1//===-- DWARFExpression.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Expression/DWARFExpression.h"
10
11#include <cinttypes>
12
13#include <optional>
14#include <vector>
15
16#include "lldb/Core/Module.h"
17#include "lldb/Core/Value.h"
18#include "lldb/Core/dwarf.h"
19#include "lldb/Utility/DataEncoder.h"
20#include "lldb/Utility/LLDBLog.h"
21#include "lldb/Utility/Log.h"
22#include "lldb/Utility/RegisterValue.h"
23#include "lldb/Utility/Scalar.h"
24#include "lldb/Utility/StreamString.h"
25#include "lldb/Utility/VMRange.h"
26
27#include "lldb/Host/Host.h"
28#include "lldb/Utility/Endian.h"
29
30#include "lldb/Symbol/Function.h"
31
32#include "lldb/Target/ABI.h"
33#include "lldb/Target/ExecutionContext.h"
34#include "lldb/Target/Process.h"
35#include "lldb/Target/RegisterContext.h"
36#include "lldb/Target/StackFrame.h"
37#include "lldb/Target/StackID.h"
38#include "lldb/Target/Target.h"
39#include "lldb/Target/Thread.h"
40#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
41#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
42
43#include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
44
45using namespace lldb;
46using namespace lldb_private;
47using namespace lldb_private::dwarf;
48using namespace lldb_private::plugin::dwarf;
49
50// DWARFExpression constructor
51DWARFExpression::DWARFExpression() : m_data() {}
52
53DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
54
55// Destructor
56DWARFExpression::~DWARFExpression() = default;
57
58bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
59
60void DWARFExpression::UpdateValue(uint64_t const_value,
61                                  lldb::offset_t const_value_byte_size,
62                                  uint8_t addr_byte_size) {
63  if (!const_value_byte_size)
64    return;
65
66  m_data.SetData(
67      DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
68  m_data.SetByteOrder(endian::InlHostByteOrder());
69  m_data.SetAddressByteSize(addr_byte_size);
70}
71
72void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level,
73                                   ABI *abi) const {
74  auto *MCRegInfo = abi ? &abi->GetMCRegisterInfo() : nullptr;
75  auto GetRegName = [&MCRegInfo](uint64_t DwarfRegNum,
76                                 bool IsEH) -> llvm::StringRef {
77    if (!MCRegInfo)
78      return {};
79    if (std::optional<unsigned> LLVMRegNum =
80            MCRegInfo->getLLVMRegNum(DwarfRegNum, IsEH))
81      if (const char *RegName = MCRegInfo->getName(*LLVMRegNum))
82        return llvm::StringRef(RegName);
83    return {};
84  };
85  llvm::DIDumpOptions DumpOpts;
86  DumpOpts.GetNameForDWARFReg = GetRegName;
87  llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
88      .print(s->AsRawOstream(), DumpOpts, nullptr);
89}
90
91RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; }
92
93void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
94  m_reg_kind = reg_kind;
95}
96
97
98static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
99                                      lldb::RegisterKind reg_kind,
100                                      uint32_t reg_num, Status *error_ptr,
101                                      Value &value) {
102  if (reg_ctx == nullptr) {
103    if (error_ptr)
104      error_ptr->SetErrorString("No register context in frame.\n");
105  } else {
106    uint32_t native_reg =
107        reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
108    if (native_reg == LLDB_INVALID_REGNUM) {
109      if (error_ptr)
110        error_ptr->SetErrorStringWithFormat("Unable to convert register "
111                                            "kind=%u reg_num=%u to a native "
112                                            "register number.\n",
113                                            reg_kind, reg_num);
114    } else {
115      const RegisterInfo *reg_info =
116          reg_ctx->GetRegisterInfoAtIndex(native_reg);
117      RegisterValue reg_value;
118      if (reg_ctx->ReadRegister(reg_info, reg_value)) {
119        if (reg_value.GetScalarValue(value.GetScalar())) {
120          value.SetValueType(Value::ValueType::Scalar);
121          value.SetContext(Value::ContextType::RegisterInfo,
122                           const_cast<RegisterInfo *>(reg_info));
123          if (error_ptr)
124            error_ptr->Clear();
125          return true;
126        } else {
127          // If we get this error, then we need to implement a value buffer in
128          // the dwarf expression evaluation function...
129          if (error_ptr)
130            error_ptr->SetErrorStringWithFormat(
131                "register %s can't be converted to a scalar value",
132                reg_info->name);
133        }
134      } else {
135        if (error_ptr)
136          error_ptr->SetErrorStringWithFormat("register %s is not available",
137                                              reg_info->name);
138      }
139    }
140  }
141  return false;
142}
143
144/// Return the length in bytes of the set of operands for \p op. No guarantees
145/// are made on the state of \p data after this call.
146static offset_t GetOpcodeDataSize(const DataExtractor &data,
147                                  const lldb::offset_t data_offset,
148                                  const uint8_t op, const DWARFUnit *dwarf_cu) {
149  lldb::offset_t offset = data_offset;
150  switch (op) {
151  case DW_OP_addr:
152  case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
153    return data.GetAddressByteSize();
154
155  // Opcodes with no arguments
156  case DW_OP_deref:                // 0x06
157  case DW_OP_dup:                  // 0x12
158  case DW_OP_drop:                 // 0x13
159  case DW_OP_over:                 // 0x14
160  case DW_OP_swap:                 // 0x16
161  case DW_OP_rot:                  // 0x17
162  case DW_OP_xderef:               // 0x18
163  case DW_OP_abs:                  // 0x19
164  case DW_OP_and:                  // 0x1a
165  case DW_OP_div:                  // 0x1b
166  case DW_OP_minus:                // 0x1c
167  case DW_OP_mod:                  // 0x1d
168  case DW_OP_mul:                  // 0x1e
169  case DW_OP_neg:                  // 0x1f
170  case DW_OP_not:                  // 0x20
171  case DW_OP_or:                   // 0x21
172  case DW_OP_plus:                 // 0x22
173  case DW_OP_shl:                  // 0x24
174  case DW_OP_shr:                  // 0x25
175  case DW_OP_shra:                 // 0x26
176  case DW_OP_xor:                  // 0x27
177  case DW_OP_eq:                   // 0x29
178  case DW_OP_ge:                   // 0x2a
179  case DW_OP_gt:                   // 0x2b
180  case DW_OP_le:                   // 0x2c
181  case DW_OP_lt:                   // 0x2d
182  case DW_OP_ne:                   // 0x2e
183  case DW_OP_lit0:                 // 0x30
184  case DW_OP_lit1:                 // 0x31
185  case DW_OP_lit2:                 // 0x32
186  case DW_OP_lit3:                 // 0x33
187  case DW_OP_lit4:                 // 0x34
188  case DW_OP_lit5:                 // 0x35
189  case DW_OP_lit6:                 // 0x36
190  case DW_OP_lit7:                 // 0x37
191  case DW_OP_lit8:                 // 0x38
192  case DW_OP_lit9:                 // 0x39
193  case DW_OP_lit10:                // 0x3A
194  case DW_OP_lit11:                // 0x3B
195  case DW_OP_lit12:                // 0x3C
196  case DW_OP_lit13:                // 0x3D
197  case DW_OP_lit14:                // 0x3E
198  case DW_OP_lit15:                // 0x3F
199  case DW_OP_lit16:                // 0x40
200  case DW_OP_lit17:                // 0x41
201  case DW_OP_lit18:                // 0x42
202  case DW_OP_lit19:                // 0x43
203  case DW_OP_lit20:                // 0x44
204  case DW_OP_lit21:                // 0x45
205  case DW_OP_lit22:                // 0x46
206  case DW_OP_lit23:                // 0x47
207  case DW_OP_lit24:                // 0x48
208  case DW_OP_lit25:                // 0x49
209  case DW_OP_lit26:                // 0x4A
210  case DW_OP_lit27:                // 0x4B
211  case DW_OP_lit28:                // 0x4C
212  case DW_OP_lit29:                // 0x4D
213  case DW_OP_lit30:                // 0x4E
214  case DW_OP_lit31:                // 0x4f
215  case DW_OP_reg0:                 // 0x50
216  case DW_OP_reg1:                 // 0x51
217  case DW_OP_reg2:                 // 0x52
218  case DW_OP_reg3:                 // 0x53
219  case DW_OP_reg4:                 // 0x54
220  case DW_OP_reg5:                 // 0x55
221  case DW_OP_reg6:                 // 0x56
222  case DW_OP_reg7:                 // 0x57
223  case DW_OP_reg8:                 // 0x58
224  case DW_OP_reg9:                 // 0x59
225  case DW_OP_reg10:                // 0x5A
226  case DW_OP_reg11:                // 0x5B
227  case DW_OP_reg12:                // 0x5C
228  case DW_OP_reg13:                // 0x5D
229  case DW_OP_reg14:                // 0x5E
230  case DW_OP_reg15:                // 0x5F
231  case DW_OP_reg16:                // 0x60
232  case DW_OP_reg17:                // 0x61
233  case DW_OP_reg18:                // 0x62
234  case DW_OP_reg19:                // 0x63
235  case DW_OP_reg20:                // 0x64
236  case DW_OP_reg21:                // 0x65
237  case DW_OP_reg22:                // 0x66
238  case DW_OP_reg23:                // 0x67
239  case DW_OP_reg24:                // 0x68
240  case DW_OP_reg25:                // 0x69
241  case DW_OP_reg26:                // 0x6A
242  case DW_OP_reg27:                // 0x6B
243  case DW_OP_reg28:                // 0x6C
244  case DW_OP_reg29:                // 0x6D
245  case DW_OP_reg30:                // 0x6E
246  case DW_OP_reg31:                // 0x6F
247  case DW_OP_nop:                  // 0x96
248  case DW_OP_push_object_address:  // 0x97 DWARF3
249  case DW_OP_form_tls_address:     // 0x9b DWARF3
250  case DW_OP_call_frame_cfa:       // 0x9c DWARF3
251  case DW_OP_stack_value:          // 0x9f DWARF4
252  case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
253    return 0;
254
255  // Opcodes with a single 1 byte arguments
256  case DW_OP_const1u:     // 0x08 1 1-byte constant
257  case DW_OP_const1s:     // 0x09 1 1-byte constant
258  case DW_OP_pick:        // 0x15 1 1-byte stack index
259  case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
260  case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
261    return 1;
262
263  // Opcodes with a single 2 byte arguments
264  case DW_OP_const2u: // 0x0a 1 2-byte constant
265  case DW_OP_const2s: // 0x0b 1 2-byte constant
266  case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
267  case DW_OP_bra:     // 0x28 1 signed 2-byte constant
268  case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
269    return 2;
270
271  // Opcodes with a single 4 byte arguments
272  case DW_OP_const4u: // 0x0c 1 4-byte constant
273  case DW_OP_const4s: // 0x0d 1 4-byte constant
274  case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
275    return 4;
276
277  // Opcodes with a single 8 byte arguments
278  case DW_OP_const8u: // 0x0e 1 8-byte constant
279  case DW_OP_const8s: // 0x0f 1 8-byte constant
280    return 8;
281
282  // All opcodes that have a single ULEB (signed or unsigned) argument
283  case DW_OP_addrx:           // 0xa1 1 ULEB128 index
284  case DW_OP_constu:          // 0x10 1 ULEB128 constant
285  case DW_OP_consts:          // 0x11 1 SLEB128 constant
286  case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
287  case DW_OP_breg0:           // 0x70 1 ULEB128 register
288  case DW_OP_breg1:           // 0x71 1 ULEB128 register
289  case DW_OP_breg2:           // 0x72 1 ULEB128 register
290  case DW_OP_breg3:           // 0x73 1 ULEB128 register
291  case DW_OP_breg4:           // 0x74 1 ULEB128 register
292  case DW_OP_breg5:           // 0x75 1 ULEB128 register
293  case DW_OP_breg6:           // 0x76 1 ULEB128 register
294  case DW_OP_breg7:           // 0x77 1 ULEB128 register
295  case DW_OP_breg8:           // 0x78 1 ULEB128 register
296  case DW_OP_breg9:           // 0x79 1 ULEB128 register
297  case DW_OP_breg10:          // 0x7a 1 ULEB128 register
298  case DW_OP_breg11:          // 0x7b 1 ULEB128 register
299  case DW_OP_breg12:          // 0x7c 1 ULEB128 register
300  case DW_OP_breg13:          // 0x7d 1 ULEB128 register
301  case DW_OP_breg14:          // 0x7e 1 ULEB128 register
302  case DW_OP_breg15:          // 0x7f 1 ULEB128 register
303  case DW_OP_breg16:          // 0x80 1 ULEB128 register
304  case DW_OP_breg17:          // 0x81 1 ULEB128 register
305  case DW_OP_breg18:          // 0x82 1 ULEB128 register
306  case DW_OP_breg19:          // 0x83 1 ULEB128 register
307  case DW_OP_breg20:          // 0x84 1 ULEB128 register
308  case DW_OP_breg21:          // 0x85 1 ULEB128 register
309  case DW_OP_breg22:          // 0x86 1 ULEB128 register
310  case DW_OP_breg23:          // 0x87 1 ULEB128 register
311  case DW_OP_breg24:          // 0x88 1 ULEB128 register
