1//===-- interception_win.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of AddressSanitizer, an address sanity checker.
10//
11// Windows-specific interception methods.
12//
13// This file is implementing several hooking techniques to intercept calls
14// to functions. The hooks are dynamically installed by modifying the assembly
15// code.
16//
17// The hooking techniques are making assumptions on the way the code is
18// generated and are safe under these assumptions.
19//
20// On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21// arbitrary branching on the whole memory space, the notion of trampoline
22// region is used. A trampoline region is a memory space withing 2G boundary
23// where it is safe to add custom assembly code to build 64-bit jumps.
24//
25// Hooking techniques
26// ==================
27//
28// 1) Detour
29//
30//    The Detour hooking technique is assuming the presence of an header with
31//    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32//    nop instruction can safely be replaced by a 2-bytes jump without any need
33//    to save the instruction. A jump to the target is encoded in the function
34//    header and the nop instruction is replaced by a short jump to the header.
35//
36//        head:  5 x nop                 head:  jmp <hook>
37//        func:  mov edi, edi    -->     func:  jmp short <head>
38//               [...]                   real:  [...]
39//
40//    This technique is only implemented on 32-bit architecture.
41//    Most of the time, Windows API are hookable with the detour technique.
42//
43// 2) Redirect Jump
44//
45//    The redirect jump is applicable when the first instruction is a direct
46//    jump. The instruction is replaced by jump to the hook.
47//
48//        func:  jmp <label>     -->     func:  jmp <hook>
49//
50//    On an 64-bit architecture, a trampoline is inserted.
51//
52//        func:  jmp <label>     -->     func:  jmp <tramp>
53//                                              [...]
54//
55//                                   [trampoline]
56//                                      tramp:  jmp QWORD [addr]
57//                                       addr:  .bytes <hook>
58//
59//    Note: <real> is equivalent to <label>.
60//
61// 3) HotPatch
62//
63//    The HotPatch hooking is assuming the presence of an header with padding
64//    and a first instruction with at least 2-bytes.
65//
66//    The reason to enforce the 2-bytes limitation is to provide the minimal
67//    space to encode a short jump. HotPatch technique is only rewriting one
68//    instruction to avoid breaking a sequence of instructions containing a
69//    branching target.
70//
71//    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72//      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73//    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
74//
75//        head:   5 x nop                head:  jmp <hook>
76//        func:   <instr>        -->     func:  jmp short <head>
77//                [...]                  body:  [...]
78//
79//                                   [trampoline]
80//                                       real:  <instr>
81//                                              jmp <body>
82//
83//    On an 64-bit architecture:
84//
85//        head:   6 x nop                head:  jmp QWORD [addr1]
86//        func:   <instr>        -->     func:  jmp short <head>
87//                [...]                  body:  [...]
88//
89//                                   [trampoline]
90//                                      addr1:  .bytes <hook>
91//                                       real:  <instr>
92//                                              jmp QWORD [addr2]
93//                                      addr2:  .bytes <body>
94//
95// 4) Trampoline
96//
97//    The Trampoline hooking technique is the most aggressive one. It is
98//    assuming that there is a sequence of instructions that can be safely
99//    replaced by a jump (enough room and no incoming branches).
100//
101//    Unfortunately, these assumptions can't be safely presumed and code may
102//    be broken after hooking.
103//
104//        func:   <instr>        -->     func:  jmp <hook>
105//                <instr>
106//                [...]                  body:  [...]
107//
108//                                   [trampoline]
109//                                       real:  <instr>
110//                                              <instr>
111//                                              jmp <body>
112//
113//    On an 64-bit architecture:
114//
115//        func:   <instr>        -->     func:  jmp QWORD [addr1]
116//                <instr>
117//                [...]                  body:  [...]
118//
119//                                   [trampoline]
120//                                      addr1:  .bytes <hook>
121//                                       real:  <instr>
122//                                              <instr>
123//                                              jmp QWORD [addr2]
124//                                      addr2:  .bytes <body>
125//===----------------------------------------------------------------------===//
126
127#include "interception.h"
128
129#if SANITIZER_WINDOWS
130#include "sanitizer_common/sanitizer_platform.h"
131#define WIN32_LEAN_AND_MEAN
132#include <windows.h>
133
134namespace __interception {
135
136static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
137static const int kJumpInstructionLength = 5;
138static const int kShortJumpInstructionLength = 2;
139UNUSED static const int kIndirectJumpInstructionLength = 6;
140static const int kBranchLength =
141    FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
142static const int kDirectBranchLength = kBranchLength + kAddressLength;
143
144#  if defined(_MSC_VER)
145#    define INTERCEPTION_FORMAT(f, a)
146#  else
147#    define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a)))
148#  endif
149
150static void (*ErrorReportCallback)(const char *format, ...)
