  // Failed to find any existing phi to reuse, so create a new one.
1499  if (!RC)
1500    RC = MRI.getRegClass(LoopReg);
1501  Register R = MRI.createVirtualRegister(RC);
1502  if (InitReg) {
1503    const TargetRegisterClass *ConstrainRegClass =
1504        MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1505    assert(ConstrainRegClass && "Expected a valid constrained register class!");
1506    (void)ConstrainRegClass;
1507  }
1508  BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1509      .addReg(InitReg ? *InitReg : undef(RC))
1510      .addMBB(PreheaderBB)
1511      .addReg(LoopReg)
1512      .addMBB(BB);
1513  if (!InitReg)
1514    UndefPhis[LoopReg] = R;
1515  else
1516    Phis[{LoopReg, *InitReg}] = R;
1517  return R;
1518}
1519
1520Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1521  Register &R = Undefs[RC];
1522  if (R == 0) {
1523    // Create an IMPLICIT_DEF that defines this register if we need it.
1524    // All uses of this should be removed by the time we have finished unrolling
1525    // prologs and epilogs.
1526    R = MRI.createVirtualRegister(RC);
1527    auto *InsertBB = &PreheaderBB->getParent()->front();
1528    BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1529            TII->get(TargetOpcode::IMPLICIT_DEF), R);
1530  }
1531  return R;
1532}
1533
1534namespace {
1535/// Describes an operand in the kernel of a pipelined loop. Characteristics of
1536/// the operand are discovered, such as how many in-loop PHIs it has to jump
1537/// through and defaults for these phis.
1538class KernelOperandInfo {
1539  MachineBasicBlock *BB;
1540  MachineRegisterInfo &MRI;
1541  SmallVector<Register, 4> PhiDefaults;
1542  MachineOperand *Source;
1543  MachineOperand *Target;
1544
1545public:
1546  KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1547                    const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1548      : MRI(MRI) {
1549    Source = MO;
1550    BB = MO->getParent()->getParent();
1551    while (isRegInLoop(MO)) {
1552      MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1553      if (MI->isFullCopy()) {
1554        MO = &MI->getOperand(1);
1555        continue;
1556      }
1557      if (!MI->isPHI())
1558        break;
1559      // If this is an illegal phi, don't count it in distance.
1560      if (IllegalPhis.count(MI)) {
1561        MO = &MI->getOperand(3);
1562        continue;
1563      }
1564
1565      Register Default = getInitPhiReg(*MI, BB);
1566      MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1567                                            : &MI->getOperand(3);
1568      PhiDefaults.push_back(Default);
1569    }
1570    Target = MO;
1571  }
1572
1573  bool operator==(const KernelOperandInfo &Other) const {
1574    return PhiDefaults.size() == Other.PhiDefaults.size();
1575  }
1576
1577  void print(raw_ostream &OS) const {
1578    OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1579       << *Source->getParent();
1580  }
1581
1582private:
1583  bool isRegInLoop(MachineOperand *MO) {
1584    return MO->isReg() && MO->getReg().isVirtual() &&
1585           MRI.getVRegDef(MO->getReg())->getParent() == BB;
1586  }
1587};
1588} // namespace
1589
1590MachineBasicBlock *
1591PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1592  MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1593  if (LPD == LPD_Front)
1594    PeeledFront.push_back(NewBB);
1595  else
1596    PeeledBack.push_front(NewBB);
1597  for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1598       ++I, ++NI) {
1599    CanonicalMIs[&*I] = &*I;
1600    CanonicalMIs[&*NI] = &*I;
1601    BlockMIs[{NewBB, &*I}] = &*NI;
1602    BlockMIs[{BB, &*I}] = &*I;
1603  }
1604  return NewBB;
1605}
1606
1607void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1608                                                       int MinStage) {
1609  for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1610       I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1611    MachineInstr *MI = &*I++;
1612    int Stage = getStage(MI);
1613    if (Stage == -1 || Stage >= MinStage)
1614      continue;
1615
1616    for (MachineOperand &DefMO : MI->defs()) {
1617      SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1618      for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1619        // Only PHIs can use values from this block by construction.
1620        // Match with the equivalent PHI in B.
