1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <optional>
24#include <utility>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31struct Align;
32
33template <typename T> class SmallVectorImpl;
34template <typename T> class ArrayRef;
35template <typename T, typename Enable> struct DenseMapInfo;
36
37class APInt;
38
39inline APInt operator-(APInt);
40
41//===----------------------------------------------------------------------===//
42//                              APInt Class
43//===----------------------------------------------------------------------===//
44
45/// Class for arbitrary precision integers.
46///
47/// APInt is a functional replacement for common case unsigned integer type like
48/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50/// than 64-bits of precision. APInt provides a variety of arithmetic operators
51/// and methods to manipulate integer values of any bit-width. It supports both
52/// the typical integer arithmetic and comparison operations as well as bitwise
53/// manipulation.
54///
55/// The class has several invariants worth noting:
56///   * All bit, byte, and word positions are zero-based.
57///   * Once the bit width is set, it doesn't change except by the Truncate,
58///     SignExtend, or ZeroExtend operations.
59///   * All binary operators must be on APInt instances of the same bit width.
60///     Attempting to use these operators on instances with different bit
61///     widths will yield an assertion.
62///   * The value is stored canonically as an unsigned value. For operations
63///     where it makes a difference, there are both signed and unsigned variants
64///     of the operation. For example, sdiv and udiv. However, because the bit
65///     widths must be the same, operations such as Mul and Add produce the same
66///     results regardless of whether the values are interpreted as signed or
67///     not.
68///   * In general, the class tries to follow the style of computation that LLVM
69///     uses in its IR. This simplifies its use for LLVM.
70///   * APInt supports zero-bit-width values, but operations that require bits
71///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
72///     integer).  This means that operations like zero extension and logical
73///     shifts are defined, but sign extension and ashr is not.  Zero bit values
74///     compare and hash equal to themselves, and countLeadingZeros returns 0.
75///
76class [[nodiscard]] APInt {
77public:
78  typedef uint64_t WordType;
79
80  /// This enum is used to hold the constants we needed for APInt.
81  enum : unsigned {
82    /// Byte size of a word.
83    APINT_WORD_SIZE = sizeof(WordType),
84    /// Bits in a word.
85    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
86  };
87
88  enum class Rounding {
89    DOWN,
90    TOWARD_ZERO,
91    UP,
92  };
93
94  static constexpr WordType WORDTYPE_MAX = ~WordType(0);
95
96  /// \name Constructors
97  /// @{
98
99  /// Create a new APInt of numBits width, initialized as val.
100  ///
101  /// If isSigned is true then val is treated as if it were a signed value
102  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
103  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
104  /// the range of val are zero filled).
105  ///
106  /// \param numBits the bit width of the constructed APInt
107  /// \param val the initial value of the APInt
108  /// \param isSigned how to treat signedness of val
109  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
110      : BitWidth(numBits) {
111    if (isSingleWord()) {
112      U.VAL = val;
113      clearUnusedBits();
114    } else {
115      initSlowCase(val, isSigned);
116    }
117  }
118
119  /// Construct an APInt of numBits width, initialized as bigVal[].
120  ///
121  /// Note that bigVal.size() can be smaller or larger than the corresponding
122  /// bit width but any extraneous bits will be dropped.
123  ///
124  /// \param numBits the bit width of the constructed APInt
125  /// \param bigVal a sequence of words to form the initial value of the APInt
126  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
127
128  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
129  /// deprecated because this constructor is prone to ambiguity with the
130  /// APInt(unsigned, uint64_t, bool) constructor.
131  ///
132  /// If this overload is ever deleted, care should be taken to prevent calls
133  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
134  /// constructor.
135  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
136
137  /// Construct an APInt from a string representation.
138  ///
139  /// This constructor interprets the string \p str in the given radix. The
140  /// interpretation stops when the first character that is not suitable for the
141  /// radix is encountered, or the end of the string. Acceptable radix values
142  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
143  /// string to require more bits than numBits.
144  ///
145  /// \param numBits the bit width of the constructed APInt
146  /// \param str the string to be interpreted
147  /// \param radix the radix to use for the conversion
148  APInt(unsigned numBits, StringRef str, uint8_t radix);
149
150  /// Default constructor that creates an APInt with a 1-bit zero value.
151  explicit APInt() { U.VAL = 0; }
152
153  /// Copy Constructor.
154  APInt(const APInt &that) : BitWidth(that.BitWidth) {
155    if (isSingleWord())
156      U.VAL = that.U.VAL;
157    else
158      initSlowCase(that);
159  }
160
161  /// Move Constructor.
162  APInt(APInt &&that) : BitWidth(that.BitWidth) {
163    memcpy(&U, &that.U, sizeof(U));
164    that.BitWidth = 0;
165  }
166
167  /// Destructor.
168  ~APInt() {
169    if (needsCleanup())
170      delete[] U.pVal;
171  }
172
173  /// @}
174  /// \name Value Generators
175  /// @{
176
177  /// Get the '0' value for the specified bit-width.
178  static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
179
180  /// Return an APInt zero bits wide.
181  static APInt getZeroWidth() { return getZero(0); }
182
183  /// Gets maximum unsigned value of APInt for specific bit width.
184  static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
185
186  /// Gets maximum signed value of APInt for a specific bit width.
187  static APInt getSignedMaxValue(unsigned numBits) {
188    APInt API = getAllOnes(numBits);
189    API.clearBit(numBits - 1);
190    return API;
191  }
192
193  /// Gets minimum unsigned value of APInt for a specific bit width.
194  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
195
196  /// Gets minimum signed value of APInt for a specific bit width.
197  static APInt getSignedMinValue(unsigned numBits) {
198    APInt API(numBits, 0);
199    API.setBit(numBits - 1);
200    return API;
201  }
202
203  /// Get the SignMask for a specific bit width.
204  ///
205  /// This is just a wrapper function of getSignedMinValue(), and it helps code
206  /// readability when we want to get a SignMask.
207  static APInt getSignMask(unsigned BitWidth) {
208    return getSignedMinValue(BitWidth);
209  }
210
211  /// Return an APInt of a specified width with all bits set.
212  static APInt getAllOnes(unsigned numBits) {
213    return APInt(numBits, WORDTYPE_MAX, true);
214  }
215
216  /// Return an APInt with exactly one bit set in the result.
217  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
218    APInt Res(numBits, 0);
219    Res.setBit(BitNo);
220    return Res;
221  }
222
223  /// Get a value with a block of bits set.
224  ///
225  /// Constructs an APInt value that has a contiguous range of bits set. The
226  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
227  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
228  /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
229  /// \p hiBit.
230  ///
231  /// \param numBits the intended bit width of the result
232  /// \param loBit the index of the lowest bit set.
233  /// \param hiBit the index of the highest bit set.
234  ///
235  /// \returns An APInt value with the requested bits set.
236  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
237    APInt Res(numBits, 0);
238    Res.setBits(loBit, hiBit);
239    return Res;
240  }
241
242  /// Wrap version of getBitsSet.
243  /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
244  /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
245  /// with parameters (32, 28, 4), you would get 0xF000000F.
246  /// If \p hiBit is equal to \p loBit, you would get a result with all bits
247  /// set.
248  static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
249                                  unsigned hiBit) {
250    APInt Res(numBits, 0);
251    Res.setBitsWithWrap(loBit, hiBit);
252    return Res;
253  }
254
255  /// Constructs an APInt value that has a contiguous range of bits set. The
256  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
257  /// bits will be zero. For example, with parameters(32, 12) you would get
258  /// 0xFFFFF000.
259  ///
260  /// \param numBits the intended bit width of the result
261  /// \param loBit the index of the lowest bit to set.
262  ///
263  /// \returns An APInt value with the requested bits set.
264  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
265    APInt Res(numBits, 0);
266    Res.setBitsFrom(loBit);
267    return Res;
268  }
269
270  /// Constructs an APInt value that has the top hiBitsSet bits set.
271  ///
272  /// \param numBits the bitwidth of the result
273  /// \param hiBitsSet the number of high-order bits set in the result.
274  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
275    APInt Res(numBits, 0);
276    Res.setHighBits(hiBitsSet);
277    return Res;
278  }
279
280  /// Constructs an APInt value that has the bottom loBitsSet bits set.
281  ///
282  /// \param numBits the bitwidth of the result
283  /// \param loBitsSet the number of low-order bits set in the result.
284  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
285    APInt Res(numBits, 0);
286    Res.setLowBits(loBitsSet);
287    return Res;
288  }
289
290  /// Return a value containing V broadcasted over NewLen bits.
291  static APInt getSplat(unsigned NewLen, const APInt &V);
292
293  /// @}
294  /// \name Value Tests
295  /// @{
296
297  /// Determine if this APInt just has one word to store value.
298  ///
299  /// \returns true if the number of bits <= 64, false otherwise.
300  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
301
302  /// Determine sign of this APInt.
303  ///
304  /// This tests the high bit of this APInt to determine if it is set.
305  ///
306  /// \returns true if this APInt is negative, false otherwise
307  bool isNegative() const { return (*this)[BitWidth - 1]; }
308
309  /// Determine if this APInt Value is non-negative (>= 0)
310  ///
311  /// This tests the high bit of the APInt to determine if it is unset.
312  bool isNonNegative() const { return !isNegative(); }
313
314  /// Determine if sign bit of this APInt is set.
315  ///
316  /// This tests the high bit of this APInt to determine if it is set.