151    INTERCEPTION_FORMAT(1, 2);
152
153void SetErrorReportCallback(void (*callback)(const char *format, ...)) {
154  ErrorReportCallback = callback;
155}
156
157#  define ReportError(...)                \
158    do {                                  \
159      if (ErrorReportCallback)            \
160        ErrorReportCallback(__VA_ARGS__); \
161    } while (0)
162
163static void InterceptionFailed() {
164  ReportError("interception_win: failed due to an unrecoverable error.\n");
165  // This acts like an abort when no debugger is attached. According to an old
166  // comment, calling abort() leads to an infinite recursion in CheckFailed.
167  __debugbreak();
168}
169
170static bool DistanceIsWithin2Gig(uptr from, uptr target) {
171#if SANITIZER_WINDOWS64
172  if (from < target)
173    return target - from <= (uptr)0x7FFFFFFFU;
174  else
175    return from - target <= (uptr)0x80000000U;
176#else
177  // In a 32-bit address space, the address calculation will wrap, so this check
178  // is unnecessary.
179  return true;
180#endif
181}
182
183static uptr GetMmapGranularity() {
184  SYSTEM_INFO si;
185  GetSystemInfo(&si);
186  return si.dwAllocationGranularity;
187}
188
189UNUSED static uptr RoundUpTo(uptr size, uptr boundary) {
190  return (size + boundary - 1) & ~(boundary - 1);
191}
192
193// FIXME: internal_str* and internal_mem* functions should be moved from the
194// ASan sources into interception/.
195
196static size_t _strlen(const char *str) {
197  const char* p = str;
198  while (*p != '\0') ++p;
199  return p - str;
200}
201
202static char* _strchr(char* str, char c) {
203  while (*str) {
204    if (*str == c)
205      return str;
206    ++str;
207  }
208  return nullptr;
209}
210
211static void _memset(void *p, int value, size_t sz) {
212  for (size_t i = 0; i < sz; ++i)
213    ((char*)p)[i] = (char)value;
214}
215
216static void _memcpy(void *dst, void *src, size_t sz) {
217  char *dst_c = (char*)dst,
218       *src_c = (char*)src;
219  for (size_t i = 0; i < sz; ++i)
220    dst_c[i] = src_c[i];
221}
222
223static bool ChangeMemoryProtection(
224    uptr address, uptr size, DWORD *old_protection) {
225  return ::VirtualProtect((void*)address, size,
226                          PAGE_EXECUTE_READWRITE,
227                          old_protection) != FALSE;
228}
229
230static bool RestoreMemoryProtection(
231    uptr address, uptr size, DWORD old_protection) {
232  DWORD unused;
233  return ::VirtualProtect((void*)address, size,
234                          old_protection,
235                          &unused) != FALSE;
236}
237
238static bool IsMemoryPadding(uptr address, uptr size) {
239  u8* function = (u8*)address;
240  for (size_t i = 0; i < size; ++i)
241    if (function[i] != 0x90 && function[i] != 0xCC)
242      return false;
243  return true;
244}
245
246static const u8 kHintNop8Bytes[] = {
247  0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
248};
249
250template<class T>
251static bool FunctionHasPrefix(uptr address, const T &pattern) {
252  u8* function = (u8*)address - sizeof(pattern);
253  for (size_t i = 0; i < sizeof(pattern); ++i)
254    if (function[i] != pattern[i])
255      return false;
256  return true;
257}
258
259static bool FunctionHasPadding(uptr address, uptr size) {
260  if (IsMemoryPadding(address - size, size))
261    return true;
262  if (size <= sizeof(kHintNop8Bytes) &&
263      FunctionHasPrefix(address, kHintNop8Bytes))
264    return true;
265  return false;
266}
267
268static void WritePadding(uptr from, uptr size) {
269  _memset((void*)from, 0xCC, (size_t)size);
270}
271
272static void WriteJumpInstruction(uptr from, uptr target) {
273  if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) {
274    ReportError(
275        "interception_win: cannot write jmp further than 2GB away, from %p to "
276        "%p.\n",
277        (void *)from, (void *)target);
278    InterceptionFailed();
279  }
280  ptrdiff_t offset = target - from - kJumpInstructionLength;
281  *(u8*)from = 0xE9;
282  *(u32*)(from + 1) = offset;
283}
284
285static void WriteShortJumpInstruction(uptr from, uptr target) {
286  sptr offset = target - from - kShortJumpInstructionLength;
287  if (offset < -128 || offset > 127)
288    InterceptionFailed();
289  *(u8*)from = 0xEB;
290  *(u8*)(from + 1) = (u8)offset;
291}
292
293#if SANITIZER_WINDOWS64
294static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
295  // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
296  // offset.