1621        assert(UseMI.isPHI());
1622        Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1623                                               MI->getParent());
1624        Subs.emplace_back(&UseMI, Reg);
1625      }
1626      for (auto &Sub : Subs)
1627        Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1628                                      *MRI.getTargetRegisterInfo());
1629    }
1630    if (LIS)
1631      LIS->RemoveMachineInstrFromMaps(*MI);
1632    MI->eraseFromParent();
1633  }
1634}
1635
1636void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1637    MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1638  auto InsertPt = DestBB->getFirstNonPHI();
1639  DenseMap<Register, Register> Remaps;
1640  for (MachineInstr &MI : llvm::make_early_inc_range(
1641           llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1642    if (MI.isPHI()) {
1643      // This is an illegal PHI. If we move any instructions using an illegal
1644      // PHI, we need to create a legal Phi.
1645      if (getStage(&MI) != Stage) {
1646        // The legal Phi is not necessary if the illegal phi's stage
1647        // is being moved.
1648        Register PhiR = MI.getOperand(0).getReg();
1649        auto RC = MRI.getRegClass(PhiR);
1650        Register NR = MRI.createVirtualRegister(RC);
1651        MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1652                                   DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1653                               .addReg(PhiR)
1654                               .addMBB(SourceBB);
1655        BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1656        CanonicalMIs[NI] = CanonicalMIs[&MI];
1657        Remaps[PhiR] = NR;
1658      }
1659    }
1660    if (getStage(&MI) != Stage)
1661      continue;
1662    MI.removeFromParent();
1663    DestBB->insert(InsertPt, &MI);
1664    auto *KernelMI = CanonicalMIs[&MI];
1665    BlockMIs[{DestBB, KernelMI}] = &MI;
1666    BlockMIs.erase({SourceBB, KernelMI});
1667  }
1668  SmallVector<MachineInstr *, 4> PhiToDelete;
1669  for (MachineInstr &MI : DestBB->phis()) {
1670    assert(MI.getNumOperands() == 3);
1671    MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1672    // If the instruction referenced by the phi is moved inside the block
1673    // we don't need the phi anymore.
1674    if (getStage(Def) == Stage) {
1675      Register PhiReg = MI.getOperand(0).getReg();
1676      assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1677      MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1678      MI.getOperand(0).setReg(PhiReg);
1679      PhiToDelete.push_back(&MI);
1680    }
1681  }
1682  for (auto *P : PhiToDelete)
1683    P->eraseFromParent();
1684  InsertPt = DestBB->getFirstNonPHI();
1685  // Helper to clone Phi instructions into the destination block. We clone Phi
1686  // greedily to avoid combinatorial explosion of Phi instructions.
1687  auto clonePhi = [&](MachineInstr *Phi) {
1688    MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1689    DestBB->insert(InsertPt, NewMI);
1690    Register OrigR = Phi->getOperand(0).getReg();
1691    Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1692    NewMI->getOperand(0).setReg(R);
1693    NewMI->getOperand(1).setReg(OrigR);
1694    NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1695    Remaps[OrigR] = R;
1696    CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1697    BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1698    PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1699    return R;
1700  };
1701  for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1702    for (MachineOperand &MO : I->uses()) {
1703      if (!MO.isReg())
1704        continue;
1705      if (Remaps.count(MO.getReg()))
1706        MO.setReg(Remaps[MO.getReg()]);
1707      else {
1708        // If we are using a phi from the source block we need to add a new phi
1709        // pointing to the old one.
1710        MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1711        if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1712          Register R = clonePhi(Use);
1713          MO.setReg(R);
1714        }
1715      }
1716    }
1717  }
1718}
1719
1720Register
1721PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1722                                                  MachineInstr *Phi) {
1723  unsigned distance = PhiNodeLoopIteration[Phi];
1724  MachineInstr *CanonicalUse = CanonicalPhi;
1725  Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1726  for (unsigned I = 0; I < distance; ++I) {
1727    assert(CanonicalUse->isPHI());
1728    assert(CanonicalUse->getNumOperands() == 5);
1729    unsigned LoopRegIdx = 3, InitRegIdx = 1;
1730    if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1731      std::swap(LoopRegIdx, InitRegIdx);
1732    CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1733    CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1734  }
1735  return CanonicalUseReg;
1736}
1737
1738void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1739  BitVector LS(Schedule.getNumStages(), true);
1740  BitVector AS(Schedule.getNumStages(), true);
1741  LiveStages[BB] = LS;
1742  AvailableStages[BB] = AS;
1743
1744  // Peel out the prologs.
