1//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a basic region store model. In this model, we do have field
10// sensitivity. But we assume nothing about the heap shape. So recursive data
11// structures are largely ignored. Basically we do 1-limiting analysis.
12// Parameter pointers are assumed with no aliasing. Pointee objects of
13// parameters are created lazily.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/ASTMatchers/ASTMatchFinder.h"
20#include "clang/Analysis/Analyses/LiveVariables.h"
21#include "clang/Analysis/AnalysisDeclContext.h"
22#include "clang/Basic/JsonSupport.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include <optional>
34#include <utility>
35
36using namespace clang;
37using namespace ento;
38
39//===----------------------------------------------------------------------===//
40// Representation of binding keys.
41//===----------------------------------------------------------------------===//
42
43namespace {
44class BindingKey {
45public:
46  enum Kind { Default = 0x0, Direct = 0x1 };
47private:
48  enum { Symbolic = 0x2 };
49
50  llvm::PointerIntPair<const MemRegion *, 2> P;
51  uint64_t Data;
52
53  /// Create a key for a binding to region \p r, which has a symbolic offset
54  /// from region \p Base.
55  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
56    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
57    assert(r && Base && "Must have known regions.");
58    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
59  }
60
61  /// Create a key for a binding at \p offset from base region \p r.
62  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
63    : P(r, k), Data(offset) {
64    assert(r && "Must have known regions.");
65    assert(getOffset() == offset && "Failed to store offset");
66    assert((r == r->getBaseRegion() ||
67            isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
68           "Not a base");
69  }
70public:
71
72  bool isDirect() const { return P.getInt() & Direct; }
73  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
74
75  const MemRegion *getRegion() const { return P.getPointer(); }
76  uint64_t getOffset() const {
77    assert(!hasSymbolicOffset());
78    return Data;
79  }
80
81  const SubRegion *getConcreteOffsetRegion() const {
82    assert(hasSymbolicOffset());
83    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
84  }
85
86  const MemRegion *getBaseRegion() const {
87    if (hasSymbolicOffset())
88      return getConcreteOffsetRegion()->getBaseRegion();
89    return getRegion()->getBaseRegion();
90  }
91
92  void Profile(llvm::FoldingSetNodeID& ID) const {
93    ID.AddPointer(P.getOpaqueValue());
94    ID.AddInteger(Data);
95  }
96
97  static BindingKey Make(const MemRegion *R, Kind k);
98
99  bool operator<(const BindingKey &X) const {
100    if (P.getOpaqueValue() < X.P.getOpaqueValue())
101      return true;
102    if (P.getOpaqueValue() > X.P.getOpaqueValue())
103      return false;
104    return Data < X.Data;
105  }
106
107  bool operator==(const BindingKey &X) const {
108    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
109           Data == X.Data;
110  }
111
112  LLVM_DUMP_METHOD void dump() const;
113};
114} // end anonymous namespace
115
116BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
117  const RegionOffset &RO = R->getAsOffset();
118  if (RO.hasSymbolicOffset())
119    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
120
121  return BindingKey(RO.getRegion(), RO.getOffset(), k);
122}
123
124namespace llvm {
125static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
126  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
127      << "\", \"offset\": ";
128
129  if (!K.hasSymbolicOffset())
130    Out << K.getOffset();
131  else
132    Out << "null";
133
134  return Out;
135}
136
137} // namespace llvm
138
139#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
140void BindingKey::dump() const { llvm::errs() << *this; }
141#endif
142
143//===----------------------------------------------------------------------===//
144// Actual Store type.
145//===----------------------------------------------------------------------===//
146
147typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
148typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
149typedef std::pair<BindingKey, SVal> BindingPair;
150
151typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
152        RegionBindings;
153
154namespace {
155class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
156                                 ClusterBindings> {
157  ClusterBindings::Factory *CBFactory;
158
159  // This flag indicates whether the current bindings are within the analysis
160  // that has started from main(). It affects how we perform loads from
161  // global variables that have initializers: if we have observed the
162  // program execution from the start and we know that these variables
163  // have not been overwritten yet, we can be sure that their initializers
164  // are still relevant. This flag never gets changed when the bindings are
165  // updated, so it could potentially be moved into RegionStoreManager
166  // (as if it's the same bindings but a different loading procedure)
167  // however that would have made the manager needlessly stateful.
168  bool IsMainAnalysis;
169
170public:
171  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
172          ParentTy;
173
174  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
175                    const RegionBindings::TreeTy *T,
176                    RegionBindings::TreeTy::Factory *F,
177                    bool IsMainAnalysis)
178      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
179        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
180
181  RegionBindingsRef(const ParentTy &P,
182                    ClusterBindings::Factory &CBFactory,
183                    bool IsMainAnalysis)
184      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
185        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
186
187  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
188    return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
189                             *CBFactory, IsMainAnalysis);
190  }
191
192  RegionBindingsRef remove(key_type_ref K) const {
193    return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
194                             *CBFactory, IsMainAnalysis);
195  }
196
197  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
198
199  RegionBindingsRef addBinding(const MemRegion *R,
200                               BindingKey::Kind k, SVal V) const;
201
202  const SVal *lookup(BindingKey K) const;
203  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
204  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
205
206  RegionBindingsRef removeBinding(BindingKey K);
207
208  RegionBindingsRef removeBinding(const MemRegion *R,
209                                  BindingKey::Kind k);
210
211  RegionBindingsRef removeBinding(const MemRegion *R) {
212    return removeBinding(R, BindingKey::Direct).
213           removeBinding(R, BindingKey::Default);
214  }
215
216  std::optional<SVal> getDirectBinding(const MemRegion *R) const;
217
218  /// getDefaultBinding - Returns an SVal* representing an optional default
219  ///  binding associated with a region and its subregions.
220  std::optional<SVal> getDefaultBinding(const MemRegion *R) const;
221
222  /// Return the internal tree as a Store.
223  Store asStore() const {
224    llvm::PointerIntPair<Store, 1, bool> Ptr = {
225        asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
226    return reinterpret_cast<Store>(Ptr.getOpaqueValue());
227  }
228
229  bool isMainAnalysis() const {
230    return IsMainAnalysis;
231  }
232
233  void printJson(raw_ostream &Out, const char *NL = "\n",
234                 unsigned int Space = 0, bool IsDot = false) const {
235    for (iterator I = begin(), E = end(); I != E; ++I) {
236      // TODO: We might need a .printJson for I.getKey() as well.
237      Indent(Out, Space, IsDot)
238          << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
239          << (const void *)I.getKey() << "\", \"items\": [" << NL;
240
241      ++Space;
242      const ClusterBindings &CB = I.getData();
243      for (ClusterBindings::iterator CI = CB.begin(), CE = CB.end(); CI != CE;
244           ++CI) {
245        Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
246        CI.getData().printJson(Out, /*AddQuotes=*/true);
247        Out << " }";
248        if (std::next(CI) != CE)
249          Out << ',';
250        Out << NL;
251      }
252
253      --Space;
254      Indent(Out, Space, IsDot) << "]}";
255      if (std::next(I) != E)
256        Out << ',';
257      Out << NL;
258    }
259  }
260
261  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
262};
263} // end anonymous namespace
264
265typedef const RegionBindingsRef& RegionBindingsConstRef;
266
267std::optional<SVal>
268RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
269  const SVal *V = lookup(R, BindingKey::Direct);
270  return V ? std::optional<SVal>(*V) : std::nullopt;
271}
272
273std::optional<SVal>
274RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
275  const SVal *V = lookup(R, BindingKey::Default);
276  return V ? std::optional<SVal>(*V) : std::nullopt;
277}
278
279RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
280  const MemRegion *Base = K.getBaseRegion();
281
282  const ClusterBindings *ExistingCluster = lookup(Base);
283  ClusterBindings Cluster =
284      (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
285
286  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
287  return add(Base, NewCluster);
288}
289
290
291RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
292                                                BindingKey::Kind k,
293                                                SVal V) const {
294  return addBinding(BindingKey::Make(R, k), V);
295}
296
297const SVal *RegionBindingsRef::lookup(BindingKey K) const {
298  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
299  if (!Cluster)
300    return nullptr;
301  return Cluster->lookup(K);
302}
303
304const SVal *RegionBindingsRef::lookup(const MemRegion *R,
305                                      BindingKey::Kind k) const {
306  return lookup(BindingKey::Make(R, k));
307}
308
309RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
310  const MemRegion *Base = K.getBaseRegion();
311  const ClusterBindings *Cluster = lookup(Base);
312  if (!Cluster)
313    return *this;
314
315  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
316  if (NewCluster.isEmpty())
317    return remove(Base);
318  return add(Base, NewCluster);
319}
320
321RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
322                                                BindingKey::Kind k){
323  return removeBinding(BindingKey::Make(R, k));
324}
325
326//===----------------------------------------------------------------------===//
327// Main RegionStore logic.
328//===----------------------------------------------------------------------===//
329
330namespace {
331class InvalidateRegionsWorker;
332
333class RegionStoreManager : public StoreManager {
334public:
335  RegionBindings::Factory RBFactory;
336  mutable ClusterBindings::Factory CBFactory;
337
338  typedef std::vector<SVal> SValListTy;
339private:
340  typedef llvm::DenseMap<const LazyCompoundValData *,
341                         SValListTy> LazyBindingsMapTy;
342  LazyBindingsMapTy LazyBindingsMap;
343
344  /// The largest number of fields a struct can have and still be
345  /// considered "small".
346  ///
347  /// This is currently used to decide whether or not it is worth "forcing" a
348  /// LazyCompoundVal on bind.
349  ///
350  /// This is controlled by 'region-store-small-struct-limit' option.
351  /// To disable all small-struct-dependent behavior, set the option to "0".
352  unsigned SmallStructLimit;
353
354  /// The largest number of element an array can have and still be
355  /// considered "small".
356  ///
357  /// This is currently used to decide whether or not it is worth "forcing" a
358  /// LazyCompoundVal on bind.
359  ///
360  /// This is controlled by 'region-store-small-struct-limit' option.
361  /// To disable all small-struct-dependent behavior, set the option to "0".
362  unsigned SmallArrayLimit;
363
364  /// A helper used to populate the work list with the given set of
365  /// regions.
366  void populateWorkList(InvalidateRegionsWorker &W,
367                        ArrayRef<SVal> Values,
368                        InvalidatedRegions *TopLevelRegions);
369
370public:
371  RegionStoreManager(ProgramStateManager &mgr)
372      : StoreManager(mgr), RBFactory(mgr.getAllocator()),
373        CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) {
374    ExprEngine &Eng = StateMgr.getOwningEngine();
375    AnalyzerOptions &Options = Eng.getAnalysisManager().options;
376    SmallStructLimit = Options.RegionStoreSmallStructLimit;
377    SmallArrayLimit = Options.RegionStoreSmallArrayLimit;
378  }
379
380  /// setImplicitDefaultValue - Set the default binding for the provided
381  ///  MemRegion to the value implicitly defined for compound literals when
382  ///  the value is not specified.
383  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
384                                            const MemRegion *R, QualType T);
385
386  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
387  ///  type.  'Array' represents the lvalue of the array being decayed
388  ///  to a pointer, and the returned SVal represents the decayed
389  ///  version of that lvalue (i.e., a pointer to the first element of
390  ///  the array).  This is called by ExprEngine when evaluating
391  ///  casts from arrays to pointers.
392  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
393
394  /// Creates the Store that correctly represents memory contents before
395  /// the beginning of the analysis of the given top-level stack frame.
396  StoreRef getInitialStore(const LocationContext *InitLoc) override {
397    bool IsMainAnalysis = false;
398    if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
399      IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
400    return StoreRef(RegionBindingsRef(
401        RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
402        CBFactory, IsMainAnalysis).asStore(), *this);
403  }
404
405  //===-------------------------------------------------------------------===//
406  // Binding values to regions.