312  case DW_OP_breg25:          // 0x89 1 ULEB128 register
313  case DW_OP_breg26:          // 0x8a 1 ULEB128 register
314  case DW_OP_breg27:          // 0x8b 1 ULEB128 register
315  case DW_OP_breg28:          // 0x8c 1 ULEB128 register
316  case DW_OP_breg29:          // 0x8d 1 ULEB128 register
317  case DW_OP_breg30:          // 0x8e 1 ULEB128 register
318  case DW_OP_breg31:          // 0x8f 1 ULEB128 register
319  case DW_OP_regx:            // 0x90 1 ULEB128 register
320  case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
321  case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
322  case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
323  case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
324    data.Skip_LEB128(&offset);
325    return offset - data_offset;
326
327  // All opcodes that have a 2 ULEB (signed or unsigned) arguments
328  case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
329  case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
330    data.Skip_LEB128(&offset);
331    data.Skip_LEB128(&offset);
332    return offset - data_offset;
333
334  case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
335                             // (DWARF4)
336  {
337    uint64_t block_len = data.Skip_LEB128(&offset);
338    offset += block_len;
339    return offset - data_offset;
340  }
341
342  case DW_OP_GNU_entry_value:
343  case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
344  {
345    uint64_t subexpr_len = data.GetULEB128(&offset);
346    return (offset - data_offset) + subexpr_len;
347  }
348
349  default:
350    if (!dwarf_cu) {
351      return LLDB_INVALID_OFFSET;
352    }
353    return dwarf_cu->GetSymbolFileDWARF().GetVendorDWARFOpcodeSize(
354        data, data_offset, op);
355  }
356}
357
358lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu,
359                                                     bool &error) const {
360  error = false;
361  lldb::offset_t offset = 0;
362  while (m_data.ValidOffset(offset)) {
363    const uint8_t op = m_data.GetU8(&offset);
364
365    if (op == DW_OP_addr)
366      return m_data.GetAddress(&offset);
367    if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
368      uint64_t index = m_data.GetULEB128(&offset);
369      if (dwarf_cu)
370        return dwarf_cu->ReadAddressFromDebugAddrSection(index);
371      error = true;
372      break;
373    }
374    const offset_t op_arg_size =
375        GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
376    if (op_arg_size == LLDB_INVALID_OFFSET) {
377      error = true;
378      break;
379    }
380    offset += op_arg_size;
381  }
382  return LLDB_INVALID_ADDRESS;
383}
384
385bool DWARFExpression::Update_DW_OP_addr(const DWARFUnit *dwarf_cu,
386                                        lldb::addr_t file_addr) {
387  lldb::offset_t offset = 0;
388  while (m_data.ValidOffset(offset)) {
389    const uint8_t op = m_data.GetU8(&offset);
390
391    if (op == DW_OP_addr) {
392      const uint32_t addr_byte_size = m_data.GetAddressByteSize();
393      // We have to make a copy of the data as we don't know if this data is
394      // from a read only memory mapped buffer, so we duplicate all of the data
395      // first, then modify it, and if all goes well, we then replace the data
396      // for this expression
397
398      // Make en encoder that contains a copy of the location expression data
399      // so we can write the address into the buffer using the correct byte
400      // order.
401      DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
402                          m_data.GetByteOrder(), addr_byte_size);
403
404      // Replace the address in the new buffer
405      if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
406        return false;
407
408      // All went well, so now we can reset the data using a shared pointer to
409      // the heap data so "m_data" will now correctly manage the heap data.
410      m_data.SetData(encoder.GetDataBuffer());
411      return true;
412    }
413    if (op == DW_OP_addrx) {
414      // Replace DW_OP_addrx with DW_OP_addr, since we can't modify the
415      // read-only debug_addr table.
416      // Subtract one to account for the opcode.
417      llvm::ArrayRef data_before_op = m_data.GetData().take_front(offset - 1);
418
419      // Read the addrx index to determine how many bytes it needs.
420      const lldb::offset_t old_offset = offset;
421      m_data.GetULEB128(&offset);
422      if (old_offset == offset)
423        return false;
424      llvm::ArrayRef data_after_op = m_data.GetData().drop_front(offset);
425
426      DataEncoder encoder(m_data.GetByteOrder(), m_data.GetAddressByteSize());
427      encoder.AppendData(data_before_op);
428      encoder.AppendU8(DW_OP_addr);
429      encoder.AppendAddress(file_addr);
430      encoder.AppendData(data_after_op);
431      m_data.SetData(encoder.GetDataBuffer());
432      return true;
433    }
434    const offset_t op_arg_size =
435        GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
436    if (op_arg_size == LLDB_INVALID_OFFSET)
437      break;
438    offset += op_arg_size;
439  }
440  return false;
441}
442
443bool DWARFExpression::ContainsThreadLocalStorage(
444    const DWARFUnit *dwarf_cu) const {
445  lldb::offset_t offset = 0;
446  while (m_data.ValidOffset(offset)) {
447    const uint8_t op = m_data.GetU8(&offset);
448
449    if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
450      return true;
451    const offset_t op_arg_size =
452        GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
453    if (op_arg_size == LLDB_INVALID_OFFSET)
454      return false;
455    offset += op_arg_size;
456  }
457  return false;
458}
459bool DWARFExpression::LinkThreadLocalStorage(
460    const DWARFUnit *dwarf_cu,
461    std::function<lldb::addr_t(lldb::addr_t file_addr)> const
462        &link_address_callback) {
463  const uint32_t addr_byte_size = m_data.GetAddressByteSize();
464  // We have to make a copy of the data as we don't know if this data is from a
465  // read only memory mapped buffer, so we duplicate all of the data first,
466  // then modify it, and if all goes well, we then replace the data for this
467  // expression.
468  // Make en encoder that contains a copy of the location expression data so we
469  // can write the address into the buffer using the correct byte order.
470  DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
471                      m_data.GetByteOrder(), addr_byte_size);
472
473  lldb::offset_t offset = 0;
474  lldb::offset_t const_offset = 0;
475  lldb::addr_t const_value = 0;
476  size_t const_byte_size = 0;
477  while (m_data.ValidOffset(offset)) {
478    const uint8_t op = m_data.GetU8(&offset);
479
480    bool decoded_data = false;
481    switch (op) {
482    case DW_OP_const4u:
483      // Remember the const offset in case we later have a
484      // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
485      const_offset = offset;
486      const_value = m_data.GetU32(&offset);
487      decoded_data = true;
488      const_byte_size = 4;
489      break;
490
491    case DW_OP_const8u:
492      // Remember the const offset in case we later have a
493      // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
494      const_offset = offset;
495      const_value = m_data.GetU64(&offset);
496      decoded_data = true;
497      const_byte_size = 8;
498      break;
499
500    case DW_OP_form_tls_address:
501    case DW_OP_GNU_push_tls_address:
502      // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
503      // by a file address on the stack. We assume that DW_OP_const4u or
504      // DW_OP_const8u is used for these values, and we check that the last
505      // opcode we got before either of these was DW_OP_const4u or
506      // DW_OP_const8u. If so, then we can link the value accordingly. For
507      // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
508      // address of a structure that contains a function pointer, the pthread
509      // key and the offset into the data pointed to by the pthread key. So we
510      // must link this address and also set the module of this expression to
511      // the new_module_sp so we can resolve the file address correctly
512      if (const_byte_size > 0) {
513        lldb::addr_t linked_file_addr = link_address_callback(const_value);
514        if (linked_file_addr == LLDB_INVALID_ADDRESS)
515          return false;
516        // Replace the address in the new buffer
517        if (encoder.PutUnsigned(const_offset, const_byte_size,
518                                linked_file_addr) == UINT32_MAX)
519          return false;
520      }
521      break;
522
523    default:
524      const_offset = 0;
525      const_value = 0;
526      const_byte_size = 0;
527      break;
528    }
529
530    if (!decoded_data) {
531      const offset_t op_arg_size =
532          GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
533      if (op_arg_size == LLDB_INVALID_OFFSET)
534        return false;
535      else
536        offset += op_arg_size;
537    }
538  }
539
540  m_data.SetData(encoder.GetDataBuffer());
541  return true;
542}
543
544static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
545                                       ExecutionContext *exe_ctx,
546                                       RegisterContext *reg_ctx,
547                                       const DataExtractor &opcodes,
548                                       lldb::offset_t &opcode_offset,
549                                       Status *error_ptr, Log *log) {
550  // DW_OP_entry_value(sub-expr) describes the location a variable had upon
551  // function entry: this variable location is presumed to be optimized out at
552  // the current PC value.  The caller of the function may have call site
553  // information that describes an alternate location for the variable (e.g. a
554  // constant literal, or a spilled stack value) in the parent frame.
555  //
556  // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
557  //
558  //     void child(int &sink, int x) {
559  //       ...
560  //       /* "x" gets optimized out. */
561  //
562  //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
563  //       ++sink;
564  //     }
565  //
566  //     void parent() {
567  //       int sink;
568  //
569  //       /*
570  //        * The callsite information emitted here is:
571  //        *
572  //        * DW_TAG_call_site
573  //        *   DW_AT_return_pc ... (for "child(sink, 123);")
574  //        *   DW_TAG_call_site_parameter (for "sink")
575  //        *     DW_AT_location   ($reg1)
576  //        *     DW_AT_call_value ($SP - 8)
577  //        *   DW_TAG_call_site_parameter (for "x")
578  //        *     DW_AT_location   ($reg2)
579  //        *     DW_AT_call_value ($literal 123)
580  //        *
581  //        * DW_TAG_call_site
582  //        *   DW_AT_return_pc ... (for "child(sink, 456);")
583  //        *   ...
584  //        */
585  //       child(sink, 123);
586  //       child(sink, 456);
587  //     }
588  //
589  // When the program stops at "++sink" within `child`, the debugger determines
590  // the call site by analyzing the return address. Once the call site is found,
591  // the debugger determines which parameter is referenced by DW_OP_entry_value
592  // and evaluates the corresponding location for that parameter in `parent`.
593
594  // 1. Find the function which pushed the current frame onto the stack.
595  if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
596    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
597    return false;
598  }
599
600  StackFrame *current_frame = exe_ctx->GetFramePtr();
601  Thread *thread = exe_ctx->GetThreadPtr();
602  if (!current_frame || !thread) {
603    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
604    return false;
605  }
606
607  Target &target = exe_ctx->GetTargetRef();
608  StackFrameSP parent_frame = nullptr;
609  addr_t return_pc = LLDB_INVALID_ADDRESS;
610  uint32_t current_frame_idx = current_frame->GetFrameIndex();
611  uint32_t num_frames = thread->GetStackFrameCount();
612  for (uint32_t parent_frame_idx = current_frame_idx + 1;
613       parent_frame_idx < num_frames; ++parent_frame_idx) {
614    parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
615    // Require a valid sequence of frames.
616    if (!parent_frame)
617      break;
618
619    // Record the first valid return address, even if this is an inlined frame,
620    // in order to look up the associated call edge in the first non-inlined
621    // parent frame.
622    if (return_pc == LLDB_INVALID_ADDRESS) {
623      return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
624      LLDB_LOG(log,
625               "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
626               return_pc);
627    }
628
629    // If we've found an inlined frame, skip it (these have no call site
630    // parameters).