297  // The offset is the distance from then end of the jump instruction to the
298  // memory location containing the targeted address. The displacement is still
299  // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
300  int offset = indirect_target - from - kIndirectJumpInstructionLength;
301  if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
302                            indirect_target)) {
303    ReportError(
304        "interception_win: cannot write indirect jmp with target further than "
305        "2GB away, from %p to %p.\n",
306        (void *)from, (void *)indirect_target);
307    InterceptionFailed();
308  }
309  *(u16*)from = 0x25FF;
310  *(u32*)(from + 2) = offset;
311}
312#endif
313
314static void WriteBranch(
315    uptr from, uptr indirect_target, uptr target) {
316#if SANITIZER_WINDOWS64
317  WriteIndirectJumpInstruction(from, indirect_target);
318  *(u64*)indirect_target = target;
319#else
320  (void)indirect_target;
321  WriteJumpInstruction(from, target);
322#endif
323}
324
325static void WriteDirectBranch(uptr from, uptr target) {
326#if SANITIZER_WINDOWS64
327  // Emit an indirect jump through immediately following bytes:
328  //   jmp [rip + kBranchLength]
329  //   .quad <target>
330  WriteBranch(from, from + kBranchLength, target);
331#else
332  WriteJumpInstruction(from, target);
333#endif
334}
335
336struct TrampolineMemoryRegion {
337  uptr content;
338  uptr allocated_size;
339  uptr max_size;
340};
341
342UNUSED static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
343static const int kMaxTrampolineRegion = 1024;
344static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
345
346static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
347#if SANITIZER_WINDOWS64
348  uptr address = image_address;
349  uptr scanned = 0;
350  while (scanned < kTrampolineScanLimitRange) {
351    MEMORY_BASIC_INFORMATION info;
352    if (!::VirtualQuery((void*)address, &info, sizeof(info)))
353      return nullptr;
354
355    // Check whether a region can be allocated at |address|.
356    if (info.State == MEM_FREE && info.RegionSize >= granularity) {
357      void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
358                                  granularity,
359                                  MEM_RESERVE | MEM_COMMIT,
360                                  PAGE_EXECUTE_READWRITE);
361      return page;
362    }
363
364    // Move to the next region.
365    address = (uptr)info.BaseAddress + info.RegionSize;
366    scanned += info.RegionSize;
367  }
368  return nullptr;
369#else
370  return ::VirtualAlloc(nullptr,
371                        granularity,
372                        MEM_RESERVE | MEM_COMMIT,
373                        PAGE_EXECUTE_READWRITE);
374#endif
375}
376
377// Used by unittests to release mapped memory space.
378void TestOnlyReleaseTrampolineRegions() {
379  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
380    TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
381    if (current->content == 0)
382      return;
383    ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
384    current->content = 0;
385  }
386}
387
388static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
389  // Find a region within 2G with enough space to allocate |size| bytes.
390  TrampolineMemoryRegion *region = nullptr;
391  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
392    TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
393    if (current->content == 0) {
394      // No valid region found, allocate a new region.
395      size_t bucket_size = GetMmapGranularity();
396      void *content = AllocateTrampolineRegion(image_address, bucket_size);
397      if (content == nullptr)
398        return 0U;
399
400      current->content = (uptr)content;
401      current->allocated_size = 0;
402      current->max_size = bucket_size;
403      region = current;
404      break;
405    } else if (current->max_size - current->allocated_size > size) {
406#if SANITIZER_WINDOWS64
407        // In 64-bits, the memory space must be allocated within 2G boundary.
408        uptr next_address = current->content + current->allocated_size;
409        if (next_address < image_address ||
410            next_address - image_address >= 0x7FFF0000)
411          continue;
412#endif
413      // The space can be allocated in the current region.
414      region = current;
415      break;
416    }
417  }
418
419  // Failed to find a region.
420  if (region == nullptr)
421    return 0U;
422
423  // Allocate the space in the current region.
424  uptr allocated_space = region->content + region->allocated_size;
425  region->allocated_size += size;
426  WritePadding(allocated_space, size);
427
428  return allocated_space;
429}
430
431// The following prologues cannot be patched because of the short jump
432// jumping to the patching region.
