1//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// Main internal TSan header file.
12//
13// Ground rules:
14//   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15//     function-scope locals)
16//   - All functions/classes/etc reside in namespace __tsan, except for those
17//     declared in tsan_interface.h.
18//   - Platform-specific files should be used instead of ifdefs (*).
19//   - No system headers included in header files (*).
20//   - Platform specific headres included only into platform-specific files (*).
21//
22//  (*) Except when inlining is critical for performance.
23//===----------------------------------------------------------------------===//
24
25#ifndef TSAN_RTL_H
26#define TSAN_RTL_H
27
28#include "sanitizer_common/sanitizer_allocator.h"
29#include "sanitizer_common/sanitizer_allocator_internal.h"
30#include "sanitizer_common/sanitizer_asm.h"
31#include "sanitizer_common/sanitizer_common.h"
32#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33#include "sanitizer_common/sanitizer_libignore.h"
34#include "sanitizer_common/sanitizer_suppressions.h"
35#include "sanitizer_common/sanitizer_thread_registry.h"
36#include "sanitizer_common/sanitizer_vector.h"
37#include "tsan_defs.h"
38#include "tsan_flags.h"
39#include "tsan_ignoreset.h"
40#include "tsan_ilist.h"
41#include "tsan_mman.h"
42#include "tsan_mutexset.h"
43#include "tsan_platform.h"
44#include "tsan_report.h"
45#include "tsan_shadow.h"
46#include "tsan_stack_trace.h"
47#include "tsan_sync.h"
48#include "tsan_trace.h"
49#include "tsan_vector_clock.h"
50
51#if SANITIZER_WORDSIZE != 64
52# error "ThreadSanitizer is supported only on 64-bit platforms"
53#endif
54
55namespace __tsan {
56
57#if !SANITIZER_GO
58struct MapUnmapCallback;
59#  if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
60      defined(__powerpc__) || SANITIZER_RISCV64
61
62struct AP32 {
63  static const uptr kSpaceBeg = 0;
64  static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
65  static const uptr kMetadataSize = 0;
66  typedef __sanitizer::CompactSizeClassMap SizeClassMap;
67  static const uptr kRegionSizeLog = 20;
68  using AddressSpaceView = LocalAddressSpaceView;
69  typedef __tsan::MapUnmapCallback MapUnmapCallback;
70  static const uptr kFlags = 0;
71};
72typedef SizeClassAllocator32<AP32> PrimaryAllocator;
73#else
74struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
75#    if defined(__s390x__)
76  typedef MappingS390x Mapping;
77#    else
78  typedef Mapping48AddressSpace Mapping;
79#    endif
80  static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
81  static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
82  static const uptr kMetadataSize = 0;
83  typedef DefaultSizeClassMap SizeClassMap;
84  typedef __tsan::MapUnmapCallback MapUnmapCallback;
85  static const uptr kFlags = 0;
86  using AddressSpaceView = LocalAddressSpaceView;
87};
88typedef SizeClassAllocator64<AP64> PrimaryAllocator;
89#endif
90typedef CombinedAllocator<PrimaryAllocator> Allocator;
91typedef Allocator::AllocatorCache AllocatorCache;
92Allocator *allocator();
93#endif
94
95struct ThreadSignalContext;
96
97struct JmpBuf {
98  uptr sp;
99  int int_signal_send;
100  bool in_blocking_func;
101  uptr in_signal_handler;
102  uptr *shadow_stack_pos;
103};
104
105// A Processor represents a physical thread, or a P for Go.
106// It is used to store internal resources like allocate cache, and does not
107// participate in race-detection logic (invisible to end user).
108// In C++ it is tied to an OS thread just like ThreadState, however ideally
109// it should be tied to a CPU (this way we will have fewer allocator caches).
110// In Go it is tied to a P, so there are significantly fewer Processor's than
111// ThreadState's (which are tied to Gs).
112// A ThreadState must be wired with a Processor to handle events.
113struct Processor {
114  ThreadState *thr; // currently wired thread, or nullptr
115#if !SANITIZER_GO
116  AllocatorCache alloc_cache;
117  InternalAllocatorCache internal_alloc_cache;
118#endif
119  DenseSlabAllocCache block_cache;
120  DenseSlabAllocCache sync_cache;
121  DDPhysicalThread *dd_pt;
122};
123
124#if !SANITIZER_GO
125// ScopedGlobalProcessor temporary setups a global processor for the current
126// thread, if it does not have one. Intended for interceptors that can run
127// at the very thread end, when we already destroyed the thread processor.