1745  LS.reset();
1746  for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1747    LS[I] = true;
1748    Prologs.push_back(peelKernel(LPD_Front));
1749    LiveStages[Prologs.back()] = LS;
1750    AvailableStages[Prologs.back()] = LS;
1751  }
1752
1753  // Create a block that will end up as the new loop exiting block (dominated by
1754  // all prologs and epilogs). It will only contain PHIs, in the same order as
1755  // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1756  // that the exiting block is a (sub) clone of BB. This in turn gives us the
1757  // property that any value deffed in BB but used outside of BB is used by a
1758  // PHI in the exiting block.
1759  MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1760  EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1761  // Push out the epilogs, again in reverse order.
1762  // We can't assume anything about the minumum loop trip count at this point,
1763  // so emit a fairly complex epilog.
1764
1765  // We first peel number of stages minus one epilogue. Then we remove dead
1766  // stages and reorder instructions based on their stage. If we have 3 stages
1767  // we generate first:
1768  // E0[3, 2, 1]
1769  // E1[3', 2']
1770  // E2[3'']
1771  // And then we move instructions based on their stages to have:
1772  // E0[3]
1773  // E1[2, 3']
1774  // E2[1, 2', 3'']
1775  // The transformation is legal because we only move instructions past
1776  // instructions of a previous loop iteration.
1777  for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1778    Epilogs.push_back(peelKernel(LPD_Back));
1779    MachineBasicBlock *B = Epilogs.back();
1780    filterInstructions(B, Schedule.getNumStages() - I);
1781    // Keep track at which iteration each phi belongs to. We need it to know
1782    // what version of the variable to use during prologue/epilogue stitching.
1783    EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1784    for (MachineInstr &Phi : B->phis())
1785      PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1786  }
1787  for (size_t I = 0; I < Epilogs.size(); I++) {
1788    LS.reset();
1789    for (size_t J = I; J < Epilogs.size(); J++) {
1790      int Iteration = J;
1791      unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1792      // Move stage one block at a time so that Phi nodes are updated correctly.
1793      for (size_t K = Iteration; K > I; K--)
1794        moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1795      LS[Stage] = true;
1796    }
1797    LiveStages[Epilogs[I]] = LS;
1798    AvailableStages[Epilogs[I]] = AS;
1799  }
1800
1801  // Now we've defined all the prolog and epilog blocks as a fallthrough
1802  // sequence, add the edges that will be followed if the loop trip count is
1803  // lower than the number of stages (connecting prologs directly with epilogs).
1804  auto PI = Prologs.begin();
1805  auto EI = Epilogs.begin();
1806  assert(Prologs.size() == Epilogs.size());
1807  for (; PI != Prologs.end(); ++PI, ++EI) {
1808    MachineBasicBlock *Pred = *(*EI)->pred_begin();
1809    (*PI)->addSuccessor(*EI);
1810    for (MachineInstr &MI : (*EI)->phis()) {
1811      Register Reg = MI.getOperand(1).getReg();
1812      MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1813      if (Use && Use->getParent() == Pred) {
1814        MachineInstr *CanonicalUse = CanonicalMIs[Use];
1815        if (CanonicalUse->isPHI()) {
1816          // If the use comes from a phi we need to skip as many phi as the
1817          // distance between the epilogue and the kernel. Trace through the phi
1818          // chain to find the right value.
1819          Reg = getPhiCanonicalReg(CanonicalUse, Use);
1820        }
1821        Reg = getEquivalentRegisterIn(Reg, *PI);
1822      }
1823      MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1824      MI.addOperand(MachineOperand::CreateMBB(*PI));
1825    }
1826  }
1827
1828  // Create a list of all blocks in order.
1829  SmallVector<MachineBasicBlock *, 8> Blocks;
1830  llvm::copy(PeeledFront, std::back_inserter(Blocks));
1831  Blocks.push_back(BB);
1832  llvm::copy(PeeledBack, std::back_inserter(Blocks));
1833
1834  // Iterate in reverse order over all instructions, remapping as we go.