433
434// Short jump patterns  below are only for x86_64.
435#  if SANITIZER_WINDOWS_x64
436// ntdll!wcslen in Win11
437//   488bc1          mov     rax,rcx
438//   0fb710          movzx   edx,word ptr [rax]
439//   4883c002        add     rax,2
440//   6685d2          test    dx,dx
441//   75f4            jne     -12
442static const u8 kPrologueWithShortJump1[] = {
443    0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
444    0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
445};
446
447// ntdll!strrchr in Win11
448//   4c8bc1          mov     r8,rcx
449//   8a01            mov     al,byte ptr [rcx]
450//   48ffc1          inc     rcx
451//   84c0            test    al,al
452//   75f7            jne     -9
453static const u8 kPrologueWithShortJump2[] = {
454    0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
455    0x84, 0xc0, 0x75, 0xf7,
456};
457#endif
458
459// Returns 0 on error.
460static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
461#if SANITIZER_ARM64
462  // An ARM64 instruction is 4 bytes long.
463  return 4;
464#endif
465
466#  if SANITIZER_WINDOWS_x64
467  if (memcmp((u8*)address, kPrologueWithShortJump1,
468             sizeof(kPrologueWithShortJump1)) == 0 ||
469      memcmp((u8*)address, kPrologueWithShortJump2,
470             sizeof(kPrologueWithShortJump2)) == 0) {
471    return 0;
472  }
473#endif
474
475  switch (*(u64*)address) {
476    case 0x90909090909006EB:  // stub: jmp over 6 x nop.
477      return 8;
478  }
479
480  switch (*(u8*)address) {
481    case 0x90:  // 90 : nop
482      return 1;
483
484    case 0x50:  // push eax / rax
485    case 0x51:  // push ecx / rcx
486    case 0x52:  // push edx / rdx
487    case 0x53:  // push ebx / rbx
488    case 0x54:  // push esp / rsp
489    case 0x55:  // push ebp / rbp
490    case 0x56:  // push esi / rsi
491    case 0x57:  // push edi / rdi
492    case 0x5D:  // pop ebp / rbp
493      return 1;
494
495    case 0x6A:  // 6A XX = push XX
496      return 2;
497
498    case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
499    case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
500      return 5;
501
502    // Cannot overwrite control-instruction. Return 0 to indicate failure.
503    case 0xE9:  // E9 XX XX XX XX : jmp <label>
504    case 0xE8:  // E8 XX XX XX XX : call <func>
505    case 0xC3:  // C3 : ret
506    case 0xEB:  // EB XX : jmp XX (short jump)
507    case 0x70:  // 7Y YY : jy XX (short conditional jump)
508    case 0x71:
509    case 0x72:
510    case 0x73:
511    case 0x74:
512    case 0x75:
513    case 0x76:
514    case 0x77:
515    case 0x78:
516    case 0x79:
517    case 0x7A:
518    case 0x7B:
519    case 0x7C:
520    case 0x7D:
521    case 0x7E:
522    case 0x7F:
523      return 0;
524  }
525
526  switch (*(u16*)(address)) {
527    case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
528    case 0xFF8B:  // 8B FF : mov edi, edi
529    case 0xEC8B:  // 8B EC : mov ebp, esp
530    case 0xc889:  // 89 C8 : mov eax, ecx
531    case 0xE589:  // 89 E5 : mov ebp, esp
532    case 0xC18B:  // 8B C1 : mov eax, ecx
533    case 0xC033:  // 33 C0 : xor eax, eax
534    case 0xC933:  // 33 C9 : xor ecx, ecx
535    case 0xD233:  // 33 D2 : xor edx, edx
536      return 2;
537
538    // Cannot overwrite control-instruction. Return 0 to indicate failure.