128struct ScopedGlobalProcessor {
129  ScopedGlobalProcessor();
130  ~ScopedGlobalProcessor();
131};
132#endif
133
134struct TidEpoch {
135  Tid tid;
136  Epoch epoch;
137};
138
139struct TidSlot {
140  Mutex mtx;
141  Sid sid;
142  atomic_uint32_t raw_epoch;
143  ThreadState *thr;
144  Vector<TidEpoch> journal;
145  INode node;
146
147  Epoch epoch() const {
148    return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
149  }
150
151  void SetEpoch(Epoch v) {
152    atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
153  }
154
155  TidSlot();
156} ALIGNED(SANITIZER_CACHE_LINE_SIZE);
157
158// This struct is stored in TLS.
159struct ThreadState {
160  FastState fast_state;
161  int ignore_sync;
162#if !SANITIZER_GO
163  int ignore_interceptors;
164#endif
165  uptr *shadow_stack_pos;
166
167  // Current position in tctx->trace.Back()->events (Event*).
168  atomic_uintptr_t trace_pos;
169  // PC of the last memory access, used to compute PC deltas in the trace.
170  uptr trace_prev_pc;
171
172  // Technically `current` should be a separate THREADLOCAL variable;
173  // but it is placed here in order to share cache line with previous fields.
174  ThreadState* current;
175
176  atomic_sint32_t pending_signals;
177
178  VectorClock clock;
179
180  // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
181  // We do not distinguish beteween ignoring reads and writes
182  // for better performance.
183  int ignore_reads_and_writes;
184  int suppress_reports;
185  // Go does not support ignores.
186#if !SANITIZER_GO
187  IgnoreSet mop_ignore_set;
188  IgnoreSet sync_ignore_set;
189#endif
190  uptr *shadow_stack;
191  uptr *shadow_stack_end;
192#if !SANITIZER_GO
193  Vector<JmpBuf> jmp_bufs;
194  int in_symbolizer;
195  atomic_uintptr_t in_blocking_func;
196  bool in_ignored_lib;
197  bool is_inited;
198#endif
199  MutexSet mset;
200  bool is_dead;
201  const Tid tid;
202  uptr stk_addr;
203  uptr stk_size;
204  uptr tls_addr;
205  uptr tls_size;
206  ThreadContext *tctx;
207
208  DDLogicalThread *dd_lt;
209
210  TidSlot *slot;
211  uptr slot_epoch;
212  bool slot_locked;
213
214  // Current wired Processor, or nullptr. Required to handle any events.
215  Processor *proc1;
216#if !SANITIZER_GO
217  Processor *proc() { return proc1; }
218#else
219  Processor *proc();
220#endif
221
222  atomic_uintptr_t in_signal_handler;
223  atomic_uintptr_t signal_ctx;
224
225#if !SANITIZER_GO
226  StackID last_sleep_stack_id;
227  VectorClock last_sleep_clock;
228#endif
229
230  // Set in regions of runtime that must be signal-safe and fork-safe.
231  // If set, malloc must not be called.
232  int nomalloc;
233
234  const ReportDesc *current_report;
235
236  explicit ThreadState(Tid tid);
237} ALIGNED(SANITIZER_CACHE_LINE_SIZE);
238
239#if !SANITIZER_GO
240#if SANITIZER_APPLE || SANITIZER_ANDROID
241ThreadState *cur_thread();
242void set_cur_thread(ThreadState *thr);
243void cur_thread_finalize();
244inline ThreadState *cur_thread_init() { return cur_thread(); }
245#  else
246__attribute__((tls_model("initial-exec")))
247extern THREADLOCAL char cur_thread_placeholder[];
248inline ThreadState *cur_thread() {
249  return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
250}
251inline ThreadState *cur_thread_init() {
252  ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
253  if (UNLIKELY(!thr->current))
254    thr->current = thr;
255  return thr->current;
256}
257inline void set_cur_thread(ThreadState *thr) {
258  reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
259}
260inline void cur_thread_finalize() { }
261#  endif  // SANITIZER_APPLE || SANITIZER_ANDROID
262#endif  // SANITIZER_GO
263
264class ThreadContext final : public ThreadContextBase {
265 public:
266  explicit ThreadContext(Tid tid);
267  ~ThreadContext();
268  ThreadState *thr;
269  StackID creation_stack_id;
270  VectorClock *sync;
271  uptr sync_epoch;
272  Trace trace;
273
274  // Override superclass callbacks.