631    if (parent_frame->IsInlined())
632      continue;
633
634    // We've found the first non-inlined parent frame.
635    break;
636  }
637  if (!parent_frame || !parent_frame->GetRegisterContext()) {
638    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
639    return false;
640  }
641
642  Function *parent_func =
643      parent_frame->GetSymbolContext(eSymbolContextFunction).function;
644  if (!parent_func) {
645    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
646    return false;
647  }
648
649  // 2. Find the call edge in the parent function responsible for creating the
650  //    current activation.
651  Function *current_func =
652      current_frame->GetSymbolContext(eSymbolContextFunction).function;
653  if (!current_func) {
654    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
655    return false;
656  }
657
658  CallEdge *call_edge = nullptr;
659  ModuleList &modlist = target.GetImages();
660  ExecutionContext parent_exe_ctx = *exe_ctx;
661  parent_exe_ctx.SetFrameSP(parent_frame);
662  if (!parent_frame->IsArtificial()) {
663    // If the parent frame is not artificial, the current activation may be
664    // produced by an ambiguous tail call. In this case, refuse to proceed.
665    call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
666    if (!call_edge) {
667      LLDB_LOG(log,
668               "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
669               "in parent frame {1}",
670               return_pc, parent_func->GetName());
671      return false;
672    }
673    Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
674    if (callee_func != current_func) {
675      LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
676                    "can't find real parent frame");
677      return false;
678    }
679  } else {
680    // The StackFrameList solver machinery has deduced that an unambiguous tail
681    // call sequence that produced the current activation.  The first edge in
682    // the parent that points to the current function must be valid.
683    for (auto &edge : parent_func->GetTailCallingEdges()) {
684      if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
685        call_edge = edge.get();
686        break;
687      }
688    }
689  }
690  if (!call_edge) {
691    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
692                  "to current function");
693    return false;
694  }
695
696  // 3. Attempt to locate the DW_OP_entry_value expression in the set of
697  //    available call site parameters. If found, evaluate the corresponding
698  //    parameter in the context of the parent frame.
699  const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
700  const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
701  if (!subexpr_data) {
702    LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
703    return false;
704  }
705
706  const CallSiteParameter *matched_param = nullptr;
707  for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
708    DataExtractor param_subexpr_extractor;
709    if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
710      continue;
711    lldb::offset_t param_subexpr_offset = 0;
712    const void *param_subexpr_data =
713        param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
714    if (!param_subexpr_data ||
715        param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
716      continue;
717
718    // At this point, the DW_OP_entry_value sub-expression and the callee-side
719    // expression in the call site parameter are known to have the same length.
720    // Check whether they are equal.
721    //
722    // Note that an equality check is sufficient: the contents of the
723    // DW_OP_entry_value subexpression are only used to identify the right call
724    // site parameter in the parent, and do not require any special handling.
725    if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
726      matched_param = &param;
727      break;
728    }
729  }
730  if (!matched_param) {
731    LLDB_LOG(log,
732             "Evaluate_DW_OP_entry_value: no matching call site param found");
733    return false;
734  }
735
736  // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
737  // subexpresion whenever llvm does.
738  Value result;
739  const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
740  if (!param_expr.Evaluate(&parent_exe_ctx,
741                           parent_frame->GetRegisterContext().get(),
742                           LLDB_INVALID_ADDRESS,
743                           /*initial_value_ptr=*/nullptr,
744                           /*object_address_ptr=*/nullptr, result, error_ptr)) {
745    LLDB_LOG(log,
746             "Evaluate_DW_OP_entry_value: call site param evaluation failed");
747    return false;
748  }
749
750  stack.push_back(result);
751  return true;
752}
753
754namespace {
755/// The location description kinds described by the DWARF v5
756/// specification.  Composite locations are handled out-of-band and
757/// thus aren't part of the enum.
758enum LocationDescriptionKind {
759  Empty,
760  Memory,
761  Register,
762  Implicit
763  /* Composite*/
764};
765/// Adjust value's ValueType according to the kind of location description.
766void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
767                                            LocationDescriptionKind kind,
768                                            Value *value = nullptr) {
769  // Note that this function is conflating DWARF expressions with
770  // DWARF location descriptions. Perhaps it would be better to define
771  // a wrapper for DWARFExpression::Eval() that deals with DWARF
772  // location descriptions (which consist of one or more DWARF
773  // expressions). But doing this would mean we'd also need factor the
774  // handling of DW_OP_(bit_)piece out of this function.
775  if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
776    const char *log_msg = "DWARF location description kind: %s";
777    switch (kind) {
778    case Empty:
779      LLDB_LOGF(log, log_msg, "Empty");
780      break;
781    case Memory:
782      LLDB_LOGF(log, log_msg, "Memory");
783      if (value->GetValueType() == Value::ValueType::Scalar)
784        value->SetValueType(Value::ValueType::LoadAddress);
785      break;
786    case Register:
787      LLDB_LOGF(log, log_msg, "Register");
788      value->SetValueType(Value::ValueType::Scalar);
789      break;
790    case Implicit:
791      LLDB_LOGF(log, log_msg, "Implicit");
792      if (value->GetValueType() == Value::ValueType::LoadAddress)
793        value->SetValueType(Value::ValueType::Scalar);
794      break;
795    }
796  }
797}
798} // namespace
799
800/// Helper function to move common code used to resolve a file address and turn
801/// into a load address.
802///
803/// \param exe_ctx Pointer to the execution context
804/// \param module_sp shared_ptr contains the module if we have one
805/// \param error_ptr pointer to Status object if we have one
806/// \param dw_op_type C-style string used to vary the error output
807/// \param file_addr the file address we are trying to resolve and turn into a
808///                  load address
809/// \param so_addr out parameter, will be set to load address or section offset
810/// \param check_sectionoffset bool which determines if having a section offset
811///                            but not a load address is considerd a success
812/// \returns std::optional containing the load address if resolving and getting
813///          the load address succeed or an empty Optinal otherwise. If
814///          check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
815///          success if so_addr.IsSectionOffset() is true.
816static std::optional<lldb::addr_t>
817ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp,
818                   Status *error_ptr, const char *dw_op_type,
819                   lldb::addr_t file_addr, Address &so_addr,
820                   bool check_sectionoffset = false) {
821  if (!module_sp) {
822    if (error_ptr)
823      error_ptr->SetErrorStringWithFormat(
824          "need module to resolve file address for %s", dw_op_type);
825    return {};
826  }
827
828  if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
829    if (error_ptr)
830      error_ptr->SetErrorString("failed to resolve file address in module");
831    return {};
832  }
833
834  addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
835
836  if (load_addr == LLDB_INVALID_ADDRESS &&
837      (check_sectionoffset && !so_addr.IsSectionOffset())) {
838    if (error_ptr)
839      error_ptr->SetErrorString("failed to resolve load address");
840    return {};
841  }
842
843  return load_addr;
844}
845
846/// Helper function to move common code used to load sized data from a uint8_t
847/// buffer.
848///
849/// \param addr_bytes uint8_t buffer containg raw data
850/// \param size_addr_bytes how large is the underlying raw data
851/// \param byte_order what is the byter order of the underlyig data
852/// \param size How much of the underlying data we want to use
853/// \return The underlying data converted into a Scalar
854static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
855                                         size_t size_addr_bytes,
856                                         ByteOrder byte_order, size_t size) {
857  DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
858
859  lldb::offset_t addr_data_offset = 0;
860  if (size <= 8)
861    return addr_data.GetMaxU64(&addr_data_offset, size);
862  else
863    return addr_data.GetAddress(&addr_data_offset);
864}
865
866bool DWARFExpression::Evaluate(
867    ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
868    lldb::ModuleSP module_sp, const DataExtractor &opcodes,
869    const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
870    const Value *initial_value_ptr, const Value *object_address_ptr,
871    Value &result, Status *error_ptr) {
872
873  if (opcodes.GetByteSize() == 0) {
874    if (error_ptr)
875      error_ptr->SetErrorString(
876          "no location, value may have been optimized out");
877    return false;
878  }
879  std::vector<Value> stack;
880
881  Process *process = nullptr;
882  StackFrame *frame = nullptr;
883  Target *target = nullptr;
884
885  if (exe_ctx) {
886    process = exe_ctx->GetProcessPtr();
887    frame = exe_ctx->GetFramePtr();
888    target = exe_ctx->GetTargetPtr();
889  }
890  if (reg_ctx == nullptr && frame)
891    reg_ctx = frame->GetRegisterContext().get();
892
893  if (initial_value_ptr)
894    stack.push_back(*initial_value_ptr);
895
896  lldb::offset_t offset = 0;
897  Value tmp;
898  uint32_t reg_num;
899
900  /// Insertion point for evaluating multi-piece expression.
901  uint64_t op_piece_offset = 0;
902  Value pieces; // Used for DW_OP_piece
903
904  Log *log = GetLog(LLDBLog::Expressions);
905  // A generic type is "an integral type that has the size of an address and an
906  // unspecified signedness". For now, just use the signedness of the operand.
907  // TODO: Implement a real typed stack, and store the genericness of the value
908  // there.
909  auto to_generic = [&](auto v) {
910    bool is_signed = std::is_signed<decltype(v)>::value;
911    return Scalar(llvm::APSInt(
912        llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
913        !is_signed));
914  };
915
916  // The default kind is a memory location. This is updated by any
917  // operation that changes this, such as DW_OP_stack_value, and reset
918  // by composition operations like DW_OP_piece.
919  LocationDescriptionKind dwarf4_location_description_kind = Memory;
920
921  while (opcodes.ValidOffset(offset)) {
922    const lldb::offset_t op_offset = offset;
923    const uint8_t op = opcodes.GetU8(&offset);
924
925    if (log && log->GetVerbose()) {
926      size_t count = stack.size();
927      LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
928                (uint64_t)count);
929      for (size_t i = 0; i < count; ++i) {
930        StreamString new_value;
931        new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
932        stack[i].Dump(&new_value);
933        LLDB_LOGF(log, "  %s", new_value.GetData());
934      }
935      LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
936                DW_OP_value_to_name(op));
937    }
938
939    switch (op) {
940    // The DW_OP_addr operation has a single operand that encodes a machine
941    // address and whose size is the size of an address on the target machine.
942    case DW_OP_addr:
943      stack.push_back(Scalar(opcodes.GetAddress(&offset)));
944      if (target &&
945          target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
946        // wasm file sections aren't mapped into memory, therefore addresses can
947        // never point into a file section and are always LoadAddresses.
948        stack.back().SetValueType(Value::ValueType::LoadAddress);
949      } else {
950        stack.back().SetValueType(Value::ValueType::FileAddress);
951      }
952      break;
953
954    // The DW_OP_addr_sect_offset4 is used for any location expressions in
955    // shared libraries that have a location like:
956    //  DW_OP_addr(0x1000)
957    // If this address resides in a shared library, then this virtual address
958    // won't make sense when it is evaluated in the context of a running
959    // process where shared libraries have been slid. To account for this, this
960    // new address type where we can store the section pointer and a 4 byte
961    // offset.
962    //      case DW_OP_addr_sect_offset4:
963    //          {
964    //              result_type = eResultTypeFileAddress;
965    //              lldb::Section *sect = (lldb::Section
966    //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
967    //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
968    //
969    //              Address so_addr (sect, sect_offset);
970    //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
971    //              if (load_addr != LLDB_INVALID_ADDRESS)
972    //              {
973    //                  // We successfully resolve a file address to a load
974    //                  // address.
975    //                  stack.push_back(load_addr);
976    //                  break;
977    //              }
978    //              else
979    //              {
980    //                  // We were able
981    //                  if (error_ptr)
982    //                      error_ptr->SetErrorStringWithFormat ("Section %s in
983    //                      %s is not currently loaded.\n",
984    //                      sect->GetName().AsCString(),
985    //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
986    //                  return false;
987    //              }
988    //          }
989    //          break;
990
991    // OPCODE: DW_OP_deref
992    // OPERANDS: none
993    // DESCRIPTION: Pops the top stack entry and treats it as an address.
994    // The value retrieved from that address is pushed. The size of the data
995    // retrieved from the dereferenced address is the size of an address on the
996    // target machine.
