1//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Defines a modeling-checker for modeling STL iterator-like iterators.
10//
11//===----------------------------------------------------------------------===//
12//
13// In the code, iterator can be represented as a:
14// * type-I: typedef-ed pointer. Operations over such iterator, such as
15//           comparisons or increments, are modeled straightforwardly by the
16//           analyzer.
17// * type-II: structure with its method bodies available.  Operations over such
18//            iterator are inlined by the analyzer, and results of modeling
19//            these operations are exposing implementation details of the
20//            iterators, which is not necessarily helping.
21// * type-III: completely opaque structure. Operations over such iterator are
22//             modeled conservatively, producing conjured symbols everywhere.
23//
24// To handle all these types in a common way we introduce a structure called
25// IteratorPosition which is an abstraction of the position the iterator
26// represents using symbolic expressions. The checker handles all the
27// operations on this structure.
28//
29// Additionally, depending on the circumstances, operators of types II and III
30// can be represented as:
31// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32//                        from conservatively evaluated methods such as
33//                        `.begin()`.
34// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35//                        variables or temporaries, when the iterator object is
36//                        currently treated as an lvalue.
37// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38//                        iterator object is treated as an rvalue taken of a
39//                        particular lvalue, eg. a copy of "type-a" iterator
40//                        object, or an iterator that existed before the
41//                        analysis has started.
42//
43// To handle any of these three different representations stored in an SVal we
44// use setter and getters functions which separate the three cases. To store
45// them we use a pointer union of symbol and memory region.
46//
47// The checker works the following way: We record the begin and the
48// past-end iterator for all containers whenever their `.begin()` and `.end()`
49// are called. Since the Constraint Manager cannot handle such SVals we need
50// to take over its role. We post-check equality and non-equality comparisons
51// and record that the two sides are equal if we are in the 'equal' branch
52// (true-branch for `==` and false-branch for `!=`).
53//
54// In case of type-I or type-II iterators we get a concrete integer as a result
55// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56// this latter case we record the symbol and reload it in evalAssume() and do
57// the propagation there. We also handle (maybe double) negated comparisons
58// which are represented in the form of (x == 0 or x != 0) where x is the
59// comparison itself.
60//
61// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62// we only use expressions of the format S, S+n or S-n for iterator positions
63// where S is a conjured symbol and n is an unsigned concrete integer. When
64// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65// a constraint which we later retrieve when doing an actual comparison.
66
67#include "clang/AST/DeclTemplate.h"
68#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
69#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70#include "clang/StaticAnalyzer/Core/Checker.h"
71#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
72#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
73#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
74#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
75#include "llvm/ADT/STLExtras.h"
76
77#include "Iterator.h"
78
79#include <utility>
80
81using namespace clang;
82using namespace ento;
83using namespace iterator;
84
85namespace {
86
87class IteratorModeling
88    : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
89                     check::PostStmt<BinaryOperator>,
90                     check::PostStmt<MaterializeTemporaryExpr>,
91                     check::Bind, check::LiveSymbols, check::DeadSymbols> {
92
93  using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
94                                               SVal, SVal, SVal) const;
95
96  void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
97                                OverloadedOperatorKind Op) const;
98  void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
99                                 const Expr *OrigExpr,
100                                 const AdvanceFn *Handler) const;
101
102  void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
103                        SVal LVal, SVal RVal, OverloadedOperatorKind Op) const;
104  void processComparison(CheckerContext &C, ProgramStateRef State,
105                         SymbolRef Sym1, SymbolRef Sym2, SVal RetVal,
106                         OverloadedOperatorKind Op) const;
107  void handleIncrement(CheckerContext &C, SVal RetVal, SVal Iter,
108                       bool Postfix) const;
109  void handleDecrement(CheckerContext &C, SVal RetVal, SVal Iter,
110                       bool Postfix) const;
111  void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
112                              OverloadedOperatorKind Op, SVal RetVal,
113                              SVal Iterator, SVal Amount) const;
114  void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
115                           OverloadedOperatorKind OK, SVal Offset) const;
116  void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
117                     SVal Amount) const;
118  void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
119                  SVal Amount) const;
120  void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
121                  SVal Amount) const;
122  void assignToContainer(CheckerContext &C, const Expr *CE, SVal RetVal,
123                         const MemRegion *Cont) const;