275  void OnDead() override;
276  void OnJoined(void *arg) override;
277  void OnFinished() override;
278  void OnStarted(void *arg) override;
279  void OnCreated(void *arg) override;
280  void OnReset() override;
281  void OnDetached(void *arg) override;
282};
283
284struct RacyStacks {
285  MD5Hash hash[2];
286  bool operator==(const RacyStacks &other) const;
287};
288
289struct RacyAddress {
290  uptr addr_min;
291  uptr addr_max;
292};
293
294struct FiredSuppression {
295  ReportType type;
296  uptr pc_or_addr;
297  Suppression *supp;
298};
299
300struct Context {
301  Context();
302
303  bool initialized;
304#if !SANITIZER_GO
305  bool after_multithreaded_fork;
306#endif
307
308  MetaMap metamap;
309
310  Mutex report_mtx;
311  int nreported;
312  atomic_uint64_t last_symbolize_time_ns;
313
314  void *background_thread;
315  atomic_uint32_t stop_background_thread;
316
317  ThreadRegistry thread_registry;
318
319  // This is used to prevent a very unlikely but very pathological behavior.
320  // Since memory access handling is not synchronized with DoReset,
321  // a thread running concurrently with DoReset can leave a bogus shadow value
322  // that will be later falsely detected as a race. For such false races
323  // RestoreStack will return false and we will not report it.
324  // However, consider that a thread leaves a whole lot of such bogus values
325  // and these values are later read by a whole lot of threads.
326  // This will cause massive amounts of ReportRace calls and lots of
327  // serialization. In very pathological cases the resulting slowdown
328  // can be >100x. This is very unlikely, but it was presumably observed
329  // in practice: https://github.com/google/sanitizers/issues/1552
330  // If this happens, previous access sid+epoch will be the same for all of
331  // these false races b/c if the thread will try to increment epoch, it will
332  // notice that DoReset has happened and will stop producing bogus shadow
333  // values. So, last_spurious_race is used to remember the last sid+epoch
334  // for which RestoreStack returned false. Then it is used to filter out
335  // races with the same sid+epoch very early and quickly.
336  // It is of course possible that multiple threads left multiple bogus shadow
337  // values and all of them are read by lots of threads at the same time.
338  // In such case last_spurious_race will only be able to deduplicate a few
339  // races from one thread, then few from another and so on. An alternative
340  // would be to hold an array of such sid+epoch, but we consider such scenario
341  // as even less likely.
342  // Note: this can lead to some rare false negatives as well:
343  // 1. When a legit access with the same sid+epoch participates in a race
344  // as the "previous" memory access, it will be wrongly filtered out.
345  // 2. When RestoreStack returns false for a legit memory access because it
346  // was already evicted from the thread trace, we will still remember it in
347  // last_spurious_race. Then if there is another racing memory access from
348  // the same thread that happened in the same epoch, but was stored in the
349  // next thread trace part (which is still preserved in the thread trace),
350  // we will also wrongly filter it out while RestoreStack would actually
351  // succeed for that second memory access.
352  RawShadow last_spurious_race;
353
354  Mutex racy_mtx;
355  Vector<RacyStacks> racy_stacks;
356  // Number of fired suppressions may be large enough.
357  Mutex fired_suppressions_mtx;
358  InternalMmapVector<FiredSuppression> fired_suppressions;
359  DDetector *dd;
360
361  Flags flags;
362  fd_t memprof_fd;
363
364  // The last slot index (kFreeSid) is used to denote freed memory.
365  TidSlot slots[kThreadSlotCount - 1];
366
367  // Protects global_epoch, slot_queue, trace_part_recycle.
368  Mutex slot_mtx;
369  uptr global_epoch;  // guarded by slot_mtx and by all slot mutexes
370  bool resetting;     // global reset is in progress
371  IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
372  IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
373      SANITIZER_GUARDED_BY(slot_mtx);
374  uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
375  uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
376  uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
377#if SANITIZER_GO
378  uptr mapped_shadow_begin;
379  uptr mapped_shadow_end;
380#endif
381};
382
383extern Context *ctx;  // The one and the only global runtime context.