407  //===-------------------------------------------------------------------===//
408  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
409                                           const Expr *Ex,
410                                           unsigned Count,
411                                           const LocationContext *LCtx,
412                                           RegionBindingsRef B,
413                                           InvalidatedRegions *Invalidated);
414
415  StoreRef invalidateRegions(Store store,
416                             ArrayRef<SVal> Values,
417                             const Expr *E, unsigned Count,
418                             const LocationContext *LCtx,
419                             const CallEvent *Call,
420                             InvalidatedSymbols &IS,
421                             RegionAndSymbolInvalidationTraits &ITraits,
422                             InvalidatedRegions *Invalidated,
423                             InvalidatedRegions *InvalidatedTopLevel) override;
424
425  bool scanReachableSymbols(Store S, const MemRegion *R,
426                            ScanReachableSymbols &Callbacks) override;
427
428  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
429                                            const SubRegion *R);
430  std::optional<SVal>
431  getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
432                                          const ElementRegion *R);
433  std::optional<SVal>
434  getSValFromInitListExpr(const InitListExpr *ILE,
435                          const SmallVector<uint64_t, 2> &ConcreteOffsets,
436                          QualType ElemT);
437  SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
438                                QualType ElemT);
439
440public: // Part of public interface to class.
441
442  StoreRef Bind(Store store, Loc LV, SVal V) override {
443    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
444  }
445
446  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
447
448  // BindDefaultInitial is only used to initialize a region with
449  // a default value.
450  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
451                              SVal V) override {
452    RegionBindingsRef B = getRegionBindings(store);
453    // Use other APIs when you have to wipe the region that was initialized
454    // earlier.
455    assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
456           "Double initialization!");
457    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
458    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
459  }
460
461  // BindDefaultZero is used for zeroing constructors that may accidentally
462  // overwrite existing bindings.
463  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
464    // FIXME: The offsets of empty bases can be tricky because of
465    // of the so called "empty base class optimization".
466    // If a base class has been optimized out
467    // we should not try to create a binding, otherwise we should.
468    // Unfortunately, at the moment ASTRecordLayout doesn't expose
469    // the actual sizes of the empty bases
470    // and trying to infer them from offsets/alignments
471    // seems to be error-prone and non-trivial because of the trailing padding.
472    // As a temporary mitigation we don't create bindings for empty bases.
473    if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
474      if (BR->getDecl()->isEmpty())
475        return StoreRef(store, *this);
476
477    RegionBindingsRef B = getRegionBindings(store);
478    SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
479    B = removeSubRegionBindings(B, cast<SubRegion>(R));
480    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
481    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
482  }
483
484  /// Attempt to extract the fields of \p LCV and bind them to the struct region
485  /// \p R.
486  ///
487  /// This path is used when it seems advantageous to "force" loading the values
488  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
489  /// than using a Default binding at the base of the entire region. This is a
490  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
491  ///
492  /// \returns The updated store bindings, or \c std::nullopt if binding
493  ///          non-lazily would be too expensive.
494  std::optional<RegionBindingsRef>
495  tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R,
496                     const RecordDecl *RD, nonloc::LazyCompoundVal LCV);
497
498  /// BindStruct - Bind a compound value to a structure.
499  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
500                               const TypedValueRegion* R, SVal V);
501
502  /// BindVector - Bind a compound value to a vector.
503  RegionBindingsRef bindVector(RegionBindingsConstRef B,
504                               const TypedValueRegion* R, SVal V);
505
506  std::optional<RegionBindingsRef>
507  tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R,
508                    const ArrayType *AT, nonloc::LazyCompoundVal LCV);
509
510  RegionBindingsRef bindArray(RegionBindingsConstRef B,
511                              const TypedValueRegion* R,
512                              SVal V);
513
514  /// Clears out all bindings in the given region and assigns a new value
515  /// as a Default binding.
516  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
517                                  const TypedRegion *R,
518                                  SVal DefaultVal);
519
520  /// Create a new store with the specified binding removed.
521  /// \param ST the original store, that is the basis for the new store.
522  /// \param L the location whose binding should be removed.
523  StoreRef killBinding(Store ST, Loc L) override;
524
525  void incrementReferenceCount(Store store) override {
526    getRegionBindings(store).manualRetain();
527  }
528
529  /// If the StoreManager supports it, decrement the reference count of
530  /// the specified Store object.  If the reference count hits 0, the memory
531  /// associated with the object is recycled.
532  void decrementReferenceCount(Store store) override {
533    getRegionBindings(store).manualRelease();
534  }
535
536  bool includedInBindings(Store store, const MemRegion *region) const override;
537
538  /// Return the value bound to specified location in a given state.
539  ///
540  /// The high level logic for this method is this:
541  /// getBinding (L)
542  ///   if L has binding
543  ///     return L's binding
544  ///   else if L is in killset
545  ///     return unknown
546  ///   else
547  ///     if L is on stack or heap
548  ///       return undefined
549  ///     else
550  ///       return symbolic
551  SVal getBinding(Store S, Loc L, QualType T) override {
552    return getBinding(getRegionBindings(S), L, T);
553  }
554
555  std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
556    RegionBindingsRef B = getRegionBindings(S);
557    // Default bindings are always applied over a base region so look up the
558    // base region's default binding, otherwise the lookup will fail when R
559    // is at an offset from R->getBaseRegion().
560    return B.getDefaultBinding(R->getBaseRegion());
561  }
562
563  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
564
565  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
566
567  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
568
569  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
570
571  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
572
573  SVal getBindingForLazySymbol(const TypedValueRegion *R);
574
575  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
576                                         const TypedValueRegion *R,
577                                         QualType Ty);
578
579  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
580                      RegionBindingsRef LazyBinding);
581
582  /// Get bindings for the values in a struct and return a CompoundVal, used
583  /// when doing struct copy:
584  /// struct s x, y;
585  /// x = y;
586  /// y's value is retrieved by this method.
587  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
588  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
589  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
590
591  /// Used to lazily generate derived symbols for bindings that are defined
592  /// implicitly by default bindings in a super region.
593  ///
594  /// Note that callers may need to specially handle LazyCompoundVals, which
595  /// are returned as is in case the caller needs to treat them differently.
596  std::optional<SVal>
597  getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
598                                   const MemRegion *superR,
599                                   const TypedValueRegion *R, QualType Ty);
600
601  /// Get the state and region whose binding this region \p R corresponds to.
602  ///
603  /// If there is no lazy binding for \p R, the returned value will have a null
604  /// \c second. Note that a null pointer can represents a valid Store.
605  std::pair<Store, const SubRegion *>
606  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
607                  const SubRegion *originalRegion);
608
609  /// Returns the cached set of interesting SVals contained within a lazy
610  /// binding.
611  ///
612  /// The precise value of "interesting" is determined for the purposes of
613  /// RegionStore's internal analysis. It must always contain all regions and
614  /// symbols, but may omit constants and other kinds of SVal.
615  ///
616  /// In contrast to compound values, LazyCompoundVals are also added
617  /// to the 'interesting values' list in addition to the child interesting
618  /// values.
619  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
620
621  //===------------------------------------------------------------------===//
622  // State pruning.
623  //===------------------------------------------------------------------===//
624
625  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
626  ///  It returns a new Store with these values removed.
627  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
628                              SymbolReaper& SymReaper) override;
629
630  //===------------------------------------------------------------------===//
631  // Utility methods.
632  //===------------------------------------------------------------------===//
633
634  RegionBindingsRef getRegionBindings(Store store) const {
635    llvm::PointerIntPair<Store, 1, bool> Ptr;
636    Ptr.setFromOpaqueValue(const_cast<void *>(store));
637    return RegionBindingsRef(
638        CBFactory,
639        static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
640        RBFactory.getTreeFactory(),
641        Ptr.getInt());
642  }
643
644  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
645                 unsigned int Space = 0, bool IsDot = false) const override;
646
647  void iterBindings(Store store, BindingsHandler& f) override {
648    RegionBindingsRef B = getRegionBindings(store);
649    for (const auto &[Region, Cluster] : B) {
650      for (const auto &[Key, Value] : Cluster) {
651        if (!Key.isDirect())
652          continue;
653        if (const SubRegion *R = dyn_cast<SubRegion>(Key.getRegion())) {
654          // FIXME: Possibly incorporate the offset?
655          if (!f.HandleBinding(*this, store, R, Value))
656            return;
657        }
658      }
659    }
660  }
661};
662
663} // end anonymous namespace
664
665//===----------------------------------------------------------------------===//
666// RegionStore creation.
667//===----------------------------------------------------------------------===//
668
669std::unique_ptr<StoreManager>
670ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
671  return std::make_unique<RegionStoreManager>(StMgr);
672}
673
674//===----------------------------------------------------------------------===//
675// Region Cluster analysis.
676//===----------------------------------------------------------------------===//
677
678namespace {
679/// Used to determine which global regions are automatically included in the
680/// initial worklist of a ClusterAnalysis.
681enum GlobalsFilterKind {
682  /// Don't include any global regions.
683  GFK_None,
684  /// Only include system globals.
685  GFK_SystemOnly,
686  /// Include all global regions.
687  GFK_All
688};
689
690template <typename DERIVED>
691class ClusterAnalysis  {
692protected:
693  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
694  typedef const MemRegion * WorkListElement;
695  typedef SmallVector<WorkListElement, 10> WorkList;
696
697  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
698
699  WorkList WL;
700
701  RegionStoreManager &RM;
702  ASTContext &Ctx;
703  SValBuilder &svalBuilder;
704
705  RegionBindingsRef B;
706
707
708protected:
709  const ClusterBindings *getCluster(const MemRegion *R) {
710    return B.lookup(R);
711  }
712
713  /// Returns true if all clusters in the given memspace should be initially
714  /// included in the cluster analysis. Subclasses may provide their
715  /// own implementation.
716  bool includeEntireMemorySpace(const MemRegion *Base) {
717    return false;
718  }
719
720public:
721  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
722                  RegionBindingsRef b)
723      : RM(rm), Ctx(StateMgr.getContext()),
724        svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
725
726  RegionBindingsRef getRegionBindings() const { return B; }
727
728  bool isVisited(const MemRegion *R) {
729    return Visited.count(getCluster(R));
730  }
731
732  void GenerateClusters() {
733    // Scan the entire set of bindings and record the region clusters.
734    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
735         RI != RE; ++RI){
736      const MemRegion *Base = RI.getKey();
737
738      const ClusterBindings &Cluster = RI.getData();
739      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
740      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
741
742      // If the base's memspace should be entirely invalidated, add the cluster
743      // to the workspace up front.
744      if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
745        AddToWorkList(WorkListElement(Base), &Cluster);
746    }
747  }
748
749  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
750    if (C && !Visited.insert(C).second)
751      return false;
752    WL.push_back(E);
753    return true;
754  }
755
756  bool AddToWorkList(const MemRegion *R) {
757    return static_cast<DERIVED*>(this)->AddToWorkList(R);
758  }
759
760  void RunWorkList() {
761    while (!WL.empty()) {
762      WorkListElement E = WL.pop_back_val();
763      const MemRegion *BaseR = E;
764
765      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
766    }
767  }
768
769  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
770  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
771
772  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
773                    bool Flag) {
774    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
775  }
776};
777}
778
779//===----------------------------------------------------------------------===//
780// Binding invalidation.
