1//===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Synthetic sections represent chunks of linker-created data. If you
10// need to create a chunk of data that to be included in some section
11// in the result, you probably want to create that as a synthetic section.
12//
13// Synthetic sections are designed as input sections as opposed to
14// output sections because we want to allow them to be manipulated
15// using linker scripts just like other input sections from regular
16// files.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21#define LLD_ELF_SYNTHETIC_SECTIONS_H
22
23#include "Config.h"
24#include "InputSection.h"
25#include "Symbols.h"
26#include "llvm/ADT/DenseSet.h"
27#include "llvm/ADT/MapVector.h"
28#include "llvm/BinaryFormat/ELF.h"
29#include "llvm/MC/StringTableBuilder.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Endian.h"
32#include "llvm/Support/Parallel.h"
33#include "llvm/Support/Threading.h"
34
35namespace lld::elf {
36class Defined;
37struct PhdrEntry;
38class SymbolTableBaseSection;
39
40struct CieRecord {
41  EhSectionPiece *cie = nullptr;
42  SmallVector<EhSectionPiece *, 0> fdes;
43};
44
45// Section for .eh_frame.
46class EhFrameSection final : public SyntheticSection {
47public:
48  EhFrameSection();
49  void writeTo(uint8_t *buf) override;
50  void finalizeContents() override;
51  bool isNeeded() const override { return !sections.empty(); }
52  size_t getSize() const override { return size; }
53
54  static bool classof(const SectionBase *d) {
55    return SyntheticSection::classof(d) && d->name == ".eh_frame";
56  }
57
58  SmallVector<EhInputSection *, 0> sections;
59  size_t numFdes = 0;
60
61  struct FdeData {
62    uint32_t pcRel;
63    uint32_t fdeVARel;
64  };
65
66  SmallVector<FdeData, 0> getFdeData() const;
67  ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
68  template <class ELFT>
69  void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
70
71private:
72  // This is used only when parsing EhInputSection. We keep it here to avoid
73  // allocating one for each EhInputSection.
74  llvm::DenseMap<size_t, CieRecord *> offsetToCie;
75
76  uint64_t size = 0;
77
78  template <class ELFT, class RelTy>
79  void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
80  template <class ELFT> void addSectionAux(EhInputSection *s);
81  template <class ELFT, class RelTy>
82  void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
83                             llvm::DenseSet<size_t> &ciesWithLSDA,
84                             llvm::function_ref<void(InputSection &)> fn);
85
86  template <class ELFT, class RelTy>
87  CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
88
89  template <class ELFT, class RelTy>
90  Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
91
92  uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
93
94  SmallVector<CieRecord *, 0> cieRecords;
95
96  // CIE records are uniquified by their contents and personality functions.
97  llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
98};
99
100class GotSection final : public SyntheticSection {
101public:
102  GotSection();
103  size_t getSize() const override { return size; }
104  void finalizeContents() override;
105  bool isNeeded() const override;
106  void writeTo(uint8_t *buf) override;
107
108  void addConstant(const Relocation &r);
109  void addEntry(Symbol &sym);
110  bool addTlsDescEntry(Symbol &sym);
111  bool addDynTlsEntry(Symbol &sym);
112  bool addTlsIndex();
113  uint32_t getTlsDescOffset(const Symbol &sym) const;
114  uint64_t getTlsDescAddr(const Symbol &sym) const;
115  uint64_t getGlobalDynAddr(const Symbol &b) const;
116  uint64_t getGlobalDynOffset(const Symbol &b) const;
117
118  uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
119  uint32_t getTlsIndexOff() const { return tlsIndexOff; }
120
121  // Flag to force GOT to be in output if we have relocations
122  // that relies on its address.
123  std::atomic<bool> hasGotOffRel = false;
124
125protected:
126  size_t numEntries = 0;
127  uint32_t tlsIndexOff = -1;
128  uint64_t size = 0;
129};
130
131// .note.GNU-stack section.
132class GnuStackSection : public SyntheticSection {
133public:
134  GnuStackSection()
135      : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
136  void writeTo(uint8_t *buf) override {}
137  size_t getSize() const override { return 0; }
138};
139
140class GnuPropertySection final : public SyntheticSection {
141public:
142  GnuPropertySection();
143  void writeTo(uint8_t *buf) override;
144  size_t getSize() const override;
145};
146
147// .note.gnu.build-id section.
148class BuildIdSection : public SyntheticSection {
149  // First 16 bytes are a header.
150  static const unsigned headerSize = 16;
151
152public:
153  const size_t hashSize;
154  BuildIdSection();
155  void writeTo(uint8_t *buf) override;
156  size_t getSize() const override { return headerSize + hashSize; }
157  void writeBuildId(llvm::ArrayRef<uint8_t> buf);
158
159private:
160  uint8_t *hashBuf;
161};
162
163// BssSection is used to reserve space for copy relocations and common symbols.
164// We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
165// that are used for writable symbols, read-only symbols and common symbols,
166// respectively.
167class BssSection final : public SyntheticSection {
168public:
169  BssSection(StringRef name, uint64_t size, uint32_t addralign);
170  void writeTo(uint8_t *) override {}
171  bool isNeeded() const override { return size != 0; }
172  size_t getSize() const override { return size; }
173
174  static bool classof(const SectionBase *s) { return s->bss; }
175  uint64_t size;
176};
177
178class MipsGotSection final : public SyntheticSection {
179public:
180  MipsGotSection();
181  void writeTo(uint8_t *buf) override;
182  size_t getSize() const override { return size; }
183  bool updateAllocSize() override;
184  void finalizeContents() override;
185  bool isNeeded() const override;
186
187  // Join separate GOTs built for each input file to generate
188  // primary and optional multiple secondary GOTs.
189  void build();
190
191  void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
192  void addDynTlsEntry(InputFile &file, Symbol &sym);
193  void addTlsIndex(InputFile &file);
194
195  uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
196                              int64_t addend) const;
197  uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
198                             int64_t addend) const;
199  uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
200  uint64_t getTlsIndexOffset(const InputFile *f) const;
201
202  // Returns the symbol which corresponds to the first entry of the global part
203  // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
204  // table properties.