124  bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
125  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
126                  const char *Sep) const override;
127
128  // std::advance, std::prev & std::next
129  CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
130      // template<class InputIt, class Distance>
131      // void advance(InputIt& it, Distance n);
132      {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
133
134      // template<class BidirIt>
135      // BidirIt prev(
136      //   BidirIt it,
137      //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
138      {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
139
140      // template<class ForwardIt>
141      // ForwardIt next(
142      //   ForwardIt it,
143      //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
144      {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
145  };
146
147public:
148  IteratorModeling() = default;
149
150  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
151  void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
152  void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
153  void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
154  void checkPostStmt(const MaterializeTemporaryExpr *MTE,
155                     CheckerContext &C) const;
156  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
157  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
158};
159
160bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
161bool isSimpleComparisonOperator(BinaryOperatorKind OK);
162ProgramStateRef removeIteratorPosition(ProgramStateRef State, SVal Val);
163ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
164                              SymbolRef Sym2, bool Equal);
165bool isBoundThroughLazyCompoundVal(const Environment &Env,
166                                   const MemRegion *Reg);
167const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
168
169} // namespace
170
171void IteratorModeling::checkPostCall(const CallEvent &Call,
172                                     CheckerContext &C) const {
173  // Record new iterator positions and iterator position changes
174  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
175  if (!Func)
176    return;
177
178  if (Func->isOverloadedOperator()) {
179    const auto Op = Func->getOverloadedOperator();
180    handleOverloadedOperator(C, Call, Op);
181    return;
182  }
183
184  const auto *OrigExpr = Call.getOriginExpr();
185  if (!OrigExpr)
186    return;
187
188  const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
189  if (Handler) {
190    handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
191    return;
192  }
193
194  if (!isIteratorType(Call.getResultType()))
195    return;
196
197  auto State = C.getState();
198
199  // Already bound to container?
200  if (getIteratorPosition(State, Call.getReturnValue()))
201    return;
202
203  // Copy-like and move constructors
204  if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
205    if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
206      State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
207      if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
208        State = removeIteratorPosition(State, Call.getArgSVal(0));
209      }
210      C.addTransition(State);
211      return;
212    }
213  }
214
215  // Assumption: if return value is an iterator which is not yet bound to a
216  //             container, then look for the first iterator argument of the
217  //             same type as the return value and bind the return value to
218  //             the same container. This approach works for STL algorithms.
219  // FIXME: Add a more conservative mode
220  for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
221    if (isIteratorType(Call.getArgExpr(i)->getType()) &&
222        Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
223            C.getASTContext()).getTypePtr() ==
224        Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
225      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
226        assignToContainer(C, OrigExpr, Call.getReturnValue(),
227                          Pos->getContainer());
228        return;
229      }
230    }
231  }
232}
233
234void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
235                                 CheckerContext &C) const {
236  auto State = C.getState();
237  const auto *Pos = getIteratorPosition(State, Val);
238  if (Pos) {
239    State = setIteratorPosition(State, Loc, *Pos);
240    C.addTransition(State);
241  } else {
242    const auto *OldPos = getIteratorPosition(State, Loc);
243    if (OldPos) {
244      State = removeIteratorPosition(State, Loc);
245      C.addTransition(State);
246    }
247  }
248}
249
250void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
251                                     CheckerContext &C) const {
252  UnaryOperatorKind OK = UO->getOpcode();
253  if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
254    return;
255
256  auto &SVB = C.getSValBuilder();
257  handlePtrIncrOrDecr(C, UO->getSubExpr(),
258                      isIncrementOperator(OK) ? OO_Plus : OO_Minus,
259                      SVB.makeArrayIndex(1));
260}
261
262void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
263                                     CheckerContext &C) const {
264  const ProgramStateRef State = C.getState();
265  const BinaryOperatorKind OK = BO->getOpcode();
266  const Expr *const LHS = BO->getLHS();
267  const Expr *const RHS = BO->getRHS();
268  const SVal LVal = State->getSVal(LHS, C.getLocationContext());
269  const SVal RVal = State->getSVal(RHS, C.getLocationContext());
270
271  if (isSimpleComparisonOperator(BO->getOpcode())) {
272    SVal Result = State->getSVal(BO, C.getLocationContext());
273    handleComparison(C, BO, Result, LVal, RVal,
274                     BinaryOperator::getOverloadedOperator(OK));
275  } else if (isRandomIncrOrDecrOperator(OK)) {
276    // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
277    // or on the RHS (eg.: 1 + it). Both cases are modeled.