781//===----------------------------------------------------------------------===//
782
783bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
784                                              ScanReachableSymbols &Callbacks) {
785  assert(R == R->getBaseRegion() && "Should only be called for base regions");
786  RegionBindingsRef B = getRegionBindings(S);
787  const ClusterBindings *Cluster = B.lookup(R);
788
789  if (!Cluster)
790    return true;
791
792  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
793       RI != RE; ++RI) {
794    if (!Callbacks.scan(RI.getData()))
795      return false;
796  }
797
798  return true;
799}
800
801static inline bool isUnionField(const FieldRegion *FR) {
802  return FR->getDecl()->getParent()->isUnion();
803}
804
805typedef SmallVector<const FieldDecl *, 8> FieldVector;
806
807static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
808  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
809
810  const MemRegion *Base = K.getConcreteOffsetRegion();
811  const MemRegion *R = K.getRegion();
812
813  while (R != Base) {
814    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
815      if (!isUnionField(FR))
816        Fields.push_back(FR->getDecl());
817
818    R = cast<SubRegion>(R)->getSuperRegion();
819  }
820}
821
822static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
823  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
824
825  if (Fields.empty())
826    return true;
827
828  FieldVector FieldsInBindingKey;
829  getSymbolicOffsetFields(K, FieldsInBindingKey);
830
831  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
832  if (Delta >= 0)
833    return std::equal(FieldsInBindingKey.begin() + Delta,
834                      FieldsInBindingKey.end(),
835                      Fields.begin());
836  else
837    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
838                      Fields.begin() - Delta);
839}
840
841/// Collects all bindings in \p Cluster that may refer to bindings within
842/// \p Top.
843///
844/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
845/// \c second is the value (an SVal).
846///
847/// The \p IncludeAllDefaultBindings parameter specifies whether to include
848/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
849/// an aggregate within a larger aggregate with a default binding.
850static void
851collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
852                         SValBuilder &SVB, const ClusterBindings &Cluster,
853                         const SubRegion *Top, BindingKey TopKey,
854                         bool IncludeAllDefaultBindings) {
855  FieldVector FieldsInSymbolicSubregions;
856  if (TopKey.hasSymbolicOffset()) {
857    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
858    Top = TopKey.getConcreteOffsetRegion();
859    TopKey = BindingKey::Make(Top, BindingKey::Default);
860  }
861
862  // Find the length (in bits) of the region being invalidated.
863  uint64_t Length = UINT64_MAX;
864  SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
865  if (std::optional<nonloc::ConcreteInt> ExtentCI =
866          Extent.getAs<nonloc::ConcreteInt>()) {
867    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
868    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
869    // Extents are in bytes but region offsets are in bits. Be careful!
870    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
871  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
872    if (FR->getDecl()->isBitField())
873      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
874  }
875
876  for (const auto &StoreEntry : Cluster) {
877    BindingKey NextKey = StoreEntry.first;
878    if (NextKey.getRegion() == TopKey.getRegion()) {
879      // FIXME: This doesn't catch the case where we're really invalidating a
880      // region with a symbolic offset. Example:
881      //      R: points[i].y
882      //   Next: points[0].x
883
884      if (NextKey.getOffset() > TopKey.getOffset() &&
885          NextKey.getOffset() - TopKey.getOffset() < Length) {
886        // Case 1: The next binding is inside the region we're invalidating.
887        // Include it.
888        Bindings.push_back(StoreEntry);
889
890      } else if (NextKey.getOffset() == TopKey.getOffset()) {
891        // Case 2: The next binding is at the same offset as the region we're
892        // invalidating. In this case, we need to leave default bindings alone,
893        // since they may be providing a default value for a regions beyond what
894        // we're invalidating.
895        // FIXME: This is probably incorrect; consider invalidating an outer
896        // struct whose first field is bound to a LazyCompoundVal.
897        if (IncludeAllDefaultBindings || NextKey.isDirect())
898          Bindings.push_back(StoreEntry);
899      }
900
901    } else if (NextKey.hasSymbolicOffset()) {
902      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
903      if (Top->isSubRegionOf(Base) && Top != Base) {
904        // Case 3: The next key is symbolic and we just changed something within
905        // its concrete region. We don't know if the binding is still valid, so
906        // we'll be conservative and include it.
907        if (IncludeAllDefaultBindings || NextKey.isDirect())
908          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
909            Bindings.push_back(StoreEntry);
910      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
911        // Case 4: The next key is symbolic, but we changed a known
912        // super-region. In this case the binding is certainly included.
913        if (BaseSR->isSubRegionOf(Top))
914          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
915            Bindings.push_back(StoreEntry);
916      }
917    }
918  }
919}
920
921static void
922collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
923                         SValBuilder &SVB, const ClusterBindings &Cluster,
924                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
925  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
926                           BindingKey::Make(Top, BindingKey::Default),
927                           IncludeAllDefaultBindings);
928}
929
930RegionBindingsRef
931RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
932                                            const SubRegion *Top) {
933  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
934  const MemRegion *ClusterHead = TopKey.getBaseRegion();
935
936  if (Top == ClusterHead) {
937    // We can remove an entire cluster's bindings all in one go.
938    return B.remove(Top);
939  }
940
941  const ClusterBindings *Cluster = B.lookup(ClusterHead);
942  if (!Cluster) {
943    // If we're invalidating a region with a symbolic offset, we need to make
944    // sure we don't treat the base region as uninitialized anymore.
945    if (TopKey.hasSymbolicOffset()) {
946      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
947      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
948    }
949    return B;
950  }
951
952  SmallVector<BindingPair, 32> Bindings;
953  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
954                           /*IncludeAllDefaultBindings=*/false);
955
956  ClusterBindingsRef Result(*Cluster, CBFactory);
957  for (BindingKey Key : llvm::make_first_range(Bindings))
958    Result = Result.remove(Key);
959
960  // If we're invalidating a region with a symbolic offset, we need to make sure
961  // we don't treat the base region as uninitialized anymore.
962  // FIXME: This isn't very precise; see the example in
963  // collectSubRegionBindings.
964  if (TopKey.hasSymbolicOffset()) {
965    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
966    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
967                        UnknownVal());
968  }
969
970  if (Result.isEmpty())
971    return B.remove(ClusterHead);
972  return B.add(ClusterHead, Result.asImmutableMap());
973}
974
975namespace {
976class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
977{
978  const Expr *Ex;
979  unsigned Count;
980  const LocationContext *LCtx;
981  InvalidatedSymbols &IS;
982  RegionAndSymbolInvalidationTraits &ITraits;
983  StoreManager::InvalidatedRegions *Regions;
984  GlobalsFilterKind GlobalsFilter;
985public:
986  InvalidateRegionsWorker(RegionStoreManager &rm,
987                          ProgramStateManager &stateMgr,
988                          RegionBindingsRef b,
989                          const Expr *ex, unsigned count,
990                          const LocationContext *lctx,
991                          InvalidatedSymbols &is,
992                          RegionAndSymbolInvalidationTraits &ITraitsIn,
993                          StoreManager::InvalidatedRegions *r,
994                          GlobalsFilterKind GFK)
995     : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
996       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
997       GlobalsFilter(GFK) {}
998
999  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1000  void VisitBinding(SVal V);
1001
1002  using ClusterAnalysis::AddToWorkList;
1003
1004  bool AddToWorkList(const MemRegion *R);
1005
1006  /// Returns true if all clusters in the memory space for \p Base should be
1007  /// be invalidated.
1008  bool includeEntireMemorySpace(const MemRegion *Base);
1009
1010  /// Returns true if the memory space of the given region is one of the global
1011  /// regions specially included at the start of invalidation.
1012  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1013};
1014}
1015
1016bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1017  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1018      R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1019  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1020  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1021}
1022
1023void InvalidateRegionsWorker::VisitBinding(SVal V) {
1024  // A symbol?  Mark it touched by the invalidation.
1025  if (SymbolRef Sym = V.getAsSymbol())
1026    IS.insert(Sym);
1027
1028  if (const MemRegion *R = V.getAsRegion()) {
1029    AddToWorkList(R);
1030    return;
1031  }
1032
1033  // Is it a LazyCompoundVal?  All references get invalidated as well.
1034  if (std::optional<nonloc::LazyCompoundVal> LCS =
1035          V.getAs<nonloc::LazyCompoundVal>()) {
1036
1037    // `getInterestingValues()` returns SVals contained within LazyCompoundVals,
1038    // so there is no need to visit them.
1039    for (SVal V : RM.getInterestingValues(*LCS))
1040      if (!isa<nonloc::LazyCompoundVal>(V))
1041        VisitBinding(V);
1042
1043    return;
1044  }
1045}
1046
1047void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1048                                           const ClusterBindings *C) {
1049
1050  bool PreserveRegionsContents =
1051      ITraits.hasTrait(baseR,
1052                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1053
1054  if (C) {
1055    for (SVal Val : llvm::make_second_range(*C))
1056      VisitBinding(Val);
1057
1058    // Invalidate regions contents.
1059    if (!PreserveRegionsContents)
1060      B = B.remove(baseR);
1061  }
1062
1063  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1064    if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1065
1066      // Lambdas can affect all static local variables without explicitly
1067      // capturing those.
1068      // We invalidate all static locals referenced inside the lambda body.
1069      if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1070        using namespace ast_matchers;
1071
1072        const char *DeclBind = "DeclBind";
1073        StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1074              to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1075        auto Matches =
1076            match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1077                  RD->getASTContext());
1078
1079        for (BoundNodes &Match : Matches) {
1080          auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1081          const VarRegion *ToInvalidate =
1082              RM.getRegionManager().getVarRegion(VD, LCtx);
1083          AddToWorkList(ToInvalidate);
1084        }
1085      }
1086    }
1087  }
1088
1089  // BlockDataRegion?  If so, invalidate captured variables that are passed
1090  // by reference.
1091  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1092    for (auto Var : BR->referenced_vars()) {
1093      const VarRegion *VR = Var.getCapturedRegion();
1094      const VarDecl *VD = VR->getDecl();
1095      if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1096        AddToWorkList(VR);
1097      }
1098      else if (Loc::isLocType(VR->getValueType())) {
1099        // Map the current bindings to a Store to retrieve the value
1100        // of the binding.  If that binding itself is a region, we should
1101        // invalidate that region.  This is because a block may capture
1102        // a pointer value, but the thing pointed by that pointer may
1103        // get invalidated.
1104        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1105        if (std::optional<Loc> L = V.getAs<Loc>()) {
1106          if (const MemRegion *LR = L->getAsRegion())
1107            AddToWorkList(LR);
1108        }
1109      }
1110    }
1111    return;
1112  }
1113
1114  // Symbolic region?
1115  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1116    IS.insert(SR->getSymbol());
1117
1118  // Nothing else should be done in the case when we preserve regions context.
1119  if (PreserveRegionsContents)
1120    return;
1121
1122  // Otherwise, we have a normal data region. Record that we touched the region.
1123  if (Regions)
1124    Regions->push_back(baseR);
1125
1126  if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1127    // Invalidate the region by setting its default value to
1128    // conjured symbol. The type of the symbol is irrelevant.
1129    DefinedOrUnknownSVal V =
1130      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1131    B = B.addBinding(baseR, BindingKey::Default, V);
1132    return;
1133  }
1134
1135  if (!baseR->isBoundable())
1136    return;
1137
1138  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1139  QualType T = TR->getValueType();
1140
1141  if (isInitiallyIncludedGlobalRegion(baseR)) {
1142    // If the region is a global and we are invalidating all globals,
1143    // erasing the entry is good enough.  This causes all globals to be lazily
1144    // symbolicated from the same base symbol.
1145    return;
1146  }
1147
1148  if (T->isRecordType()) {
1149    // Invalidate the region by setting its default value to
1150    // conjured symbol. The type of the symbol is irrelevant.