539    case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
540      return 0;
541  }
542
543  switch (0x00FFFFFF & *(u32*)address) {
544    case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
545      return 7;
546  }
547
548#  if SANITIZER_WINDOWS_x64
549  switch (*(u8*)address) {
550    case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
551                //   movabs eax, dword ptr ds:[XXXXXXXX]
552      return 9;
553
554    case 0x83:
555      const u8 next_byte = *(u8*)(address + 1);
556      const u8 mod = next_byte >> 6;
557      const u8 rm = next_byte & 7;
558      if (mod == 1 && rm == 4)
559        return 5;  // 83 ModR/M SIB Disp8 Imm8
560                   //   add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
561  }
562
563  switch (*(u16*)address) {
564    case 0x5040:  // push rax
565    case 0x5140:  // push rcx
566    case 0x5240:  // push rdx
567    case 0x5340:  // push rbx
568    case 0x5440:  // push rsp
569    case 0x5540:  // push rbp
570    case 0x5640:  // push rsi
571    case 0x5740:  // push rdi
572    case 0x5441:  // push r12
573    case 0x5541:  // push r13
574    case 0x5641:  // push r14
575    case 0x5741:  // push r15
576    case 0x9066:  // Two-byte NOP
577    case 0xc084:  // test al, al
578    case 0x018a:  // mov al, byte ptr [rcx]
579      return 2;
580
581    case 0x058A:  // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX]
582    case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
583      if (rel_offset)
584        *rel_offset = 2;
585      return 6;
586  }
587
588  switch (0x00FFFFFF & *(u32*)address) {
589    case 0xe58948:    // 48 8b c4 : mov rbp, rsp
590    case 0xc18b48:    // 48 8b c1 : mov rax, rcx
591    case 0xc48b48:    // 48 8b c4 : mov rax, rsp
592    case 0xd9f748:    // 48 f7 d9 : neg rcx
593    case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
594    case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
595    case 0xc98548:    // 48 85 C9 : test rcx, rcx
596    case 0xd28548:    // 48 85 d2 : test rdx, rdx
597    case 0xc0854d:    // 4d 85 c0 : test r8, r8
598    case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
599    case 0xc03345:    // 45 33 c0 : xor r8d, r8d
600    case 0xc93345:    // 45 33 c9 : xor r9d, r9d
601    case 0xdb3345:    // 45 33 DB : xor r11d, r11d
602    case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
603    case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
604    case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
605    case 0xc18b4c:    // 4C 8B C1 : mov r8, rcx
606    case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
607    case 0xca2b48:    // 48 2b ca : sub rcx, rdx
608    case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
609    case 0xc00b4d:    // 3d 0b c0 : or r8, r8
610    case 0xc08b41:    // 41 8b c0 : mov eax, r8d
611    case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
612    case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
613    case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
614    case 0xE0E483:    // 83 E4 E0 : and esp, 0xFFFFFFE0
615      return 3;
616
617    case 0xec8348:    // 48 83 ec XX : sub rsp, XX
618    case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
619    case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
620      return 4;
621
622    case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
623      return 7;
624
625    case 0x058b48:    // 48 8b 05 XX XX XX XX :
626                      //   mov rax, QWORD PTR [rip + XXXXXXXX]
627    case 0x25ff48:    // 48 ff 25 XX XX XX XX :
628                      //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
629    case 0x158D4C:    // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX]
630      // Instructions having offset relative to 'rip' need offset adjustment.
631      if (rel_offset)
632        *rel_offset = 3;
633      return 7;
634
635    case 0x2444c7:    // C7 44 24 XX YY YY YY YY
636                      //   mov dword ptr [rsp + XX], YYYYYYYY
637      return 8;
638  }
639
640  switch (*(u32*)(address)) {
641    case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
642    case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
643    case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
644    case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
645    case 0x247c8948:  // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
646    case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
647    case 0x24548948:  // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
648    case 0x244c894c:  // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
649    case 0x2444894c:  // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
650      return 5;
651    case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
652      return 6;
653  }
654
655#else
656
657  switch (*(u8*)address) {
658    case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
659      return 5;
660  }
661  switch (*(u16*)address) {
662    case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
663    case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
664    case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
665    case 0xEC83:  // 83 EC XX : sub esp, XX
666    case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
667      return 3;
668    case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
669    case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
670      return 6;
671    case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
672      return 7;
673    case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
674      return 4;
675  }
676
677  switch (0x00FFFFFF & *(u32*)address) {
678    case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
679    case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
680    case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
681    case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
682    case 0x245C8B:  // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX]
683    case 0x246C8B:  // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX]
684    case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
685    case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
686      return 4;
687  }
688
689  switch (*(u32*)address) {
690    case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
691      return 5;
692  }
693#endif
694
695  // Unknown instruction! This might happen when we add a new interceptor, use
696  // a new compiler version, or if Windows changed how some functions are
697  // compiled. In either case, we print the address and 8 bytes of instructions
698  // to notify the user about the error and to help identify the unknown
699  // instruction. Don't treat this as a fatal error, though we can break the
700  // debugger if one has been attached.
701  u8 *bytes = (u8 *)address;
702  ReportError(
703      "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x "
704      "%02x %02x %02x\n",
705      (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4],
706      bytes[5], bytes[6], bytes[7]);
707  if (::IsDebuggerPresent())
708    __debugbreak();
709  return 0;
710}
711
712// Returns 0 on error.