317  ///
318  /// \returns true if this APInt has its sign bit set, false otherwise.
319  bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
320
321  /// Determine if sign bit of this APInt is clear.
322  ///
323  /// This tests the high bit of this APInt to determine if it is clear.
324  ///
325  /// \returns true if this APInt has its sign bit clear, false otherwise.
326  bool isSignBitClear() const { return !isSignBitSet(); }
327
328  /// Determine if this APInt Value is positive.
329  ///
330  /// This tests if the value of this APInt is positive (> 0). Note
331  /// that 0 is not a positive value.
332  ///
333  /// \returns true if this APInt is positive.
334  bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
335
336  /// Determine if this APInt Value is non-positive (<= 0).
337  ///
338  /// \returns true if this APInt is non-positive.
339  bool isNonPositive() const { return !isStrictlyPositive(); }
340
341  /// Determine if this APInt Value only has the specified bit set.
342  ///
343  /// \returns true if this APInt only has the specified bit set.
344  bool isOneBitSet(unsigned BitNo) const {
345    return (*this)[BitNo] && popcount() == 1;
346  }
347
348  /// Determine if all bits are set.  This is true for zero-width values.
349  bool isAllOnes() const {
350    if (BitWidth == 0)
351      return true;
352    if (isSingleWord())
353      return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
354    return countTrailingOnesSlowCase() == BitWidth;
355  }
356
357  /// Determine if this value is zero, i.e. all bits are clear.
358  bool isZero() const {
359    if (isSingleWord())
360      return U.VAL == 0;
361    return countLeadingZerosSlowCase() == BitWidth;
362  }
363
364  /// Determine if this is a value of 1.
365  ///
366  /// This checks to see if the value of this APInt is one.
367  bool isOne() const {
368    if (isSingleWord())
369      return U.VAL == 1;
370    return countLeadingZerosSlowCase() == BitWidth - 1;
371  }
372
373  /// Determine if this is the largest unsigned value.
374  ///
375  /// This checks to see if the value of this APInt is the maximum unsigned
376  /// value for the APInt's bit width.
377  bool isMaxValue() const { return isAllOnes(); }
378
379  /// Determine if this is the largest signed value.
380  ///
381  /// This checks to see if the value of this APInt is the maximum signed
382  /// value for the APInt's bit width.
383  bool isMaxSignedValue() const {
384    if (isSingleWord()) {
385      assert(BitWidth && "zero width values not allowed");
386      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
387    }
388    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
389  }
390
391  /// Determine if this is the smallest unsigned value.
392  ///
393  /// This checks to see if the value of this APInt is the minimum unsigned
394  /// value for the APInt's bit width.
395  bool isMinValue() const { return isZero(); }
396
397  /// Determine if this is the smallest signed value.
398  ///
399  /// This checks to see if the value of this APInt is the minimum signed
400  /// value for the APInt's bit width.
401  bool isMinSignedValue() const {
402    if (isSingleWord()) {
403      assert(BitWidth && "zero width values not allowed");
404      return U.VAL == (WordType(1) << (BitWidth - 1));
405    }
406    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
407  }
408
409  /// Check if this APInt has an N-bits unsigned integer value.
410  bool isIntN(unsigned N) const { return getActiveBits() <= N; }
411
412  /// Check if this APInt has an N-bits signed integer value.
413  bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
414
415  /// Check if this APInt's value is a power of two greater than zero.
416  ///
417  /// \returns true if the argument APInt value is a power of two > 0.
418  bool isPowerOf2() const {
419    if (isSingleWord()) {
420      assert(BitWidth && "zero width values not allowed");
421      return isPowerOf2_64(U.VAL);
422    }
423    return countPopulationSlowCase() == 1;
424  }
425
426  /// Check if this APInt's negated value is a power of two greater than zero.
427  bool isNegatedPowerOf2() const {
428    assert(BitWidth && "zero width values not allowed");
429    if (isNonNegative())
430      return false;
431    // NegatedPowerOf2 - shifted mask in the top bits.
432    unsigned LO = countl_one();
433    unsigned TZ = countr_zero();
434    return (LO + TZ) == BitWidth;
435  }
436
437  /// Checks if this APInt -interpreted as an address- is aligned to the
438  /// provided value.
439  bool isAligned(Align A) const;
440
441  /// Check if the APInt's value is returned by getSignMask.
442  ///
443  /// \returns true if this is the value returned by getSignMask.
444  bool isSignMask() const { return isMinSignedValue(); }
445
446  /// Convert APInt to a boolean value.
447  ///
448  /// This converts the APInt to a boolean value as a test against zero.
449  bool getBoolValue() const { return !isZero(); }
450
451  /// If this value is smaller than the specified limit, return it, otherwise
452  /// return the limit value.  This causes the value to saturate to the limit.
453  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
454    return ugt(Limit) ? Limit : getZExtValue();
455  }
456
457  /// Check if the APInt consists of a repeated bit pattern.
458  ///
459  /// e.g. 0x01010101 satisfies isSplat(8).
460  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
461  /// width without remainder.
462  bool isSplat(unsigned SplatSizeInBits) const;
463
464  /// \returns true if this APInt value is a sequence of \param numBits ones
465  /// starting at the least significant bit with the remainder zero.
466  bool isMask(unsigned numBits) const {
467    assert(numBits != 0 && "numBits must be non-zero");
468    assert(numBits <= BitWidth && "numBits out of range");
469    if (isSingleWord())
470      return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
471    unsigned Ones = countTrailingOnesSlowCase();
472    return (numBits == Ones) &&
473           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
474  }
475
476  /// \returns true if this APInt is a non-empty sequence of ones starting at
477  /// the least significant bit with the remainder zero.
478  /// Ex. isMask(0x0000FFFFU) == true.
479  bool isMask() const {
480    if (isSingleWord())
481      return isMask_64(U.VAL);
482    unsigned Ones = countTrailingOnesSlowCase();
483    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484  }
485
486  /// Return true if this APInt value contains a non-empty sequence of ones with
487  /// the remainder zero.
488  bool isShiftedMask() const {
489    if (isSingleWord())
490      return isShiftedMask_64(U.VAL);
491    unsigned Ones = countPopulationSlowCase();
492    unsigned LeadZ = countLeadingZerosSlowCase();
493    return (Ones + LeadZ + countr_zero()) == BitWidth;
494  }
495
496  /// Return true if this APInt value contains a non-empty sequence of ones with
497  /// the remainder zero. If true, \p MaskIdx will specify the index of the
498  /// lowest set bit and \p MaskLen is updated to specify the length of the
499  /// mask, else neither are updated.
500  bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
501    if (isSingleWord())
502      return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
503    unsigned Ones = countPopulationSlowCase();
504    unsigned LeadZ = countLeadingZerosSlowCase();
505    unsigned TrailZ = countTrailingZerosSlowCase();
506    if ((Ones + LeadZ + TrailZ) != BitWidth)
507      return false;
508    MaskLen = Ones;
509    MaskIdx = TrailZ;
510    return true;
511  }
512
513  /// Compute an APInt containing numBits highbits from this APInt.
514  ///
515  /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
516  /// bits and right shift to the least significant bit.
517  ///
518  /// \returns the high "numBits" bits of this APInt.
519  APInt getHiBits(unsigned numBits) const;
520
521  /// Compute an APInt containing numBits lowbits from this APInt.
522  ///
523  /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
524  /// bits.
525  ///
526  /// \returns the low "numBits" bits of this APInt.
527  APInt getLoBits(unsigned numBits) const;
528
529  /// Determine if two APInts have the same value, after zero-extending
530  /// one of them (if needed!) to ensure that the bit-widths match.
531  static bool isSameValue(const APInt &I1, const APInt &I2) {
532    if (I1.getBitWidth() == I2.getBitWidth())
533      return I1 == I2;
534
535    if (I1.getBitWidth() > I2.getBitWidth())
536      return I1 == I2.zext(I1.getBitWidth());
537
538    return I1.zext(I2.getBitWidth()) == I2;
539  }
540
541  /// Overload to compute a hash_code for an APInt value.
542  friend hash_code hash_value(const APInt &Arg);
543
544  /// This function returns a pointer to the internal storage of the APInt.
545  /// This is useful for writing out the APInt in binary form without any
546  /// conversions.
547  const uint64_t *getRawData() const {
548    if (isSingleWord())
549      return &U.VAL;
550    return &U.pVal[0];
551  }
552
553  /// @}
554  /// \name Unary Operators
555  /// @{
556
557  /// Postfix increment operator.  Increment *this by 1.
558  ///
559  /// \returns a new APInt value representing the original value of *this.
560  APInt operator++(int) {
561    APInt API(*this);
562    ++(*this);
563    return API;
564  }
565
566  /// Prefix increment operator.
567  ///
568  /// \returns *this incremented by one
569  APInt &operator++();
570
571  /// Postfix decrement operator. Decrement *this by 1.
572  ///
573  /// \returns a new APInt value representing the original value of *this.
574  APInt operator--(int) {
575    APInt API(*this);
576    --(*this);
577    return API;
578  }
579
580  /// Prefix decrement operator.
581  ///
582  /// \returns *this decremented by one.
583  APInt &operator--();
584
585  /// Logical negation operation on this APInt returns true if zero, like normal
586  /// integers.
587  bool operator!() const { return isZero(); }
588
589  /// @}
590  /// \name Assignment Operators
591  /// @{
592
593  /// Copy assignment operator.