997    case DW_OP_deref: {
998      if (stack.empty()) {
999        if (error_ptr)
1000          error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1001        return false;
1002      }
1003      Value::ValueType value_type = stack.back().GetValueType();
1004      switch (value_type) {
1005      case Value::ValueType::HostAddress: {
1006        void *src = (void *)stack.back().GetScalar().ULongLong();
1007        intptr_t ptr;
1008        ::memcpy(&ptr, src, sizeof(void *));
1009        stack.back().GetScalar() = ptr;
1010        stack.back().ClearContext();
1011      } break;
1012      case Value::ValueType::FileAddress: {
1013        auto file_addr = stack.back().GetScalar().ULongLong(
1014            LLDB_INVALID_ADDRESS);
1015
1016        Address so_addr;
1017        auto maybe_load_addr = ResolveLoadAddress(
1018            exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
1019
1020        if (!maybe_load_addr)
1021          return false;
1022
1023        stack.back().GetScalar() = *maybe_load_addr;
1024        // Fall through to load address promotion code below.
1025      }
1026        [[fallthrough]];
1027      case Value::ValueType::Scalar:
1028        // Promote Scalar to LoadAddress and fall through.
1029        stack.back().SetValueType(Value::ValueType::LoadAddress);
1030        [[fallthrough]];
1031      case Value::ValueType::LoadAddress:
1032        if (exe_ctx) {
1033          if (process) {
1034            lldb::addr_t pointer_addr =
1035                stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1036            Status error;
1037            lldb::addr_t pointer_value =
1038                process->ReadPointerFromMemory(pointer_addr, error);
1039            if (pointer_value != LLDB_INVALID_ADDRESS) {
1040              if (ABISP abi_sp = process->GetABI())
1041                pointer_value = abi_sp->FixCodeAddress(pointer_value);
1042              stack.back().GetScalar() = pointer_value;
1043              stack.back().ClearContext();
1044            } else {
1045              if (error_ptr)
1046                error_ptr->SetErrorStringWithFormat(
1047                    "Failed to dereference pointer from 0x%" PRIx64
1048                    " for DW_OP_deref: %s\n",
1049                    pointer_addr, error.AsCString());
1050              return false;
1051            }
1052          } else {
1053            if (error_ptr)
1054              error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1055            return false;
1056          }
1057        } else {
1058          if (error_ptr)
1059            error_ptr->SetErrorString(
1060                "NULL execution context for DW_OP_deref.\n");
1061          return false;
1062        }
1063        break;
1064
1065      case Value::ValueType::Invalid:
1066        if (error_ptr)
1067          error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1068        return false;
1069      }
1070
1071    } break;
1072
1073    // OPCODE: DW_OP_deref_size
1074    // OPERANDS: 1
1075    //  1 - uint8_t that specifies the size of the data to dereference.
1076    // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1077    // stack entry and treats it as an address. The value retrieved from that
1078    // address is pushed. In the DW_OP_deref_size operation, however, the size
1079    // in bytes of the data retrieved from the dereferenced address is
1080    // specified by the single operand. This operand is a 1-byte unsigned
1081    // integral constant whose value may not be larger than the size of an
1082    // address on the target machine. The data retrieved is zero extended to
1083    // the size of an address on the target machine before being pushed on the
1084    // expression stack.
1085    case DW_OP_deref_size: {
1086      if (stack.empty()) {
1087        if (error_ptr)
1088          error_ptr->SetErrorString(
1089              "Expression stack empty for DW_OP_deref_size.");
1090        return false;
1091      }
1092      uint8_t size = opcodes.GetU8(&offset);
1093      if (size > 8) {
1094        if (error_ptr)
1095              error_ptr->SetErrorStringWithFormat(
1096                  "Invalid address size for DW_OP_deref_size: %d\n",
1097                  size);
1098        return false;
1099      }
1100      Value::ValueType value_type = stack.back().GetValueType();
1101      switch (value_type) {
1102      case Value::ValueType::HostAddress: {
1103        void *src = (void *)stack.back().GetScalar().ULongLong();
1104        intptr_t ptr;
1105        ::memcpy(&ptr, src, sizeof(void *));
1106        // I can't decide whether the size operand should apply to the bytes in
1107        // their
1108        // lldb-host endianness or the target endianness.. I doubt this'll ever
1109        // come up but I'll opt for assuming big endian regardless.
1110        switch (size) {
1111        case 1:
1112          ptr = ptr & 0xff;
1113          break;
1114        case 2:
1115          ptr = ptr & 0xffff;
1116          break;
1117        case 3:
1118          ptr = ptr & 0xffffff;
1119          break;
1120        case 4:
1121          ptr = ptr & 0xffffffff;
1122          break;
1123        // the casts are added to work around the case where intptr_t is a 32
1124        // bit quantity;
1125        // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1126        // program.
1127        case 5:
1128          ptr = (intptr_t)ptr & 0xffffffffffULL;
1129          break;
1130        case 6:
1131          ptr = (intptr_t)ptr & 0xffffffffffffULL;
1132          break;
1133        case 7:
1134          ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1135          break;
1136        default:
1137          break;
1138        }
1139        stack.back().GetScalar() = ptr;
1140        stack.back().ClearContext();
1141      } break;
1142      case Value::ValueType::FileAddress: {
1143        auto file_addr =
1144            stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1145        Address so_addr;
1146        auto maybe_load_addr =
1147            ResolveLoadAddress(exe_ctx, module_sp, error_ptr,
1148                                      "DW_OP_deref_size", file_addr, so_addr,
1149                                      /*check_sectionoffset=*/true);
1150
1151        if (!maybe_load_addr)
1152          return false;
1153
1154        addr_t load_addr = *maybe_load_addr;
1155
1156        if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1157          uint8_t addr_bytes[8];
1158          Status error;
1159
1160          if (target &&
1161              target->ReadMemory(so_addr, &addr_bytes, size, error,
1162                                 /*force_live_memory=*/false) == size) {
1163            ObjectFile *objfile = module_sp->GetObjectFile();
1164
1165            stack.back().GetScalar() = DerefSizeExtractDataHelper(
1166                addr_bytes, size, objfile->GetByteOrder(), size);
1167            stack.back().ClearContext();
1168            break;
1169          } else {
1170            if (error_ptr)
1171              error_ptr->SetErrorStringWithFormat(
1172                  "Failed to dereference pointer for DW_OP_deref_size: "
1173                  "%s\n",
1174                  error.AsCString());
1175            return false;
1176          }
1177        }
1178        stack.back().GetScalar() = load_addr;
1179        // Fall through to load address promotion code below.
1180      }
1181
1182        [[fallthrough]];
1183      case Value::ValueType::Scalar:
1184      case Value::ValueType::LoadAddress:
1185        if (exe_ctx) {
1186          if (process) {
1187            lldb::addr_t pointer_addr =
1188                stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1189            uint8_t addr_bytes[sizeof(lldb::addr_t)];
1190            Status error;
1191            if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1192                size) {
1193
1194              stack.back().GetScalar() =
1195                  DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1196                                             process->GetByteOrder(), size);
1197              stack.back().ClearContext();
1198            } else {
1199              if (error_ptr)
1200                error_ptr->SetErrorStringWithFormat(
1201                    "Failed to dereference pointer from 0x%" PRIx64
1202                    " for DW_OP_deref: %s\n",
1203                    pointer_addr, error.AsCString());
1204              return false;
1205            }
1206          } else {
1207            if (error_ptr)
1208              error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1209            return false;
1210          }
1211        } else {
1212          if (error_ptr)
1213            error_ptr->SetErrorString(
1214                "NULL execution context for DW_OP_deref_size.\n");
1215          return false;
1216        }
1217        break;
1218
1219      case Value::ValueType::Invalid:
1220        if (error_ptr)
1221          error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1222        return false;
1223      }
1224
1225    } break;
1226
1227    // OPCODE: DW_OP_xderef_size
1228    // OPERANDS: 1
1229    //  1 - uint8_t that specifies the size of the data to dereference.
1230    // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1231    // the top of the stack is treated as an address. The second stack entry is
1232    // treated as an "address space identifier" for those architectures that
1233    // support multiple address spaces. The top two stack elements are popped,
1234    // a data item is retrieved through an implementation-defined address
1235    // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1236    // operation, however, the size in bytes of the data retrieved from the
1237    // dereferenced address is specified by the single operand. This operand is
1238    // a 1-byte unsigned integral constant whose value may not be larger than
1239    // the size of an address on the target machine. The data retrieved is zero
1240    // extended to the size of an address on the target machine before being
1241    // pushed on the expression stack.
1242    case DW_OP_xderef_size:
1243      if (error_ptr)
1244        error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1245      return false;
1246    // OPCODE: DW_OP_xderef
1247    // OPERANDS: none
1248    // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1249    // the top of the stack is treated as an address. The second stack entry is
1250    // treated as an "address space identifier" for those architectures that
1251    // support multiple address spaces. The top two stack elements are popped,
1252    // a data item is retrieved through an implementation-defined address
1253    // calculation and pushed as the new stack top. The size of the data
1254    // retrieved from the dereferenced address is the size of an address on the
1255    // target machine.
1256    case DW_OP_xderef:
1257      if (error_ptr)
1258        error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1259      return false;
1260
1261    // All DW_OP_constXXX opcodes have a single operand as noted below:
1262    //
1263    // Opcode           Operand 1
1264    // DW_OP_const1u    1-byte unsigned integer constant
1265    // DW_OP_const1s    1-byte signed integer constant
1266    // DW_OP_const2u    2-byte unsigned integer constant
1267    // DW_OP_const2s    2-byte signed integer constant
1268    // DW_OP_const4u    4-byte unsigned integer constant
1269    // DW_OP_const4s    4-byte signed integer constant
1270    // DW_OP_const8u    8-byte unsigned integer constant
1271    // DW_OP_const8s    8-byte signed integer constant
1272    // DW_OP_constu     unsigned LEB128 integer constant
1273    // DW_OP_consts     signed LEB128 integer constant
1274    case DW_OP_const1u:
1275      stack.push_back(to_generic(opcodes.GetU8(&offset)));
1276      break;
1277    case DW_OP_const1s:
1278      stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1279      break;
1280    case DW_OP_const2u:
1281      stack.push_back(to_generic(opcodes.GetU16(&offset)));
1282      break;
1283    case DW_OP_const2s:
1284      stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1285      break;
1286    case DW_OP_const4u:
1287      stack.push_back(to_generic(opcodes.GetU32(&offset)));
1288      break;
1289    case DW_OP_const4s:
1290      stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1291      break;
1292    case DW_OP_const8u:
1293      stack.push_back(to_generic(opcodes.GetU64(&offset)));
1294      break;
1295    case DW_OP_const8s:
1296      stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1297      break;
1298    // These should also use to_generic, but we can't do that due to a
1299    // producer-side bug in llvm. See llvm.org/pr48087.
1300    case DW_OP_constu:
1301      stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1302      break;
1303    case DW_OP_consts:
1304      stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1305      break;
1306
1307    // OPCODE: DW_OP_dup
1308    // OPERANDS: none
1309    // DESCRIPTION: duplicates the value at the top of the stack
1310    case DW_OP_dup:
1311      if (stack.empty()) {
1312        if (error_ptr)
1313          error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1314        return false;
1315      } else
1316        stack.push_back(stack.back());
1317      break;
1318
1319    // OPCODE: DW_OP_drop
1320    // OPERANDS: none
1321    // DESCRIPTION: pops the value at the top of the stack
1322    case DW_OP_drop:
1323      if (stack.empty()) {
1324        if (error_ptr)
1325          error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1326        return false;
1327      } else
1328        stack.pop_back();
1329      break;
1330
1331    // OPCODE: DW_OP_over
1332    // OPERANDS: none
1333    // DESCRIPTION: Duplicates the entry currently second in the stack at
1334    // the top of the stack.