1151    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1152                                                          Ctx.IntTy, Count);
1153    B = B.addBinding(baseR, BindingKey::Default, V);
1154    return;
1155  }
1156
1157  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1158    bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1159        baseR,
1160        RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1161
1162    if (doNotInvalidateSuperRegion) {
1163      // We are not doing blank invalidation of the whole array region so we
1164      // have to manually invalidate each elements.
1165      std::optional<uint64_t> NumElements;
1166
1167      // Compute lower and upper offsets for region within array.
1168      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1169        NumElements = CAT->getSize().getZExtValue();
1170      if (!NumElements) // We are not dealing with a constant size array
1171        goto conjure_default;
1172      QualType ElementTy = AT->getElementType();
1173      uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1174      const RegionOffset &RO = baseR->getAsOffset();
1175      const MemRegion *SuperR = baseR->getBaseRegion();
1176      if (RO.hasSymbolicOffset()) {
1177        // If base region has a symbolic offset,
1178        // we revert to invalidating the super region.
1179        if (SuperR)
1180          AddToWorkList(SuperR);
1181        goto conjure_default;
1182      }
1183
1184      uint64_t LowerOffset = RO.getOffset();
1185      uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1186      bool UpperOverflow = UpperOffset < LowerOffset;
1187
1188      // Invalidate regions which are within array boundaries,
1189      // or have a symbolic offset.
1190      if (!SuperR)
1191        goto conjure_default;
1192
1193      const ClusterBindings *C = B.lookup(SuperR);
1194      if (!C)
1195        goto conjure_default;
1196
1197      for (const auto &[BK, V] : *C) {
1198        std::optional<uint64_t> ROffset =
1199            BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset();
1200
1201        // Check offset is not symbolic and within array's boundaries.
1202        // Handles arrays of 0 elements and of 0-sized elements as well.
1203        if (!ROffset ||
1204            ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1205             (UpperOverflow &&
1206              (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1207             (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1208          B = B.removeBinding(BK);
1209          // Bound symbolic regions need to be invalidated for dead symbol
1210          // detection.
1211          const MemRegion *R = V.getAsRegion();
1212          if (isa_and_nonnull<SymbolicRegion>(R))
1213            VisitBinding(V);
1214        }
1215      }
1216    }
1217  conjure_default:
1218      // Set the default value of the array to conjured symbol.
1219    DefinedOrUnknownSVal V =
1220    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1221                                     AT->getElementType(), Count);
1222    B = B.addBinding(baseR, BindingKey::Default, V);
1223    return;
1224  }
1225
1226  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1227                                                        T,Count);
1228  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1229  B = B.addBinding(baseR, BindingKey::Direct, V);
1230}
1231
1232bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1233    const MemRegion *R) {
1234  switch (GlobalsFilter) {
1235  case GFK_None:
1236    return false;
1237  case GFK_SystemOnly:
1238    return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1239  case GFK_All:
1240    return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1241  }
1242
1243  llvm_unreachable("unknown globals filter");
1244}
1245
1246bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1247  if (isInitiallyIncludedGlobalRegion(Base))
1248    return true;
1249
1250  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1251  return ITraits.hasTrait(MemSpace,
1252                          RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1253}
1254
1255RegionBindingsRef
1256RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1257                                           const Expr *Ex,
1258                                           unsigned Count,
1259                                           const LocationContext *LCtx,
1260                                           RegionBindingsRef B,
1261                                           InvalidatedRegions *Invalidated) {
1262  // Bind the globals memory space to a new symbol that we will use to derive
1263  // the bindings for all globals.
1264  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1265  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1266                                        /* type does not matter */ Ctx.IntTy,
1267                                        Count);
1268
1269  B = B.removeBinding(GS)
1270       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1271
1272  // Even if there are no bindings in the global scope, we still need to
1273  // record that we touched it.
1274  if (Invalidated)
1275    Invalidated->push_back(GS);
1276
1277  return B;
1278}
1279
1280void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1281                                          ArrayRef<SVal> Values,
1282                                          InvalidatedRegions *TopLevelRegions) {
1283  for (SVal V : Values) {
1284    if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
1285      for (SVal S : getInterestingValues(*LCS))
1286        if (const MemRegion *R = S.getAsRegion())
1287          W.AddToWorkList(R);
1288
1289      continue;
1290    }
1291
1292    if (const MemRegion *R = V.getAsRegion()) {
1293      if (TopLevelRegions)
1294        TopLevelRegions->push_back(R);
1295      W.AddToWorkList(R);
1296      continue;
1297    }
1298  }
1299}
1300
1301StoreRef
1302RegionStoreManager::invalidateRegions(Store store,
1303                                     ArrayRef<SVal> Values,
1304                                     const Expr *Ex, unsigned Count,
1305                                     const LocationContext *LCtx,
1306                                     const CallEvent *Call,
1307                                     InvalidatedSymbols &IS,
1308                                     RegionAndSymbolInvalidationTraits &ITraits,
1309                                     InvalidatedRegions *TopLevelRegions,
1310                                     InvalidatedRegions *Invalidated) {
1311  GlobalsFilterKind GlobalsFilter;
1312  if (Call) {
1313    if (Call->isInSystemHeader())
1314      GlobalsFilter = GFK_SystemOnly;
1315    else
1316      GlobalsFilter = GFK_All;
1317  } else {
1318    GlobalsFilter = GFK_None;
1319  }
1320
1321  RegionBindingsRef B = getRegionBindings(store);
1322  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1323                            Invalidated, GlobalsFilter);
1324
1325  // Scan the bindings and generate the clusters.
1326  W.GenerateClusters();
1327
1328  // Add the regions to the worklist.
1329  populateWorkList(W, Values, TopLevelRegions);
1330
1331  W.RunWorkList();
1332
1333  // Return the new bindings.
1334  B = W.getRegionBindings();
1335
1336  // For calls, determine which global regions should be invalidated and
1337  // invalidate them. (Note that function-static and immutable globals are never
1338  // invalidated by this.)
1339  // TODO: This could possibly be more precise with modules.
1340  switch (GlobalsFilter) {
1341  case GFK_All:
1342    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1343                               Ex, Count, LCtx, B, Invalidated);
1344    [[fallthrough]];
1345  case GFK_SystemOnly:
1346    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1347                               Ex, Count, LCtx, B, Invalidated);
1348    [[fallthrough]];
1349  case GFK_None:
1350    break;
1351  }
1352
1353  return StoreRef(B.asStore(), *this);
1354}
1355
1356//===----------------------------------------------------------------------===//
1357// Location and region casting.
1358//===----------------------------------------------------------------------===//
1359
1360/// ArrayToPointer - Emulates the "decay" of an array to a pointer
1361///  type.  'Array' represents the lvalue of the array being decayed
1362///  to a pointer, and the returned SVal represents the decayed
1363///  version of that lvalue (i.e., a pointer to the first element of
1364///  the array).  This is called by ExprEngine when evaluating casts
1365///  from arrays to pointers.
1366SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1367  if (isa<loc::ConcreteInt>(Array))
1368    return Array;
1369
1370  if (!isa<loc::MemRegionVal>(Array))
1371    return UnknownVal();
1372
1373  const SubRegion *R =
1374      cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1375  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1376  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1377}
1378
1379//===----------------------------------------------------------------------===//
1380// Loading values from regions.
1381//===----------------------------------------------------------------------===//
1382
1383SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1384  assert(!isa<UnknownVal>(L) && "location unknown");
1385  assert(!isa<UndefinedVal>(L) && "location undefined");
1386
1387  // For access to concrete addresses, return UnknownVal.  Checks
1388  // for null dereferences (and similar errors) are done by checkers, not
1389  // the Store.
1390  // FIXME: We can consider lazily symbolicating such memory, but we really
1391  // should defer this when we can reason easily about symbolicating arrays
1392  // of bytes.
1393  if (L.getAs<loc::ConcreteInt>()) {
1394    return UnknownVal();
1395  }
1396  if (!L.getAs<loc::MemRegionVal>()) {
1397    return UnknownVal();
1398  }
1399
1400  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1401
1402  if (isa<BlockDataRegion>(MR)) {
1403    return UnknownVal();
1404  }
1405
1406  // Auto-detect the binding type.
1407  if (T.isNull()) {
1408    if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
1409      T = TVR->getValueType();
1410    else if (const auto *TR = dyn_cast<TypedRegion>(MR))
1411      T = TR->getLocationType()->getPointeeType();
1412    else if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
1413      T = SR->getPointeeStaticType();
1414  }
1415  assert(!T.isNull() && "Unable to auto-detect binding type!");
1416  assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1417
1418  if (!isa<TypedValueRegion>(MR))
1419    MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1420
1421  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1422  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1423  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1424  QualType RTy = R->getValueType();
1425
1426  // FIXME: we do not yet model the parts of a complex type, so treat the
1427  // whole thing as "unknown".
1428  if (RTy->isAnyComplexType())
1429    return UnknownVal();
1430
1431  // FIXME: We should eventually handle funny addressing.  e.g.:
1432  //
1433  //   int x = ...;
1434  //   int *p = &x;
1435  //   char *q = (char*) p;
1436  //   char c = *q;  // returns the first byte of 'x'.
1437  //
1438  // Such funny addressing will occur due to layering of regions.
1439  if (RTy->isStructureOrClassType())
1440    return getBindingForStruct(B, R);
1441
1442  // FIXME: Handle unions.
1443  if (RTy->isUnionType())
1444    return createLazyBinding(B, R);
1445
1446  if (RTy->isArrayType()) {
1447    if (RTy->isConstantArrayType())
1448      return getBindingForArray(B, R);
1449    else
1450      return UnknownVal();
1451  }
1452
1453  // FIXME: handle Vector types.
1454  if (RTy->isVectorType())
1455    return UnknownVal();
1456
1457  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1458    return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1459
1460  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1461    // FIXME: Here we actually perform an implicit conversion from the loaded
1462    // value to the element type.  Eventually we want to compose these values
1463    // more intelligently.  For example, an 'element' can encompass multiple
1464    // bound regions (e.g., several bound bytes), or could be a subset of
1465    // a larger value.
1466    return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1467  }
1468
1469  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1470    // FIXME: Here we actually perform an implicit conversion from the loaded
1471    // value to the ivar type.  What we should model is stores to ivars
1472    // that blow past the extent of the ivar.  If the address of the ivar is
1473    // reinterpretted, it is possible we stored a different value that could
1474    // fit within the ivar.  Either we need to cast these when storing them
1475    // or reinterpret them lazily (as we do here).
1476    return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1477  }
1478
1479  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1480    // FIXME: Here we actually perform an implicit conversion from the loaded
1481    // value to the variable type.  What we should model is stores to variables
1482    // that blow past the extent of the variable.  If the address of the
1483    // variable is reinterpretted, it is possible we stored a different value
1484    // that could fit within the variable.  Either we need to cast these when
1485    // storing them or reinterpret them lazily (as we do here).
1486    return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1487  }
1488
1489  const SVal *V = B.lookup(R, BindingKey::Direct);
1490
1491  // Check if the region has a binding.
1492  if (V)
1493    return *V;
1494
1495  // The location does not have a bound value.  This means that it has
1496  // the value it had upon its creation and/or entry to the analyzed
1497  // function/method.  These are either symbolic values or 'undefined'.
1498  if (R->hasStackNonParametersStorage()) {
1499    // All stack variables are considered to have undefined values
1500    // upon creation.  All heap allocated blocks are considered to
1501    // have undefined values as well unless they are explicitly bound
1502    // to specific values.
1503    return UndefinedVal();
1504  }
1505
1506  // All other values are symbolic.
1507  return svalBuilder.getRegionValueSymbolVal(R);
1508}
1509
1510static QualType getUnderlyingType(const SubRegion *R) {
1511  QualType RegionTy;
1512  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1513    RegionTy = TVR->getValueType();
1514
1515  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1516    RegionTy = SR->getSymbol()->getType();
1517
1518  return RegionTy;
1519}
1520
1521/// Checks to see if store \p B has a lazy binding for region \p R.