594  ///
595  /// \returns *this after assignment of RHS.
596  APInt &operator=(const APInt &RHS) {
597    // The common case (both source or dest being inline) doesn't require
598    // allocation or deallocation.
599    if (isSingleWord() && RHS.isSingleWord()) {
600      U.VAL = RHS.U.VAL;
601      BitWidth = RHS.BitWidth;
602      return *this;
603    }
604
605    assignSlowCase(RHS);
606    return *this;
607  }
608
609  /// Move assignment operator.
610  APInt &operator=(APInt &&that) {
611#ifdef EXPENSIVE_CHECKS
612    // Some std::shuffle implementations still do self-assignment.
613    if (this == &that)
614      return *this;
615#endif
616    assert(this != &that && "Self-move not supported");
617    if (!isSingleWord())
618      delete[] U.pVal;
619
620    // Use memcpy so that type based alias analysis sees both VAL and pVal
621    // as modified.
622    memcpy(&U, &that.U, sizeof(U));
623
624    BitWidth = that.BitWidth;
625    that.BitWidth = 0;
626    return *this;
627  }
628
629  /// Assignment operator.
630  ///
631  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
632  /// the bit width, the excess bits are truncated. If the bit width is larger
633  /// than 64, the value is zero filled in the unspecified high order bits.
634  ///
635  /// \returns *this after assignment of RHS value.
636  APInt &operator=(uint64_t RHS) {
637    if (isSingleWord()) {
638      U.VAL = RHS;
639      return clearUnusedBits();
640    }
641    U.pVal[0] = RHS;
642    memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
643    return *this;
644  }
645
646  /// Bitwise AND assignment operator.
647  ///
648  /// Performs a bitwise AND operation on this APInt and RHS. The result is
649  /// assigned to *this.
650  ///
651  /// \returns *this after ANDing with RHS.
652  APInt &operator&=(const APInt &RHS) {
653    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
654    if (isSingleWord())
655      U.VAL &= RHS.U.VAL;
656    else
657      andAssignSlowCase(RHS);
658    return *this;
659  }
660
661  /// Bitwise AND assignment operator.
662  ///
663  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
664  /// logically zero-extended or truncated to match the bit-width of
665  /// the LHS.
666  APInt &operator&=(uint64_t RHS) {
667    if (isSingleWord()) {
668      U.VAL &= RHS;
669      return *this;
670    }
671    U.pVal[0] &= RHS;
672    memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
673    return *this;
674  }
675
676  /// Bitwise OR assignment operator.
677  ///
678  /// Performs a bitwise OR operation on this APInt and RHS. The result is
679  /// assigned *this;
680  ///
681  /// \returns *this after ORing with RHS.
682  APInt &operator|=(const APInt &RHS) {
683    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
684    if (isSingleWord())
685      U.VAL |= RHS.U.VAL;
686    else
687      orAssignSlowCase(RHS);
688    return *this;
689  }
690
691  /// Bitwise OR assignment operator.
692  ///
693  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
694  /// logically zero-extended or truncated to match the bit-width of
695  /// the LHS.
696  APInt &operator|=(uint64_t RHS) {
697    if (isSingleWord()) {
698      U.VAL |= RHS;
699      return clearUnusedBits();
700    }
701    U.pVal[0] |= RHS;
702    return *this;
703  }
704
705  /// Bitwise XOR assignment operator.
706  ///
707  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
708  /// assigned to *this.
709  ///
710  /// \returns *this after XORing with RHS.
711  APInt &operator^=(const APInt &RHS) {
712    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
713    if (isSingleWord())
714      U.VAL ^= RHS.U.VAL;
715    else
716      xorAssignSlowCase(RHS);
717    return *this;
718  }
719
720  /// Bitwise XOR assignment operator.
721  ///
722  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
723  /// logically zero-extended or truncated to match the bit-width of
724  /// the LHS.
725  APInt &operator^=(uint64_t RHS) {
726    if (isSingleWord()) {
727      U.VAL ^= RHS;
728      return clearUnusedBits();
729    }
730    U.pVal[0] ^= RHS;
731    return *this;
732  }
733
734  /// Multiplication assignment operator.
735  ///
736  /// Multiplies this APInt by RHS and assigns the result to *this.
737  ///
738  /// \returns *this
739  APInt &operator*=(const APInt &RHS);
740  APInt &operator*=(uint64_t RHS);
741
742  /// Addition assignment operator.
743  ///
744  /// Adds RHS to *this and assigns the result to *this.
745  ///
746  /// \returns *this
747  APInt &operator+=(const APInt &RHS);
748  APInt &operator+=(uint64_t RHS);
749
750  /// Subtraction assignment operator.
751  ///
752  /// Subtracts RHS from *this and assigns the result to *this.
753  ///
754  /// \returns *this
755  APInt &operator-=(const APInt &RHS);
756  APInt &operator-=(uint64_t RHS);
757
758  /// Left-shift assignment function.
759  ///
760  /// Shifts *this left by shiftAmt and assigns the result to *this.
761  ///
762  /// \returns *this after shifting left by ShiftAmt
763  APInt &operator<<=(unsigned ShiftAmt) {
764    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
765    if (isSingleWord()) {
766      if (ShiftAmt == BitWidth)
767        U.VAL = 0;
768      else
769        U.VAL <<= ShiftAmt;
770      return clearUnusedBits();
771    }
772    shlSlowCase(ShiftAmt);
773    return *this;
774  }
775
776  /// Left-shift assignment function.
777  ///
778  /// Shifts *this left by shiftAmt and assigns the result to *this.
779  ///
780  /// \returns *this after shifting left by ShiftAmt
781  APInt &operator<<=(const APInt &ShiftAmt);
782
783  /// @}
784  /// \name Binary Operators
785  /// @{
786
787  /// Multiplication operator.
788  ///
789  /// Multiplies this APInt by RHS and returns the result.
790  APInt operator*(const APInt &RHS) const;
791
792  /// Left logical shift operator.
793  ///
794  /// Shifts this APInt left by \p Bits and returns the result.
795  APInt operator<<(unsigned Bits) const { return shl(Bits); }
796
797  /// Left logical shift operator.
798  ///
799  /// Shifts this APInt left by \p Bits and returns the result.
800  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
801
802  /// Arithmetic right-shift function.
803  ///
804  /// Arithmetic right-shift this APInt by shiftAmt.
805  APInt ashr(unsigned ShiftAmt) const {
806    APInt R(*this);
807    R.ashrInPlace(ShiftAmt);
808    return R;
809  }
810
811  /// Arithmetic right-shift this APInt by ShiftAmt in place.
812  void ashrInPlace(unsigned ShiftAmt) {
813    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
814    if (isSingleWord()) {
815      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
816      if (ShiftAmt == BitWidth)
817        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
818      else
819        U.VAL = SExtVAL >> ShiftAmt;
820      clearUnusedBits();
821      return;
822    }
823    ashrSlowCase(ShiftAmt);
824  }
825
826  /// Logical right-shift function.
827  ///
828  /// Logical right-shift this APInt by shiftAmt.
829  APInt lshr(unsigned shiftAmt) const {
830    APInt R(*this);
831    R.lshrInPlace(shiftAmt);
832    return R;
833  }
834
835  /// Logical right-shift this APInt by ShiftAmt in place.
836  void lshrInPlace(unsigned ShiftAmt) {
837    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
838    if (isSingleWord()) {
839      if (ShiftAmt == BitWidth)
840        U.VAL = 0;
841      else
842        U.VAL >>= ShiftAmt;
843      return;
844    }
845    lshrSlowCase(ShiftAmt);
846  }
847
848  /// Left-shift function.
849  ///
850  /// Left-shift this APInt by shiftAmt.
851  APInt shl(unsigned shiftAmt) const {
852    APInt R(*this);
853    R <<= shiftAmt;
854    return R;
855  }
856
857  /// relative logical shift right
858  APInt relativeLShr(int RelativeShift) const {
859    return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
860  }
861
862  /// relative logical shift left
863  APInt relativeLShl(int RelativeShift) const {
864    return relativeLShr(-RelativeShift);
865  }
866
867  /// relative arithmetic shift right
868  APInt relativeAShr(int RelativeShift) const {
869    return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
870  }
871
872  /// relative arithmetic shift left
873  APInt relativeAShl(int RelativeShift) const {
874    return relativeAShr(-RelativeShift);
875  }
876
877  /// Rotate left by rotateAmt.
878  APInt rotl(unsigned rotateAmt) const;
879
880  /// Rotate right by rotateAmt.
881  APInt rotr(unsigned rotateAmt) const;
882
883  /// Arithmetic right-shift function.
884  ///
885  /// Arithmetic right-shift this APInt by shiftAmt.
886  APInt ashr(const APInt &ShiftAmt) const {
887    APInt R(*this);
888    R.ashrInPlace(ShiftAmt);
889    return R;
890  }
891
892  /// Arithmetic right-shift this APInt by shiftAmt in place.
893  void ashrInPlace(const APInt &shiftAmt);
894
895  /// Logical right-shift function.
896  ///
897  /// Logical right-shift this APInt by shiftAmt.
898  APInt lshr(const APInt &ShiftAmt) const {
899    APInt R(*this);
900    R.lshrInPlace(ShiftAmt);
901    return R;
902  }
903
904  /// Logical right-shift this APInt by ShiftAmt in place.