713static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
714  size_t cursor = 0;
715  while (cursor < size) {
716    size_t instruction_size = GetInstructionSize(address + cursor);
717    if (!instruction_size)
718      return 0;
719    cursor += instruction_size;
720  }
721  return cursor;
722}
723
724static bool CopyInstructions(uptr to, uptr from, size_t size) {
725  size_t cursor = 0;
726  while (cursor != size) {
727    size_t rel_offset = 0;
728    size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
729    if (!instruction_size)
730      return false;
731    _memcpy((void *)(to + cursor), (void *)(from + cursor),
732            (size_t)instruction_size);
733    if (rel_offset) {
734#  if SANITIZER_WINDOWS64
735      // we want to make sure that the new relative offset still fits in 32-bits
736      // this will be untrue if relocated_offset \notin [-2**31, 2**31)
737      s64 delta = to - from;
738      s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
739      if (-0x8000'0000ll > relocated_offset || relocated_offset > 0x7FFF'FFFFll)
740        return false;
741#  else
742      // on 32-bit, the relative offset will always be correct
743      s32 delta = to - from;
744      s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
745#  endif
746      *(s32 *)(to + cursor + rel_offset) = relocated_offset;
747    }
748    cursor += instruction_size;
749  }
750  return true;
751}
752
753
754#if !SANITIZER_WINDOWS64
755bool OverrideFunctionWithDetour(
756    uptr old_func, uptr new_func, uptr *orig_old_func) {
757  const int kDetourHeaderLen = 5;
758  const u16 kDetourInstruction = 0xFF8B;
759
760  uptr header = (uptr)old_func - kDetourHeaderLen;
761  uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
762
763  // Validate that the function is hookable.
764  if (*(u16*)old_func != kDetourInstruction ||
765      !IsMemoryPadding(header, kDetourHeaderLen))
766    return false;
767
768  // Change memory protection to writable.
769  DWORD protection = 0;
770  if (!ChangeMemoryProtection(header, patch_length, &protection))
771    return false;
772
773  // Write a relative jump to the redirected function.
774  WriteJumpInstruction(header, new_func);
775
776  // Write the short jump to the function prefix.
777  WriteShortJumpInstruction(old_func, header);
778
779  // Restore previous memory protection.
780  if (!RestoreMemoryProtection(header, patch_length, protection))
781    return false;
782
783  if (orig_old_func)
784    *orig_old_func = old_func + kShortJumpInstructionLength;
785
786  return true;
787}
788#endif
789
790bool OverrideFunctionWithRedirectJump(
791    uptr old_func, uptr new_func, uptr *orig_old_func) {
792  // Check whether the first instruction is a relative jump.
793  if (*(u8*)old_func != 0xE9)
794    return false;
795
796  if (orig_old_func) {
797    sptr relative_offset = *(s32 *)(old_func + 1);
798    uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
799    *orig_old_func = absolute_target;
800  }
801
802#if SANITIZER_WINDOWS64
803  // If needed, get memory space for a trampoline jump.
804  uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
805  if (!trampoline)
806    return false;
807  WriteDirectBranch(trampoline, new_func);
808#endif
809
810  // Change memory protection to writable.
811  DWORD protection = 0;
812  if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
813    return false;
814
815  // Write a relative jump to the redirected function.
816  WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
817
818  // Restore previous memory protection.
819  if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
820    return false;
821
822  return true;
823}
824
825bool OverrideFunctionWithHotPatch(
826    uptr old_func, uptr new_func, uptr *orig_old_func) {
827  const int kHotPatchHeaderLen = kBranchLength;
828
829  uptr header = (uptr)old_func - kHotPatchHeaderLen;
830  uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
831
832  // Validate that the function is hot patchable.
833  size_t instruction_size = GetInstructionSize(old_func);
834  if (instruction_size < kShortJumpInstructionLength ||
835      !FunctionHasPadding(old_func, kHotPatchHeaderLen))
836    return false;
837
838  if (orig_old_func) {
839    // Put the needed instructions into the trampoline bytes.
840    uptr trampoline_length = instruction_size + kDirectBranchLength;
841    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
842    if (!trampoline)
843      return false;
844    if (!CopyInstructions(trampoline, old_func, instruction_size))
845      return false;
846    WriteDirectBranch(trampoline + instruction_size,
847                      old_func + instruction_size);
848    *orig_old_func = trampoline;
849  }
850
851  // If needed, get memory space for indirect address.
852  uptr indirect_address = 0;
853#if SANITIZER_WINDOWS64
854  indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
855  if (!indirect_address)
856    return false;
857#endif
858
859  // Change memory protection to writable.