1522///
1523/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1524/// if there are additional bindings within \p R.
1525///
1526/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1527/// for lazy bindings for super-regions of \p R.
1528static std::optional<nonloc::LazyCompoundVal>
1529getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1530                       const SubRegion *R, bool AllowSubregionBindings) {
1531  std::optional<SVal> V = B.getDefaultBinding(R);
1532  if (!V)
1533    return std::nullopt;
1534
1535  std::optional<nonloc::LazyCompoundVal> LCV =
1536      V->getAs<nonloc::LazyCompoundVal>();
1537  if (!LCV)
1538    return std::nullopt;
1539
1540  // If the LCV is for a subregion, the types might not match, and we shouldn't
1541  // reuse the binding.
1542  QualType RegionTy = getUnderlyingType(R);
1543  if (!RegionTy.isNull() &&
1544      !RegionTy->isVoidPointerType()) {
1545    QualType SourceRegionTy = LCV->getRegion()->getValueType();
1546    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1547      return std::nullopt;
1548  }
1549
1550  if (!AllowSubregionBindings) {
1551    // If there are any other bindings within this region, we shouldn't reuse
1552    // the top-level binding.
1553    SmallVector<BindingPair, 16> Bindings;
1554    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1555                             /*IncludeAllDefaultBindings=*/true);
1556    if (Bindings.size() > 1)
1557      return std::nullopt;
1558  }
1559
1560  return *LCV;
1561}
1562
1563std::pair<Store, const SubRegion *>
1564RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1565                                   const SubRegion *R,
1566                                   const SubRegion *originalRegion) {
1567  if (originalRegion != R) {
1568    if (std::optional<nonloc::LazyCompoundVal> V =
1569            getExistingLazyBinding(svalBuilder, B, R, true))
1570      return std::make_pair(V->getStore(), V->getRegion());
1571  }
1572
1573  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1574  StoreRegionPair Result = StoreRegionPair();
1575
1576  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1577    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1578                             originalRegion);
1579
1580    if (Result.second)
1581      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1582
1583  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1584    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1585                                       originalRegion);
1586
1587    if (Result.second)
1588      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1589
1590  } else if (const CXXBaseObjectRegion *BaseReg =
1591               dyn_cast<CXXBaseObjectRegion>(R)) {
1592    // C++ base object region is another kind of region that we should blast
1593    // through to look for lazy compound value. It is like a field region.
1594    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1595                             originalRegion);
1596
1597    if (Result.second)
1598      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1599                                                            Result.second);
1600  }
1601
1602  return Result;
1603}
1604
1605/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1606///
1607/// Return an array of extents of the declared array type.
1608///
1609/// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1610static SmallVector<uint64_t, 2>
1611getConstantArrayExtents(const ConstantArrayType *CAT) {
1612  assert(CAT && "ConstantArrayType should not be null");
1613  CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1614  SmallVector<uint64_t, 2> Extents;
1615  do {
1616    Extents.push_back(CAT->getSize().getZExtValue());
1617  } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1618  return Extents;
1619}
1620
1621/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1622///
1623/// Return an array of offsets from nested ElementRegions and a root base
1624/// region. The array is never empty and a base region is never null.
1625///
1626/// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1627/// This represents an access through indirection: `arr[1][2][3];`
1628///
1629/// \param ER The given (possibly nested) ElementRegion.
1630///
1631/// \note The result array is in the reverse order of indirection expression:
1632/// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1633/// is a number of indirections. It may not affect performance in real-life
1634/// code, though.
1635static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1636getElementRegionOffsetsWithBase(const ElementRegion *ER) {
1637  assert(ER && "ConstantArrayType should not be null");
1638  const MemRegion *Base;
1639  SmallVector<SVal, 2> SValOffsets;
1640  do {
1641    SValOffsets.push_back(ER->getIndex());
1642    Base = ER->getSuperRegion();
1643    ER = dyn_cast<ElementRegion>(Base);
1644  } while (ER);
1645  return {SValOffsets, Base};
1646}
1647
1648/// This is a helper function for `getConstantValFromConstArrayInitializer`.
1649///
1650/// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1651/// respective array extents.
1652/// \param SrcOffsets [in]   The array of offsets of type `SVal` in reversed
1653///   order (expectedly received from `getElementRegionOffsetsWithBase`).
1654/// \param ArrayExtents [in] The array of extents.
1655/// \param DstOffsets [out]  The array of offsets of type `uint64_t`.
1656/// \returns:
1657/// - `std::nullopt` for successful convertion.
1658/// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1659///   will be returned as a suitable value of the access operation.
1660///   which should be returned as a correct
1661///
1662/// \example:
1663///   const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1664///   int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1665///                          // DstOffsets { 4, 5, 6 }
1666///                          // returns std::nullopt
1667///   int x2 = arr[42][5][-6]; // returns UndefinedVal
1668///   int x3 = arr[4][5][x2];  // returns UnknownVal
1669static std::optional<SVal>
1670convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets,
1671                                  const SmallVector<uint64_t, 2> ArrayExtents,
1672                                  SmallVector<uint64_t, 2> &DstOffsets) {
1673  // Check offsets for being out of bounds.
1674  // C++20 [expr.add] 7.6.6.4 (excerpt):
1675  //   If P points to an array element i of an array object x with n
1676  //   elements, where i < 0 or i > n, the behavior is undefined.
1677  //   Dereferencing is not allowed on the "one past the last
1678  //   element", when i == n.
1679  // Example:
1680  //  const int arr[3][2] = {{1, 2}, {3, 4}};
1681  //  arr[0][0];  // 1
1682  //  arr[0][1];  // 2
1683  //  arr[0][2];  // UB
1684  //  arr[1][0];  // 3
1685  //  arr[1][1];  // 4
1686  //  arr[1][-1]; // UB
1687  //  arr[2][0];  // 0
1688  //  arr[2][1];  // 0
1689  //  arr[-2][0]; // UB
1690  DstOffsets.resize(SrcOffsets.size());
1691  auto ExtentIt = ArrayExtents.begin();
1692  auto OffsetIt = DstOffsets.begin();
1693  // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1694  for (SVal V : llvm::reverse(SrcOffsets)) {
1695    if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1696      // When offset is out of array's bounds, result is UB.
1697      const llvm::APSInt &Offset = CI->getValue();
1698      if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1699        return UndefinedVal();
1700      // Store index in a reversive order.
1701      *(OffsetIt++) = Offset.getZExtValue();
1702      continue;
1703    }
1704    // Symbolic index presented. Return Unknown value.
1705    // FIXME: We also need to take ElementRegions with symbolic indexes into
1706    // account.
1707    return UnknownVal();
1708  }
1709  return std::nullopt;
1710}
1711
1712std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1713    RegionBindingsConstRef B, const ElementRegion *R) {
1714  assert(R && "ElementRegion should not be null");
1715
1716  // Treat an n-dimensional array.
1717  SmallVector<SVal, 2> SValOffsets;
1718  const MemRegion *Base;
1719  std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1720  const VarRegion *VR = dyn_cast<VarRegion>(Base);
1721  if (!VR)
1722    return std::nullopt;
1723
1724  assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1725                                 "offsets vector is not empty.");
1726
1727  // Check if the containing array has an initialized value that we can trust.
1728  // We can trust a const value or a value of a global initializer in main().
1729  const VarDecl *VD = VR->getDecl();
1730  if (!VD->getType().isConstQualified() &&
1731      !R->getElementType().isConstQualified() &&
1732      (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1733    return std::nullopt;
1734
1735  // Array's declaration should have `ConstantArrayType` type, because only this
1736  // type contains an array extent. It may happen that array type can be of
1737  // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1738  // type, we should find the declaration in the redeclarations chain that has
1739  // the initialization expression.
1740  // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1741  // from which an initializer is obtained. We replace current `VD` with the new
1742  // `VD`. If the return value of the function is null than `VD` won't be
1743  // replaced.
1744  const Expr *Init = VD->getAnyInitializer(VD);
1745  // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1746  // `Init` for null only and don't worry about the replaced `VD`.
1747  if (!Init)
1748    return std::nullopt;
1749
1750  // Array's declaration should have ConstantArrayType type, because only this
1751  // type contains an array extent.
1752  const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1753  if (!CAT)
1754    return std::nullopt;
1755
1756  // Get array extents.
1757  SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT);
1758
1759  // The number of offsets should equal to the numbers of extents,
1760  // otherwise wrong type punning occurred. For instance:
1761  //  int arr[1][2][3];
1762  //  auto ptr = (int(*)[42])arr;
1763  //  auto x = ptr[4][2]; // UB
1764  // FIXME: Should return UndefinedVal.
1765  if (SValOffsets.size() != Extents.size())
1766    return std::nullopt;
1767
1768  SmallVector<uint64_t, 2> ConcreteOffsets;
1769  if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds(
1770          SValOffsets, Extents, ConcreteOffsets))
1771    return *V;
1772
1773  // Handle InitListExpr.
1774  // Example:
1775  //   const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1776  if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1777    return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1778
1779  // Handle StringLiteral.
1780  // Example:
1781  //   const char arr[] = "abc";
1782  if (const auto *SL = dyn_cast<StringLiteral>(Init))
1783    return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1784                                    R->getElementType());
1785
1786  // FIXME: Handle CompoundLiteralExpr.
1787
1788  return std::nullopt;
1789}
1790
1791/// Returns an SVal, if possible, for the specified position of an
1792/// initialization list.
1793///
1794/// \param ILE The given initialization list.
1795/// \param Offsets The array of unsigned offsets. E.g. for the expression
1796///  `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1797/// \param ElemT The type of the result SVal expression.
1798/// \return Optional SVal for the particular position in the initialization
1799///   list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1800///   - {1, 1} returns SVal{4}, because it's the second position in the second
1801///     sublist;
1802///   - {3, 0} returns SVal{0}, because there's no explicit value at this
1803///     position in the sublist.
1804///
1805/// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1806/// for the given initialization list. Otherwise SVal can be an equivalent to 0
1807/// or lead to assertion.
1808std::optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1809    const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1810    QualType ElemT) {
1811  assert(ILE && "InitListExpr should not be null");
1812
1813  for (uint64_t Offset : Offsets) {
1814    // C++20 [dcl.init.string] 9.4.2.1:
1815    //   An array of ordinary character type [...] can be initialized by [...]
1816    //   an appropriately-typed string-literal enclosed in braces.
1817    // Example:
1818    //   const char arr[] = { "abc" };
1819    if (ILE->isStringLiteralInit())
1820      if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1821        return getSValFromStringLiteral(SL, Offset, ElemT);
1822
1823    // C++20 [expr.add] 9.4.17.5 (excerpt):
1824    //   i-th array element is value-initialized for each k < i ��� n,
1825    //   where k is an expression-list size and n is an array extent.
1826    if (Offset >= ILE->getNumInits())
1827      return svalBuilder.makeZeroVal(ElemT);
1828
1829    const Expr *E = ILE->getInit(Offset);
1830    const auto *IL = dyn_cast<InitListExpr>(E);
1831    if (!IL)
1832      // Return a constant value, if it is presented.
1833      // FIXME: Support other SVals.
1834      return svalBuilder.getConstantVal(E);
1835
1836    // Go to the nested initializer list.
1837    ILE = IL;
1838  }
1839
1840  assert(ILE);
1841
1842  // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an
1843  //        enum?
1844  return std::nullopt;
1845}
1846
1847/// Returns an SVal, if possible, for the specified position in a string
1848/// literal.
1849///
1850/// \param SL The given string literal.