1835  for (MachineBasicBlock *B : reverse(Blocks)) {
1836    for (auto I = B->instr_rbegin();
1837         I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1838      MachineBasicBlock::reverse_instr_iterator MI = I++;
1839      rewriteUsesOf(&*MI);
1840    }
1841  }
1842  for (auto *MI : IllegalPhisToDelete) {
1843    if (LIS)
1844      LIS->RemoveMachineInstrFromMaps(*MI);
1845    MI->eraseFromParent();
1846  }
1847  IllegalPhisToDelete.clear();
1848
1849  // Now all remapping has been done, we're free to optimize the generated code.
1850  for (MachineBasicBlock *B : reverse(Blocks))
1851    EliminateDeadPhis(B, MRI, LIS);
1852  EliminateDeadPhis(ExitingBB, MRI, LIS);
1853}
1854
1855MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1856  MachineFunction &MF = *BB->getParent();
1857  MachineBasicBlock *Exit = *BB->succ_begin();
1858  if (Exit == BB)
1859    Exit = *std::next(BB->succ_begin());
1860
1861  MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1862  MF.insert(std::next(BB->getIterator()), NewBB);
1863
1864  // Clone all phis in BB into NewBB and rewrite.
1865  for (MachineInstr &MI : BB->phis()) {
1866    auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1867    Register OldR = MI.getOperand(3).getReg();
1868    Register R = MRI.createVirtualRegister(RC);
1869    SmallVector<MachineInstr *, 4> Uses;
1870    for (MachineInstr &Use : MRI.use_instructions(OldR))
1871      if (Use.getParent() != BB)
1872        Uses.push_back(&Use);
1873    for (MachineInstr *Use : Uses)
1874      Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1875                              *MRI.getTargetRegisterInfo());
1876    MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1877        .addReg(OldR)
1878        .addMBB(BB);
1879    BlockMIs[{NewBB, &MI}] = NI;
1880    CanonicalMIs[NI] = &MI;
1881  }
1882  BB->replaceSuccessor(Exit, NewBB);
1883  Exit->replacePhiUsesWith(BB, NewBB);
1884  NewBB->addSuccessor(Exit);
1885
1886  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1887  SmallVector<MachineOperand, 4> Cond;
1888  bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1889  (void)CanAnalyzeBr;
1890  assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1891  TII->removeBranch(*BB);
1892  TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1893                    Cond, DebugLoc());
1894  TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1895  return NewBB;
1896}
1897
1898Register
1899PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1900                                                       MachineBasicBlock *BB) {
1901  MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1902  unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1903  return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1904}
1905
1906void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1907  if (MI->isPHI()) {
1908    // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1909    // and it is produced by this block.
1910    Register PhiR = MI->getOperand(0).getReg();
1911    Register R = MI->getOperand(3).getReg();
1912    int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1913    if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1914      R = MI->getOperand(1).getReg();
1915    MRI.setRegClass(R, MRI.getRegClass(PhiR));
1916    MRI.replaceRegWith(PhiR, R);
1917    // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1918    // later to figure out how to remap registers.
1919    MI->getOperand(0).setReg(PhiR);
1920    IllegalPhisToDelete.push_back(MI);
1921    return;
1922  }
1923
1924  int Stage = getStage(MI);
1925  if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1926      LiveStages[MI->getParent()].test(Stage))
1927    // Instruction is live, no rewriting to do.
1928    return;
1929
1930  for (MachineOperand &DefMO : MI->defs()) {
1931    SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1932    for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1933      // Only PHIs can use values from this block by construction.
1934      // Match with the equivalent PHI in B.
1935      assert(UseMI.isPHI());
1936      Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1937                                             MI->getParent());
1938      Subs.emplace_back(&UseMI, Reg);
1939    }
1940    for (auto &Sub : Subs)
1941      Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1942                                    *MRI.getTargetRegisterInfo());
1943  }
1944  if (LIS)
1945    LIS->RemoveMachineInstrFromMaps(*MI);
1946  MI->eraseFromParent();
1947}
1948
1949void PeelingModuloScheduleExpander::fixupBranches() {
1950  // Work outwards from the kernel.