205  // Returns nullptr if the global part is empty.
206  const Symbol *getFirstGlobalEntry() const;
207
208  // Returns the number of entries in the local part of GOT including
209  // the number of reserved entries.
210  unsigned getLocalEntriesNum() const;
211
212  // Return _gp value for primary GOT (nullptr) or particular input file.
213  uint64_t getGp(const InputFile *f = nullptr) const;
214
215private:
216  // MIPS GOT consists of three parts: local, global and tls. Each part
217  // contains different types of entries. Here is a layout of GOT:
218  // - Header entries                |
219  // - Page entries                  |   Local part
220  // - Local entries (16-bit access) |
221  // - Local entries (32-bit access) |
222  // - Normal global entries         ||  Global part
223  // - Reloc-only global entries     ||
224  // - TLS entries                   ||| TLS part
225  //
226  // Header:
227  //   Two entries hold predefined value 0x0 and 0x80000000.
228  // Page entries:
229  //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
230  //   relocation against local symbols. They are initialized by higher 16-bit
231  //   of the corresponding symbol's value. So each 64kb of address space
232  //   requires a single GOT entry.
233  // Local entries (16-bit access):
234  //   These entries created by GOT relocations against global non-preemptible
235  //   symbols so dynamic linker is not necessary to resolve the symbol's
236  //   values. "16-bit access" means that corresponding relocations address
237  //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
238  //   GOT entry.
239  // Local entries (32-bit access):
240  //   These entries are the same as above but created by relocations which
241  //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
242  // Normal global entries:
243  //   These entries created by GOT relocations against preemptible global
244  //   symbols. They need to be initialized by dynamic linker and they ordered
245  //   exactly as the corresponding entries in the dynamic symbols table.
246  // Reloc-only global entries:
247  //   These entries created for symbols that are referenced by dynamic
248  //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
249  //   addressing, but MIPS ABI requires that these entries be present in GOT.
250  // TLS entries:
251  //   Entries created by TLS relocations.
252  //
253  // If the sum of local, global and tls entries is less than 64K only single
254  // got is enough. Otherwise, multi-got is created. Series of primary and
255  // multiple secondary GOTs have the following layout:
256  // - Primary GOT
257  //     Header
258  //     Local entries
259  //     Global entries
260  //     Relocation only entries
261  //     TLS entries
262  //
263  // - Secondary GOT
264  //     Local entries
265  //     Global entries
266  //     TLS entries
267  // ...
268  //
269  // All GOT entries required by relocations from a single input file entirely
270  // belong to either primary or one of secondary GOTs. To reference GOT entries
271  // each GOT has its own _gp value points to the "middle" of the GOT.
272  // In the code this value loaded to the register which is used for GOT access.
273  //
274  // MIPS 32 function's prologue:
275  //   lui     v0,0x0
276  //   0: R_MIPS_HI16  _gp_disp
277  //   addiu   v0,v0,0
278  //   4: R_MIPS_LO16  _gp_disp
279  //
280  // MIPS 64:
281  //   lui     at,0x0
282  //   14: R_MIPS_GPREL16  main
283  //
284  // Dynamic linker does not know anything about secondary GOTs and cannot
285  // use a regular MIPS mechanism for GOT entries initialization. So we have
286  // to use an approach accepted by other architectures and create dynamic
287  // relocations R_MIPS_REL32 to initialize global entries (and local in case
288  // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
289  // requires GOT entries and correspondingly ordered dynamic symbol table
290  // entries to deal with dynamic relocations. To handle this problem
291  // relocation-only section in the primary GOT contains entries for all
292  // symbols referenced in global parts of secondary GOTs. Although the sum
293  // of local and normal global entries of the primary got should be less
294  // than 64K, the size of the primary got (including relocation-only entries
295  // can be greater than 64K, because parts of the primary got that overflow
296  // the 64K limit are used only by the dynamic linker at dynamic link-time
297  // and not by 16-bit gp-relative addressing at run-time.
298  //
299  // For complete multi-GOT description see the following link
300  // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
301
302  // Number of "Header" entries.
303  static const unsigned headerEntriesNum = 2;
304
305  uint64_t size = 0;
306
307  // Symbol and addend.
308  using GotEntry = std::pair<Symbol *, int64_t>;
309
310  struct FileGot {
311    InputFile *file = nullptr;
312    size_t startIndex = 0;
313
314    struct PageBlock {
315      size_t firstIndex;
316      size_t count;
317      PageBlock() : firstIndex(0), count(0) {}
318    };
319
320    // Map output sections referenced by MIPS GOT relocations
321    // to the description (index/count) "page" entries allocated
322    // for this section.
323    llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
324    // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
325    llvm::MapVector<GotEntry, size_t> local16;
326    llvm::MapVector<GotEntry, size_t> local32;
327    llvm::MapVector<Symbol *, size_t> global;
328    llvm::MapVector<Symbol *, size_t> relocs;
329    llvm::MapVector<Symbol *, size_t> tls;
330    // Set of symbols referenced by dynamic TLS relocations.
331    llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
332
333    // Total number of all entries.
334    size_t getEntriesNum() const;
335    // Number of "page" entries.
336    size_t getPageEntriesNum() const;
337    // Number of entries require 16-bit index to access.
338    size_t getIndexedEntriesNum() const;
339  };
340
341  // Container of GOT created for each input file.
342  // After building a final series of GOTs this container
343  // holds primary and secondary GOT's.
344  std::vector<FileGot> gots;
345
346  // Return (and create if necessary) `FileGot`.
347  FileGot &getGot(InputFile &f);
348
349  // Try to merge two GOTs. In case of success the `Dst` contains
350  // result of merging and the function returns true. In case of
351  // overflow the `Dst` is unchanged and the function returns false.
352  bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
353};
354
355class GotPltSection final : public SyntheticSection {
356public:
357  GotPltSection();
358  void addEntry(Symbol &sym);
359  size_t getSize() const override;
360  void writeTo(uint8_t *buf) override;
361  bool isNeeded() const override;
362
363  // Flag to force GotPlt to be in output if we have relocations
364  // that relies on its address.