905  void lshrInPlace(const APInt &ShiftAmt);
906
907  /// Left-shift function.
908  ///
909  /// Left-shift this APInt by shiftAmt.
910  APInt shl(const APInt &ShiftAmt) const {
911    APInt R(*this);
912    R <<= ShiftAmt;
913    return R;
914  }
915
916  /// Rotate left by rotateAmt.
917  APInt rotl(const APInt &rotateAmt) const;
918
919  /// Rotate right by rotateAmt.
920  APInt rotr(const APInt &rotateAmt) const;
921
922  /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
923  /// equivalent to:
924  ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
925  APInt concat(const APInt &NewLSB) const {
926    /// If the result will be small, then both the merged values are small.
927    unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
928    if (NewWidth <= APINT_BITS_PER_WORD)
929      return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
930    return concatSlowCase(NewLSB);
931  }
932
933  /// Unsigned division operation.
934  ///
935  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
936  /// RHS are treated as unsigned quantities for purposes of this division.
937  ///
938  /// \returns a new APInt value containing the division result, rounded towards
939  /// zero.
940  APInt udiv(const APInt &RHS) const;
941  APInt udiv(uint64_t RHS) const;
942
943  /// Signed division function for APInt.
944  ///
945  /// Signed divide this APInt by APInt RHS.
946  ///
947  /// The result is rounded towards zero.
948  APInt sdiv(const APInt &RHS) const;
949  APInt sdiv(int64_t RHS) const;
950
951  /// Unsigned remainder operation.
952  ///
953  /// Perform an unsigned remainder operation on this APInt with RHS being the
954  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
955  /// of this operation.
956  ///
957  /// \returns a new APInt value containing the remainder result
958  APInt urem(const APInt &RHS) const;
959  uint64_t urem(uint64_t RHS) const;
960
961  /// Function for signed remainder operation.
962  ///
963  /// Signed remainder operation on APInt.
964  ///
965  /// Note that this is a true remainder operation and not a modulo operation
966  /// because the sign follows the sign of the dividend which is *this.
967  APInt srem(const APInt &RHS) const;
968  int64_t srem(int64_t RHS) const;
969
970  /// Dual division/remainder interface.
971  ///
972  /// Sometimes it is convenient to divide two APInt values and obtain both the
973  /// quotient and remainder. This function does both operations in the same
974  /// computation making it a little more efficient. The pair of input arguments
975  /// may overlap with the pair of output arguments. It is safe to call
976  /// udivrem(X, Y, X, Y), for example.
977  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
978                      APInt &Remainder);
979  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
980                      uint64_t &Remainder);
981
982  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
983                      APInt &Remainder);
984  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
985                      int64_t &Remainder);
986
987  // Operations that return overflow indicators.
988  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
989  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
990  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
991  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
992  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
993  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
994  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
995  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
996  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
997  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
998  APInt ushl_ov(unsigned Amt, bool &Overflow) const;
999
1000  // Operations that saturate
1001  APInt sadd_sat(const APInt &RHS) const;
1002  APInt uadd_sat(const APInt &RHS) const;
1003  APInt ssub_sat(const APInt &RHS) const;
1004  APInt usub_sat(const APInt &RHS) const;
1005  APInt smul_sat(const APInt &RHS) const;
1006  APInt umul_sat(const APInt &RHS) const;
1007  APInt sshl_sat(const APInt &RHS) const;
1008  APInt sshl_sat(unsigned RHS) const;
1009  APInt ushl_sat(const APInt &RHS) const;
1010  APInt ushl_sat(unsigned RHS) const;
1011
1012  /// Array-indexing support.
1013  ///
1014  /// \returns the bit value at bitPosition
1015  bool operator[](unsigned bitPosition) const {
1016    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1017    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1018  }
1019
1020  /// @}
1021  /// \name Comparison Operators
1022  /// @{
1023
1024  /// Equality operator.
1025  ///
1026  /// Compares this APInt with RHS for the validity of the equality
1027  /// relationship.
1028  bool operator==(const APInt &RHS) const {
1029    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1030    if (isSingleWord())
1031      return U.VAL == RHS.U.VAL;
1032    return equalSlowCase(RHS);
1033  }
1034
1035  /// Equality operator.
1036  ///
1037  /// Compares this APInt with a uint64_t for the validity of the equality
1038  /// relationship.
1039  ///
1040  /// \returns true if *this == Val
1041  bool operator==(uint64_t Val) const {
1042    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1043  }
1044
1045  /// Equality comparison.
1046  ///
1047  /// Compares this APInt with RHS for the validity of the equality
1048  /// relationship.
1049  ///
1050  /// \returns true if *this == Val
1051  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1052
1053  /// Inequality operator.
1054  ///
1055  /// Compares this APInt with RHS for the validity of the inequality
1056  /// relationship.
1057  ///
1058  /// \returns true if *this != Val
1059  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1060
1061  /// Inequality operator.
1062  ///
1063  /// Compares this APInt with a uint64_t for the validity of the inequality
1064  /// relationship.
1065  ///
1066  /// \returns true if *this != Val
1067  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1068
1069  /// Inequality comparison
1070  ///
1071  /// Compares this APInt with RHS for the validity of the inequality
1072  /// relationship.
1073  ///
1074  /// \returns true if *this != Val
1075  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1076
1077  /// Unsigned less than comparison
1078  ///
1079  /// Regards both *this and RHS as unsigned quantities and compares them for
1080  /// the validity of the less-than relationship.
1081  ///
1082  /// \returns true if *this < RHS when both are considered unsigned.
1083  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1084
1085  /// Unsigned less than comparison
1086  ///
1087  /// Regards both *this as an unsigned quantity and compares it with RHS for
1088  /// the validity of the less-than relationship.
1089  ///
1090  /// \returns true if *this < RHS when considered unsigned.
1091  bool ult(uint64_t RHS) const {
1092    // Only need to check active bits if not a single word.
1093    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1094  }
1095
1096  /// Signed less than comparison
1097  ///
1098  /// Regards both *this and RHS as signed quantities and compares them for
1099  /// validity of the less-than relationship.
1100  ///
1101  /// \returns true if *this < RHS when both are considered signed.
1102  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1103
1104  /// Signed less than comparison
1105  ///
1106  /// Regards both *this as a signed quantity and compares it with RHS for
1107  /// the validity of the less-than relationship.
1108  ///
1109  /// \returns true if *this < RHS when considered signed.
1110  bool slt(int64_t RHS) const {
1111    return (!isSingleWord() && getSignificantBits() > 64)
1112               ? isNegative()
1113               : getSExtValue() < RHS;
1114  }
1115
1116  /// Unsigned less or equal comparison
1117  ///
1118  /// Regards both *this and RHS as unsigned quantities and compares them for
1119  /// validity of the less-or-equal relationship.
1120  ///
1121  /// \returns true if *this <= RHS when both are considered unsigned.
1122  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1123
1124  /// Unsigned less or equal comparison
1125  ///
1126  /// Regards both *this as an unsigned quantity and compares it with RHS for
1127  /// the validity of the less-or-equal relationship.
1128  ///
1129  /// \returns true if *this <= RHS when considered unsigned.
1130  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1131
1132  /// Signed less or equal comparison
1133  ///
1134  /// Regards both *this and RHS as signed quantities and compares them for
1135  /// validity of the less-or-equal relationship.
1136  ///
1137  /// \returns true if *this <= RHS when both are considered signed.
1138  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1139
1140  /// Signed less or equal comparison
1141  ///
1142  /// Regards both *this as a signed quantity and compares it with RHS for the
1143  /// validity of the less-or-equal relationship.
1144  ///
1145  /// \returns true if *this <= RHS when considered signed.
1146  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1147
1148  /// Unsigned greater than comparison
1149  ///
1150  /// Regards both *this and RHS as unsigned quantities and compares them for
1151  /// the validity of the greater-than relationship.
1152  ///
1153  /// \returns true if *this > RHS when both are considered unsigned.
1154  bool ugt(const APInt &RHS) const { return !ule(RHS); }
1155
1156  /// Unsigned greater than comparison
1157  ///
1158  /// Regards both *this as an unsigned quantity and compares it with RHS for
1159  /// the validity of the greater-than relationship.
1160  ///
1161  /// \returns true if *this > RHS when considered unsigned.
1162  bool ugt(uint64_t RHS) const {
1163    // Only need to check active bits if not a single word.
1164    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1165  }
1166
1167  /// Signed greater than comparison
1168  ///
1169  /// Regards both *this and RHS as signed quantities and compares them for the
1170  /// validity of the greater-than relationship.
1171  ///
1172  /// \returns true if *this > RHS when both are considered signed.
1173  bool sgt(const APInt &RHS) const { return !sle(RHS); }
1174
1175  /// Signed greater than comparison
1176  ///
1177  /// Regards both *this as a signed quantity and compares it with RHS for
1178  /// the validity of the greater-than relationship.
1179  ///
1180  /// \returns true if *this > RHS when considered signed.
1181  bool sgt(int64_t RHS) const {
1182    return (!isSingleWord() && getSignificantBits() > 64)
1183               ? !isNegative()
1184               : getSExtValue() > RHS;
1185  }
1186
1187  /// Unsigned greater or equal comparison
1188  ///
1189  /// Regards both *this and RHS as unsigned quantities and compares them for
1190  /// validity of the greater-or-equal relationship.
1191  ///
1192  /// \returns true if *this >= RHS when both are considered unsigned.