1951  bool KernelDisposed = false;
1952  int TC = Schedule.getNumStages() - 1;
1953  for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1954       ++PI, ++EI, --TC) {
1955    MachineBasicBlock *Prolog = *PI;
1956    MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1957    MachineBasicBlock *Epilog = *EI;
1958    SmallVector<MachineOperand, 4> Cond;
1959    TII->removeBranch(*Prolog);
1960    std::optional<bool> StaticallyGreater =
1961        LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1962    if (!StaticallyGreater) {
1963      LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1964      // Dynamically branch based on Cond.
1965      TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1966    } else if (*StaticallyGreater == false) {
1967      LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1968      // Prolog never falls through; branch to epilog and orphan interior
1969      // blocks. Leave it to unreachable-block-elim to clean up.
1970      Prolog->removeSuccessor(Fallthrough);
1971      for (MachineInstr &P : Fallthrough->phis()) {
1972        P.removeOperand(2);
1973        P.removeOperand(1);
1974      }
1975      TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1976      KernelDisposed = true;
1977    } else {
1978      LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1979      // Prolog always falls through; remove incoming values in epilog.
1980      Prolog->removeSuccessor(Epilog);
1981      for (MachineInstr &P : Epilog->phis()) {
1982        P.removeOperand(4);
1983        P.removeOperand(3);
1984      }
1985    }
1986  }
1987
1988  if (!KernelDisposed) {
1989    LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1990    LoopInfo->setPreheader(Prologs.back());
1991  } else {
1992    LoopInfo->disposed();
1993  }
1994}
1995
1996void PeelingModuloScheduleExpander::rewriteKernel() {
1997  KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1998  KR.rewrite();
1999}
2000
2001void PeelingModuloScheduleExpander::expand() {
2002  BB = Schedule.getLoop()->getTopBlock();
2003  Preheader = Schedule.getLoop()->getLoopPreheader();
2004  LLVM_DEBUG(Schedule.dump());
2005  LoopInfo = TII->analyzeLoopForPipelining(BB);
2006  assert(LoopInfo);
2007
2008  rewriteKernel();
2009  peelPrologAndEpilogs();
2010  fixupBranches();
2011}
2012
2013void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2014  BB = Schedule.getLoop()->getTopBlock();
2015  Preheader = Schedule.getLoop()->getLoopPreheader();
2016
2017  // Dump the schedule before we invalidate and remap all its instructions.
2018  // Stash it in a string so we can print it if we found an error.
2019  std::string ScheduleDump;
2020  raw_string_ostream OS(ScheduleDump);
2021  Schedule.print(OS);
2022  OS.flush();
2023
2024  // First, run the normal ModuleScheduleExpander. We don't support any
2025  // InstrChanges.
2026  assert(LIS && "Requires LiveIntervals!");
2027  ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2028                             ModuloScheduleExpander::InstrChangesTy());
2029  MSE.expand();
2030  MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2031  if (!ExpandedKernel) {
2032    // The expander optimized away the kernel. We can't do any useful checking.
2033    MSE.cleanup();
2034    return;
2035  }
2036  // Before running the KernelRewriter, re-add BB into the CFG.
2037  Preheader->addSuccessor(BB);
2038
2039  // Now run the new expansion algorithm.
2040  KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2041  KR.rewrite();
2042  peelPrologAndEpilogs();
2043
2044  // Collect all illegal phis that the new algorithm created. We'll give these
2045  // to KernelOperandInfo.
2046  SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2047  for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2048    if (NI->isPHI())
2049      IllegalPhis.insert(&*NI);
2050  }
2051
2052  // Co-iterate across both kernels. We expect them to be identical apart from
2053  // phis and full COPYs (we look through both).
2054  SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2055  auto OI = ExpandedKernel->begin();
2056  auto NI = BB->begin();
2057  for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2058    while (OI->isPHI() || OI->isFullCopy())
2059      ++OI;
2060    while (NI->isPHI() || NI->isFullCopy())
2061      ++NI;
2062    assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2063    // Analyze every operand separately.