365  std::atomic<bool> hasGotPltOffRel = false;
366
367private:
368  SmallVector<const Symbol *, 0> entries;
369};
370
371// The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
372// Symbols that will be relocated by Target->IRelativeRel.
373// On most Targets the IgotPltSection will immediately follow the GotPltSection
374// on ARM the IgotPltSection will immediately follow the GotSection.
375class IgotPltSection final : public SyntheticSection {
376public:
377  IgotPltSection();
378  void addEntry(Symbol &sym);
379  size_t getSize() const override;
380  void writeTo(uint8_t *buf) override;
381  bool isNeeded() const override { return !entries.empty(); }
382
383private:
384  SmallVector<const Symbol *, 0> entries;
385};
386
387class StringTableSection final : public SyntheticSection {
388public:
389  StringTableSection(StringRef name, bool dynamic);
390  unsigned addString(StringRef s, bool hashIt = true);
391  void writeTo(uint8_t *buf) override;
392  size_t getSize() const override { return size; }
393  bool isDynamic() const { return dynamic; }
394
395private:
396  const bool dynamic;
397
398  uint64_t size = 0;
399
400  llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap;
401  SmallVector<StringRef, 0> strings;
402};
403
404class DynamicReloc {
405public:
406  enum Kind {
407    /// The resulting dynamic relocation does not reference a symbol (#sym must
408    /// be nullptr) and uses #addend as the result of computeAddend().
409    AddendOnly,
410    /// The resulting dynamic relocation will not reference a symbol: #sym is
411    /// only used to compute the addend with InputSection::getRelocTargetVA().
412    /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64).
413    AddendOnlyWithTargetVA,
414    /// The resulting dynamic relocation references symbol #sym from the dynamic
415    /// symbol table and uses #addend as the value of computeAddend().
416    AgainstSymbol,
417    /// The resulting dynamic relocation references symbol #sym from the dynamic
418    /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the
419    /// final addend. It can be used for relocations that write the symbol VA as
420    // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol.
421    AgainstSymbolWithTargetVA,
422    /// This is used by the MIPS multi-GOT implementation. It relocates
423    /// addresses of 64kb pages that lie inside the output section.
424    MipsMultiGotPage,
425  };
426  /// This constructor records a relocation against a symbol.
427  DynamicReloc(RelType type, const InputSectionBase *inputSec,
428               uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend,
429               RelExpr expr)
430      : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
431        addend(addend), kind(kind), expr(expr) {}
432  /// This constructor records a relative relocation with no symbol.
433  DynamicReloc(RelType type, const InputSectionBase *inputSec,
434               uint64_t offsetInSec, int64_t addend = 0)
435      : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
436        addend(addend), kind(AddendOnly), expr(R_ADDEND) {}
437  /// This constructor records dynamic relocation settings used by the MIPS
438  /// multi-GOT implementation.
439  DynamicReloc(RelType type, const InputSectionBase *inputSec,
440               uint64_t offsetInSec, const OutputSection *outputSec,
441               int64_t addend)
442      : sym(nullptr), outputSec(outputSec), inputSec(inputSec),
443        offsetInSec(offsetInSec), type(type), addend(addend),
444        kind(MipsMultiGotPage), expr(R_ADDEND) {}
445
446  uint64_t getOffset() const;
447  uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
448  bool needsDynSymIndex() const {
449    return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA;
450  }
451
452  /// Computes the addend of the dynamic relocation. Note that this is not the
453  /// same as the #addend member variable as it may also include the symbol
454  /// address/the address of the corresponding GOT entry/etc.
455  int64_t computeAddend() const;
456
457  void computeRaw(SymbolTableBaseSection *symtab);
458
459  Symbol *sym;
460  const OutputSection *outputSec = nullptr;
461  const InputSectionBase *inputSec;
462  uint64_t offsetInSec;
463  uint64_t r_offset;
464  RelType type;
465  uint32_t r_sym;
466  // Initially input addend, then the output addend after
467  // RelocationSection<ELFT>::writeTo.
468  int64_t addend;
469
470private:
471  Kind kind;
472  // The kind of expression used to calculate the added (required e.g. for
473  // relative GOT relocations).
474  RelExpr expr;
475};
476
477template <class ELFT> class DynamicSection final : public SyntheticSection {
478  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
479
480public:
481  DynamicSection();
482  void finalizeContents() override;
483  void writeTo(uint8_t *buf) override;
484  size_t getSize() const override { return size; }
485
486private:
487  std::vector<std::pair<int32_t, uint64_t>> computeContents();
488  uint64_t size = 0;
489};
490
491class RelocationBaseSection : public SyntheticSection {
492public:
493  RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
494                        int32_t sizeDynamicTag, bool combreloc,
495                        unsigned concurrency);
496  /// Add a dynamic relocation without writing an addend to the output section.
497  /// This overload can be used if the addends are written directly instead of
498  /// using relocations on the input section (e.g. MipsGotSection::writeTo()).
499  template <bool shard = false> void addReloc(const DynamicReloc &reloc) {
500    relocs.push_back(reloc);
501  }
502  /// Add a dynamic relocation against \p sym with an optional addend.
503  void addSymbolReloc(RelType dynType, InputSectionBase &isec,
504                      uint64_t offsetInSec, Symbol &sym, int64_t addend = 0,
505                      std::optional<RelType> addendRelType = {});
506  /// Add a relative dynamic relocation that uses the target address of \p sym
507  /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend.
508  /// This function should only be called for non-preemptible symbols or
509  /// RelExpr values that refer to an address inside the output file (e.g. the
510  /// address of the GOT entry for a potentially preemptible symbol).
511  template <bool shard = false>
512  void addRelativeReloc(RelType dynType, InputSectionBase &isec,
513                        uint64_t offsetInSec, Symbol &sym, int64_t addend,
514                        RelType addendRelType, RelExpr expr) {
515    assert(expr != R_ADDEND && "expected non-addend relocation expression");
516    addReloc<shard>(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec,
517                    offsetInSec, sym, addend, expr, addendRelType);
518  }
519  /// Add a dynamic relocation using the target address of \p sym as the addend
520  /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym.