384
385ALWAYS_INLINE Flags *flags() {
386  return &ctx->flags;
387}
388
389struct ScopedIgnoreInterceptors {
390  ScopedIgnoreInterceptors() {
391#if !SANITIZER_GO
392    cur_thread()->ignore_interceptors++;
393#endif
394  }
395
396  ~ScopedIgnoreInterceptors() {
397#if !SANITIZER_GO
398    cur_thread()->ignore_interceptors--;
399#endif
400  }
401};
402
403const char *GetObjectTypeFromTag(uptr tag);
404const char *GetReportHeaderFromTag(uptr tag);
405uptr TagFromShadowStackFrame(uptr pc);
406
407class ScopedReportBase {
408 public:
409  void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
410                       StackTrace stack, const MutexSet *mset);
411  void AddStack(StackTrace stack, bool suppressable = false);
412  void AddThread(const ThreadContext *tctx, bool suppressable = false);
413  void AddThread(Tid tid, bool suppressable = false);
414  void AddUniqueTid(Tid unique_tid);
415  int AddMutex(uptr addr, StackID creation_stack_id);
416  void AddLocation(uptr addr, uptr size);
417  void AddSleep(StackID stack_id);
418  void SetCount(int count);
419  void SetSigNum(int sig);
420
421  const ReportDesc *GetReport() const;
422
423 protected:
424  ScopedReportBase(ReportType typ, uptr tag);
425  ~ScopedReportBase();
426
427 private:
428  ReportDesc *rep_;
429  // Symbolizer makes lots of intercepted calls. If we try to process them,
430  // at best it will cause deadlocks on internal mutexes.
431  ScopedIgnoreInterceptors ignore_interceptors_;
432
433  ScopedReportBase(const ScopedReportBase &) = delete;
434  void operator=(const ScopedReportBase &) = delete;
435};
436
437class ScopedReport : public ScopedReportBase {
438 public:
439  explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
440  ~ScopedReport();
441
442 private:
443  ScopedErrorReportLock lock_;
444};
445
446bool ShouldReport(ThreadState *thr, ReportType typ);
447ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
448
449// The stack could look like:
450//   <start> | <main> | <foo> | tag | <bar>
451// This will extract the tag and keep:
452//   <start> | <main> | <foo> | <bar>
453template<typename StackTraceTy>
454void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
455  if (stack->size < 2) return;
456  uptr possible_tag_pc = stack->trace[stack->size - 2];
457  uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
458  if (possible_tag == kExternalTagNone) return;
459  stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
460  stack->size -= 1;
461  if (tag) *tag = possible_tag;
462}
463
464template<typename StackTraceTy>
465void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
466                        uptr *tag = nullptr) {
467  uptr size = thr->shadow_stack_pos - thr->shadow_stack;
468  uptr start = 0;
469  if (size + !!toppc > kStackTraceMax) {
470    start = size + !!toppc - kStackTraceMax;
471    size = kStackTraceMax - !!toppc;
472  }
473  stack->Init(&thr->shadow_stack[start], size, toppc);
474  ExtractTagFromStack(stack, tag);
475}
476
477#define GET_STACK_TRACE_FATAL(thr, pc) \
478  VarSizeStackTrace stack; \
479  ObtainCurrentStack(thr, pc, &stack); \
480  stack.ReverseOrder();
481
482void MapShadow(uptr addr, uptr size);
483void MapThreadTrace(uptr addr, uptr size, const char *name);
484void DontNeedShadowFor(uptr addr, uptr size);
485void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
486void InitializeShadowMemory();
487void DontDumpShadow(uptr addr, uptr size);
488void InitializeInterceptors();
489void InitializeLibIgnore();
490void InitializeDynamicAnnotations();
491
492void ForkBefore(ThreadState *thr, uptr pc);
493void ForkParentAfter(ThreadState *thr, uptr pc);
494void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
495
496void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
497                AccessType typ);
498bool OutputReport(ThreadState *thr, const ScopedReport &srep);
499bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
500bool IsExpectedReport(uptr addr, uptr size);
501
502#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
503# define DPrintf Printf
504#else
505# define DPrintf(...)
506#endif
507
508#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
509# define DPrintf2 Printf
510#else
511# define DPrintf2(...)