1193  bool uge(const APInt &RHS) const { return !ult(RHS); }
1194
1195  /// Unsigned greater or equal comparison
1196  ///
1197  /// Regards both *this as an unsigned quantity and compares it with RHS for
1198  /// the validity of the greater-or-equal relationship.
1199  ///
1200  /// \returns true if *this >= RHS when considered unsigned.
1201  bool uge(uint64_t RHS) const { return !ult(RHS); }
1202
1203  /// Signed greater or equal comparison
1204  ///
1205  /// Regards both *this and RHS as signed quantities and compares them for
1206  /// validity of the greater-or-equal relationship.
1207  ///
1208  /// \returns true if *this >= RHS when both are considered signed.
1209  bool sge(const APInt &RHS) const { return !slt(RHS); }
1210
1211  /// Signed greater or equal comparison
1212  ///
1213  /// Regards both *this as a signed quantity and compares it with RHS for
1214  /// the validity of the greater-or-equal relationship.
1215  ///
1216  /// \returns true if *this >= RHS when considered signed.
1217  bool sge(int64_t RHS) const { return !slt(RHS); }
1218
1219  /// This operation tests if there are any pairs of corresponding bits
1220  /// between this APInt and RHS that are both set.
1221  bool intersects(const APInt &RHS) const {
1222    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1223    if (isSingleWord())
1224      return (U.VAL & RHS.U.VAL) != 0;
1225    return intersectsSlowCase(RHS);
1226  }
1227
1228  /// This operation checks that all bits set in this APInt are also set in RHS.
1229  bool isSubsetOf(const APInt &RHS) const {
1230    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1231    if (isSingleWord())
1232      return (U.VAL & ~RHS.U.VAL) == 0;
1233    return isSubsetOfSlowCase(RHS);
1234  }
1235
1236  /// @}
1237  /// \name Resizing Operators
1238  /// @{
1239
1240  /// Truncate to new width.
1241  ///
1242  /// Truncate the APInt to a specified width. It is an error to specify a width
1243  /// that is greater than the current width.
1244  APInt trunc(unsigned width) const;
1245
1246  /// Truncate to new width with unsigned saturation.
1247  ///
1248  /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1249  /// the new bitwidth, then return truncated APInt. Else, return max value.
1250  APInt truncUSat(unsigned width) const;
1251
1252  /// Truncate to new width with signed saturation.
1253  ///
1254  /// If this APInt, treated as signed integer, can be losslessly truncated to
1255  /// the new bitwidth, then return truncated APInt. Else, return either
1256  /// signed min value if the APInt was negative, or signed max value.
1257  APInt truncSSat(unsigned width) const;
1258
1259  /// Sign extend to a new width.
1260  ///
1261  /// This operation sign extends the APInt to a new width. If the high order
1262  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1263  /// It is an error to specify a width that is less than the
1264  /// current width.
1265  APInt sext(unsigned width) const;
1266
1267  /// Zero extend to a new width.
1268  ///
1269  /// This operation zero extends the APInt to a new width. The high order bits
1270  /// are filled with 0 bits.  It is an error to specify a width that is less
1271  /// than the current width.
1272  APInt zext(unsigned width) const;
1273
1274  /// Sign extend or truncate to width
1275  ///
1276  /// Make this APInt have the bit width given by \p width. The value is sign
1277  /// extended, truncated, or left alone to make it that width.
1278  APInt sextOrTrunc(unsigned width) const;
1279
1280  /// Zero extend or truncate to width
1281  ///
1282  /// Make this APInt have the bit width given by \p width. The value is zero
1283  /// extended, truncated, or left alone to make it that width.
1284  APInt zextOrTrunc(unsigned width) const;
1285
1286  /// @}
1287  /// \name Bit Manipulation Operators
1288  /// @{
1289
1290  /// Set every bit to 1.
1291  void setAllBits() {
1292    if (isSingleWord())
1293      U.VAL = WORDTYPE_MAX;
1294    else
1295      // Set all the bits in all the words.
1296      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1297    // Clear the unused ones
1298    clearUnusedBits();
1299  }
1300
1301  /// Set the given bit to 1 whose position is given as "bitPosition".
1302  void setBit(unsigned BitPosition) {
1303    assert(BitPosition < BitWidth && "BitPosition out of range");
1304    WordType Mask = maskBit(BitPosition);
1305    if (isSingleWord())
1306      U.VAL |= Mask;
1307    else
1308      U.pVal[whichWord(BitPosition)] |= Mask;
1309  }
1310
1311  /// Set the sign bit to 1.
1312  void setSignBit() { setBit(BitWidth - 1); }
1313
1314  /// Set a given bit to a given value.
1315  void setBitVal(unsigned BitPosition, bool BitValue) {
1316    if (BitValue)
1317      setBit(BitPosition);
1318    else
1319      clearBit(BitPosition);
1320  }
1321
1322  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1323  /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1324  /// setBits when \p loBit < \p hiBit.
1325  /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1326  void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1327    assert(hiBit <= BitWidth && "hiBit out of range");
1328    assert(loBit <= BitWidth && "loBit out of range");
1329    if (loBit < hiBit) {
1330      setBits(loBit, hiBit);
1331      return;
1332    }
1333    setLowBits(hiBit);
1334    setHighBits(BitWidth - loBit);
1335  }
1336
1337  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1338  /// This function handles case when \p loBit <= \p hiBit.
1339  void setBits(unsigned loBit, unsigned hiBit) {
1340    assert(hiBit <= BitWidth && "hiBit out of range");
1341    assert(loBit <= BitWidth && "loBit out of range");
1342    assert(loBit <= hiBit && "loBit greater than hiBit");
1343    if (loBit == hiBit)
1344      return;
1345    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1346      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1347      mask <<= loBit;
1348      if (isSingleWord())
1349        U.VAL |= mask;
1350      else
1351        U.pVal[0] |= mask;
1352    } else {
1353      setBitsSlowCase(loBit, hiBit);
1354    }
1355  }
1356
1357  /// Set the top bits starting from loBit.
1358  void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1359
1360  /// Set the bottom loBits bits.
1361  void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1362
1363  /// Set the top hiBits bits.
1364  void setHighBits(unsigned hiBits) {
1365    return setBits(BitWidth - hiBits, BitWidth);
1366  }
1367
1368  /// Set every bit to 0.
1369  void clearAllBits() {
1370    if (isSingleWord())
1371      U.VAL = 0;
1372    else
1373      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1374  }
1375
1376  /// Set a given bit to 0.
1377  ///
1378  /// Set the given bit to 0 whose position is given as "bitPosition".
1379  void clearBit(unsigned BitPosition) {
1380    assert(BitPosition < BitWidth && "BitPosition out of range");
1381    WordType Mask = ~maskBit(BitPosition);
1382    if (isSingleWord())
1383      U.VAL &= Mask;
1384    else
1385      U.pVal[whichWord(BitPosition)] &= Mask;
1386  }
1387
1388  /// Set bottom loBits bits to 0.
1389  void clearLowBits(unsigned loBits) {
1390    assert(loBits <= BitWidth && "More bits than bitwidth");
1391    APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1392    *this &= Keep;
1393  }
1394
1395  /// Set the sign bit to 0.
1396  void clearSignBit() { clearBit(BitWidth - 1); }
1397
1398  /// Toggle every bit to its opposite value.
1399  void flipAllBits() {
1400    if (isSingleWord()) {
1401      U.VAL ^= WORDTYPE_MAX;
1402      clearUnusedBits();
1403    } else {
1404      flipAllBitsSlowCase();
1405    }
1406  }
1407
1408  /// Toggles a given bit to its opposite value.
1409  ///
1410  /// Toggle a given bit to its opposite value whose position is given
1411  /// as "bitPosition".
1412  void flipBit(unsigned bitPosition);
1413
1414  /// Negate this APInt in place.
1415  void negate() {
1416    flipAllBits();
1417    ++(*this);
1418  }
1419
1420  /// Insert the bits from a smaller APInt starting at bitPosition.
1421  void insertBits(const APInt &SubBits, unsigned bitPosition);
1422  void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1423
1424  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1425  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1426  uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1427
1428  /// @}
1429  /// \name Value Characterization Functions
1430  /// @{
1431
1432  /// Return the number of bits in the APInt.
1433  unsigned getBitWidth() const { return BitWidth; }
1434
1435  /// Get the number of words.
1436  ///
1437  /// Here one word's bitwidth equals to that of uint64_t.
1438  ///
1439  /// \returns the number of words to hold the integer value of this APInt.
1440  unsigned getNumWords() const { return getNumWords(BitWidth); }
1441
1442  /// Get the number of words.
1443  ///
1444  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1445  ///
1446  /// \returns the number of words to hold the integer value with a given bit
1447  /// width.
1448  static unsigned getNumWords(unsigned BitWidth) {
1449    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1450  }
1451
1452  /// Compute the number of active bits in the value
1453  ///
1454  /// This function returns the number of active bits which is defined as the
1455  /// bit width minus the number of leading zeros. This is used in several
1456  /// computations to see how "wide" the value is.
1457  unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1458
1459  /// Compute the number of active words in the value of this APInt.
1460  ///
1461  /// This is used in conjunction with getActiveData to extract the raw value of
1462  /// the APInt.