521  void addAddendOnlyRelocIfNonPreemptible(RelType dynType, GotSection &sec,
522                                          uint64_t offsetInSec, Symbol &sym,
523                                          RelType addendRelType);
524  template <bool shard = false>
525  void addReloc(DynamicReloc::Kind kind, RelType dynType, InputSectionBase &sec,
526                uint64_t offsetInSec, Symbol &sym, int64_t addend, RelExpr expr,
527                RelType addendRelType) {
528    // Write the addends to the relocated address if required. We skip
529    // it if the written value would be zero.
530    if (config->writeAddends && (expr != R_ADDEND || addend != 0))
531      sec.addReloc({expr, addendRelType, offsetInSec, addend, &sym});
532    addReloc<shard>({dynType, &sec, offsetInSec, kind, sym, addend, expr});
533  }
534  bool isNeeded() const override {
535    return !relocs.empty() ||
536           llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
537  }
538  size_t getSize() const override { return relocs.size() * this->entsize; }
539  size_t getRelativeRelocCount() const { return numRelativeRelocs; }
540  void mergeRels();
541  void partitionRels();
542  void finalizeContents() override;
543  static bool classof(const SectionBase *d) {
544    return SyntheticSection::classof(d) &&
545           (d->type == llvm::ELF::SHT_RELA || d->type == llvm::ELF::SHT_REL ||
546            d->type == llvm::ELF::SHT_RELR);
547  }
548  int32_t dynamicTag, sizeDynamicTag;
549  SmallVector<DynamicReloc, 0> relocs;
550
551protected:
552  void computeRels();
553  // Used when parallel relocation scanning adds relocations. The elements
554  // will be moved into relocs by mergeRel().
555  SmallVector<SmallVector<DynamicReloc, 0>, 0> relocsVec;
556  size_t numRelativeRelocs = 0; // used by -z combreloc
557  bool combreloc;
558};
559
560template <>
561inline void RelocationBaseSection::addReloc<true>(const DynamicReloc &reloc) {
562  relocsVec[llvm::parallel::getThreadIndex()].push_back(reloc);
563}
564
565template <class ELFT>
566class RelocationSection final : public RelocationBaseSection {
567  using Elf_Rel = typename ELFT::Rel;
568  using Elf_Rela = typename ELFT::Rela;
569
570public:
571  RelocationSection(StringRef name, bool combreloc, unsigned concurrency);
572  void writeTo(uint8_t *buf) override;
573};
574
575template <class ELFT>
576class AndroidPackedRelocationSection final : public RelocationBaseSection {
577  using Elf_Rel = typename ELFT::Rel;
578  using Elf_Rela = typename ELFT::Rela;
579
580public:
581  AndroidPackedRelocationSection(StringRef name, unsigned concurrency);
582
583  bool updateAllocSize() override;
584  size_t getSize() const override { return relocData.size(); }
585  void writeTo(uint8_t *buf) override {
586    memcpy(buf, relocData.data(), relocData.size());
587  }
588
589private:
590  SmallVector<char, 0> relocData;
591};
592
593struct RelativeReloc {
594  uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }
595
596  const InputSectionBase *inputSec;
597  uint64_t offsetInSec;
598};
599
600class RelrBaseSection : public SyntheticSection {
601public:
602  RelrBaseSection(unsigned concurrency);
603  void mergeRels();
604  bool isNeeded() const override {
605    return !relocs.empty() ||
606           llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
607  }
608  SmallVector<RelativeReloc, 0> relocs;
609  SmallVector<SmallVector<RelativeReloc, 0>, 0> relocsVec;
610};
611
612// RelrSection is used to encode offsets for relative relocations.
613// Proposal for adding SHT_RELR sections to generic-abi is here:
614//   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
615// For more details, see the comment in RelrSection::updateAllocSize().
616template <class ELFT> class RelrSection final : public RelrBaseSection {
617  using Elf_Relr = typename ELFT::Relr;
618
619public:
620  RelrSection(unsigned concurrency);
621
622  bool updateAllocSize() override;
623  size_t getSize() const override { return relrRelocs.size() * this->entsize; }
624  void writeTo(uint8_t *buf) override {
625    memcpy(buf, relrRelocs.data(), getSize());
626  }
627
628private:
629  SmallVector<Elf_Relr, 0> relrRelocs;
630};
631
632struct SymbolTableEntry {
633  Symbol *sym;
634  size_t strTabOffset;
635};
636
637class SymbolTableBaseSection : public SyntheticSection {
638public:
639  SymbolTableBaseSection(StringTableSection &strTabSec);
640  void finalizeContents() override;
641  size_t getSize() const override { return getNumSymbols() * entsize; }
642  void addSymbol(Symbol *sym);
643  unsigned getNumSymbols() const { return symbols.size() + 1; }
644  size_t getSymbolIndex(Symbol *sym);
645  ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
646
647protected:
648  void sortSymTabSymbols();
649
650  // A vector of symbols and their string table offsets.
651  SmallVector<SymbolTableEntry, 0> symbols;
652
653  StringTableSection &strTabSec;
654
655  llvm::once_flag onceFlag;
656  llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
657  llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
658};
659
660template <class ELFT>
661class SymbolTableSection final : public SymbolTableBaseSection {
662  using Elf_Sym = typename ELFT::Sym;
663
664public:
665  SymbolTableSection(StringTableSection &strTabSec);
666  void writeTo(uint8_t *buf) override;
667};
668
669class SymtabShndxSection final : public SyntheticSection {
670public:
671  SymtabShndxSection();
672
673  void writeTo(uint8_t *buf) override;
674  size_t getSize() const override;
675  bool isNeeded() const override;
676  void finalizeContents() override;
677};
678
679// Outputs GNU Hash section. For detailed explanation see:
680// https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
681class GnuHashTableSection final : public SyntheticSection {
682public:
683  GnuHashTableSection();
684  void finalizeContents() override;
685  void writeTo(uint8_t *buf) override;
686  size_t getSize() const override { return size; }
687
688  // Adds symbols to the hash table.
689  // Sorts the input to satisfy GNU hash section requirements.
690  void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols);
691
692private:
693  // See the comment in writeBloomFilter.