1851/// \param Offset The unsigned offset. E.g. for the expression
1852///   `char x = str[42];` an offset should be 42.
1853///   E.g. for the string "abc" offset:
1854///   - 1 returns SVal{b}, because it's the second position in the string.
1855///   - 42 returns SVal{0}, because there's no explicit value at this
1856///     position in the string.
1857/// \param ElemT The type of the result SVal expression.
1858///
1859/// NOTE: We return `0` for every offset >= the literal length for array
1860/// declarations, like:
1861///   const char str[42] = "123"; // Literal length is 4.
1862///   char c = str[41];           // Offset is 41.
1863/// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1864///   const char * const str = "123"; // Literal length is 4.
1865///   char c = str[41];               // Offset is 41. Returns `0`, but Undef
1866///                                   // expected.
1867/// It should be properly handled before reaching this point.
1868/// The main problem is that we can't distinguish between these declarations,
1869/// because in case of array we can get the Decl from VarRegion, but in case
1870/// of pointer the region is a StringRegion, which doesn't contain a Decl.
1871/// Possible solution could be passing an array extent along with the offset.
1872SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1873                                                  uint64_t Offset,
1874                                                  QualType ElemT) {
1875  assert(SL && "StringLiteral should not be null");
1876  // C++20 [dcl.init.string] 9.4.2.3:
1877  //   If there are fewer initializers than there are array elements, each
1878  //   element not explicitly initialized shall be zero-initialized [dcl.init].
1879  uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1880  return svalBuilder.makeIntVal(Code, ElemT);
1881}
1882
1883static std::optional<SVal> getDerivedSymbolForBinding(
1884    RegionBindingsConstRef B, const TypedValueRegion *BaseRegion,
1885    const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) {
1886  assert(BaseRegion);
1887  QualType BaseTy = BaseRegion->getValueType();
1888  QualType Ty = SubReg->getValueType();
1889  if (BaseTy->isScalarType() && Ty->isScalarType()) {
1890    if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) {
1891      if (const std::optional<SVal> &ParentValue =
1892              B.getDirectBinding(BaseRegion)) {
1893        if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol())
1894          return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg);
1895
1896        if (ParentValue->isUndef())
1897          return UndefinedVal();
1898
1899        // Other cases: give up.  We are indexing into a larger object
1900        // that has some value, but we don't know how to handle that yet.
1901        return UnknownVal();
1902      }
1903    }
1904  }
1905  return std::nullopt;
1906}
1907
1908SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1909                                              const ElementRegion* R) {
1910  // Check if the region has a binding.
1911  if (const std::optional<SVal> &V = B.getDirectBinding(R))
1912    return *V;
1913
1914  const MemRegion* superR = R->getSuperRegion();
1915
1916  // Check if the region is an element region of a string literal.
1917  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1918    // FIXME: Handle loads from strings where the literal is treated as
1919    // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1920    // to C++20 7.2.1.11 [basic.lval].
1921    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1922    if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1923      return UnknownVal();
1924    if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1925      const llvm::APSInt &Idx = CI->getValue();
1926      if (Idx < 0)
1927        return UndefinedVal();
1928      const StringLiteral *SL = StrR->getStringLiteral();
1929      return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1930    }
1931  } else if (isa<ElementRegion, VarRegion>(superR)) {
1932    if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1933      return *V;
1934  }
1935
1936  // Check for loads from a code text region.  For such loads, just give up.
1937  if (isa<CodeTextRegion>(superR))
1938    return UnknownVal();
1939
1940  // Handle the case where we are indexing into a larger scalar object.
1941  // For example, this handles:
1942  //   int x = ...
1943  //   char *y = &x;
1944  //   return *y;
1945  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1946  const RegionRawOffset &O = R->getAsArrayOffset();
1947
1948  // If we cannot reason about the offset, return an unknown value.
1949  if (!O.getRegion())
1950    return UnknownVal();
1951
1952  if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion()))
1953    if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder))
1954      return *V;
1955
1956  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1957}
1958
1959SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1960                                            const FieldRegion* R) {
1961
1962  // Check if the region has a binding.
1963  if (const std::optional<SVal> &V = B.getDirectBinding(R))
1964    return *V;
1965
1966  // If the containing record was initialized, try to get its constant value.
1967  const FieldDecl *FD = R->getDecl();
1968  QualType Ty = FD->getType();
1969  const MemRegion* superR = R->getSuperRegion();
1970  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1971    const VarDecl *VD = VR->getDecl();
1972    QualType RecordVarTy = VD->getType();
1973    unsigned Index = FD->getFieldIndex();
1974    // Either the record variable or the field has an initializer that we can
1975    // trust. We trust initializers of constants and, additionally, respect
1976    // initializers of globals when analyzing main().
1977    if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1978        (B.isMainAnalysis() && VD->hasGlobalStorage()))
1979      if (const Expr *Init = VD->getAnyInitializer())
1980        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1981          if (Index < InitList->getNumInits()) {
1982            if (const Expr *FieldInit = InitList->getInit(Index))
1983              if (std::optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1984                return *V;
1985          } else {
1986            return svalBuilder.makeZeroVal(Ty);
1987          }
1988        }
1989  }
1990
1991  // Handle the case where we are accessing into a larger scalar object.
1992  // For example, this handles:
1993  //   struct header {
1994  //     unsigned a : 1;
1995  //     unsigned b : 1;
1996  //   };
1997  //   struct parse_t {
1998  //     unsigned bits0 : 1;
1999  //     unsigned bits2 : 2; // <-- header
2000  //     unsigned bits4 : 4;
2001  //   };
2002  //   int parse(parse_t *p) {
2003  //     unsigned copy = p->bits2;
2004  //     header *bits = (header *)&copy;
2005  //     return bits->b;  <-- here
2006  //   }
2007  if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion()))
2008    if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder))
2009      return *V;
2010
2011  return getBindingForFieldOrElementCommon(B, R, Ty);
2012}
2013
2014std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(
2015    RegionBindingsConstRef B, const MemRegion *superR,
2016    const TypedValueRegion *R, QualType Ty) {
2017
2018  if (const std::optional<SVal> &D = B.getDefaultBinding(superR)) {
2019    SVal val = *D;
2020    if (SymbolRef parentSym = val.getAsSymbol())
2021      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2022
2023    if (val.isZeroConstant())
2024      return svalBuilder.makeZeroVal(Ty);
2025
2026    if (val.isUnknownOrUndef())
2027      return val;
2028
2029    // Lazy bindings are usually handled through getExistingLazyBinding().
2030    // We should unify these two code paths at some point.
2031    if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val))
2032      return val;
2033
2034    llvm_unreachable("Unknown default value");
2035  }
2036
2037  return std::nullopt;
2038}
2039
2040SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2041                                        RegionBindingsRef LazyBinding) {
2042  SVal Result;
2043  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2044    Result = getBindingForElement(LazyBinding, ER);
2045  else
2046    Result = getBindingForField(LazyBinding,
2047                                cast<FieldRegion>(LazyBindingRegion));
2048
2049  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2050  // default value for /part/ of an aggregate from a default value for the
2051  // /entire/ aggregate. The most common case of this is when struct Outer
2052  // has as its first member a struct Inner, which is copied in from a stack
2053  // variable. In this case, even if the Outer's default value is symbolic, 0,
2054  // or unknown, it gets overridden by the Inner's default value of undefined.
2055  //
2056  // This is a general problem -- if the Inner is zero-initialized, the Outer
2057  // will now look zero-initialized. The proper way to solve this is with a
2058  // new version of RegionStore that tracks the extent of a binding as well
2059  // as the offset.
2060  //
2061  // This hack only takes care of the undefined case because that can very
2062  // quickly result in a warning.
2063  if (Result.isUndef())
2064    Result = UnknownVal();
2065
2066  return Result;
2067}
2068
2069SVal
2070RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2071                                                      const TypedValueRegion *R,
2072                                                      QualType Ty) {
2073
2074  // At this point we have already checked in either getBindingForElement or
2075  // getBindingForField if 'R' has a direct binding.
2076
2077  // Lazy binding?
2078  Store lazyBindingStore = nullptr;
2079  const SubRegion *lazyBindingRegion = nullptr;
2080  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2081  if (lazyBindingRegion)
2082    return getLazyBinding(lazyBindingRegion,
2083                          getRegionBindings(lazyBindingStore));
2084
2085  // Record whether or not we see a symbolic index.  That can completely
2086  // be out of scope of our lookup.
2087  bool hasSymbolicIndex = false;
2088
2089  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2090  // default value for /part/ of an aggregate from a default value for the
2091  // /entire/ aggregate. The most common case of this is when struct Outer
2092  // has as its first member a struct Inner, which is copied in from a stack
2093  // variable. In this case, even if the Outer's default value is symbolic, 0,
2094  // or unknown, it gets overridden by the Inner's default value of undefined.
2095  //
2096  // This is a general problem -- if the Inner is zero-initialized, the Outer
2097  // will now look zero-initialized. The proper way to solve this is with a
2098  // new version of RegionStore that tracks the extent of a binding as well
2099  // as the offset.
2100  //
2101  // This hack only takes care of the undefined case because that can very
2102  // quickly result in a warning.
2103  bool hasPartialLazyBinding = false;
2104
2105  const SubRegion *SR = R;
2106  while (SR) {
2107    const MemRegion *Base = SR->getSuperRegion();
2108    if (std::optional<SVal> D =
2109            getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2110      if (D->getAs<nonloc::LazyCompoundVal>()) {
2111        hasPartialLazyBinding = true;
2112        break;
2113      }
2114
2115      return *D;
2116    }
2117
2118    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2119      NonLoc index = ER->getIndex();
2120      if (!index.isConstant())
2121        hasSymbolicIndex = true;
2122    }
2123
2124    // If our super region is a field or element itself, walk up the region
2125    // hierarchy to see if there is a default value installed in an ancestor.
2126    SR = dyn_cast<SubRegion>(Base);
2127  }
2128
2129  if (R->hasStackNonParametersStorage()) {
2130    if (isa<ElementRegion>(R)) {
2131      // Currently we don't reason specially about Clang-style vectors.  Check
2132      // if superR is a vector and if so return Unknown.
2133      if (const TypedValueRegion *typedSuperR =
2134            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2135        if (typedSuperR->getValueType()->isVectorType())
2136          return UnknownVal();
2137      }
2138    }
2139
2140    // FIXME: We also need to take ElementRegions with symbolic indexes into
2141    // account.  This case handles both directly accessing an ElementRegion
2142    // with a symbolic offset, but also fields within an element with
2143    // a symbolic offset.
2144    if (hasSymbolicIndex)
2145      return UnknownVal();
2146
2147    // Additionally allow introspection of a block's internal layout.
2148    // Try to get direct binding if all other attempts failed thus far.
2149    // Else, return UndefinedVal()
2150    if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) {
2151      if (const std::optional<SVal> &V = B.getDefaultBinding(R))
2152        return *V;
2153      return UndefinedVal();
2154    }
2155  }
2156
2157  // All other values are symbolic.
2158  return svalBuilder.getRegionValueSymbolVal(R);
2159}
2160
2161SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2162                                               const ObjCIvarRegion* R) {
2163  // Check if the region has a binding.
2164  if (const std::optional<SVal> &V = B.getDirectBinding(R))
2165    return *V;
2166
2167  const MemRegion *superR = R->getSuperRegion();
2168
2169  // Check if the super region has a default binding.
2170  if (const std::optional<SVal> &V = B.getDefaultBinding(superR)) {
2171    if (SymbolRef parentSym = V->getAsSymbol())
2172      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2173
2174    // Other cases: give up.
2175    return UnknownVal();
2176  }
2177
2178  return getBindingForLazySymbol(R);
2179}
2180
2181SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2182                                          const VarRegion *R) {
2183
2184  // Check if the region has a binding.