278    const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
279    const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
280    const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
281
282    // The non-iterator side must have an integral or enumeration type.
283    if (!AmountExpr->getType()->isIntegralOrEnumerationType())
284      return;
285    SVal AmountVal = IsIterOnLHS ? RVal : LVal;
286    handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
287                        AmountVal);
288  }
289}
290
291void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
292                                     CheckerContext &C) const {
293  /* Transfer iterator state to temporary objects */
294  auto State = C.getState();
295  const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
296  if (!Pos)
297    return;
298  State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
299  C.addTransition(State);
300}
301
302void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
303                                        SymbolReaper &SR) const {
304  // Keep symbolic expressions of iterator positions alive
305  auto RegionMap = State->get<IteratorRegionMap>();
306  for (const IteratorPosition &Pos : llvm::make_second_range(RegionMap)) {
307    for (SymbolRef Sym : Pos.getOffset()->symbols())
308      if (isa<SymbolData>(Sym))
309        SR.markLive(Sym);
310  }
311
312  auto SymbolMap = State->get<IteratorSymbolMap>();
313  for (const IteratorPosition &Pos : llvm::make_second_range(SymbolMap)) {
314    for (SymbolRef Sym : Pos.getOffset()->symbols())
315      if (isa<SymbolData>(Sym))
316        SR.markLive(Sym);
317  }
318}
319
320void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
321                                        CheckerContext &C) const {
322  // Cleanup
323  auto State = C.getState();
324
325  auto RegionMap = State->get<IteratorRegionMap>();
326  for (const auto &Reg : RegionMap) {
327    if (!SR.isLiveRegion(Reg.first)) {
328      // The region behind the `LazyCompoundVal` is often cleaned up before
329      // the `LazyCompoundVal` itself. If there are iterator positions keyed
330      // by these regions their cleanup must be deferred.
331      if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
332        State = State->remove<IteratorRegionMap>(Reg.first);
333      }
334    }
335  }
336
337  auto SymbolMap = State->get<IteratorSymbolMap>();
338  for (const auto &Sym : SymbolMap) {
339    if (!SR.isLive(Sym.first)) {
340      State = State->remove<IteratorSymbolMap>(Sym.first);
341    }
342  }
343
344  C.addTransition(State);
345}
346
347void
348IteratorModeling::handleOverloadedOperator(CheckerContext &C,
349                                           const CallEvent &Call,
350                                           OverloadedOperatorKind Op) const {
351    if (isSimpleComparisonOperator(Op)) {
352      const auto *OrigExpr = Call.getOriginExpr();
353      if (!OrigExpr)
354        return;
355
356      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
357        handleComparison(C, OrigExpr, Call.getReturnValue(),
358                         InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
359        return;
360      }
361
362      handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
363                         Call.getArgSVal(1), Op);
364      return;
365    } else if (isRandomIncrOrDecrOperator(Op)) {
366      const auto *OrigExpr = Call.getOriginExpr();
367      if (!OrigExpr)
368        return;
369
370      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
371        if (Call.getNumArgs() >= 1 &&
372              Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
373          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
374                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
375          return;
376        }
377      } else if (Call.getNumArgs() >= 2) {
378        const Expr *FirstArg = Call.getArgExpr(0);
379        const Expr *SecondArg = Call.getArgExpr(1);
380        const QualType FirstType = FirstArg->getType();
381        const QualType SecondType = SecondArg->getType();
382
383        if (FirstType->isIntegralOrEnumerationType() ||
384            SecondType->isIntegralOrEnumerationType()) {
385          // In case of operator+ the iterator can be either on the LHS (eg.:
386          // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
387          const bool IsIterFirst = FirstType->isStructureOrClassType();
388          const SVal FirstArg = Call.getArgSVal(0);
389          const SVal SecondArg = Call.getArgSVal(1);
390          SVal Iterator = IsIterFirst ? FirstArg : SecondArg;
391          SVal Amount = IsIterFirst ? SecondArg : FirstArg;
392
393          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
394                                 Iterator, Amount);
395          return;
396        }
397      }
398    } else if (isIncrementOperator(Op)) {