694  enum { Shift2 = 26 };
695
696  struct Entry {
697    Symbol *sym;
698    size_t strTabOffset;
699    uint32_t hash;
700    uint32_t bucketIdx;
701  };
702
703  SmallVector<Entry, 0> symbols;
704  size_t maskWords;
705  size_t nBuckets = 0;
706  size_t size = 0;
707};
708
709class HashTableSection final : public SyntheticSection {
710public:
711  HashTableSection();
712  void finalizeContents() override;
713  void writeTo(uint8_t *buf) override;
714  size_t getSize() const override { return size; }
715
716private:
717  size_t size = 0;
718};
719
720// Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
721// entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
722// at runtime.
723//
724// On PowerPC, this section contains lazy symbol resolvers. A branch instruction
725// jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
726// lazy symbol resolver.
727//
728// On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
729// A call instruction jumps to a .plt.sec entry, which will then jump to the
730// target (BIND_NOW) or a .plt entry.
731class PltSection : public SyntheticSection {
732public:
733  PltSection();
734  void writeTo(uint8_t *buf) override;
735  size_t getSize() const override;
736  bool isNeeded() const override;
737  void addSymbols();
738  void addEntry(Symbol &sym);
739  size_t getNumEntries() const { return entries.size(); }
740
741  size_t headerSize;
742
743  SmallVector<const Symbol *, 0> entries;
744};
745
746// Used for non-preemptible ifuncs. It does not have a header. Each entry is
747// associated with an IRELATIVE relocation, which will be resolved eagerly at
748// runtime. PltSection can only contain entries associated with JUMP_SLOT
749// relocations, so IPLT entries are in a separate section.
750class IpltSection final : public SyntheticSection {
751  SmallVector<const Symbol *, 0> entries;
752
753public:
754  IpltSection();
755  void writeTo(uint8_t *buf) override;
756  size_t getSize() const override;
757  bool isNeeded() const override { return !entries.empty(); }
758  void addSymbols();
759  void addEntry(Symbol &sym);
760};
761
762class PPC32GlinkSection : public PltSection {
763public:
764  PPC32GlinkSection();
765  void writeTo(uint8_t *buf) override;
766  size_t getSize() const override;
767
768  SmallVector<const Symbol *, 0> canonical_plts;
769  static constexpr size_t footerSize = 64;
770};
771
772// This is x86-only.
773class IBTPltSection : public SyntheticSection {
774public:
775  IBTPltSection();
776  void writeTo(uint8_t *Buf) override;
777  bool isNeeded() const override;
778  size_t getSize() const override;
779};
780
781// Used to align the end of the PT_GNU_RELRO segment and the associated PT_LOAD
782// segment to a common-page-size boundary. This padding section ensures that all
783// pages in the PT_LOAD segment is covered by at least one section.
784class RelroPaddingSection final : public SyntheticSection {
785public:
786  RelroPaddingSection();
787  size_t getSize() const override { return 0; }
788  void writeTo(uint8_t *buf) override {}
789};
790
791class GdbIndexSection final : public SyntheticSection {
792public:
793  struct AddressEntry {
794    InputSection *section;
795    uint64_t lowAddress;
796    uint64_t highAddress;
797    uint32_t cuIndex;
798  };
799
800  struct CuEntry {
801    uint64_t cuOffset;
802    uint64_t cuLength;
803  };
804
805  struct NameAttrEntry {
806    llvm::CachedHashStringRef name;
807    uint32_t cuIndexAndAttrs;
808  };
809
810  struct GdbChunk {
811    InputSection *sec;
812    SmallVector<AddressEntry, 0> addressAreas;
813    SmallVector<CuEntry, 0> compilationUnits;
814  };
815
816  struct GdbSymbol {
817    llvm::CachedHashStringRef name;
818    SmallVector<uint32_t, 0> cuVector;
819    uint32_t nameOff;
820    uint32_t cuVectorOff;
821  };
822
823  GdbIndexSection();
824  template <typename ELFT> static GdbIndexSection *create();
825  void writeTo(uint8_t *buf) override;
826  size_t getSize() const override { return size; }
827  bool isNeeded() const override;
828
829private:
830  struct GdbIndexHeader {
831    llvm::support::ulittle32_t version;
832    llvm::support::ulittle32_t cuListOff;
833    llvm::support::ulittle32_t cuTypesOff;
834    llvm::support::ulittle32_t addressAreaOff;
835    llvm::support::ulittle32_t symtabOff;
836    llvm::support::ulittle32_t constantPoolOff;
837  };
838
839  size_t computeSymtabSize() const;
840
841  // Each chunk contains information gathered from debug sections of a
842  // single object file.
843  SmallVector<GdbChunk, 0> chunks;
844
845  // A symbol table for this .gdb_index section.
846  SmallVector<GdbSymbol, 0> symbols;
847
848  size_t size;
849};
850
851// --eh-frame-hdr option tells linker to construct a header for all the
852// .eh_frame sections. This header is placed to a section named .eh_frame_hdr
853// and also to a PT_GNU_EH_FRAME segment.
854// At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
855// calling dl_iterate_phdr.
856// This section contains a lookup table for quick binary search of FDEs.
857// Detailed info about internals can be found in Ian Lance Taylor's blog:
858// http://www.airs.com/blog/archives/460 (".eh_frame")
859// http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
860class EhFrameHeader final : public SyntheticSection {
861public:
862  EhFrameHeader();
863  void write();
864  void writeTo(uint8_t *buf) override;
865  size_t getSize() const override;
866  bool isNeeded() const override;
867};
868
869// For more information about .gnu.version and .gnu.version_r see:
870// https://www.akkadia.org/drepper/symbol-versioning
871
872// The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
873// contain symbol version definitions. The number of entries in this section
874// shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
875// The section shall contain an array of Elf_Verdef structures, optionally
876// followed by an array of Elf_Verdaux structures.
877class VersionDefinitionSection final : public SyntheticSection {
878public:
879  VersionDefinitionSection();
880  void finalizeContents() override;
881  size_t getSize() const override;
882  void writeTo(uint8_t *buf) override;
883
884private:
885  enum { EntrySize = 28 };
886  void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
887  StringRef getFileDefName();
888
889  unsigned fileDefNameOff;
890  SmallVector<unsigned, 0> verDefNameOffs;
891};
892
893// The .gnu.version section specifies the required version of each symbol in the
894// dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
895// table entry. An Elf_Versym is just a 16-bit integer that refers to a version
896// identifier defined in the either .gnu.version_r or .gnu.version_d section.