512#endif
513
514StackID CurrentStackId(ThreadState *thr, uptr pc);
515ReportStack *SymbolizeStackId(StackID stack_id);
516void PrintCurrentStack(ThreadState *thr, uptr pc);
517void PrintCurrentStackSlow(uptr pc);  // uses libunwind
518MBlock *JavaHeapBlock(uptr addr, uptr *start);
519
520void Initialize(ThreadState *thr);
521void MaybeSpawnBackgroundThread();
522int Finalize(ThreadState *thr);
523
524void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
525void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
526
527void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
528                  AccessType typ);
529void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
530                           AccessType typ);
531// This creates 2 non-inlined specialized versions of MemoryAccessRange.
532template <bool is_read>
533void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
534
535ALWAYS_INLINE
536void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
537                       bool is_write) {
538  if (size == 0)
539    return;
540  if (is_write)
541    MemoryAccessRangeT<false>(thr, pc, addr, size);
542  else
543    MemoryAccessRangeT<true>(thr, pc, addr, size);
544}
545
546void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
547void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
548void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
549void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
550void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
551                                         uptr size);
552
553void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
554void ThreadIgnoreEnd(ThreadState *thr);
555void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
556void ThreadIgnoreSyncEnd(ThreadState *thr);
557
558Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
559void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
560                 ThreadType thread_type);
561void ThreadFinish(ThreadState *thr);
562Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
563void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
564void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
565void ThreadFinalize(ThreadState *thr);
566void ThreadSetName(ThreadState *thr, const char *name);
567int ThreadCount(ThreadState *thr);
568void ProcessPendingSignalsImpl(ThreadState *thr);
569void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
570
571Processor *ProcCreate();
572void ProcDestroy(Processor *proc);
573void ProcWire(Processor *proc, ThreadState *thr);
574void ProcUnwire(Processor *proc, ThreadState *thr);
575
576// Note: the parameter is called flagz, because flags is already taken
577// by the global function that returns flags.
578void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
579void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
580void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
581void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
582    int rec = 1);
583int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
584void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
585void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
586void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
587void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
588void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
589void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
590
591void Acquire(ThreadState *thr, uptr pc, uptr addr);
592// AcquireGlobal synchronizes the current thread with all other threads.
593// In terms of happens-before relation, it draws a HB edge from all threads
594// (where they happen to execute right now) to the current thread. We use it to
595// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
596// right before executing finalizers. This provides a coarse, but simple
597// approximation of the actual required synchronization.
598void AcquireGlobal(ThreadState *thr);
599void Release(ThreadState *thr, uptr pc, uptr addr);
600void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
601void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
602void AfterSleep(ThreadState *thr, uptr pc);
603void IncrementEpoch(ThreadState *thr);
604
605#if !SANITIZER_GO
606uptr ALWAYS_INLINE HeapEnd() {
607  return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
608}
609#endif
610
611void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
612void SlotDetach(ThreadState *thr);
613void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
614void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
615void DoReset(ThreadState *thr, uptr epoch);
616void FlushShadowMemory();
617
618ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
619void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
620void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
621
622// These need to match __tsan_switch_to_fiber_* flags defined in
623// tsan_interface.h. See documentation there as well.
624enum FiberSwitchFlags {
625  FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
626};
627
628class SlotLocker {
629 public:
630  ALWAYS_INLINE
631  SlotLocker(ThreadState *thr, bool recursive = false)
632      : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
633#if !SANITIZER_GO
634    // We are in trouble if we are here with in_blocking_func set.
635    // If in_blocking_func is set, all signals will be delivered synchronously,
636    // which means we can't lock slots since the signal handler will try
637    // to lock it recursively and deadlock.
638    DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed));
639#endif
640    if (!locked_)
641      SlotLock(thr_);
642  }
643
644  ALWAYS_INLINE
645  ~SlotLocker() {
646    if (!locked_)
647      SlotUnlock(thr_);
648  }
649
650 private:
651  ThreadState *thr_;
652  bool locked_;
653};
654
655class SlotUnlocker {
656 public:
657  SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
658    if (locked_)
659      SlotUnlock(thr_);
660  }
661
662  ~SlotUnlocker() {
663    if (locked_)
664      SlotLock(thr_);
665  }
666
667 private:
668  ThreadState *thr_;
669  bool locked_;
670};
671
672ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
673  if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
674    ProcessPendingSignalsImpl(thr);
675}
676
677extern bool is_initialized;
678
679ALWAYS_INLINE
680void LazyInitialize(ThreadState *thr) {
681  // If we can use .preinit_array, assume that __tsan_init
682  // called from .preinit_array initializes runtime before
683  // any instrumented code except when tsan is used as a
684  // shared library.