1335    case DW_OP_over:
1336      if (stack.size() < 2) {
1337        if (error_ptr)
1338          error_ptr->SetErrorString(
1339              "Expression stack needs at least 2 items for DW_OP_over.");
1340        return false;
1341      } else
1342        stack.push_back(stack[stack.size() - 2]);
1343      break;
1344
1345    // OPCODE: DW_OP_pick
1346    // OPERANDS: uint8_t index into the current stack
1347    // DESCRIPTION: The stack entry with the specified index (0 through 255,
1348    // inclusive) is pushed on the stack
1349    case DW_OP_pick: {
1350      uint8_t pick_idx = opcodes.GetU8(&offset);
1351      if (pick_idx < stack.size())
1352        stack.push_back(stack[stack.size() - 1 - pick_idx]);
1353      else {
1354        if (error_ptr)
1355          error_ptr->SetErrorStringWithFormat(
1356              "Index %u out of range for DW_OP_pick.\n", pick_idx);
1357        return false;
1358      }
1359    } break;
1360
1361    // OPCODE: DW_OP_swap
1362    // OPERANDS: none
1363    // DESCRIPTION: swaps the top two stack entries. The entry at the top
1364    // of the stack becomes the second stack entry, and the second entry
1365    // becomes the top of the stack
1366    case DW_OP_swap:
1367      if (stack.size() < 2) {
1368        if (error_ptr)
1369          error_ptr->SetErrorString(
1370              "Expression stack needs at least 2 items for DW_OP_swap.");
1371        return false;
1372      } else {
1373        tmp = stack.back();
1374        stack.back() = stack[stack.size() - 2];
1375        stack[stack.size() - 2] = tmp;
1376      }
1377      break;
1378
1379    // OPCODE: DW_OP_rot
1380    // OPERANDS: none
1381    // DESCRIPTION: Rotates the first three stack entries. The entry at
1382    // the top of the stack becomes the third stack entry, the second entry
1383    // becomes the top of the stack, and the third entry becomes the second
1384    // entry.
1385    case DW_OP_rot:
1386      if (stack.size() < 3) {
1387        if (error_ptr)
1388          error_ptr->SetErrorString(
1389              "Expression stack needs at least 3 items for DW_OP_rot.");
1390        return false;
1391      } else {
1392        size_t last_idx = stack.size() - 1;
1393        Value old_top = stack[last_idx];
1394        stack[last_idx] = stack[last_idx - 1];
1395        stack[last_idx - 1] = stack[last_idx - 2];
1396        stack[last_idx - 2] = old_top;
1397      }
1398      break;
1399
1400    // OPCODE: DW_OP_abs
1401    // OPERANDS: none
1402    // DESCRIPTION: pops the top stack entry, interprets it as a signed
1403    // value and pushes its absolute value. If the absolute value can not be
1404    // represented, the result is undefined.
1405    case DW_OP_abs:
1406      if (stack.empty()) {
1407        if (error_ptr)
1408          error_ptr->SetErrorString(
1409              "Expression stack needs at least 1 item for DW_OP_abs.");
1410        return false;
1411      } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1412        if (error_ptr)
1413          error_ptr->SetErrorString(
1414              "Failed to take the absolute value of the first stack item.");
1415        return false;
1416      }
1417      break;
1418
1419    // OPCODE: DW_OP_and
1420    // OPERANDS: none
1421    // DESCRIPTION: pops the top two stack values, performs a bitwise and
1422    // operation on the two, and pushes the result.
1423    case DW_OP_and:
1424      if (stack.size() < 2) {
1425        if (error_ptr)
1426          error_ptr->SetErrorString(
1427              "Expression stack needs at least 2 items for DW_OP_and.");
1428        return false;
1429      } else {
1430        tmp = stack.back();
1431        stack.pop_back();
1432        stack.back().ResolveValue(exe_ctx) =
1433            stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1434      }
1435      break;
1436
1437    // OPCODE: DW_OP_div
1438    // OPERANDS: none
1439    // DESCRIPTION: pops the top two stack values, divides the former second
1440    // entry by the former top of the stack using signed division, and pushes
1441    // the result.
1442    case DW_OP_div:
1443      if (stack.size() < 2) {
1444        if (error_ptr)
1445          error_ptr->SetErrorString(
1446              "Expression stack needs at least 2 items for DW_OP_div.");
1447        return false;
1448      } else {
1449        tmp = stack.back();
1450        if (tmp.ResolveValue(exe_ctx).IsZero()) {
1451          if (error_ptr)
1452            error_ptr->SetErrorString("Divide by zero.");
1453          return false;
1454        } else {
1455          stack.pop_back();
1456          Scalar divisor, dividend;
1457          divisor = tmp.ResolveValue(exe_ctx);
1458          dividend = stack.back().ResolveValue(exe_ctx);
1459          divisor.MakeSigned();
1460          dividend.MakeSigned();
1461          stack.back() = dividend / divisor;
1462          if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1463            if (error_ptr)
1464              error_ptr->SetErrorString("Divide failed.");
1465            return false;
1466          }
1467        }
1468      }
1469      break;
1470
1471    // OPCODE: DW_OP_minus
1472    // OPERANDS: none
1473    // DESCRIPTION: pops the top two stack values, subtracts the former top
1474    // of the stack from the former second entry, and pushes the result.
1475    case DW_OP_minus:
1476      if (stack.size() < 2) {
1477        if (error_ptr)
1478          error_ptr->SetErrorString(
1479              "Expression stack needs at least 2 items for DW_OP_minus.");
1480        return false;
1481      } else {
1482        tmp = stack.back();
1483        stack.pop_back();
1484        stack.back().ResolveValue(exe_ctx) =
1485            stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1486      }
1487      break;
1488
1489    // OPCODE: DW_OP_mod
1490    // OPERANDS: none
1491    // DESCRIPTION: pops the top two stack values and pushes the result of
1492    // the calculation: former second stack entry modulo the former top of the
1493    // stack.
1494    case DW_OP_mod:
1495      if (stack.size() < 2) {
1496        if (error_ptr)
1497          error_ptr->SetErrorString(
1498              "Expression stack needs at least 2 items for DW_OP_mod.");
1499        return false;
1500      } else {
1501        tmp = stack.back();
1502        stack.pop_back();
1503        stack.back().ResolveValue(exe_ctx) =
1504            stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1505      }
1506      break;
1507
1508    // OPCODE: DW_OP_mul
1509    // OPERANDS: none
1510    // DESCRIPTION: pops the top two stack entries, multiplies them
1511    // together, and pushes the result.
1512    case DW_OP_mul:
1513      if (stack.size() < 2) {
1514        if (error_ptr)
1515          error_ptr->SetErrorString(
1516              "Expression stack needs at least 2 items for DW_OP_mul.");
1517        return false;
1518      } else {
1519        tmp = stack.back();
1520        stack.pop_back();
1521        stack.back().ResolveValue(exe_ctx) =
1522            stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1523      }
1524      break;
1525
1526    // OPCODE: DW_OP_neg
1527    // OPERANDS: none
1528    // DESCRIPTION: pops the top stack entry, and pushes its negation.
1529    case DW_OP_neg:
1530      if (stack.empty()) {
1531        if (error_ptr)
1532          error_ptr->SetErrorString(
1533              "Expression stack needs at least 1 item for DW_OP_neg.");
1534        return false;
1535      } else {
1536        if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1537          if (error_ptr)
1538            error_ptr->SetErrorString("Unary negate failed.");
1539          return false;
1540        }
1541      }
1542      break;
1543
1544    // OPCODE: DW_OP_not
1545    // OPERANDS: none
1546    // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1547    // complement
1548    case DW_OP_not:
1549      if (stack.empty()) {
1550        if (error_ptr)
1551          error_ptr->SetErrorString(
1552              "Expression stack needs at least 1 item for DW_OP_not.");
1553        return false;
1554      } else {
1555        if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1556          if (error_ptr)
1557            error_ptr->SetErrorString("Logical NOT failed.");
1558          return false;
1559        }
1560      }
1561      break;
1562
1563    // OPCODE: DW_OP_or
1564    // OPERANDS: none
1565    // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1566    // operation on the two, and pushes the result.
1567    case DW_OP_or:
1568      if (stack.size() < 2) {
1569        if (error_ptr)
1570          error_ptr->SetErrorString(
1571              "Expression stack needs at least 2 items for DW_OP_or.");
1572        return false;
1573      } else {
1574        tmp = stack.back();
1575        stack.pop_back();
1576        stack.back().ResolveValue(exe_ctx) =
1577            stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1578      }
1579      break;
1580
1581    // OPCODE: DW_OP_plus
1582    // OPERANDS: none
1583    // DESCRIPTION: pops the top two stack entries, adds them together, and
1584    // pushes the result.
1585    case DW_OP_plus:
1586      if (stack.size() < 2) {
1587        if (error_ptr)
1588          error_ptr->SetErrorString(
1589              "Expression stack needs at least 2 items for DW_OP_plus.");
1590        return false;
1591      } else {
1592        tmp = stack.back();
1593        stack.pop_back();
1594        stack.back().GetScalar() += tmp.GetScalar();
1595      }
1596      break;
1597
1598    // OPCODE: DW_OP_plus_uconst
1599    // OPERANDS: none
1600    // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1601    // constant operand and pushes the result.
1602    case DW_OP_plus_uconst:
1603      if (stack.empty()) {
1604        if (error_ptr)
1605          error_ptr->SetErrorString(
1606              "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1607        return false;
1608      } else {
1609        const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1610        // Implicit conversion from a UINT to a Scalar...
1611        stack.back().GetScalar() += uconst_value;
1612        if (!stack.back().GetScalar().IsValid()) {
1613          if (error_ptr)
1614            error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1615          return false;
1616        }
1617      }
1618      break;
1619
1620    // OPCODE: DW_OP_shl
1621    // OPERANDS: none
1622    // DESCRIPTION:  pops the top two stack entries, shifts the former
1623    // second entry left by the number of bits specified by the former top of
1624    // the stack, and pushes the result.
1625    case DW_OP_shl:
1626      if (stack.size() < 2) {
1627        if (error_ptr)
1628          error_ptr->SetErrorString(
1629              "Expression stack needs at least 2 items for DW_OP_shl.");
1630        return false;
1631      } else {
1632        tmp = stack.back();
1633        stack.pop_back();
1634        stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1635      }
1636      break;
1637
1638    // OPCODE: DW_OP_shr
1639    // OPERANDS: none
1640    // DESCRIPTION: pops the top two stack entries, shifts the former second
1641    // entry right logically (filling with zero bits) by the number of bits
1642    // specified by the former top of the stack, and pushes the result.
1643    case DW_OP_shr:
1644      if (stack.size() < 2) {
1645        if (error_ptr)
1646          error_ptr->SetErrorString(
1647              "Expression stack needs at least 2 items for DW_OP_shr.");
1648        return false;
1649      } else {
1650        tmp = stack.back();
1651        stack.pop_back();
1652        if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1653                tmp.ResolveValue(exe_ctx))) {
1654          if (error_ptr)
1655            error_ptr->SetErrorString("DW_OP_shr failed.");
1656          return false;
1657        }
1658      }
1659      break;
1660
1661    // OPCODE: DW_OP_shra
1662    // OPERANDS: none
1663    // DESCRIPTION: pops the top two stack entries, shifts the former second
1664    // entry right arithmetically (divide the magnitude by 2, keep the same
1665    // sign for the result) by the number of bits specified by the former top
1666    // of the stack, and pushes the result.
1667    case DW_OP_shra:
1668      if (stack.size() < 2) {
1669        if (error_ptr)
1670          error_ptr->SetErrorString(
1671              "Expression stack needs at least 2 items for DW_OP_shra.");
1672        return false;
1673      } else {
1674        tmp = stack.back();
1675        stack.pop_back();
1676        stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1677      }
1678      break;
1679
1680    // OPCODE: DW_OP_xor
1681    // OPERANDS: none
1682    // DESCRIPTION: pops the top two stack entries, performs the bitwise
1683    // exclusive-or operation on the two, and pushes the result.
1684    case DW_OP_xor:
1685      if (stack.size() < 2) {
1686        if (error_ptr)
1687          error_ptr->SetErrorString(
1688              "Expression stack needs at least 2 items for DW_OP_xor.");
1689        return false;
1690      } else {
1691        tmp = stack.back();
1692        stack.pop_back();
1693        stack.back().ResolveValue(exe_ctx) =
1694            stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1695      }
1696      break;
1697
1698    // OPCODE: DW_OP_skip
1699    // OPERANDS: int16_t
1700    // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1701    // signed integer constant. The 2-byte constant is the number of bytes of
1702    // the DWARF expression to skip forward or backward from the current
1703    // operation, beginning after the 2-byte constant.