2185  if (std::optional<SVal> V = B.getDirectBinding(R))
2186    return *V;
2187
2188  if (std::optional<SVal> V = B.getDefaultBinding(R))
2189    return *V;
2190
2191  // Lazily derive a value for the VarRegion.
2192  const VarDecl *VD = R->getDecl();
2193  const MemSpaceRegion *MS = R->getMemorySpace();
2194
2195  // Arguments are always symbolic.
2196  if (isa<StackArgumentsSpaceRegion>(MS))
2197    return svalBuilder.getRegionValueSymbolVal(R);
2198
2199  // Is 'VD' declared constant?  If so, retrieve the constant value.
2200  if (VD->getType().isConstQualified()) {
2201    if (const Expr *Init = VD->getAnyInitializer()) {
2202      if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2203        return *V;
2204
2205      // If the variable is const qualified and has an initializer but
2206      // we couldn't evaluate initializer to a value, treat the value as
2207      // unknown.
2208      return UnknownVal();
2209    }
2210  }
2211
2212  // This must come after the check for constants because closure-captured
2213  // constant variables may appear in UnknownSpaceRegion.
2214  if (isa<UnknownSpaceRegion>(MS))
2215    return svalBuilder.getRegionValueSymbolVal(R);
2216
2217  if (isa<GlobalsSpaceRegion>(MS)) {
2218    QualType T = VD->getType();
2219
2220    // If we're in main(), then global initializers have not become stale yet.
2221    if (B.isMainAnalysis())
2222      if (const Expr *Init = VD->getAnyInitializer())
2223        if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2224          return *V;
2225
2226    // Function-scoped static variables are default-initialized to 0; if they
2227    // have an initializer, it would have been processed by now.
2228    // FIXME: This is only true when we're starting analysis from main().
2229    // We're losing a lot of coverage here.
2230    if (isa<StaticGlobalSpaceRegion>(MS))
2231      return svalBuilder.makeZeroVal(T);
2232
2233    if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2234      assert(!V->getAs<nonloc::LazyCompoundVal>());
2235      return *V;
2236    }
2237
2238    return svalBuilder.getRegionValueSymbolVal(R);
2239  }
2240
2241  return UndefinedVal();
2242}
2243
2244SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2245  // All other values are symbolic.
2246  return svalBuilder.getRegionValueSymbolVal(R);
2247}
2248
2249const RegionStoreManager::SValListTy &
2250RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2251  // First, check the cache.
2252  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2253  if (I != LazyBindingsMap.end())
2254    return I->second;
2255
2256  // If we don't have a list of values cached, start constructing it.
2257  SValListTy List;
2258
2259  const SubRegion *LazyR = LCV.getRegion();
2260  RegionBindingsRef B = getRegionBindings(LCV.getStore());
2261
2262  // If this region had /no/ bindings at the time, there are no interesting
2263  // values to return.
2264  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2265  if (!Cluster)
2266    return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2267
2268  SmallVector<BindingPair, 32> Bindings;
2269  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2270                           /*IncludeAllDefaultBindings=*/true);
2271  for (SVal V : llvm::make_second_range(Bindings)) {
2272    if (V.isUnknownOrUndef() || V.isConstant())
2273      continue;
2274
2275    if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) {
2276      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2277      List.insert(List.end(), InnerList.begin(), InnerList.end());
2278    }
2279
2280    List.push_back(V);
2281  }
2282
2283  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2284}
2285
2286NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2287                                             const TypedValueRegion *R) {
2288  if (std::optional<nonloc::LazyCompoundVal> V =
2289          getExistingLazyBinding(svalBuilder, B, R, false))
2290    return *V;
2291
2292  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2293}
2294
2295static bool isRecordEmpty(const RecordDecl *RD) {
2296  if (!RD->field_empty())
2297    return false;
2298  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2299    return CRD->getNumBases() == 0;
2300  return true;
2301}
2302
2303SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2304                                             const TypedValueRegion *R) {
2305  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2306  if (!RD->getDefinition() || isRecordEmpty(RD))
2307    return UnknownVal();
2308
2309  return createLazyBinding(B, R);
2310}
2311
2312SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2313                                            const TypedValueRegion *R) {
2314  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2315         "Only constant array types can have compound bindings.");
2316
2317  return createLazyBinding(B, R);
2318}
2319
2320bool RegionStoreManager::includedInBindings(Store store,
2321                                            const MemRegion *region) const {
2322  RegionBindingsRef B = getRegionBindings(store);
2323  region = region->getBaseRegion();
2324
2325  // Quick path: if the base is the head of a cluster, the region is live.
2326  if (B.lookup(region))
2327    return true;
2328
2329  // Slow path: if the region is the VALUE of any binding, it is live.
2330  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2331    const ClusterBindings &Cluster = RI.getData();
2332    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2333         CI != CE; ++CI) {
2334      SVal D = CI.getData();
2335      if (const MemRegion *R = D.getAsRegion())
2336        if (R->getBaseRegion() == region)
2337          return true;
2338    }
2339  }
2340
2341  return false;
2342}
2343
2344//===----------------------------------------------------------------------===//
2345// Binding values to regions.
2346//===----------------------------------------------------------------------===//
2347
2348StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2349  if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2350    if (const MemRegion* R = LV->getRegion())
2351      return StoreRef(getRegionBindings(ST).removeBinding(R)
2352                                           .asImmutableMap()
2353                                           .getRootWithoutRetain(),
2354                      *this);
2355
2356  return StoreRef(ST, *this);
2357}
2358
2359RegionBindingsRef
2360RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2361  if (L.getAs<loc::ConcreteInt>())
2362    return B;
2363
2364  // If we get here, the location should be a region.
2365  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2366
2367  // Check if the region is a struct region.
2368  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2369    QualType Ty = TR->getValueType();
2370    if (Ty->isArrayType())
2371      return bindArray(B, TR, V);
2372    if (Ty->isStructureOrClassType())
2373      return bindStruct(B, TR, V);
2374    if (Ty->isVectorType())
2375      return bindVector(B, TR, V);
2376    if (Ty->isUnionType())
2377      return bindAggregate(B, TR, V);
2378  }
2379
2380  // Binding directly to a symbolic region should be treated as binding
2381  // to element 0.
2382  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2383    R = GetElementZeroRegion(SR, SR->getPointeeStaticType());
2384
2385  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2386         "'this' pointer is not an l-value and is not assignable");
2387
2388  // Clear out bindings that may overlap with this binding.
2389  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2390
2391  // LazyCompoundVals should be always bound as 'default' bindings.
2392  auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default
2393                                                 : BindingKey::Direct;
2394  return NewB.addBinding(BindingKey::Make(R, KeyKind), V);
2395}
2396
2397RegionBindingsRef
2398RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2399                                            const MemRegion *R,
2400                                            QualType T) {
2401  SVal V;
2402
2403  if (Loc::isLocType(T))
2404    V = svalBuilder.makeNullWithType(T);
2405  else if (T->isIntegralOrEnumerationType())
2406    V = svalBuilder.makeZeroVal(T);
2407  else if (T->isStructureOrClassType() || T->isArrayType()) {
2408    // Set the default value to a zero constant when it is a structure
2409    // or array.  The type doesn't really matter.
2410    V = svalBuilder.makeZeroVal(Ctx.IntTy);
2411  }
2412  else {
2413    // We can't represent values of this type, but we still need to set a value
2414    // to record that the region has been initialized.
2415    // If this assertion ever fires, a new case should be added above -- we
2416    // should know how to default-initialize any value we can symbolicate.
2417    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2418    V = UnknownVal();
2419  }
2420
2421  return B.addBinding(R, BindingKey::Default, V);
2422}
2423
2424std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray(
2425    RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT,
2426    nonloc::LazyCompoundVal LCV) {
2427
2428  auto CAT = dyn_cast<ConstantArrayType>(AT);
2429
2430  // If we don't know the size, create a lazyCompoundVal instead.
2431  if (!CAT)
2432    return std::nullopt;
2433
2434  QualType Ty = CAT->getElementType();
2435  if (!(Ty->isScalarType() || Ty->isReferenceType()))
2436    return std::nullopt;
2437
2438  // If the array is too big, create a LCV instead.
2439  uint64_t ArrSize = CAT->getSize().getLimitedValue();
2440  if (ArrSize > SmallArrayLimit)
2441    return std::nullopt;
2442
2443  RegionBindingsRef NewB = B;
2444
2445  for (uint64_t i = 0; i < ArrSize; ++i) {
2446    auto Idx = svalBuilder.makeArrayIndex(i);
2447    const ElementRegion *SrcER =
2448        MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx);
2449    SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER);
2450
2451    const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx);
2452    NewB = bind(NewB, loc::MemRegionVal(DstER), V);
2453  }
2454
2455  return NewB;
2456}
2457
2458RegionBindingsRef
2459RegionStoreManager::bindArray(RegionBindingsConstRef B,
2460                              const TypedValueRegion* R,
2461                              SVal Init) {
2462
2463  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2464  QualType ElementTy = AT->getElementType();
2465  std::optional<uint64_t> Size;
2466
2467  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2468    Size = CAT->getSize().getZExtValue();
2469
2470  // Check if the init expr is a literal. If so, bind the rvalue instead.
2471  // FIXME: It's not responsibility of the Store to transform this lvalue
2472  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2473  if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2474    SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2475    return bindAggregate(B, R, V);
2476  }
2477
2478  // Handle lazy compound values.
2479  if (std::optional<nonloc::LazyCompoundVal> LCV =
2480          Init.getAs<nonloc::LazyCompoundVal>()) {
2481    if (std::optional<RegionBindingsRef> NewB =
2482            tryBindSmallArray(B, R, AT, *LCV))
2483      return *NewB;
2484
2485    return bindAggregate(B, R, Init);
2486  }
2487
2488  if (Init.isUnknown())
2489    return bindAggregate(B, R, UnknownVal());
2490
2491  // Remaining case: explicit compound values.
2492  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2493  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2494  uint64_t i = 0;
2495
2496  RegionBindingsRef NewB(B);
2497
2498  for (; Size ? i < *Size : true; ++i, ++VI) {
2499    // The init list might be shorter than the array length.
2500    if (VI == VE)
2501      break;
2502
2503    NonLoc Idx = svalBuilder.makeArrayIndex(i);
2504    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2505
2506    if (ElementTy->isStructureOrClassType())
2507      NewB = bindStruct(NewB, ER, *VI);
2508    else if (ElementTy->isArrayType())
2509      NewB = bindArray(NewB, ER, *VI);
2510    else
2511      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2512  }
2513
2514  // If the init list is shorter than the array length (or the array has
2515  // variable length), set the array default value. Values that are already set
2516  // are not overwritten.
2517  if (!Size || i < *Size)
2518    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2519
2520  return NewB;
2521}
2522
2523RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2524                                                 const TypedValueRegion* R,
2525                                                 SVal V) {
2526  QualType T = R->getValueType();
2527  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2528
2529  // Handle lazy compound values and symbolic values.
2530  if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V))
2531    return bindAggregate(B, R, V);
2532
2533  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2534  // that we are binding symbolic struct value. Kill the field values, and if
2535  // the value is symbolic go and bind it as a "default" binding.