860  DWORD protection = 0;
861  if (!ChangeMemoryProtection(header, patch_length, &protection))
862    return false;
863
864  // Write jumps to the redirected function.
865  WriteBranch(header, indirect_address, new_func);
866  WriteShortJumpInstruction(old_func, header);
867
868  // Restore previous memory protection.
869  if (!RestoreMemoryProtection(header, patch_length, protection))
870    return false;
871
872  return true;
873}
874
875bool OverrideFunctionWithTrampoline(
876    uptr old_func, uptr new_func, uptr *orig_old_func) {
877
878  size_t instructions_length = kBranchLength;
879  size_t padding_length = 0;
880  uptr indirect_address = 0;
881
882  if (orig_old_func) {
883    // Find out the number of bytes of the instructions we need to copy
884    // to the trampoline.
885    instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
886    if (!instructions_length)
887      return false;
888
889    // Put the needed instructions into the trampoline bytes.
890    uptr trampoline_length = instructions_length + kDirectBranchLength;
891    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
892    if (!trampoline)
893      return false;
894    if (!CopyInstructions(trampoline, old_func, instructions_length))
895      return false;
896    WriteDirectBranch(trampoline + instructions_length,
897                      old_func + instructions_length);
898    *orig_old_func = trampoline;
899  }
900
901#if SANITIZER_WINDOWS64
902  // Check if the targeted address can be encoded in the function padding.
903  // Otherwise, allocate it in the trampoline region.
904  if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
905    indirect_address = old_func - kAddressLength;
906    padding_length = kAddressLength;
907  } else {
908    indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
909    if (!indirect_address)
910      return false;
911  }
912#endif
913
914  // Change memory protection to writable.
915  uptr patch_address = old_func - padding_length;
916  uptr patch_length = instructions_length + padding_length;
917  DWORD protection = 0;
918  if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
919    return false;
920
921  // Patch the original function.
922  WriteBranch(old_func, indirect_address, new_func);
923
924  // Restore previous memory protection.
925  if (!RestoreMemoryProtection(patch_address, patch_length, protection))
926    return false;
927
928  return true;
929}
930
931bool OverrideFunction(
932    uptr old_func, uptr new_func, uptr *orig_old_func) {
933#if !SANITIZER_WINDOWS64
934  if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
935    return true;
936#endif
937  if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
938    return true;
939  if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
940    return true;
941  if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
942    return true;
943  return false;
944}
945
946static void **InterestingDLLsAvailable() {
947  static const char *InterestingDLLs[] = {
948    "kernel32.dll",
949    "msvcr100d.dll",      // VS2010
950    "msvcr110d.dll",      // VS2012
951    "msvcr120d.dll",      // VS2013
952    "vcruntime140d.dll",  // VS2015
953    "ucrtbased.dll",      // Universal CRT
954    "msvcr100.dll",       // VS2010
955    "msvcr110.dll",       // VS2012
956    "msvcr120.dll",       // VS2013
957    "vcruntime140.dll",   // VS2015
958    "ucrtbase.dll",       // Universal CRT
959#  if (defined(__MINGW32__) && defined(__i386__))
960    "libc++.dll",     // libc++
961    "libunwind.dll",  // libunwind
962#  endif
963    // NTDLL should go last as it exports some functions that we should
964    // override in the CRT [presumably only used internally].
965    "ntdll.dll",
966    NULL
967  };
968  static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
969  if (!result[0]) {
970    for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
971      if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
972        result[j++] = (void *)h;
973    }
974  }
975  return &result[0];
976}
977
978namespace {
979// Utility for reading loaded PE images.
980template <typename T> class RVAPtr {
981 public:
982  RVAPtr(void *module, uptr rva)
983      : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
984  operator T *() { return ptr_; }
985  T *operator->() { return ptr_; }
986  T *operator++() { return ++ptr_; }
987
988 private:
989  T *ptr_;
990};
991} // namespace
992
993// Internal implementation of GetProcAddress. At least since Windows 8,
994// GetProcAddress appears to initialize DLLs before returning function pointers
995// into them. This is problematic for the sanitizers, because they typically
996// want to intercept malloc *before* MSVCRT initializes. Our internal
997// implementation walks the export list manually without doing initialization.
998uptr InternalGetProcAddress(void *module, const char *func_name) {
999  // Check that the module header is full and present.