1704    case DW_OP_skip: {
1705      int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1706      lldb::offset_t new_offset = offset + skip_offset;
1707      // New offset can point at the end of the data, in this case we should
1708      // terminate the DWARF expression evaluation (will happen in the loop
1709      // condition).
1710      if (new_offset <= opcodes.GetByteSize())
1711        offset = new_offset;
1712      else {
1713        if (error_ptr)
1714          error_ptr->SetErrorStringWithFormatv(
1715              "Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}", offset,
1716              skip_offset, opcodes.GetByteSize());
1717        return false;
1718      }
1719    } break;
1720
1721    // OPCODE: DW_OP_bra
1722    // OPERANDS: int16_t
1723    // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1724    // signed integer constant. This operation pops the top of stack. If the
1725    // value popped is not the constant 0, the 2-byte constant operand is the
1726    // number of bytes of the DWARF expression to skip forward or backward from
1727    // the current operation, beginning after the 2-byte constant.
1728    case DW_OP_bra:
1729      if (stack.empty()) {
1730        if (error_ptr)
1731          error_ptr->SetErrorString(
1732              "Expression stack needs at least 1 item for DW_OP_bra.");
1733        return false;
1734      } else {
1735        tmp = stack.back();
1736        stack.pop_back();
1737        int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1738        Scalar zero(0);
1739        if (tmp.ResolveValue(exe_ctx) != zero) {
1740          lldb::offset_t new_offset = offset + bra_offset;
1741          // New offset can point at the end of the data, in this case we should
1742          // terminate the DWARF expression evaluation (will happen in the loop
1743          // condition).
1744          if (new_offset <= opcodes.GetByteSize())
1745            offset = new_offset;
1746          else {
1747            if (error_ptr)
1748              error_ptr->SetErrorStringWithFormatv(
1749                  "Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}", offset,
1750                  bra_offset, opcodes.GetByteSize());
1751            return false;
1752          }
1753        }
1754      }
1755      break;
1756
1757    // OPCODE: DW_OP_eq
1758    // OPERANDS: none
1759    // DESCRIPTION: pops the top two stack values, compares using the
1760    // equals (==) operator.
1761    // STACK RESULT: push the constant value 1 onto the stack if the result
1762    // of the operation is true or the constant value 0 if the result of the
1763    // operation is false.
1764    case DW_OP_eq:
1765      if (stack.size() < 2) {
1766        if (error_ptr)
1767          error_ptr->SetErrorString(
1768              "Expression stack needs at least 2 items for DW_OP_eq.");
1769        return false;
1770      } else {
1771        tmp = stack.back();
1772        stack.pop_back();
1773        stack.back().ResolveValue(exe_ctx) =
1774            stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1775      }
1776      break;
1777
1778    // OPCODE: DW_OP_ge
1779    // OPERANDS: none
1780    // DESCRIPTION: pops the top two stack values, compares using the
1781    // greater than or equal to (>=) operator.
1782    // STACK RESULT: push the constant value 1 onto the stack if the result
1783    // of the operation is true or the constant value 0 if the result of the
1784    // operation is false.
1785    case DW_OP_ge:
1786      if (stack.size() < 2) {
1787        if (error_ptr)
1788          error_ptr->SetErrorString(
1789              "Expression stack needs at least 2 items for DW_OP_ge.");
1790        return false;
1791      } else {
1792        tmp = stack.back();
1793        stack.pop_back();
1794        stack.back().ResolveValue(exe_ctx) =
1795            stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1796      }
1797      break;
1798
1799    // OPCODE: DW_OP_gt
1800    // OPERANDS: none
1801    // DESCRIPTION: pops the top two stack values, compares using the
1802    // greater than (>) operator.
1803    // STACK RESULT: push the constant value 1 onto the stack if the result
1804    // of the operation is true or the constant value 0 if the result of the
1805    // operation is false.
1806    case DW_OP_gt:
1807      if (stack.size() < 2) {
1808        if (error_ptr)
1809          error_ptr->SetErrorString(
1810              "Expression stack needs at least 2 items for DW_OP_gt.");
1811        return false;
1812      } else {
1813        tmp = stack.back();
1814        stack.pop_back();
1815        stack.back().ResolveValue(exe_ctx) =
1816            stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1817      }
1818      break;
1819
1820    // OPCODE: DW_OP_le
1821    // OPERANDS: none
1822    // DESCRIPTION: pops the top two stack values, compares using the
1823    // less than or equal to (<=) operator.
1824    // STACK RESULT: push the constant value 1 onto the stack if the result
1825    // of the operation is true or the constant value 0 if the result of the
1826    // operation is false.
1827    case DW_OP_le:
1828      if (stack.size() < 2) {
1829        if (error_ptr)
1830          error_ptr->SetErrorString(
1831              "Expression stack needs at least 2 items for DW_OP_le.");
1832        return false;
1833      } else {
1834        tmp = stack.back();
1835        stack.pop_back();
1836        stack.back().ResolveValue(exe_ctx) =
1837            stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1838      }
1839      break;
1840
1841    // OPCODE: DW_OP_lt
1842    // OPERANDS: none
1843    // DESCRIPTION: pops the top two stack values, compares using the
1844    // less than (<) operator.
1845    // STACK RESULT: push the constant value 1 onto the stack if the result
1846    // of the operation is true or the constant value 0 if the result of the
1847    // operation is false.
1848    case DW_OP_lt:
1849      if (stack.size() < 2) {
1850        if (error_ptr)
1851          error_ptr->SetErrorString(
1852              "Expression stack needs at least 2 items for DW_OP_lt.");
1853        return false;
1854      } else {
1855        tmp = stack.back();
1856        stack.pop_back();
1857        stack.back().ResolveValue(exe_ctx) =
1858            stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1859      }
1860      break;
1861
1862    // OPCODE: DW_OP_ne
1863    // OPERANDS: none
1864    // DESCRIPTION: pops the top two stack values, compares using the
1865    // not equal (!=) operator.
1866    // STACK RESULT: push the constant value 1 onto the stack if the result
1867    // of the operation is true or the constant value 0 if the result of the
1868    // operation is false.
1869    case DW_OP_ne:
1870      if (stack.size() < 2) {
1871        if (error_ptr)
1872          error_ptr->SetErrorString(
1873              "Expression stack needs at least 2 items for DW_OP_ne.");
1874        return false;
1875      } else {
1876        tmp = stack.back();
1877        stack.pop_back();
1878        stack.back().ResolveValue(exe_ctx) =
1879            stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1880      }
1881      break;
1882
1883    // OPCODE: DW_OP_litn
1884    // OPERANDS: none
1885    // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1886    // STACK RESULT: push the unsigned literal constant value onto the top
1887    // of the stack.
1888    case DW_OP_lit0:
1889    case DW_OP_lit1:
1890    case DW_OP_lit2:
1891    case DW_OP_lit3:
1892    case DW_OP_lit4:
1893    case DW_OP_lit5:
1894    case DW_OP_lit6:
1895    case DW_OP_lit7:
1896    case DW_OP_lit8:
1897    case DW_OP_lit9:
1898    case DW_OP_lit10:
1899    case DW_OP_lit11:
1900    case DW_OP_lit12:
1901    case DW_OP_lit13:
1902    case DW_OP_lit14:
1903    case DW_OP_lit15:
1904    case DW_OP_lit16:
1905    case DW_OP_lit17:
1906    case DW_OP_lit18:
1907    case DW_OP_lit19:
1908    case DW_OP_lit20:
1909    case DW_OP_lit21:
1910    case DW_OP_lit22:
1911    case DW_OP_lit23:
1912    case DW_OP_lit24:
1913    case DW_OP_lit25:
1914    case DW_OP_lit26:
1915    case DW_OP_lit27:
1916    case DW_OP_lit28:
1917    case DW_OP_lit29:
1918    case DW_OP_lit30:
1919    case DW_OP_lit31:
1920      stack.push_back(to_generic(op - DW_OP_lit0));
1921      break;
1922
1923    // OPCODE: DW_OP_regN
1924    // OPERANDS: none
1925    // DESCRIPTION: Push the value in register n on the top of the stack.
1926    case DW_OP_reg0:
1927    case DW_OP_reg1:
1928    case DW_OP_reg2:
1929    case DW_OP_reg3:
1930    case DW_OP_reg4:
1931    case DW_OP_reg5:
1932    case DW_OP_reg6:
1933    case DW_OP_reg7:
1934    case DW_OP_reg8:
1935    case DW_OP_reg9:
1936    case DW_OP_reg10:
1937    case DW_OP_reg11:
1938    case DW_OP_reg12:
1939    case DW_OP_reg13:
1940    case DW_OP_reg14:
1941    case DW_OP_reg15:
1942    case DW_OP_reg16:
1943    case DW_OP_reg17:
1944    case DW_OP_reg18:
1945    case DW_OP_reg19:
1946    case DW_OP_reg20:
1947    case DW_OP_reg21:
1948    case DW_OP_reg22:
1949    case DW_OP_reg23:
1950    case DW_OP_reg24:
1951    case DW_OP_reg25:
1952    case DW_OP_reg26:
1953    case DW_OP_reg27:
1954    case DW_OP_reg28:
1955    case DW_OP_reg29:
1956    case DW_OP_reg30:
1957    case DW_OP_reg31: {
1958      dwarf4_location_description_kind = Register;
1959      reg_num = op - DW_OP_reg0;
1960
1961      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1962        stack.push_back(tmp);
1963      else
1964        return false;
1965    } break;
1966    // OPCODE: DW_OP_regx
1967    // OPERANDS:
1968    //      ULEB128 literal operand that encodes the register.
1969    // DESCRIPTION: Push the value in register on the top of the stack.
1970    case DW_OP_regx: {
1971      dwarf4_location_description_kind = Register;
1972      reg_num = opcodes.GetULEB128(&offset);
1973      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1974        stack.push_back(tmp);
1975      else
1976        return false;
1977    } break;
1978
1979    // OPCODE: DW_OP_bregN
1980    // OPERANDS:
1981    //      SLEB128 offset from register N
1982    // DESCRIPTION: Value is in memory at the address specified by register
1983    // N plus an offset.
1984    case DW_OP_breg0:
1985    case DW_OP_breg1:
1986    case DW_OP_breg2:
1987    case DW_OP_breg3:
1988    case DW_OP_breg4:
1989    case DW_OP_breg5:
1990    case DW_OP_breg6:
1991    case DW_OP_breg7:
1992    case DW_OP_breg8:
1993    case DW_OP_breg9:
1994    case DW_OP_breg10:
1995    case DW_OP_breg11:
1996    case DW_OP_breg12:
1997    case DW_OP_breg13:
1998    case DW_OP_breg14:
1999    case DW_OP_breg15:
2000    case DW_OP_breg16:
2001    case DW_OP_breg17:
2002    case DW_OP_breg18:
2003    case DW_OP_breg19:
2004    case DW_OP_breg20:
2005    case DW_OP_breg21:
2006    case DW_OP_breg22:
2007    case DW_OP_breg23:
2008    case DW_OP_breg24:
2009    case DW_OP_breg25:
2010    case DW_OP_breg26:
2011    case DW_OP_breg27:
2012    case DW_OP_breg28:
2013    case DW_OP_breg29:
2014    case DW_OP_breg30:
2015    case DW_OP_breg31: {
2016      reg_num = op - DW_OP_breg0;
2017
2018      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2019                                    tmp)) {
2020        int64_t breg_offset = opcodes.GetSLEB128(&offset);
2021        tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2022        tmp.ClearContext();
2023        stack.push_back(tmp);
2024        stack.back().SetValueType(Value::ValueType::LoadAddress);
2025      } else
2026        return false;
2027    } break;
2028    // OPCODE: DW_OP_bregx
2029    // OPERANDS: 2
2030    //      ULEB128 literal operand that encodes the register.
2031    //      SLEB128 offset from register N
2032    // DESCRIPTION: Value is in memory at the address specified by register
2033    // N plus an offset.