685#if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
686  if (UNLIKELY(!is_initialized))
687    Initialize(thr);
688#endif
689}
690
691void TraceResetForTesting();
692void TraceSwitchPart(ThreadState *thr);
693void TraceSwitchPartImpl(ThreadState *thr);
694bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
695                  AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
696                  MutexSet *pmset, uptr *ptag);
697
698template <typename EventT>
699ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
700                                                   EventT **ev) {
701  // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
702  // so we check it here proactively.
703  DCHECK(thr->shadow_stack);
704  Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
705#if SANITIZER_DEBUG
706  // TraceSwitch acquires these mutexes,
707  // so we lock them here to detect deadlocks more reliably.
708  { Lock lock(&ctx->slot_mtx); }
709  { Lock lock(&thr->tctx->trace.mtx); }
710  TracePart *current = thr->tctx->trace.parts.Back();
711  if (current) {
712    DCHECK_GE(pos, &current->events[0]);
713    DCHECK_LE(pos, &current->events[TracePart::kSize]);
714  } else {
715    DCHECK_EQ(pos, nullptr);
716  }
717#endif
718  // TracePart is allocated with mmap and is at least 4K aligned.
719  // So the following check is a faster way to check for part end.
720  // It may have false positives in the middle of the trace,
721  // they are filtered out in TraceSwitch.
722  if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
723    return false;
724  *ev = reinterpret_cast<EventT *>(pos);
725  return true;
726}
727
728template <typename EventT>
729ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
730  DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
731  atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
732}
733
734template <typename EventT>
735void TraceEvent(ThreadState *thr, EventT ev) {
736  EventT *evp;
737  if (!TraceAcquire(thr, &evp)) {
738    TraceSwitchPart(thr);
739    UNUSED bool res = TraceAcquire(thr, &evp);
740    DCHECK(res);
741  }
742  *evp = ev;
743  TraceRelease(thr, evp);
744}
745
746ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
747                                                   uptr pc = 0) {
748  if (!kCollectHistory)
749    return true;
750  EventFunc *ev;
751  if (UNLIKELY(!TraceAcquire(thr, &ev)))
752    return false;
753  ev->is_access = 0;
754  ev->is_func = 1;
755  ev->pc = pc;
756  TraceRelease(thr, ev);
757  return true;
758}
759
760WARN_UNUSED_RESULT
761bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
762                          AccessType typ);
763WARN_UNUSED_RESULT
764bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
765                               AccessType typ);
766void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
767                            AccessType typ);
768void TraceFunc(ThreadState *thr, uptr pc = 0);
769void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
770                    StackID stk);
771void TraceMutexUnlock(ThreadState *thr, uptr addr);
772void TraceTime(ThreadState *thr);
773
774void TraceRestartFuncExit(ThreadState *thr);
775void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
776
777void GrowShadowStack(ThreadState *thr);
778
779ALWAYS_INLINE
780void FuncEntry(ThreadState *thr, uptr pc) {
781  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
782  if (UNLIKELY(!TryTraceFunc(thr, pc)))
783    return TraceRestartFuncEntry(thr, pc);
784  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
785#if !SANITIZER_GO
786  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
787#else
788  if (thr->shadow_stack_pos == thr->shadow_stack_end)
789    GrowShadowStack(thr);
790#endif
791  thr->shadow_stack_pos[0] = pc;
792  thr->shadow_stack_pos++;
793}
794
795ALWAYS_INLINE
796void FuncExit(ThreadState *thr) {
797  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
798  if (UNLIKELY(!TryTraceFunc(thr, 0)))
799    return TraceRestartFuncExit(thr);
800  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
801#if !SANITIZER_GO
802  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
803#endif
804  thr->shadow_stack_pos--;
805}
806
807#if !SANITIZER_GO
808extern void (*on_initialize)(void);
809extern int (*on_finalize)(int);
810#endif
811}  // namespace __tsan
812
813#endif  // TSAN_RTL_H
814