897// The values 0 and 1 are reserved. All other values are used for versions in
898// the own object or in any of the dependencies.
899class VersionTableSection final : public SyntheticSection {
900public:
901  VersionTableSection();
902  void finalizeContents() override;
903  size_t getSize() const override;
904  void writeTo(uint8_t *buf) override;
905  bool isNeeded() const override;
906};
907
908// The .gnu.version_r section defines the version identifiers used by
909// .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
910// Elf_Verneed specifies the version requirements for a single DSO, and contains
911// a reference to a linked list of Elf_Vernaux data structures which define the
912// mapping from version identifiers to version names.
913template <class ELFT>
914class VersionNeedSection final : public SyntheticSection {
915  using Elf_Verneed = typename ELFT::Verneed;
916  using Elf_Vernaux = typename ELFT::Vernaux;
917
918  struct Vernaux {
919    uint64_t hash;
920    uint32_t verneedIndex;
921    uint64_t nameStrTab;
922  };
923
924  struct Verneed {
925    uint64_t nameStrTab;
926    std::vector<Vernaux> vernauxs;
927  };
928
929  SmallVector<Verneed, 0> verneeds;
930
931public:
932  VersionNeedSection();
933  void finalizeContents() override;
934  void writeTo(uint8_t *buf) override;
935  size_t getSize() const override;
936  bool isNeeded() const override;
937};
938
939// MergeSyntheticSection is a class that allows us to put mergeable sections
940// with different attributes in a single output sections. To do that
941// we put them into MergeSyntheticSection synthetic input sections which are
942// attached to regular output sections.
943class MergeSyntheticSection : public SyntheticSection {
944public:
945  void addSection(MergeInputSection *ms);
946  SmallVector<MergeInputSection *, 0> sections;
947
948protected:
949  MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
950                        uint32_t addralign)
951      : SyntheticSection(flags, type, addralign, name) {}
952};
953
954class MergeTailSection final : public MergeSyntheticSection {
955public:
956  MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
957                   uint32_t addralign);
958
959  size_t getSize() const override;
960  void writeTo(uint8_t *buf) override;
961  void finalizeContents() override;
962
963private:
964  llvm::StringTableBuilder builder;
965};
966
967class MergeNoTailSection final : public MergeSyntheticSection {
968public:
969  MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
970                     uint32_t addralign)
971      : MergeSyntheticSection(name, type, flags, addralign) {}
972
973  size_t getSize() const override { return size; }
974  void writeTo(uint8_t *buf) override;
975  void finalizeContents() override;
976
977private:
978  // We use the most significant bits of a hash as a shard ID.
979  // The reason why we don't want to use the least significant bits is
980  // because DenseMap also uses lower bits to determine a bucket ID.
981  // If we use lower bits, it significantly increases the probability of
982  // hash collisions.
983  size_t getShardId(uint32_t hash) {
984    assert((hash >> 31) == 0);
985    return hash >> (31 - llvm::countr_zero(numShards));
986  }
987
988  // Section size
989  size_t size;
990
991  // String table contents
992  constexpr static size_t numShards = 32;
993  SmallVector<llvm::StringTableBuilder, 0> shards;
994  size_t shardOffsets[numShards];
995};
996
997// .MIPS.abiflags section.
998template <class ELFT>
999class MipsAbiFlagsSection final : public SyntheticSection {
1000  using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
1001
1002public:
1003  static std::unique_ptr<MipsAbiFlagsSection> create();
1004
1005  MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
1006  size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
1007  void writeTo(uint8_t *buf) override;
1008
1009private:
1010  Elf_Mips_ABIFlags flags;
1011};
1012
1013// .MIPS.options section.
1014template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
1015  using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
1016  using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1017
1018public:
1019  static std::unique_ptr<MipsOptionsSection<ELFT>> create();
1020
1021  MipsOptionsSection(Elf_Mips_RegInfo reginfo);
1022  void writeTo(uint8_t *buf) override;
1023
1024  size_t getSize() const override {
1025    return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1026  }
1027
1028private:
1029  Elf_Mips_RegInfo reginfo;
1030};
1031
1032// MIPS .reginfo section.
1033template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
1034  using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1035
1036public:
1037  static std::unique_ptr<MipsReginfoSection> create();
1038
1039  MipsReginfoSection(Elf_Mips_RegInfo reginfo);
1040  size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
1041  void writeTo(uint8_t *buf) override;
1042
1043private:
1044  Elf_Mips_RegInfo reginfo;
1045};
1046
1047// This is a MIPS specific section to hold a space within the data segment
1048// of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
1049// See "Dynamic section" in Chapter 5 in the following document:
1050// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1051class MipsRldMapSection final : public SyntheticSection {
1052public:
1053  MipsRldMapSection();
1054  size_t getSize() const override { return config->wordsize; }
1055  void writeTo(uint8_t *buf) override {}
1056};
1057
1058// Representation of the combined .ARM.Exidx input sections. We process these
1059// as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1060// and add terminating sentinel entries.
1061//
1062// The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1063// a table that the unwinder can derive (Addresses are encoded as offsets from
1064// table):
1065// | Address of function | Unwind instructions for function |
1066// where the unwind instructions are either a small number of unwind or the
1067// special EXIDX_CANTUNWIND entry representing no unwinding information.
1068// When an exception is thrown from an address A, the unwinder searches the
1069// table for the closest table entry with Address of function <= A. This means
1070// that for two consecutive table entries:
1071// | A1 | U1 |
1072// | A2 | U2 |
1073// The range of addresses described by U1 is [A1, A2)
1074//
1075// There are two cases where we need a linker generated table entry to fixup
1076// the address ranges in the table
1077// Case 1:
1078// - A sentinel entry added with an address higher than all
1079// executable sections. This was needed to work around libunwind bug pr31091.