2064    for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2065         OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2066      KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2067                        KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2068  }
2069
2070  bool Failed = false;
2071  for (auto &OldAndNew : KOIs) {
2072    if (OldAndNew.first == OldAndNew.second)
2073      continue;
2074    Failed = true;
2075    errs() << "Modulo kernel validation error: [\n";
2076    errs() << " [golden] ";
2077    OldAndNew.first.print(errs());
2078    errs() << "          ";
2079    OldAndNew.second.print(errs());
2080    errs() << "]\n";
2081  }
2082
2083  if (Failed) {
2084    errs() << "Golden reference kernel:\n";
2085    ExpandedKernel->print(errs());
2086    errs() << "New kernel:\n";
2087    BB->print(errs());
2088    errs() << ScheduleDump;
2089    report_fatal_error(
2090        "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2091  }
2092
2093  // Cleanup by removing BB from the CFG again as the original
2094  // ModuloScheduleExpander intended.
2095  Preheader->removeSuccessor(BB);
2096  MSE.cleanup();
2097}
2098
2099//===----------------------------------------------------------------------===//
2100// ModuloScheduleTestPass implementation
2101//===----------------------------------------------------------------------===//
2102// This pass constructs a ModuloSchedule from its module and runs
2103// ModuloScheduleExpander.
2104//
2105// The module is expected to contain a single-block analyzable loop.
2106// The total order of instructions is taken from the loop as-is.
2107// Instructions are expected to be annotated with a PostInstrSymbol.
2108// This PostInstrSymbol must have the following format:
2109//  "Stage=%d Cycle=%d".
2110//===----------------------------------------------------------------------===//
2111
2112namespace {
2113class ModuloScheduleTest : public MachineFunctionPass {
2114public:
2115  static char ID;
2116
2117  ModuloScheduleTest() : MachineFunctionPass(ID) {
2118    initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2119  }
2120
2121  bool runOnMachineFunction(MachineFunction &MF) override;
2122  void runOnLoop(MachineFunction &MF, MachineLoop &L);
2123
2124  void getAnalysisUsage(AnalysisUsage &AU) const override {
2125    AU.addRequired<MachineLoopInfo>();
2126    AU.addRequired<LiveIntervals>();
2127    MachineFunctionPass::getAnalysisUsage(AU);
2128  }
2129};
2130} // namespace
2131
2132char ModuloScheduleTest::ID = 0;
2133
2134INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2135                      "Modulo Schedule test pass", false, false)
2136INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2137INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2138INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2139                    "Modulo Schedule test pass", false, false)
2140
2141bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2142  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2143  for (auto *L : MLI) {
2144    if (L->getTopBlock() != L->getBottomBlock())
2145      continue;
2146    runOnLoop(MF, *L);
2147    return false;
2148  }
2149  return false;
2150}
2151
2152static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2153  std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2154  std::pair<StringRef, StringRef> StageTokenAndValue =
2155      getToken(StageAndCycle.first, "-");
2156  std::pair<StringRef, StringRef> CycleTokenAndValue =
2157      getToken(StageAndCycle.second, "-");
2158  if (StageTokenAndValue.first != "Stage" ||
2159      CycleTokenAndValue.first != "_Cycle") {
2160    llvm_unreachable(
2161        "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2162    return;
2163  }
2164
2165  StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2166  CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2167
2168  dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2169}
2170
2171void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2172  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2173  MachineBasicBlock *BB = L.getTopBlock();
2174  dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2175
2176  DenseMap<MachineInstr *, int> Cycle, Stage;
2177  std::vector<MachineInstr *> Instrs;
2178  for (MachineInstr &MI : *BB) {
2179    if (MI.isTerminator())
2180      continue;
2181    Instrs.push_back(&MI);
2182    if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2183      dbgs() << "Parsing post-instr symbol for " << MI;
2184      parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2185    }
2186  }
2187
2188  ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2189                    std::move(Stage));
2190  ModuloScheduleExpander MSE(
2191      MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2192  MSE.expand();
2193  MSE.cleanup();
2194}
2195
2196//===----------------------------------------------------------------------===//
2197// ModuloScheduleTestAnnotater implementation
2198//===----------------------------------------------------------------------===//
2199
2200void ModuloScheduleTestAnnotater::annotate() {
2201  for (MachineInstr *MI : S.getInstructions()) {
2202    SmallVector<char, 16> SV;
2203    raw_svector_ostream OS(SV);
2204    OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2205    MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2206    MI->setPostInstrSymbol(MF, Sym);
2207  }
2208}
2209