1463  unsigned getActiveWords() const {
1464    unsigned numActiveBits = getActiveBits();
1465    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1466  }
1467
1468  /// Get the minimum bit size for this signed APInt
1469  ///
1470  /// Computes the minimum bit width for this APInt while considering it to be a
1471  /// signed (and probably negative) value. If the value is not negative, this
1472  /// function returns the same value as getActiveBits()+1. Otherwise, it
1473  /// returns the smallest bit width that will retain the negative value. For
1474  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1475  /// for -1, this function will always return 1.
1476  unsigned getSignificantBits() const {
1477    return BitWidth - getNumSignBits() + 1;
1478  }
1479
1480  /// Get zero extended value
1481  ///
1482  /// This method attempts to return the value of this APInt as a zero extended
1483  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1484  /// uint64_t. Otherwise an assertion will result.
1485  uint64_t getZExtValue() const {
1486    if (isSingleWord())
1487      return U.VAL;
1488    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1489    return U.pVal[0];
1490  }
1491
1492  /// Get zero extended value if possible
1493  ///
1494  /// This method attempts to return the value of this APInt as a zero extended
1495  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1496  /// uint64_t. Otherwise no value is returned.
1497  std::optional<uint64_t> tryZExtValue() const {
1498    return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1499                                   : std::nullopt;
1500  };
1501
1502  /// Get sign extended value
1503  ///
1504  /// This method attempts to return the value of this APInt as a sign extended
1505  /// int64_t. The bit width must be <= 64 or the value must fit within an
1506  /// int64_t. Otherwise an assertion will result.
1507  int64_t getSExtValue() const {
1508    if (isSingleWord())
1509      return SignExtend64(U.VAL, BitWidth);
1510    assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1511    return int64_t(U.pVal[0]);
1512  }
1513
1514  /// Get sign extended value if possible
1515  ///
1516  /// This method attempts to return the value of this APInt as a sign extended
1517  /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1518  /// int64_t. Otherwise no value is returned.
1519  std::optional<int64_t> trySExtValue() const {
1520    return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1521                                        : std::nullopt;
1522  };
1523
1524  /// Get bits required for string value.
1525  ///
1526  /// This method determines how many bits are required to hold the APInt
1527  /// equivalent of the string given by \p str.
1528  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1529
1530  /// Get the bits that are sufficient to represent the string value. This may
1531  /// over estimate the amount of bits required, but it does not require
1532  /// parsing the value in the string.
1533  static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1534
1535  /// The APInt version of std::countl_zero.
1536  ///
1537  /// It counts the number of zeros from the most significant bit to the first
1538  /// one bit.
1539  ///
1540  /// \returns BitWidth if the value is zero, otherwise returns the number of
1541  ///   zeros from the most significant bit to the first one bits.
1542  unsigned countl_zero() const {
1543    if (isSingleWord()) {
1544      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1545      return llvm::countl_zero(U.VAL) - unusedBits;
1546    }
1547    return countLeadingZerosSlowCase();
1548  }
1549
1550  unsigned countLeadingZeros() const { return countl_zero(); }
1551
1552  /// Count the number of leading one bits.
1553  ///
1554  /// This function is an APInt version of std::countl_one. It counts the number
1555  /// of ones from the most significant bit to the first zero bit.
1556  ///
1557  /// \returns 0 if the high order bit is not set, otherwise returns the number
1558  /// of 1 bits from the most significant to the least
1559  unsigned countl_one() const {
1560    if (isSingleWord()) {
1561      if (LLVM_UNLIKELY(BitWidth == 0))
1562        return 0;
1563      return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1564    }
1565    return countLeadingOnesSlowCase();
1566  }
1567
1568  unsigned countLeadingOnes() const { return countl_one(); }
1569
1570  /// Computes the number of leading bits of this APInt that are equal to its
1571  /// sign bit.
1572  unsigned getNumSignBits() const {
1573    return isNegative() ? countl_one() : countl_zero();
1574  }
1575
1576  /// Count the number of trailing zero bits.
1577  ///
1578  /// This function is an APInt version of std::countr_zero. It counts the
1579  /// number of zeros from the least significant bit to the first set bit.
1580  ///
1581  /// \returns BitWidth if the value is zero, otherwise returns the number of
1582  /// zeros from the least significant bit to the first one bit.
1583  unsigned countr_zero() const {
1584    if (isSingleWord()) {
1585      unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1586      return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1587    }
1588    return countTrailingZerosSlowCase();
1589  }
1590
1591  unsigned countTrailingZeros() const { return countr_zero(); }
1592
1593  /// Count the number of trailing one bits.
1594  ///
1595  /// This function is an APInt version of std::countr_one. It counts the number
1596  /// of ones from the least significant bit to the first zero bit.
1597  ///
1598  /// \returns BitWidth if the value is all ones, otherwise returns the number
1599  /// of ones from the least significant bit to the first zero bit.
1600  unsigned countr_one() const {
1601    if (isSingleWord())
1602      return llvm::countr_one(U.VAL);
1603    return countTrailingOnesSlowCase();
1604  }
1605
1606  unsigned countTrailingOnes() const { return countr_one(); }
1607
1608  /// Count the number of bits set.
1609  ///
1610  /// This function is an APInt version of std::popcount. It counts the number
1611  /// of 1 bits in the APInt value.
1612  ///
1613  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1614  unsigned popcount() const {
1615    if (isSingleWord())
1616      return llvm::popcount(U.VAL);
1617    return countPopulationSlowCase();
1618  }
1619
1620  /// @}
1621  /// \name Conversion Functions
1622  /// @{
1623  void print(raw_ostream &OS, bool isSigned) const;
1624
1625  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1626  /// SmallString. If Radix > 10, UpperCase determine the case of letter
1627  /// digits.
1628  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1629                bool formatAsCLiteral = false, bool UpperCase = true) const;
1630
1631  /// Considers the APInt to be unsigned and converts it into a string in the
1632  /// radix given. The radix can be 2, 8, 10 16, or 36.
1633  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1634    toString(Str, Radix, false, false);
1635  }
1636
1637  /// Considers the APInt to be signed and converts it into a string in the
1638  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1639  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1640    toString(Str, Radix, true, false);
1641  }
1642
1643  /// \returns a byte-swapped representation of this APInt Value.
1644  APInt byteSwap() const;
1645
1646  /// \returns the value with the bit representation reversed of this APInt
1647  /// Value.
1648  APInt reverseBits() const;
1649
1650  /// Converts this APInt to a double value.
1651  double roundToDouble(bool isSigned) const;
1652
1653  /// Converts this unsigned APInt to a double value.
1654  double roundToDouble() const { return roundToDouble(false); }
1655
1656  /// Converts this signed APInt to a double value.
1657  double signedRoundToDouble() const { return roundToDouble(true); }
1658
1659  /// Converts APInt bits to a double
1660  ///
1661  /// The conversion does not do a translation from integer to double, it just
1662  /// re-interprets the bits as a double. Note that it is valid to do this on
1663  /// any bit width. Exactly 64 bits will be translated.
1664  double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); }
1665
1666  /// Converts APInt bits to a float
1667  ///
1668  /// The conversion does not do a translation from integer to float, it just
1669  /// re-interprets the bits as a float. Note that it is valid to do this on
1670  /// any bit width. Exactly 32 bits will be translated.
1671  float bitsToFloat() const {
1672    return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1673  }
1674
1675  /// Converts a double to APInt bits.
1676  ///
1677  /// The conversion does not do a translation from double to integer, it just
1678  /// re-interprets the bits of the double.
1679  static APInt doubleToBits(double V) {
1680    return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1681  }
1682
1683  /// Converts a float to APInt bits.
1684  ///
1685  /// The conversion does not do a translation from float to integer, it just
1686  /// re-interprets the bits of the float.
1687  static APInt floatToBits(float V) {
1688    return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1689  }
1690
1691  /// @}
1692  /// \name Mathematics Operations
1693  /// @{
1694
1695  /// \returns the floor log base 2 of this APInt.
1696  unsigned logBase2() const { return getActiveBits() - 1; }
1697
1698  /// \returns the ceil log base 2 of this APInt.
1699  unsigned ceilLogBase2() const {
1700    APInt temp(*this);
1701    --temp;
1702    return temp.getActiveBits();
1703  }
1704
1705  /// \returns the nearest log base 2 of this APInt. Ties round up.
1706  ///
1707  /// NOTE: When we have a BitWidth of 1, we define:
1708  ///
1709  ///   log2(0) = UINT32_MAX
1710  ///   log2(1) = 0
1711  ///
1712  /// to get around any mathematical concerns resulting from
1713  /// referencing 2 in a space where 2 does no exist.
1714  unsigned nearestLogBase2() const;
1715
1716  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1717  /// otherwise
1718  int32_t exactLogBase2() const {
1719    if (!isPowerOf2())
1720      return -1;
1721    return logBase2();
1722  }
1723
1724  /// Compute the square root.
1725  APInt sqrt() const;
1726
1727  /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1728  /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1729  /// wide APInt) is unchanged due to how negation works.
1730  APInt abs() const {
1731    if (isNegative())
1732      return -(*this);
1733    return *this;
1734  }
1735
1736  /// \returns the multiplicative inverse for a given modulo.
1737  APInt multiplicativeInverse(const APInt &modulo) const;
1738
1739  /// @}
1740  /// \name Building-block Operations for APInt and APFloat
1741  /// @{
1742
1743  // These building block operations operate on a representation of arbitrary
1744  // precision, two's-complement, bignum integer values. They should be
1745  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1746  // generally a pointer to the base of an array of integer parts, representing
1747  // an unsigned bignum, and a count of how many parts there are.