2536  if (!isa<nonloc::CompoundVal>(V)) {
2537    return bindAggregate(B, R, UnknownVal());
2538  }
2539
2540  QualType ElemType = VT->getElementType();
2541  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2542  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2543  unsigned index = 0, numElements = VT->getNumElements();
2544  RegionBindingsRef NewB(B);
2545
2546  for ( ; index != numElements ; ++index) {
2547    if (VI == VE)
2548      break;
2549
2550    NonLoc Idx = svalBuilder.makeArrayIndex(index);
2551    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2552
2553    if (ElemType->isArrayType())
2554      NewB = bindArray(NewB, ER, *VI);
2555    else if (ElemType->isStructureOrClassType())
2556      NewB = bindStruct(NewB, ER, *VI);
2557    else
2558      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2559  }
2560  return NewB;
2561}
2562
2563std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct(
2564    RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD,
2565    nonloc::LazyCompoundVal LCV) {
2566  FieldVector Fields;
2567
2568  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2569    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2570      return std::nullopt;
2571
2572  for (const auto *FD : RD->fields()) {
2573    if (FD->isUnnamedBitfield())
2574      continue;
2575
2576    // If there are too many fields, or if any of the fields are aggregates,
2577    // just use the LCV as a default binding.
2578    if (Fields.size() == SmallStructLimit)
2579      return std::nullopt;
2580
2581    QualType Ty = FD->getType();
2582
2583    // Zero length arrays are basically no-ops, so we also ignore them here.
2584    if (Ty->isConstantArrayType() &&
2585        Ctx.getConstantArrayElementCount(Ctx.getAsConstantArrayType(Ty)) == 0)
2586      continue;
2587
2588    if (!(Ty->isScalarType() || Ty->isReferenceType()))
2589      return std::nullopt;
2590
2591    Fields.push_back(FD);
2592  }
2593
2594  RegionBindingsRef NewB = B;
2595
2596  for (const FieldDecl *Field : Fields) {
2597    const FieldRegion *SourceFR = MRMgr.getFieldRegion(Field, LCV.getRegion());
2598    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2599
2600    const FieldRegion *DestFR = MRMgr.getFieldRegion(Field, R);
2601    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2602  }
2603
2604  return NewB;
2605}
2606
2607RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2608                                                 const TypedValueRegion *R,
2609                                                 SVal V) {
2610  QualType T = R->getValueType();
2611  assert(T->isStructureOrClassType());
2612
2613  const RecordType* RT = T->castAs<RecordType>();
2614  const RecordDecl *RD = RT->getDecl();
2615
2616  if (!RD->isCompleteDefinition())
2617    return B;
2618
2619  // Handle lazy compound values and symbolic values.
2620  if (std::optional<nonloc::LazyCompoundVal> LCV =
2621          V.getAs<nonloc::LazyCompoundVal>()) {
2622    if (std::optional<RegionBindingsRef> NewB =
2623            tryBindSmallStruct(B, R, RD, *LCV))
2624      return *NewB;
2625    return bindAggregate(B, R, V);
2626  }
2627  if (isa<nonloc::SymbolVal>(V))
2628    return bindAggregate(B, R, V);
2629
2630  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2631  // that we are binding symbolic struct value. Kill the field values, and if
2632  // the value is symbolic go and bind it as a "default" binding.
2633  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
2634    return bindAggregate(B, R, UnknownVal());
2635
2636  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2637  // list of other values. It appears pretty much only when there's an actual
2638  // initializer list expression in the program, and the analyzer tries to
2639  // unwrap it as soon as possible.
2640  // This code is where such unwrap happens: when the compound value is put into
2641  // the object that it was supposed to initialize (it's an *initializer* list,
2642  // after all), instead of binding the whole value to the whole object, we bind
2643  // sub-values to sub-objects. Sub-values may themselves be compound values,
2644  // and in this case the procedure becomes recursive.
2645  // FIXME: The annoying part about compound values is that they don't carry
2646  // any sort of information about which value corresponds to which sub-object.
2647  // It's simply a list of values in the middle of nowhere; we expect to match
2648  // them to sub-objects, essentially, "by index": first value binds to
2649  // the first field, second value binds to the second field, etc.
2650  // It would have been much safer to organize non-lazy compound values as
2651  // a mapping from fields/bases to values.
2652  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2653  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2654
2655  RegionBindingsRef NewB(B);
2656
2657  // In C++17 aggregates may have base classes, handle those as well.
2658  // They appear before fields in the initializer list / compound value.
2659  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2660    // If the object was constructed with a constructor, its value is a
2661    // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2662    // performing aggregate initialization. The only exception from this
2663    // rule is sending an Objective-C++ message that returns a C++ object
2664    // to a nil receiver; in this case the semantics is to return a
2665    // zero-initialized object even if it's a C++ object that doesn't have
2666    // this sort of constructor; the CompoundVal is empty in this case.
2667    assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2668           "Non-aggregates are constructed with a constructor!");
2669
2670    for (const auto &B : CRD->bases()) {
2671      // (Multiple inheritance is fine though.)
2672      assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2673
2674      if (VI == VE)
2675        break;
2676
2677      QualType BTy = B.getType();
2678      assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2679
2680      const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2681      assert(BRD && "Base classes must be C++ classes!");
2682
2683      const CXXBaseObjectRegion *BR =
2684          MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2685
2686      NewB = bindStruct(NewB, BR, *VI);
2687
2688      ++VI;
2689    }
2690  }
2691
2692  RecordDecl::field_iterator FI, FE;
2693
2694  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2695
2696    if (VI == VE)
2697      break;
2698
2699    // Skip any unnamed bitfields to stay in sync with the initializers.
2700    if (FI->isUnnamedBitfield())
2701      continue;
2702
2703    QualType FTy = FI->getType();
2704    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2705
2706    if (FTy->isArrayType())
2707      NewB = bindArray(NewB, FR, *VI);
2708    else if (FTy->isStructureOrClassType())
2709      NewB = bindStruct(NewB, FR, *VI);
2710    else
2711      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2712    ++VI;
2713  }
2714
2715  // There may be fewer values in the initialize list than the fields of struct.
2716  if (FI != FE) {
2717    NewB = NewB.addBinding(R, BindingKey::Default,
2718                           svalBuilder.makeIntVal(0, false));
2719  }
2720
2721  return NewB;
2722}
2723
2724RegionBindingsRef
2725RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2726                                  const TypedRegion *R,
2727                                  SVal Val) {
2728  // Remove the old bindings, using 'R' as the root of all regions
2729  // we will invalidate. Then add the new binding.
2730  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2731}
2732
2733//===----------------------------------------------------------------------===//
2734// State pruning.
2735//===----------------------------------------------------------------------===//
2736
2737namespace {
2738class RemoveDeadBindingsWorker
2739    : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2740  SmallVector<const SymbolicRegion *, 12> Postponed;
2741  SymbolReaper &SymReaper;
2742  const StackFrameContext *CurrentLCtx;
2743
2744public:
2745  RemoveDeadBindingsWorker(RegionStoreManager &rm,
2746                           ProgramStateManager &stateMgr,
2747                           RegionBindingsRef b, SymbolReaper &symReaper,
2748                           const StackFrameContext *LCtx)
2749    : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2750      SymReaper(symReaper), CurrentLCtx(LCtx) {}
2751
2752  // Called by ClusterAnalysis.
2753  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2754  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2755  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2756
2757  using ClusterAnalysis::AddToWorkList;
2758
2759  bool AddToWorkList(const MemRegion *R);
2760
2761  bool UpdatePostponed();
2762  void VisitBinding(SVal V);
2763};
2764}
2765
2766bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2767  const MemRegion *BaseR = R->getBaseRegion();
2768  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2769}
2770
2771void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2772                                                   const ClusterBindings &C) {
2773
2774  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2775    if (SymReaper.isLive(VR))
2776      AddToWorkList(baseR, &C);
2777
2778    return;
2779  }
2780
2781  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2782    if (SymReaper.isLive(SR->getSymbol()))
2783      AddToWorkList(SR, &C);
2784    else
2785      Postponed.push_back(SR);
2786
2787    return;
2788  }
2789
2790  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2791    AddToWorkList(baseR, &C);
2792    return;
2793  }
2794
2795  // CXXThisRegion in the current or parent location context is live.
2796  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2797    const auto *StackReg =
2798        cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2799    const StackFrameContext *RegCtx = StackReg->getStackFrame();
2800    if (CurrentLCtx &&
2801        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2802      AddToWorkList(TR, &C);
2803  }
2804}
2805
2806void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2807                                            const ClusterBindings *C) {
2808  if (!C)
2809    return;
2810
2811  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2812  // This means we should continue to track that symbol.
2813  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2814    SymReaper.markLive(SymR->getSymbol());
2815
2816  for (const auto &[Key, Val] : *C) {
2817    // Element index of a binding key is live.
2818    SymReaper.markElementIndicesLive(Key.getRegion());
2819
2820    VisitBinding(Val);
2821  }
2822}
2823
2824void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2825  // Is it a LazyCompoundVal? All referenced regions are live as well.
2826  // The LazyCompoundVal itself is not live but should be readable.
2827  if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
2828    SymReaper.markLazilyCopied(LCS->getRegion());
2829
2830    for (SVal V : RM.getInterestingValues(*LCS)) {
2831      if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>())
2832        SymReaper.markLazilyCopied(DepLCS->getRegion());
2833      else
2834        VisitBinding(V);
2835    }
2836
2837    return;
2838  }
2839
2840  // If V is a region, then add it to the worklist.
2841  if (const MemRegion *R = V.getAsRegion()) {
2842    AddToWorkList(R);
2843    SymReaper.markLive(R);
2844
2845    // All regions captured by a block are also live.
2846    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2847      for (auto Var : BR->referenced_vars())
2848        AddToWorkList(Var.getCapturedRegion());
2849    }
2850  }
2851
2852
2853  // Update the set of live symbols.
2854  for (SymbolRef Sym : V.symbols())
2855    SymReaper.markLive(Sym);
2856}
2857
2858bool RemoveDeadBindingsWorker::UpdatePostponed() {
2859  // See if any postponed SymbolicRegions are actually live now, after
2860  // having done a scan.
2861  bool Changed = false;
2862
2863  for (const SymbolicRegion *SR : Postponed) {
2864    if (SymReaper.isLive(SR->getSymbol())) {
2865      Changed |= AddToWorkList(SR);
2866      SR = nullptr;
2867    }
2868  }
2869
2870  return Changed;
2871}
2872
2873StoreRef RegionStoreManager::removeDeadBindings(Store store,
2874                                                const StackFrameContext *LCtx,
2875                                                SymbolReaper& SymReaper) {
2876  RegionBindingsRef B = getRegionBindings(store);
2877  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2878  W.GenerateClusters();
2879
2880  // Enqueue the region roots onto the worklist.
2881  for (const MemRegion *Reg : SymReaper.regions()) {
2882    W.AddToWorkList(Reg);
2883  }
2884
2885  do W.RunWorkList(); while (W.UpdatePostponed());
2886
2887  // We have now scanned the store, marking reachable regions and symbols
2888  // as live.  We now remove all the regions that are dead from the store
2889  // as well as update DSymbols with the set symbols that are now dead.
2890  for (const MemRegion *Base : llvm::make_first_range(B)) {
2891    // If the cluster has been visited, we know the region has been marked.
2892    // Otherwise, remove the dead entry.
2893    if (!W.isVisited(Base))
2894      B = B.remove(Base);
2895  }
2896
2897  return StoreRef(B.asStore(), *this);
2898}
2899
2900//===----------------------------------------------------------------------===//
2901// Utility methods.
2902//===----------------------------------------------------------------------===//
2903
2904void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2905                                   unsigned int Space, bool IsDot) const {
2906  RegionBindingsRef Bindings = getRegionBindings(S);
2907
2908  Indent(Out, Space, IsDot) << "\"store\": ";
2909
2910  if (Bindings.isEmpty()) {
2911    Out << "null," << NL;
2912    return;
2913  }
2914
2915  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2916  Bindings.printJson(Out, NL, Space + 1, IsDot);
2917  Indent(Out, Space, IsDot) << "]}," << NL;
2918}
2919