1080// - After address assignment we need to find the highest addressed executable
1081// section and use the limit of that section so that the unwinder never
1082// matches it.
1083// Case 2:
1084// - InputSections without a .ARM.exidx section (usually from Assembly)
1085// need a table entry so that they terminate the range of the previously
1086// function. This is pr40277.
1087//
1088// Instead of storing pointers to the .ARM.exidx InputSections from
1089// InputObjects, we store pointers to the executable sections that need
1090// .ARM.exidx sections. We can then use the dependentSections of these to
1091// either find the .ARM.exidx section or know that we need to generate one.
1092class ARMExidxSyntheticSection : public SyntheticSection {
1093public:
1094  ARMExidxSyntheticSection();
1095
1096  // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1097  // section needs to be removed from the main input section list.
1098  bool addSection(InputSection *isec);
1099
1100  size_t getSize() const override { return size; }
1101  void writeTo(uint8_t *buf) override;
1102  bool isNeeded() const override;
1103  // Sort and remove duplicate entries.
1104  void finalizeContents() override;
1105  InputSection *getLinkOrderDep() const;
1106
1107  static bool classof(const SectionBase *sec) {
1108    return sec->kind() == InputSectionBase::Synthetic &&
1109           sec->type == llvm::ELF::SHT_ARM_EXIDX;
1110  }
1111
1112  // Links to the ARMExidxSections so we can transfer the relocations once the
1113  // layout is known.
1114  SmallVector<InputSection *, 0> exidxSections;
1115
1116private:
1117  size_t size = 0;
1118
1119  // Instead of storing pointers to the .ARM.exidx InputSections from
1120  // InputObjects, we store pointers to the executable sections that need
1121  // .ARM.exidx sections. We can then use the dependentSections of these to
1122  // either find the .ARM.exidx section or know that we need to generate one.
1123  SmallVector<InputSection *, 0> executableSections;
1124
1125  // The executable InputSection with the highest address to use for the
1126  // sentinel. We store separately from ExecutableSections as merging of
1127  // duplicate entries may mean this InputSection is removed from
1128  // ExecutableSections.
1129  InputSection *sentinel = nullptr;
1130};
1131
1132// A container for one or more linker generated thunks. Instances of these
1133// thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1134class ThunkSection final : public SyntheticSection {
1135public:
1136  // ThunkSection in OS, with desired outSecOff of Off
1137  ThunkSection(OutputSection *os, uint64_t off);
1138
1139  // Add a newly created Thunk to this container:
1140  // Thunk is given offset from start of this InputSection
1141  // Thunk defines a symbol in this InputSection that can be used as target
1142  // of a relocation
1143  void addThunk(Thunk *t);
1144  size_t getSize() const override;
1145  void writeTo(uint8_t *buf) override;
1146  InputSection *getTargetInputSection() const;
1147  bool assignOffsets();
1148
1149  // When true, round up reported size of section to 4 KiB. See comment
1150  // in addThunkSection() for more details.
1151  bool roundUpSizeForErrata = false;
1152
1153private:
1154  SmallVector<Thunk *, 0> thunks;
1155  size_t size = 0;
1156};
1157
1158// Cortex-M Security Extensions. Prefix for functions that should be exported
1159// for the non-secure world.
1160const char ACLESESYM_PREFIX[] = "__acle_se_";
1161const int ACLESESYM_SIZE = 8;
1162
1163class ArmCmseSGVeneer;
1164
1165class ArmCmseSGSection final : public SyntheticSection {
1166public:
1167  ArmCmseSGSection();
1168  bool isNeeded() const override { return !entries.empty(); }
1169  size_t getSize() const override;
1170  void writeTo(uint8_t *buf) override;
1171  void addSGVeneer(Symbol *sym, Symbol *ext_sym);
1172  void addMappingSymbol();
1173  void finalizeContents() override;
1174  void exportEntries(SymbolTableBaseSection *symTab);
1175  uint64_t impLibMaxAddr = 0;
1176
1177private:
1178  SmallVector<std::pair<Symbol *, Symbol *>, 0> entries;
1179  SmallVector<ArmCmseSGVeneer *, 0> sgVeneers;
1180  uint64_t newEntries = 0;
1181};
1182
1183// Used to compute outSecOff of .got2 in each object file. This is needed to
1184// synthesize PLT entries for PPC32 Secure PLT ABI.
1185class PPC32Got2Section final : public SyntheticSection {
1186public:
1187  PPC32Got2Section();
1188  size_t getSize() const override { return 0; }
1189  bool isNeeded() const override;
1190  void finalizeContents() override;
1191  void writeTo(uint8_t *buf) override {}
1192};
1193
1194// This section is used to store the addresses of functions that are called
1195// in range-extending thunks on PowerPC64. When producing position dependent
1196// code the addresses are link-time constants and the table is written out to
1197// the binary. When producing position-dependent code the table is allocated and
1198// filled in by the dynamic linker.