1748
1749  /// Sets the least significant part of a bignum to the input value, and zeroes
1750  /// out higher parts.
1751  static void tcSet(WordType *, WordType, unsigned);
1752
1753  /// Assign one bignum to another.
1754  static void tcAssign(WordType *, const WordType *, unsigned);
1755
1756  /// Returns true if a bignum is zero, false otherwise.
1757  static bool tcIsZero(const WordType *, unsigned);
1758
1759  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1760  static int tcExtractBit(const WordType *, unsigned bit);
1761
1762  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1763  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1764  /// significant bit of DST.  All high bits above srcBITS in DST are
1765  /// zero-filled.
1766  static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1767                        unsigned srcBits, unsigned srcLSB);
1768
1769  /// Set the given bit of a bignum.  Zero-based.
1770  static void tcSetBit(WordType *, unsigned bit);
1771
1772  /// Clear the given bit of a bignum.  Zero-based.
1773  static void tcClearBit(WordType *, unsigned bit);
1774
1775  /// Returns the bit number of the least or most significant set bit of a
1776  /// number.  If the input number has no bits set -1U is returned.
1777  static unsigned tcLSB(const WordType *, unsigned n);
1778  static unsigned tcMSB(const WordType *parts, unsigned n);
1779
1780  /// Negate a bignum in-place.
1781  static void tcNegate(WordType *, unsigned);
1782
1783  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1784  static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1785  /// DST += RHS.  Returns the carry flag.
1786  static WordType tcAddPart(WordType *, WordType, unsigned);
1787
1788  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1789  static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1790                             unsigned);
1791  /// DST -= RHS.  Returns the carry flag.
1792  static WordType tcSubtractPart(WordType *, WordType, unsigned);
1793
1794  /// DST += SRC * MULTIPLIER + PART   if add is true
1795  /// DST  = SRC * MULTIPLIER + PART   if add is false
1796  ///
1797  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1798  /// start at the same point, i.e. DST == SRC.
1799  ///
1800  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1801  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1802  /// result, and if all of the omitted higher parts were zero return zero,
1803  /// otherwise overflow occurred and return one.
1804  static int tcMultiplyPart(WordType *dst, const WordType *src,
1805                            WordType multiplier, WordType carry,
1806                            unsigned srcParts, unsigned dstParts, bool add);
1807
1808  /// DST = LHS * RHS, where DST has the same width as the operands and is
1809  /// filled with the least significant parts of the result.  Returns one if
1810  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1811  /// operands.
1812  static int tcMultiply(WordType *, const WordType *, const WordType *,
1813                        unsigned);
1814
1815  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1816  /// operands. No overflow occurs. DST must be disjoint from both operands.
1817  static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1818                             unsigned, unsigned);
1819
1820  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1821  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1822  /// REMAINDER to the remainder, return zero.  i.e.
1823  ///
1824  ///  OLD_LHS = RHS * LHS + REMAINDER
1825  ///
1826  /// SCRATCH is a bignum of the same size as the operands and result for use by
1827  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1828  /// REMAINDER and SCRATCH must be distinct.
1829  static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1830                      WordType *scratch, unsigned parts);
1831
1832  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1833  /// restrictions on Count.
1834  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1835
1836  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1837  /// restrictions on Count.
1838  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1839
1840  /// Comparison (unsigned) of two bignums.
1841  static int tcCompare(const WordType *, const WordType *, unsigned);
1842
1843  /// Increment a bignum in-place.  Return the carry flag.
1844  static WordType tcIncrement(WordType *dst, unsigned parts) {
1845    return tcAddPart(dst, 1, parts);
1846  }
1847
1848  /// Decrement a bignum in-place.  Return the borrow flag.
1849  static WordType tcDecrement(WordType *dst, unsigned parts) {
1850    return tcSubtractPart(dst, 1, parts);
1851  }
1852
1853  /// Used to insert APInt objects, or objects that contain APInt objects, into
1854  ///  FoldingSets.
1855  void Profile(FoldingSetNodeID &id) const;
1856
1857  /// debug method
1858  void dump() const;
1859
1860  /// Returns whether this instance allocated memory.
1861  bool needsCleanup() const { return !isSingleWord(); }
1862
1863private:
1864  /// This union is used to store the integer value. When the
1865  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1866  union {
1867    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1868    uint64_t *pVal; ///< Used to store the >64 bits integer value.
1869  } U;
1870
1871  unsigned BitWidth = 1; ///< The number of bits in this APInt.
1872
1873  friend struct DenseMapInfo<APInt, void>;
1874  friend class APSInt;
1875
1876  /// This constructor is used only internally for speed of construction of
1877  /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1878  /// is not public.
1879  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1880
1881  /// Determine which word a bit is in.
1882  ///
1883  /// \returns the word position for the specified bit position.
1884  static unsigned whichWord(unsigned bitPosition) {
1885    return bitPosition / APINT_BITS_PER_WORD;
1886  }
1887
1888  /// Determine which bit in a word the specified bit position is in.
1889  static unsigned whichBit(unsigned bitPosition) {
1890    return bitPosition % APINT_BITS_PER_WORD;
1891  }
1892
1893  /// Get a single bit mask.
1894  ///
1895  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1896  /// This method generates and returns a uint64_t (word) mask for a single
1897  /// bit at a specific bit position. This is used to mask the bit in the
1898  /// corresponding word.
1899  static uint64_t maskBit(unsigned bitPosition) {
1900    return 1ULL << whichBit(bitPosition);
1901  }
1902
1903  /// Clear unused high order bits
1904  ///
1905  /// This method is used internally to clear the top "N" bits in the high order
1906  /// word that are not used by the APInt. This is needed after the most
1907  /// significant word is assigned a value to ensure that those bits are
1908  /// zero'd out.
1909  APInt &clearUnusedBits() {
1910    // Compute how many bits are used in the final word.
1911    unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1912
1913    // Mask out the high bits.
1914    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1915    if (LLVM_UNLIKELY(BitWidth == 0))
1916      mask = 0;
1917
1918    if (isSingleWord())
1919      U.VAL &= mask;
1920    else
1921      U.pVal[getNumWords() - 1] &= mask;
1922    return *this;
1923  }
1924
1925  /// Get the word corresponding to a bit position
1926  /// \returns the corresponding word for the specified bit position.
1927  uint64_t getWord(unsigned bitPosition) const {
1928    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1929  }
1930
1931  /// Utility method to change the bit width of this APInt to new bit width,
1932  /// allocating and/or deallocating as necessary. There is no guarantee on the
1933  /// value of any bits upon return. Caller should populate the bits after.
1934  void reallocate(unsigned NewBitWidth);
1935
1936  /// Convert a char array into an APInt
1937  ///
1938  /// \param radix 2, 8, 10, 16, or 36
1939  /// Converts a string into a number.  The string must be non-empty
1940  /// and well-formed as a number of the given base. The bit-width
1941  /// must be sufficient to hold the result.
1942  ///
1943  /// This is used by the constructors that take string arguments.
1944  ///
1945  /// StringRef::getAsInteger is superficially similar but (1) does
1946  /// not assume that the string is well-formed and (2) grows the
1947  /// result to hold the input.
1948  void fromString(unsigned numBits, StringRef str, uint8_t radix);
1949
1950  /// An internal division function for dividing APInts.
1951  ///
1952  /// This is used by the toString method to divide by the radix. It simply
1953  /// provides a more convenient form of divide for internal use since KnuthDiv
1954  /// has specific constraints on its inputs. If those constraints are not met
1955  /// then it provides a simpler form of divide.
1956  static void divide(const WordType *LHS, unsigned lhsWords,
1957                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1958                     WordType *Remainder);
1959
1960  /// out-of-line slow case for inline constructor
1961  void initSlowCase(uint64_t val, bool isSigned);
1962
1963  /// shared code between two array constructors
1964  void initFromArray(ArrayRef<uint64_t> array);
1965
1966  /// out-of-line slow case for inline copy constructor
1967  void initSlowCase(const APInt &that);
1968
1969  /// out-of-line slow case for shl
1970  void shlSlowCase(unsigned ShiftAmt);
1971
1972  /// out-of-line slow case for lshr.
1973  void lshrSlowCase(unsigned ShiftAmt);
1974
1975  /// out-of-line slow case for ashr.
1976  void ashrSlowCase(unsigned ShiftAmt);
1977
1978  /// out-of-line slow case for operator=
1979  void assignSlowCase(const APInt &RHS);
1980
1981  /// out-of-line slow case for operator==
1982  bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1983
1984  /// out-of-line slow case for countLeadingZeros
1985  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1986
1987  /// out-of-line slow case for countLeadingOnes.
1988  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1989
1990  /// out-of-line slow case for countTrailingZeros.
1991  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1992
1993  /// out-of-line slow case for countTrailingOnes
1994  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1995
1996  /// out-of-line slow case for countPopulation
1997  unsigned countPopulationSlowCase() const LLVM_READONLY;
1998
1999  /// out-of-line slow case for intersects.
2000  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2001
2002  /// out-of-line slow case for isSubsetOf.
2003  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2004
2005  /// out-of-line slow case for setBits.
2006  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2007
2008  /// out-of-line slow case for flipAllBits.