1000  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1001  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1002  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
1003      headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
1004      headers->FileHeader.SizeOfOptionalHeader <
1005          sizeof(IMAGE_OPTIONAL_HEADER)) {
1006    return 0;
1007  }
1008
1009  IMAGE_DATA_DIRECTORY *export_directory =
1010      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
1011  if (export_directory->Size == 0)
1012    return 0;
1013  RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
1014                                         export_directory->VirtualAddress);
1015  RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
1016  RVAPtr<DWORD> names(module, exports->AddressOfNames);
1017  RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
1018
1019  for (DWORD i = 0; i < exports->NumberOfNames; i++) {
1020    RVAPtr<char> name(module, names[i]);
1021    if (!strcmp(func_name, name)) {
1022      DWORD index = ordinals[i];
1023      RVAPtr<char> func(module, functions[index]);
1024
1025      // Handle forwarded functions.
1026      DWORD offset = functions[index];
1027      if (offset >= export_directory->VirtualAddress &&
1028          offset < export_directory->VirtualAddress + export_directory->Size) {
1029        // An entry for a forwarded function is a string with the following
1030        // format: "<module> . <function_name>" that is stored into the
1031        // exported directory.
1032        char function_name[256];
1033        size_t funtion_name_length = _strlen(func);
1034        if (funtion_name_length >= sizeof(function_name) - 1)
1035          InterceptionFailed();
1036
1037        _memcpy(function_name, func, funtion_name_length);
1038        function_name[funtion_name_length] = '\0';
1039        char* separator = _strchr(function_name, '.');
1040        if (!separator)
1041          InterceptionFailed();
1042        *separator = '\0';
1043
1044        void* redirected_module = GetModuleHandleA(function_name);
1045        if (!redirected_module)
1046          InterceptionFailed();
1047        return InternalGetProcAddress(redirected_module, separator + 1);
1048      }
1049
1050      return (uptr)(char *)func;
1051    }
1052  }
1053
1054  return 0;
1055}
1056
1057bool OverrideFunction(
1058    const char *func_name, uptr new_func, uptr *orig_old_func) {
1059  bool hooked = false;
1060  void **DLLs = InterestingDLLsAvailable();
1061  for (size_t i = 0; DLLs[i]; ++i) {
1062    uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
1063    if (func_addr &&
1064        OverrideFunction(func_addr, new_func, orig_old_func)) {
1065      hooked = true;
1066    }
1067  }
1068  return hooked;
1069}
1070
1071bool OverrideImportedFunction(const char *module_to_patch,
1072                              const char *imported_module,
1073                              const char *function_name, uptr new_function,
1074                              uptr *orig_old_func) {
1075  HMODULE module = GetModuleHandleA(module_to_patch);
1076  if (!module)
1077    return false;
1078
1079  // Check that the module header is full and present.
1080  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1081  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1082  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
1083      headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
1084      headers->FileHeader.SizeOfOptionalHeader <
1085          sizeof(IMAGE_OPTIONAL_HEADER)) {
1086    return false;
1087  }
1088
1089  IMAGE_DATA_DIRECTORY *import_directory =
1090      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
1091
1092  // Iterate the list of imported DLLs. FirstThunk will be null for the last
1093  // entry.
1094  RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
1095                                          import_directory->VirtualAddress);
1096  for (; imports->FirstThunk != 0; ++imports) {
1097    RVAPtr<const char> modname(module, imports->Name);
1098    if (_stricmp(&*modname, imported_module) == 0)
1099      break;
1100  }
1101  if (imports->FirstThunk == 0)
1102    return false;
1103
1104  // We have two parallel arrays: the import address table (IAT) and the table
1105  // of names. They start out containing the same data, but the loader rewrites
1106  // the IAT to hold imported addresses and leaves the name table in
1107  // OriginalFirstThunk alone.
1108  RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
1109  RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
1110  for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
1111    if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
1112      RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
1113          module, name_table->u1.ForwarderString);
1114      const char *funcname = &import_by_name->Name[0];
1115      if (strcmp(funcname, function_name) == 0)
1116        break;
1117    }
1118  }
1119  if (name_table->u1.Ordinal == 0)
1120    return false;
1121
1122  // Now we have the correct IAT entry. Do the swap. We have to make the page
1123  // read/write first.
1124  if (orig_old_func)
1125    *orig_old_func = iat->u1.AddressOfData;
1126  DWORD old_prot, unused_prot;
1127  if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1128                      &old_prot))
1129    return false;
1130  iat->u1.AddressOfData = new_function;
1131  if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1132    return false;  // Not clear if this failure bothers us.
1133  return true;
1134}
1135
1136}  // namespace __interception
1137
1138#endif  // SANITIZER_APPLE
1139