399      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
400        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
401                        Call.getNumArgs());
402        return;
403      }
404
405      handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
406                      Call.getNumArgs());
407      return;
408    } else if (isDecrementOperator(Op)) {
409      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
410        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
411                        Call.getNumArgs());
412        return;
413      }
414
415      handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
416                        Call.getNumArgs());
417      return;
418    }
419}
420
421void
422IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
423                                            const CallEvent &Call,
424                                            const Expr *OrigExpr,
425                                            const AdvanceFn *Handler) const {
426  if (!C.wasInlined) {
427    (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
428                      Call.getArgSVal(0), Call.getArgSVal(1));
429    return;
430  }
431
432  // If std::advance() was inlined, but a non-standard function it calls inside
433  // was not, then we have to model it explicitly
434  const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
435  if (IdInfo) {
436    if (IdInfo->getName() == "advance") {
437      if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
438        (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
439                          Call.getArgSVal(0), Call.getArgSVal(1));
440      }
441    }
442  }
443}
444
445void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
446                                        SVal RetVal, SVal LVal, SVal RVal,
447                                        OverloadedOperatorKind Op) const {
448  // Record the operands and the operator of the comparison for the next
449  // evalAssume, if the result is a symbolic expression. If it is a concrete
450  // value (only one branch is possible), then transfer the state between
451  // the operands according to the operator and the result
452  auto State = C.getState();
453  const auto *LPos = getIteratorPosition(State, LVal);
454  const auto *RPos = getIteratorPosition(State, RVal);
455  const MemRegion *Cont = nullptr;
456  if (LPos) {
457    Cont = LPos->getContainer();
458  } else if (RPos) {
459    Cont = RPos->getContainer();
460  }
461  if (!Cont)
462    return;
463
464  // At least one of the iterators has recorded positions. If one of them does
465  // not then create a new symbol for the offset.
466  SymbolRef Sym;
467  if (!LPos || !RPos) {
468    auto &SymMgr = C.getSymbolManager();
469    Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
470                               C.getASTContext().LongTy, C.blockCount());
471    State = assumeNoOverflow(State, Sym, 4);
472  }
473
474  if (!LPos) {
475    State = setIteratorPosition(State, LVal,
476                                IteratorPosition::getPosition(Cont, Sym));
477    LPos = getIteratorPosition(State, LVal);
478  } else if (!RPos) {
479    State = setIteratorPosition(State, RVal,
480                                IteratorPosition::getPosition(Cont, Sym));
481    RPos = getIteratorPosition(State, RVal);
482  }
483
484  // If the value for which we just tried to set a new iterator position is
485  // an `SVal`for which no iterator position can be set then the setting was
486  // unsuccessful. We cannot handle the comparison in this case.
487  if (!LPos || !RPos)
488    return;
489
490  // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
491  // instead.
492  if (RetVal.isUnknown()) {
493    auto &SymMgr = C.getSymbolManager();
494    auto *LCtx = C.getLocationContext();
495    RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
496        CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
497    State = State->BindExpr(CE, LCtx, RetVal);
498  }
499
500  processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
501}
502
503void IteratorModeling::processComparison(CheckerContext &C,
504                                         ProgramStateRef State, SymbolRef Sym1,
505                                         SymbolRef Sym2, SVal RetVal,
506                                         OverloadedOperatorKind Op) const {
507  if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
508    if ((State = relateSymbols(State, Sym1, Sym2,
509                              (Op == OO_EqualEqual) ==
510                               (TruthVal->getValue() != 0)))) {
511      C.addTransition(State);
512    } else {
513      C.generateSink(State, C.getPredecessor());
514    }
515    return;
516  }
517
518  const auto ConditionVal = RetVal.getAs<DefinedSVal>();
519  if (!ConditionVal)
520    return;
521
522  if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