2034    case DW_OP_bregx: {
2035      reg_num = opcodes.GetULEB128(&offset);
2036
2037      if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2038                                    tmp)) {
2039        int64_t breg_offset = opcodes.GetSLEB128(&offset);
2040        tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2041        tmp.ClearContext();
2042        stack.push_back(tmp);
2043        stack.back().SetValueType(Value::ValueType::LoadAddress);
2044      } else
2045        return false;
2046    } break;
2047
2048    case DW_OP_fbreg:
2049      if (exe_ctx) {
2050        if (frame) {
2051          Scalar value;
2052          if (frame->GetFrameBaseValue(value, error_ptr)) {
2053            int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2054            value += fbreg_offset;
2055            stack.push_back(value);
2056            stack.back().SetValueType(Value::ValueType::LoadAddress);
2057          } else
2058            return false;
2059        } else {
2060          if (error_ptr)
2061            error_ptr->SetErrorString(
2062                "Invalid stack frame in context for DW_OP_fbreg opcode.");
2063          return false;
2064        }
2065      } else {
2066        if (error_ptr)
2067          error_ptr->SetErrorString(
2068              "NULL execution context for DW_OP_fbreg.\n");
2069        return false;
2070      }
2071
2072      break;
2073
2074    // OPCODE: DW_OP_nop
2075    // OPERANDS: none
2076    // DESCRIPTION: A place holder. It has no effect on the location stack
2077    // or any of its values.
2078    case DW_OP_nop:
2079      break;
2080
2081    // OPCODE: DW_OP_piece
2082    // OPERANDS: 1
2083    //      ULEB128: byte size of the piece
2084    // DESCRIPTION: The operand describes the size in bytes of the piece of
2085    // the object referenced by the DWARF expression whose result is at the top
2086    // of the stack. If the piece is located in a register, but does not occupy
2087    // the entire register, the placement of the piece within that register is
2088    // defined by the ABI.
2089    //
2090    // Many compilers store a single variable in sets of registers, or store a
2091    // variable partially in memory and partially in registers. DW_OP_piece
2092    // provides a way of describing how large a part of a variable a particular
2093    // DWARF expression refers to.
2094    case DW_OP_piece: {
2095      LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2096      // Reset for the next piece.
2097      dwarf4_location_description_kind = Memory;
2098
2099      const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2100
2101      if (piece_byte_size > 0) {
2102        Value curr_piece;
2103
2104        if (stack.empty()) {
2105          UpdateValueTypeFromLocationDescription(
2106              log, dwarf_cu, LocationDescriptionKind::Empty);
2107          // In a multi-piece expression, this means that the current piece is
2108          // not available. Fill with zeros for now by resizing the data and
2109          // appending it
2110          curr_piece.ResizeData(piece_byte_size);
2111          // Note that "0" is not a correct value for the unknown bits.
2112          // It would be better to also return a mask of valid bits together
2113          // with the expression result, so the debugger can print missing
2114          // members as "<optimized out>" or something.
2115          ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2116          pieces.AppendDataToHostBuffer(curr_piece);
2117        } else {
2118          Status error;
2119          // Extract the current piece into "curr_piece"
2120          Value curr_piece_source_value(stack.back());
2121          stack.pop_back();
2122          UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2123                                                 &curr_piece_source_value);
2124
2125          const Value::ValueType curr_piece_source_value_type =
2126              curr_piece_source_value.GetValueType();
2127          switch (curr_piece_source_value_type) {
2128          case Value::ValueType::Invalid:
2129            return false;
2130          case Value::ValueType::LoadAddress:
2131            if (process) {
2132              if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2133                lldb::addr_t load_addr =
2134                    curr_piece_source_value.GetScalar().ULongLong(
2135                        LLDB_INVALID_ADDRESS);
2136                if (process->ReadMemory(
2137                        load_addr, curr_piece.GetBuffer().GetBytes(),
2138                        piece_byte_size, error) != piece_byte_size) {
2139                  if (error_ptr)
2140                    error_ptr->SetErrorStringWithFormat(
2141                        "failed to read memory DW_OP_piece(%" PRIu64
2142                        ") from 0x%" PRIx64,
2143                        piece_byte_size, load_addr);
2144                  return false;
2145                }
2146              } else {
2147                if (error_ptr)
2148                  error_ptr->SetErrorStringWithFormat(
2149                      "failed to resize the piece memory buffer for "
2150                      "DW_OP_piece(%" PRIu64 ")",
2151                      piece_byte_size);
2152                return false;
2153              }
2154            }
2155            break;
2156
2157          case Value::ValueType::FileAddress:
2158          case Value::ValueType::HostAddress:
2159            if (error_ptr) {
2160              lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2161                  LLDB_INVALID_ADDRESS);
2162              error_ptr->SetErrorStringWithFormat(
2163                  "failed to read memory DW_OP_piece(%" PRIu64
2164                  ") from %s address 0x%" PRIx64,
2165                  piece_byte_size, curr_piece_source_value.GetValueType() ==
2166                                           Value::ValueType::FileAddress
2167                                       ? "file"
2168                                       : "host",
2169                  addr);
2170            }
2171            return false;
2172
2173          case Value::ValueType::Scalar: {
2174            uint32_t bit_size = piece_byte_size * 8;
2175            uint32_t bit_offset = 0;
2176            Scalar &scalar = curr_piece_source_value.GetScalar();
2177            if (!scalar.ExtractBitfield(
2178                    bit_size, bit_offset)) {
2179              if (error_ptr)
2180                error_ptr->SetErrorStringWithFormat(
2181                    "unable to extract %" PRIu64 " bytes from a %" PRIu64
2182                    " byte scalar value.",
2183                    piece_byte_size,
2184                    (uint64_t)curr_piece_source_value.GetScalar()
2185                        .GetByteSize());
2186              return false;
2187            }
2188            // Create curr_piece with bit_size. By default Scalar
2189            // grows to the nearest host integer type.
2190            llvm::APInt fail_value(1, 0, false);
2191            llvm::APInt ap_int = scalar.UInt128(fail_value);
2192            assert(ap_int.getBitWidth() >= bit_size);
2193            llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2194                                         ap_int.getNumWords()};
2195            curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2196          } break;
2197          }
2198
2199          // Check if this is the first piece?
2200          if (op_piece_offset == 0) {
2201            // This is the first piece, we should push it back onto the stack
2202            // so subsequent pieces will be able to access this piece and add
2203            // to it.
2204            if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2205              if (error_ptr)
2206                error_ptr->SetErrorString("failed to append piece data");
2207              return false;
2208            }
2209          } else {
2210            // If this is the second or later piece there should be a value on
2211            // the stack.
2212            if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2213              if (error_ptr)
2214                error_ptr->SetErrorStringWithFormat(
2215                    "DW_OP_piece for offset %" PRIu64
2216                    " but top of stack is of size %" PRIu64,
2217                    op_piece_offset, pieces.GetBuffer().GetByteSize());
2218              return false;
2219            }
2220
2221            if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2222              if (error_ptr)
2223                error_ptr->SetErrorString("failed to append piece data");
2224              return false;
2225            }
2226          }
2227        }
2228        op_piece_offset += piece_byte_size;
2229      }
2230    } break;
2231
2232    case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2233      if (stack.size() < 1) {
2234        UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2235                                               LocationDescriptionKind::Empty);
2236        // Reset for the next piece.
2237        dwarf4_location_description_kind = Memory;
2238        if (error_ptr)
2239          error_ptr->SetErrorString(
2240              "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2241        return false;
2242      } else {
2243        UpdateValueTypeFromLocationDescription(
2244            log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2245        // Reset for the next piece.
2246        dwarf4_location_description_kind = Memory;
2247        const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2248        const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2249        switch (stack.back().GetValueType()) {
2250        case Value::ValueType::Invalid:
2251          return false;
2252        case Value::ValueType::Scalar: {
2253          if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2254                                                        piece_bit_offset)) {
2255            if (error_ptr)
2256              error_ptr->SetErrorStringWithFormat(
2257                  "unable to extract %" PRIu64 " bit value with %" PRIu64
2258                  " bit offset from a %" PRIu64 " bit scalar value.",
2259                  piece_bit_size, piece_bit_offset,
2260                  (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2261            return false;
2262          }
2263        } break;
2264
2265        case Value::ValueType::FileAddress:
2266        case Value::ValueType::LoadAddress:
2267        case Value::ValueType::HostAddress:
2268          if (error_ptr) {
2269            error_ptr->SetErrorStringWithFormat(
2270                "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2271                ", bit_offset = %" PRIu64 ") from an address value.",
2272                piece_bit_size, piece_bit_offset);
2273          }
2274          return false;
2275        }
2276      }
2277      break;
2278
2279    // OPCODE: DW_OP_implicit_value
2280    // OPERANDS: 2
2281    //      ULEB128  size of the value block in bytes
2282    //      uint8_t* block bytes encoding value in target's memory
2283    //      representation
2284    // DESCRIPTION: Value is immediately stored in block in the debug info with
2285    // the memory representation of the target.
2286    case DW_OP_implicit_value: {
2287      dwarf4_location_description_kind = Implicit;
2288
2289      const uint32_t len = opcodes.GetULEB128(&offset);
2290      const void *data = opcodes.GetData(&offset, len);
2291
2292      if (!data) {
2293        LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2294        LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2295                    DW_OP_value_to_name(op));
2296        return false;
2297      }
2298
2299      Value result(data, len);
2300      stack.push_back(result);
2301      break;
2302    }
2303
2304    case DW_OP_implicit_pointer: {
2305      dwarf4_location_description_kind = Implicit;
2306      LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2307      return false;
2308    }
2309
2310    // OPCODE: DW_OP_push_object_address
2311    // OPERANDS: none
2312    // DESCRIPTION: Pushes the address of the object currently being
2313    // evaluated as part of evaluation of a user presented expression. This
2314    // object may correspond to an independent variable described by its own
2315    // DIE or it may be a component of an array, structure, or class whose
2316    // address has been dynamically determined by an earlier step during user
2317    // expression evaluation.
2318    case DW_OP_push_object_address:
2319      if (object_address_ptr)
2320        stack.push_back(*object_address_ptr);
2321      else {
2322        if (error_ptr)
2323          error_ptr->SetErrorString("DW_OP_push_object_address used without "
2324                                    "specifying an object address");
2325        return false;
2326      }
2327      break;
2328
2329    // OPCODE: DW_OP_call2
2330    // OPERANDS:
2331    //      uint16_t compile unit relative offset of a DIE
2332    // DESCRIPTION: Performs subroutine calls during evaluation
2333    // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2334    // debugging information entry in the current compilation unit.
2335    //
2336    // Operand interpretation is exactly like that for DW_FORM_ref2.
2337    //
2338    // This operation transfers control of DWARF expression evaluation to the
2339    // DW_AT_location attribute of the referenced DIE. If there is no such
2340    // attribute, then there is no effect. Execution of the DWARF expression of
2341    // a DW_AT_location attribute may add to and/or remove from values on the
2342    // stack. Execution returns to the point following the call when the end of
2343    // the attribute is reached. Values on the stack at the time of the call
2344    // may be used as parameters by the called expression and values left on
2345    // the stack by the called expression may be used as return values by prior
2346    // agreement between the calling and called expressions.
2347    case DW_OP_call2:
2348      if (error_ptr)
2349        error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2350      return false;
2351    // OPCODE: DW_OP_call4
2352    // OPERANDS: 1
2353    //      uint32_t compile unit relative offset of a DIE
2354    // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2355    // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2356    // a debugging information entry in  the current compilation unit.
2357    //
2358    // Operand interpretation DW_OP_call4 is exactly like that for
2359    // DW_FORM_ref4.
2360    //
2361    // This operation transfers control of DWARF expression evaluation to the
2362    // DW_AT_location attribute of the referenced DIE. If there is no such
2363    // attribute, then there is no effect. Execution of the DWARF expression of
2364    // a DW_AT_location attribute may add to and/or remove from values on the
2365    // stack. Execution returns to the point following the call when the end of
2366    // the attribute is reached. Values on the stack at the time of the call
2367    // may be used as parameters by the called expression and values left on
2368    // the stack by the called expression may be used as return values by prior
2369    // agreement between the calling and called expressions.
2370    case DW_OP_call4:
2371      if (error_ptr)
2372        error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2373      return false;
2374
2375    // OPCODE: DW_OP_stack_value
2376    // OPERANDS: None
2377    // DESCRIPTION: Specifies that the object does not exist in memory but
2378    // rather is a constant value.  The value from the top of the stack is the
2379    // value to be used.  This is the actual object value and not the location.