2009  void flipAllBitsSlowCase();
2010
2011  /// out-of-line slow case for concat.
2012  APInt concatSlowCase(const APInt &NewLSB) const;
2013
2014  /// out-of-line slow case for operator&=.
2015  void andAssignSlowCase(const APInt &RHS);
2016
2017  /// out-of-line slow case for operator|=.
2018  void orAssignSlowCase(const APInt &RHS);
2019
2020  /// out-of-line slow case for operator^=.
2021  void xorAssignSlowCase(const APInt &RHS);
2022
2023  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2024  /// to, or greater than RHS.
2025  int compare(const APInt &RHS) const LLVM_READONLY;
2026
2027  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2028  /// to, or greater than RHS.
2029  int compareSigned(const APInt &RHS) const LLVM_READONLY;
2030
2031  /// @}
2032};
2033
2034inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2035
2036inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2037
2038/// Unary bitwise complement operator.
2039///
2040/// \returns an APInt that is the bitwise complement of \p v.
2041inline APInt operator~(APInt v) {
2042  v.flipAllBits();
2043  return v;
2044}
2045
2046inline APInt operator&(APInt a, const APInt &b) {
2047  a &= b;
2048  return a;
2049}
2050
2051inline APInt operator&(const APInt &a, APInt &&b) {
2052  b &= a;
2053  return std::move(b);
2054}
2055
2056inline APInt operator&(APInt a, uint64_t RHS) {
2057  a &= RHS;
2058  return a;
2059}
2060
2061inline APInt operator&(uint64_t LHS, APInt b) {
2062  b &= LHS;
2063  return b;
2064}
2065
2066inline APInt operator|(APInt a, const APInt &b) {
2067  a |= b;
2068  return a;
2069}
2070
2071inline APInt operator|(const APInt &a, APInt &&b) {
2072  b |= a;
2073  return std::move(b);
2074}
2075
2076inline APInt operator|(APInt a, uint64_t RHS) {
2077  a |= RHS;
2078  return a;
2079}
2080
2081inline APInt operator|(uint64_t LHS, APInt b) {
2082  b |= LHS;
2083  return b;
2084}
2085
2086inline APInt operator^(APInt a, const APInt &b) {
2087  a ^= b;
2088  return a;
2089}
2090
2091inline APInt operator^(const APInt &a, APInt &&b) {
2092  b ^= a;
2093  return std::move(b);
2094}
2095
2096inline APInt operator^(APInt a, uint64_t RHS) {
2097  a ^= RHS;
2098  return a;
2099}
2100
2101inline APInt operator^(uint64_t LHS, APInt b) {
2102  b ^= LHS;
2103  return b;
2104}
2105
2106inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2107  I.print(OS, true);
2108  return OS;
2109}
2110
2111inline APInt operator-(APInt v) {
2112  v.negate();
2113  return v;
2114}
2115
2116inline APInt operator+(APInt a, const APInt &b) {
2117  a += b;
2118  return a;
2119}
2120
2121inline APInt operator+(const APInt &a, APInt &&b) {
2122  b += a;
2123  return std::move(b);
2124}
2125
2126inline APInt operator+(APInt a, uint64_t RHS) {
2127  a += RHS;
2128  return a;
2129}
2130
2131inline APInt operator+(uint64_t LHS, APInt b) {
2132  b += LHS;
2133  return b;
2134}
2135
2136inline APInt operator-(APInt a, const APInt &b) {
2137  a -= b;
2138  return a;
2139}
2140
2141inline APInt operator-(const APInt &a, APInt &&b) {
2142  b.negate();
2143  b += a;
2144  return std::move(b);
2145}
2146
2147inline APInt operator-(APInt a, uint64_t RHS) {
2148  a -= RHS;
2149  return a;
2150}
2151
2152inline APInt operator-(uint64_t LHS, APInt b) {
2153  b.negate();
2154  b += LHS;
2155  return b;
2156}
2157
2158inline APInt operator*(APInt a, uint64_t RHS) {
2159  a *= RHS;
2160  return a;
2161}
2162
2163inline APInt operator*(uint64_t LHS, APInt b) {
2164  b *= LHS;
2165  return b;
2166}
2167
2168namespace APIntOps {
2169
2170/// Determine the smaller of two APInts considered to be signed.
2171inline const APInt &smin(const APInt &A, const APInt &B) {
2172  return A.slt(B) ? A : B;
2173}
2174
2175/// Determine the larger of two APInts considered to be signed.
2176inline const APInt &smax(const APInt &A, const APInt &B) {
2177  return A.sgt(B) ? A : B;
2178}
2179
2180/// Determine the smaller of two APInts considered to be unsigned.
2181inline const APInt &umin(const APInt &A, const APInt &B) {
2182  return A.ult(B) ? A : B;
2183}
2184
2185/// Determine the larger of two APInts considered to be unsigned.
2186inline const APInt &umax(const APInt &A, const APInt &B) {
2187  return A.ugt(B) ? A : B;
2188}
2189
2190/// Compute GCD of two unsigned APInt values.
2191///
2192/// This function returns the greatest common divisor of the two APInt values
2193/// using Stein's algorithm.
2194///
2195/// \returns the greatest common divisor of A and B.
2196APInt GreatestCommonDivisor(APInt A, APInt B);
2197
2198/// Converts the given APInt to a double value.
2199///
2200/// Treats the APInt as an unsigned value for conversion purposes.
2201inline double RoundAPIntToDouble(const APInt &APIVal) {
2202  return APIVal.roundToDouble();
2203}
2204
2205/// Converts the given APInt to a double value.
2206///
2207/// Treats the APInt as a signed value for conversion purposes.
2208inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2209  return APIVal.signedRoundToDouble();
2210}
2211
2212/// Converts the given APInt to a float value.
2213inline float RoundAPIntToFloat(const APInt &APIVal) {
2214  return float(RoundAPIntToDouble(APIVal));
2215}
2216
2217/// Converts the given APInt to a float value.
2218///
2219/// Treats the APInt as a signed value for conversion purposes.
2220inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2221  return float(APIVal.signedRoundToDouble());
2222}
2223
2224/// Converts the given double value into a APInt.
2225///
2226/// This function convert a double value to an APInt value.
2227APInt RoundDoubleToAPInt(double Double, unsigned width);
2228
2229/// Converts a float value into a APInt.
2230///
2231/// Converts a float value into an APInt value.
2232inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2233  return RoundDoubleToAPInt(double(Float), width);
2234}
2235
2236/// Return A unsign-divided by B, rounded by the given rounding mode.
2237APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2238
2239/// Return A sign-divided by B, rounded by the given rounding mode.
2240APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2241
2242/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2243/// (e.g. 32 for i32).
2244/// This function finds the smallest number n, such that
2245/// (a) n >= 0 and q(n) = 0, or
2246/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2247///     integers, belong to two different intervals [Rk, Rk+R),
2248///     where R = 2^BW, and k is an integer.
2249/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2250/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2251/// subtraction (treated as addition of negated numbers) would always
2252/// count as an overflow, but here we want to allow values to decrease
2253/// and increase as long as they are within the same interval.
2254/// Specifically, adding of two negative numbers should not cause an
2255/// overflow (as long as the magnitude does not exceed the bit width).
2256/// On the other hand, given a positive number, adding a negative
2257/// number to it can give a negative result, which would cause the
2258/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2259/// treated as a special case of an overflow.
2260///
2261/// This function returns std::nullopt if after finding k that minimizes the
2262/// positive solution to q(n) = kR, both solutions are contained between
2263/// two consecutive integers.
2264///
2265/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2266/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2267/// virtue of *signed* overflow. This function will *not* find such an n,
2268/// however it may find a value of n satisfying the inequalities due to
2269/// an *unsigned* overflow (if the values are treated as unsigned).
2270/// To find a solution for a signed overflow, treat it as a problem of
2271/// finding an unsigned overflow with a range with of BW-1.
2272///
2273/// The returned value may have a different bit width from the input
2274/// coefficients.
2275std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2276                                                unsigned RangeWidth);
2277
2278/// Compare two values, and if they are different, return the position of the
2279/// most significant bit that is different in the values.
2280std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2281                                                       const APInt &B);
2282
2283/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2284/// by \param A to \param NewBitWidth bits.
2285///
2286/// MatchAnyBits: (Default)
2287/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2288/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2289///
2290/// MatchAllBits:
2291/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2292/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2293/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2294APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2295                   bool MatchAllBits = false);
2296} // namespace APIntOps
2297
2298// See friend declaration above. This additional declaration is required in
2299// order to compile LLVM with IBM xlC compiler.
2300hash_code hash_value(const APInt &Arg);
2301
2302/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2303/// with the integer held in IntVal.
2304void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2305
2306/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2307/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2308void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2309
2310/// Provide DenseMapInfo for APInt.
2311template <> struct DenseMapInfo<APInt, void> {
2312  static inline APInt getEmptyKey() {
2313    APInt V(nullptr, 0);
2314    V.U.VAL = ~0ULL;
2315    return V;
2316  }
2317
2318  static inline APInt getTombstoneKey() {
2319    APInt V(nullptr, 0);
2320    V.U.VAL = ~1ULL;
2321    return V;
2322  }
2323
2324  static unsigned getHashValue(const APInt &Key);
2325
2326  static bool isEqual(const APInt &LHS, const APInt &RHS) {
2327    return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2328  }
2329};
2330
2331} // namespace llvm
2332
2333#endif
2334