523    StateTrue = StateTrue->assume(*ConditionVal, true);
524    C.addTransition(StateTrue);
525  }
526
527  if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
528    StateFalse = StateFalse->assume(*ConditionVal, false);
529    C.addTransition(StateFalse);
530  }
531}
532
533void IteratorModeling::handleIncrement(CheckerContext &C, SVal RetVal,
534                                       SVal Iter, bool Postfix) const {
535  // Increment the symbolic expressions which represents the position of the
536  // iterator
537  auto State = C.getState();
538  auto &BVF = C.getSymbolManager().getBasicVals();
539
540  const auto *Pos = getIteratorPosition(State, Iter);
541  if (!Pos)
542    return;
543
544  auto NewState =
545    advancePosition(State, Iter, OO_Plus,
546                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
547  assert(NewState &&
548         "Advancing position by concrete int should always be successful");
549
550  const auto *NewPos = getIteratorPosition(NewState, Iter);
551  assert(NewPos &&
552         "Iterator should have position after successful advancement");
553
554  State = setIteratorPosition(State, Iter, *NewPos);
555  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
556  C.addTransition(State);
557}
558
559void IteratorModeling::handleDecrement(CheckerContext &C, SVal RetVal,
560                                       SVal Iter, bool Postfix) const {
561  // Decrement the symbolic expressions which represents the position of the
562  // iterator
563  auto State = C.getState();
564  auto &BVF = C.getSymbolManager().getBasicVals();
565
566  const auto *Pos = getIteratorPosition(State, Iter);
567  if (!Pos)
568    return;
569
570  auto NewState =
571    advancePosition(State, Iter, OO_Minus,
572                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
573  assert(NewState &&
574         "Advancing position by concrete int should always be successful");
575
576  const auto *NewPos = getIteratorPosition(NewState, Iter);
577  assert(NewPos &&
578         "Iterator should have position after successful advancement");
579
580  State = setIteratorPosition(State, Iter, *NewPos);
581  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
582  C.addTransition(State);
583}
584
585void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
586                                              OverloadedOperatorKind Op,
587                                              SVal RetVal, SVal Iterator,
588                                              SVal Amount) const {
589  // Increment or decrement the symbolic expressions which represents the
590  // position of the iterator
591  auto State = C.getState();
592
593  const auto *Pos = getIteratorPosition(State, Iterator);
594  if (!Pos)
595    return;
596
597  const auto *Value = &Amount;
598  SVal Val;
599  if (auto LocAmount = Amount.getAs<Loc>()) {
600    Val = State->getRawSVal(*LocAmount);
601    Value = &Val;
602  }
603
604  const auto &TgtVal =
605      (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
606
607  // `AdvancedState` is a state where the position of `LHS` is advanced. We
608  // only need this state to retrieve the new position, but we do not want
609  // to change the position of `LHS` (in every case).
610  auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
611  if (AdvancedState) {
612    const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
613    assert(NewPos &&
614           "Iterator should have position after successful advancement");
615
616    State = setIteratorPosition(State, TgtVal, *NewPos);
617    C.addTransition(State);
618  } else {
619    assignToContainer(C, CE, TgtVal, Pos->getContainer());
620  }
621}
622
623void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
624                                           const Expr *Iterator,
625                                           OverloadedOperatorKind OK,
626                                           SVal Offset) const {
627  if (!isa<DefinedSVal>(Offset))
628    return;
629
630  QualType PtrType = Iterator->getType();
631  if (!PtrType->isPointerType())
632    return;
633  QualType ElementType = PtrType->getPointeeType();
634
635  ProgramStateRef State = C.getState();
636  SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
637
638  const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
639  if (!OldPos)
640    return;
641
642  SVal NewVal;
643  if (OK == OO_Plus || OK == OO_PlusEqual) {
644    NewVal = State->getLValue(ElementType, Offset, OldVal);
645  } else {
646    auto &SVB = C.getSValBuilder();
647    SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
648    NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
649  }
650
651  // `AdvancedState` is a state where the position of `Old` is advanced. We
652  // only need this state to retrieve the new position, but we do not want
653  // ever to change the position of `OldVal`.