1199class PPC64LongBranchTargetSection final : public SyntheticSection {
1200public:
1201  PPC64LongBranchTargetSection();
1202  uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1203  std::optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1204  size_t getSize() const override;
1205  void writeTo(uint8_t *buf) override;
1206  bool isNeeded() const override;
1207  void finalizeContents() override { finalized = true; }
1208
1209private:
1210  SmallVector<std::pair<const Symbol *, int64_t>, 0> entries;
1211  llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1212  bool finalized = false;
1213};
1214
1215template <typename ELFT>
1216class PartitionElfHeaderSection final : public SyntheticSection {
1217public:
1218  PartitionElfHeaderSection();
1219  size_t getSize() const override;
1220  void writeTo(uint8_t *buf) override;
1221};
1222
1223template <typename ELFT>
1224class PartitionProgramHeadersSection final : public SyntheticSection {
1225public:
1226  PartitionProgramHeadersSection();
1227  size_t getSize() const override;
1228  void writeTo(uint8_t *buf) override;
1229};
1230
1231class PartitionIndexSection final : public SyntheticSection {
1232public:
1233  PartitionIndexSection();
1234  size_t getSize() const override;
1235  void finalizeContents() override;
1236  void writeTo(uint8_t *buf) override;
1237};
1238
1239// See the following link for the Android-specific loader code that operates on
1240// this section:
1241// https://cs.android.com/android/platform/superproject/+/master:bionic/libc/bionic/libc_init_static.cpp;drc=9425b16978f9c5aa8f2c50c873db470819480d1d;l=192
1242class MemtagAndroidNote final : public SyntheticSection {
1243public:
1244  MemtagAndroidNote()
1245      : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
1246                         /*alignment=*/4, ".note.android.memtag") {}
1247  void writeTo(uint8_t *buf) override;
1248  size_t getSize() const override;
1249};
1250
1251class PackageMetadataNote final : public SyntheticSection {
1252public:
1253  PackageMetadataNote()
1254      : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
1255                         /*alignment=*/4, ".note.package") {}
1256  void writeTo(uint8_t *buf) override;
1257  size_t getSize() const override;
1258};
1259
1260class MemtagGlobalDescriptors final : public SyntheticSection {
1261public:
1262  MemtagGlobalDescriptors()
1263      : SyntheticSection(llvm::ELF::SHF_ALLOC,
1264                         llvm::ELF::SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC,
1265                         /*alignment=*/4, ".memtag.globals.dynamic") {}
1266  void writeTo(uint8_t *buf) override;
1267  // The size of the section is non-computable until all addresses are
1268  // synthetized, because the section's contents contain a sorted
1269  // varint-compressed list of pointers to global variables. We only know the
1270  // final size after `finalizeAddressDependentContent()`.
1271  size_t getSize() const override;
1272  bool updateAllocSize() override;
1273
1274  void addSymbol(const Symbol &sym) {
1275    symbols.push_back(&sym);
1276  }
1277
1278  bool isNeeded() const override {
1279    return !symbols.empty();
1280  }
1281
1282private:
1283  SmallVector<const Symbol *, 0> symbols;
1284};
1285
1286InputSection *createInterpSection();
1287MergeInputSection *createCommentSection();
1288template <class ELFT> void splitSections();
1289void combineEhSections();
1290
1291template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1292template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1293
1294Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1295                           uint64_t size, InputSectionBase &section);
1296
1297void addVerneed(Symbol *ss);
1298
1299// Linker generated per-partition sections.
1300struct Partition {
1301  StringRef name;
1302  uint64_t nameStrTab;
1303
1304  std::unique_ptr<SyntheticSection> elfHeader;
1305  std::unique_ptr<SyntheticSection> programHeaders;
1306  SmallVector<PhdrEntry *, 0> phdrs;
1307
1308  std::unique_ptr<ARMExidxSyntheticSection> armExidx;
1309  std::unique_ptr<BuildIdSection> buildId;
1310  std::unique_ptr<SyntheticSection> dynamic;
1311  std::unique_ptr<StringTableSection> dynStrTab;
1312  std::unique_ptr<SymbolTableBaseSection> dynSymTab;
1313  std::unique_ptr<EhFrameHeader> ehFrameHdr;
1314  std::unique_ptr<EhFrameSection> ehFrame;
1315  std::unique_ptr<GnuHashTableSection> gnuHashTab;
1316  std::unique_ptr<HashTableSection> hashTab;
1317  std::unique_ptr<MemtagAndroidNote> memtagAndroidNote;
1318  std::unique_ptr<MemtagGlobalDescriptors> memtagGlobalDescriptors;
1319  std::unique_ptr<PackageMetadataNote> packageMetadataNote;
1320  std::unique_ptr<RelocationBaseSection> relaDyn;
1321  std::unique_ptr<RelrBaseSection> relrDyn;
1322  std::unique_ptr<VersionDefinitionSection> verDef;
1323  std::unique_ptr<SyntheticSection> verNeed;
1324  std::unique_ptr<VersionTableSection> verSym;
1325
1326  unsigned getNumber() const { return this - &partitions[0] + 1; }
1327};
1328
1329LLVM_LIBRARY_VISIBILITY extern Partition *mainPart;
1330
1331inline Partition &SectionBase::getPartition() const {
1332  assert(isLive());
1333  return partitions[partition - 1];
1334}
1335
1336// Linker generated sections which can be used as inputs and are not specific to
1337// a partition.
1338struct InStruct {
1339  std::unique_ptr<InputSection> attributes;
1340  std::unique_ptr<SyntheticSection> riscvAttributes;
1341  std::unique_ptr<BssSection> bss;
1342  std::unique_ptr<BssSection> bssRelRo;
1343  std::unique_ptr<GotSection> got;
1344  std::unique_ptr<GotPltSection> gotPlt;
1345  std::unique_ptr<IgotPltSection> igotPlt;
1346  std::unique_ptr<RelroPaddingSection> relroPadding;
1347  std::unique_ptr<SyntheticSection> armCmseSGSection;
1348  std::unique_ptr<PPC64LongBranchTargetSection> ppc64LongBranchTarget;
1349  std::unique_ptr<SyntheticSection> mipsAbiFlags;
1350  std::unique_ptr<MipsGotSection> mipsGot;
1351  std::unique_ptr<SyntheticSection> mipsOptions;
1352  std::unique_ptr<SyntheticSection> mipsReginfo;
1353  std::unique_ptr<MipsRldMapSection> mipsRldMap;
1354  std::unique_ptr<SyntheticSection> partEnd;
1355  std::unique_ptr<SyntheticSection> partIndex;
1356  std::unique_ptr<PltSection> plt;
1357  std::unique_ptr<IpltSection> iplt;
1358  std::unique_ptr<PPC32Got2Section> ppc32Got2;
1359  std::unique_ptr<IBTPltSection> ibtPlt;
1360  std::unique_ptr<RelocationBaseSection> relaPlt;
1361  std::unique_ptr<RelocationBaseSection> relaIplt;
1362  std::unique_ptr<StringTableSection> shStrTab;
1363  std::unique_ptr<StringTableSection> strTab;
1364  std::unique_ptr<SymbolTableBaseSection> symTab;
1365  std::unique_ptr<SymtabShndxSection> symTabShndx;
1366
1367  void reset();
1368};
1369
1370LLVM_LIBRARY_VISIBILITY extern InStruct in;
1371
1372} // namespace lld::elf
1373
1374#endif
1375