2380    case DW_OP_stack_value:
2381      dwarf4_location_description_kind = Implicit;
2382      if (stack.empty()) {
2383        if (error_ptr)
2384          error_ptr->SetErrorString(
2385              "Expression stack needs at least 1 item for DW_OP_stack_value.");
2386        return false;
2387      }
2388      stack.back().SetValueType(Value::ValueType::Scalar);
2389      break;
2390
2391    // OPCODE: DW_OP_convert
2392    // OPERANDS: 1
2393    //      A ULEB128 that is either a DIE offset of a
2394    //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2395    //
2396    // DESCRIPTION: Pop the top stack element, convert it to a
2397    // different type, and push the result.
2398    case DW_OP_convert: {
2399      if (stack.size() < 1) {
2400        if (error_ptr)
2401          error_ptr->SetErrorString(
2402              "Expression stack needs at least 1 item for DW_OP_convert.");
2403        return false;
2404      }
2405      const uint64_t die_offset = opcodes.GetULEB128(&offset);
2406      uint64_t bit_size;
2407      bool sign;
2408      if (die_offset == 0) {
2409        // The generic type has the size of an address on the target
2410        // machine and an unspecified signedness. Scalar has no
2411        // "unspecified signedness", so we use unsigned types.
2412        if (!module_sp) {
2413          if (error_ptr)
2414            error_ptr->SetErrorString("No module");
2415          return false;
2416        }
2417        sign = false;
2418        bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2419        if (!bit_size) {
2420          if (error_ptr)
2421            error_ptr->SetErrorString("unspecified architecture");
2422          return false;
2423        }
2424      } else {
2425        // Retrieve the type DIE that the value is being converted to. This
2426        // offset is compile unit relative so we need to fix it up.
2427        const uint64_t abs_die_offset = die_offset +  dwarf_cu->GetOffset();
2428        // FIXME: the constness has annoying ripple effects.
2429        DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(abs_die_offset);
2430        if (!die) {
2431          if (error_ptr)
2432            error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2433          return false;
2434        }
2435        uint64_t encoding =
2436            die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2437        bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2438        if (!bit_size)
2439          bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2440        if (!bit_size) {
2441          if (error_ptr)
2442            error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2443          return false;
2444        }
2445        switch (encoding) {
2446        case DW_ATE_signed:
2447        case DW_ATE_signed_char:
2448          sign = true;
2449          break;
2450        case DW_ATE_unsigned:
2451        case DW_ATE_unsigned_char:
2452          sign = false;
2453          break;
2454        default:
2455          if (error_ptr)
2456            error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2457          return false;
2458        }
2459      }
2460      Scalar &top = stack.back().ResolveValue(exe_ctx);
2461      top.TruncOrExtendTo(bit_size, sign);
2462      break;
2463    }
2464
2465    // OPCODE: DW_OP_call_frame_cfa
2466    // OPERANDS: None
2467    // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2468    // the canonical frame address consistent with the call frame information
2469    // located in .debug_frame (or in the FDEs of the eh_frame section).
2470    case DW_OP_call_frame_cfa:
2471      if (frame) {
2472        // Note that we don't have to parse FDEs because this DWARF expression
2473        // is commonly evaluated with a valid stack frame.
2474        StackID id = frame->GetStackID();
2475        addr_t cfa = id.GetCallFrameAddress();
2476        if (cfa != LLDB_INVALID_ADDRESS) {
2477          stack.push_back(Scalar(cfa));
2478          stack.back().SetValueType(Value::ValueType::LoadAddress);
2479        } else if (error_ptr)
2480          error_ptr->SetErrorString("Stack frame does not include a canonical "
2481                                    "frame address for DW_OP_call_frame_cfa "
2482                                    "opcode.");
2483      } else {
2484        if (error_ptr)
2485          error_ptr->SetErrorString("Invalid stack frame in context for "
2486                                    "DW_OP_call_frame_cfa opcode.");
2487        return false;
2488      }
2489      break;
2490
2491    // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2492    // opcode, DW_OP_GNU_push_tls_address)
2493    // OPERANDS: none
2494    // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2495    // an address in the current thread's thread-local storage block, and
2496    // pushes it on the stack.
2497    case DW_OP_form_tls_address:
2498    case DW_OP_GNU_push_tls_address: {
2499      if (stack.size() < 1) {
2500        if (error_ptr) {
2501          if (op == DW_OP_form_tls_address)
2502            error_ptr->SetErrorString(
2503                "DW_OP_form_tls_address needs an argument.");
2504          else
2505            error_ptr->SetErrorString(
2506                "DW_OP_GNU_push_tls_address needs an argument.");
2507        }
2508        return false;
2509      }
2510
2511      if (!exe_ctx || !module_sp) {
2512        if (error_ptr)
2513          error_ptr->SetErrorString("No context to evaluate TLS within.");
2514        return false;
2515      }
2516
2517      Thread *thread = exe_ctx->GetThreadPtr();
2518      if (!thread) {
2519        if (error_ptr)
2520          error_ptr->SetErrorString("No thread to evaluate TLS within.");
2521        return false;
2522      }
2523
2524      // Lookup the TLS block address for this thread and module.
2525      const addr_t tls_file_addr =
2526          stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2527      const addr_t tls_load_addr =
2528          thread->GetThreadLocalData(module_sp, tls_file_addr);
2529
2530      if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2531        if (error_ptr)
2532          error_ptr->SetErrorString(
2533              "No TLS data currently exists for this thread.");
2534        return false;
2535      }
2536
2537      stack.back().GetScalar() = tls_load_addr;
2538      stack.back().SetValueType(Value::ValueType::LoadAddress);
2539    } break;
2540
2541    // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2542    // OPERANDS: 1
2543    //      ULEB128: index to the .debug_addr section
2544    // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2545    // section with the base address specified by the DW_AT_addr_base attribute
2546    // and the 0 based index is the ULEB128 encoded index.
2547    case DW_OP_addrx:
2548    case DW_OP_GNU_addr_index: {
2549      if (!dwarf_cu) {
2550        if (error_ptr)
2551          error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2552                                    "compile unit being specified");
2553        return false;
2554      }
2555      uint64_t index = opcodes.GetULEB128(&offset);
2556      lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2557      stack.push_back(Scalar(value));
2558      if (target &&
2559          target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
2560        // wasm file sections aren't mapped into memory, therefore addresses can
2561        // never point into a file section and are always LoadAddresses.
2562        stack.back().SetValueType(Value::ValueType::LoadAddress);
2563      } else {
2564        stack.back().SetValueType(Value::ValueType::FileAddress);
2565      }
2566    } break;
2567
2568    // OPCODE: DW_OP_GNU_const_index
2569    // OPERANDS: 1
2570    //      ULEB128: index to the .debug_addr section
2571    // DESCRIPTION: Pushes an constant with the size of a machine address to
2572    // the stack from the .debug_addr section with the base address specified
2573    // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2574    // encoded index.
2575    case DW_OP_GNU_const_index: {
2576      if (!dwarf_cu) {
2577        if (error_ptr)
2578          error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2579                                    "compile unit being specified");
2580        return false;
2581      }
2582      uint64_t index = opcodes.GetULEB128(&offset);
2583      lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2584      stack.push_back(Scalar(value));
2585    } break;
2586
2587    case DW_OP_GNU_entry_value:
2588    case DW_OP_entry_value: {
2589      if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2590                                      error_ptr, log)) {
2591        LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2592                    DW_OP_value_to_name(op));
2593        return false;
2594      }
2595      break;
2596    }
2597
2598    default:
2599      if (dwarf_cu) {
2600        if (dwarf_cu->GetSymbolFileDWARF().ParseVendorDWARFOpcode(
2601                op, opcodes, offset, stack)) {
2602          break;
2603        }
2604      }
2605      if (error_ptr)
2606        error_ptr->SetErrorStringWithFormatv(
2607            "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2608      return false;
2609    }
2610  }
2611
2612  if (stack.empty()) {
2613    // Nothing on the stack, check if we created a piece value from DW_OP_piece
2614    // or DW_OP_bit_piece opcodes
2615    if (pieces.GetBuffer().GetByteSize()) {
2616      result = pieces;
2617      return true;
2618    }
2619    if (error_ptr)
2620      error_ptr->SetErrorString("Stack empty after evaluation.");
2621    return false;
2622  }
2623
2624  UpdateValueTypeFromLocationDescription(
2625      log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2626
2627  if (log && log->GetVerbose()) {
2628    size_t count = stack.size();
2629    LLDB_LOGF(log,
2630              "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2631    for (size_t i = 0; i < count; ++i) {
2632      StreamString new_value;
2633      new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2634      stack[i].Dump(&new_value);
2635      LLDB_LOGF(log, "  %s", new_value.GetData());
2636    }
2637  }
2638  result = stack.back();
2639  return true; // Return true on success
2640}
2641
2642bool DWARFExpression::ParseDWARFLocationList(
2643    const DWARFUnit *dwarf_cu, const DataExtractor &data,
2644    DWARFExpressionList *location_list) {
2645  location_list->Clear();
2646  std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2647      dwarf_cu->GetLocationTable(data);
2648  Log *log = GetLog(LLDBLog::Expressions);
2649  auto lookup_addr =
2650      [&](uint32_t index) -> std::optional<llvm::object::SectionedAddress> {
2651    addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2652    if (address == LLDB_INVALID_ADDRESS)
2653      return std::nullopt;
2654    return llvm::object::SectionedAddress{address};
2655  };
2656  auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2657    if (!loc) {
2658      LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2659      return true;
2660    }
2661    auto buffer_sp =
2662        std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2663    DWARFExpression expr = DWARFExpression(DataExtractor(
2664        buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2665    location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2666    return true;
2667  };
2668  llvm::Error error = loctable_up->visitAbsoluteLocationList(
2669      0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2670      lookup_addr, process_list);
2671  location_list->Sort();
2672  if (error) {
2673    LLDB_LOG_ERROR(log, std::move(error), "{0}");
2674    return false;
2675  }
2676  return true;
2677}
2678
2679bool DWARFExpression::MatchesOperand(
2680    StackFrame &frame, const Instruction::Operand &operand) const {
2681  using namespace OperandMatchers;
2682
2683  RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2684  if (!reg_ctx_sp) {
2685    return false;
2686  }
2687
2688  DataExtractor opcodes(m_data);
2689
2690  lldb::offset_t op_offset = 0;
2691  uint8_t opcode = opcodes.GetU8(&op_offset);
2692
2693  if (opcode == DW_OP_fbreg) {
2694    int64_t offset = opcodes.GetSLEB128(&op_offset);
2695
2696    DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2697    if (!fb_expr) {
2698      return false;
2699    }
2700
2701    auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2702      return fb_expr->MatchesOperand(frame, child);
2703    };
2704
2705    if (!offset &&
2706        MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2707                     recurse)(operand)) {
2708      return true;
2709    }
2710
2711    return MatchUnaryOp(
2712        MatchOpType(Instruction::Operand::Type::Dereference),
2713        MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2714                      MatchImmOp(offset), recurse))(operand);
2715  }
2716
2717  bool dereference = false;
2718  const RegisterInfo *reg = nullptr;
2719  int64_t offset = 0;
2720
2721  if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2722    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2723  } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2724    offset = opcodes.GetSLEB128(&op_offset);
2725    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2726  } else if (opcode == DW_OP_regx) {
2727    uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2728    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2729  } else if (opcode == DW_OP_bregx) {
2730    uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2731    offset = opcodes.GetSLEB128(&op_offset);
2732    reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2733  } else {
2734    return false;
2735  }
2736
2737  if (!reg) {
2738    return false;
2739  }
2740
2741  if (dereference) {
2742    if (!offset &&
2743        MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2744                     MatchRegOp(*reg))(operand)) {
2745      return true;
2746    }
2747
2748    return MatchUnaryOp(
2749        MatchOpType(Instruction::Operand::Type::Dereference),
2750        MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2751                      MatchRegOp(*reg),
2752                      MatchImmOp(offset)))(operand);
2753  } else {
2754    return MatchRegOp(*reg)(operand);
2755  }
2756}
2757