654  auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
655  if (AdvancedState) {
656    const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
657    assert(NewPos &&
658           "Iterator should have position after successful advancement");
659
660    ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
661    C.addTransition(NewState);
662  } else {
663    assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
664  }
665}
666
667void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
668                                     SVal RetVal, SVal Iter,
669                                     SVal Amount) const {
670  handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
671}
672
673void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
674                                  SVal RetVal, SVal Iter, SVal Amount) const {
675  handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
676}
677
678void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
679                                  SVal RetVal, SVal Iter, SVal Amount) const {
680  handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
681}
682
683void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
684                                         SVal RetVal,
685                                         const MemRegion *Cont) const {
686  Cont = Cont->getMostDerivedObjectRegion();
687
688  auto State = C.getState();
689  const auto *LCtx = C.getLocationContext();
690  State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
691
692  C.addTransition(State);
693}
694
695bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
696                                         const Expr *CE) const {
697  // Compare the iterator position before and after the call. (To be called
698  // from `checkPostCall()`.)
699  const auto StateAfter = C.getState();
700
701  const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
702  // If we have no position after the call of `std::advance`, then we are not
703  // interested. (Modeling of an inlined `std::advance()` should not remove the
704  // position in any case.)
705  if (!PosAfter)
706    return false;
707
708  const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
709  assert(N && "Any call should have a `CallEnter` node.");
710
711  const auto StateBefore = N->getState();
712  const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
713  // FIXME: `std::advance()` should not create a new iterator position but
714  //        change existing ones. However, in case of iterators implemented as
715  //        pointers the handling of parameters in `std::advance()`-like
716  //        functions is still incomplete which may result in cases where
717  //        the new position is assigned to the wrong pointer. This causes
718  //        crash if we use an assertion here.
719  if (!PosBefore)
720    return false;
721
722  return PosBefore->getOffset() == PosAfter->getOffset();
723}
724
725void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
726                                  const char *NL, const char *Sep) const {
727  auto SymbolMap = State->get<IteratorSymbolMap>();
728  auto RegionMap = State->get<IteratorRegionMap>();
729  // Use a counter to add newlines before every line except the first one.
730  unsigned Count = 0;
731
732  if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
733    Out << Sep << "Iterator Positions :" << NL;
734    for (const auto &Sym : SymbolMap) {
735      if (Count++)
736        Out << NL;
737
738      Sym.first->dumpToStream(Out);
739      Out << " : ";
740      const auto Pos = Sym.second;
741      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
742      Pos.getContainer()->dumpToStream(Out);
743      Out<<" ; Offset == ";
744      Pos.getOffset()->dumpToStream(Out);
745    }
746
747    for (const auto &Reg : RegionMap) {
748      if (Count++)
749        Out << NL;
750
751      Reg.first->dumpToStream(Out);
752      Out << " : ";
753      const auto Pos = Reg.second;
754      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
755      Pos.getContainer()->dumpToStream(Out);
756      Out<<" ; Offset == ";
757      Pos.getOffset()->dumpToStream(Out);
758    }
759  }
760}
761
762namespace {
763
764bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
765  return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
766}
767
768bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
769  return OK == BO_EQ || OK == BO_NE;
770}
771
772ProgramStateRef removeIteratorPosition(ProgramStateRef State, SVal Val) {
773  if (auto Reg = Val.getAsRegion()) {
774    Reg = Reg->getMostDerivedObjectRegion();
775    return State->remove<IteratorRegionMap>(Reg);
776  } else if (const auto Sym = Val.getAsSymbol()) {
777    return State->remove<IteratorSymbolMap>(Sym);
778  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
779    return State->remove<IteratorRegionMap>(LCVal->getRegion());
780  }
781  return nullptr;
782}
783
784ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
785                              SymbolRef Sym2, bool Equal) {
786  auto &SVB = State->getStateManager().getSValBuilder();
787
788  // FIXME: This code should be reworked as follows:
789  // 1. Subtract the operands using evalBinOp().
790  // 2. Assume that the result doesn't overflow.
791  // 3. Compare the result to 0.
792  // 4. Assume the result of the comparison.
793  const auto comparison =
794    SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
795                  nonloc::SymbolVal(Sym2), SVB.getConditionType());
796
797  assert(isa<DefinedSVal>(comparison) &&
798         "Symbol comparison must be a `DefinedSVal`");
799
800  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
801  if (!NewState)
802    return nullptr;
803
804  if (const auto CompSym = comparison.getAsSymbol()) {
805    assert(isa<SymIntExpr>(CompSym) &&
806           "Symbol comparison must be a `SymIntExpr`");
807    assert(BinaryOperator::isComparisonOp(
808               cast<SymIntExpr>(CompSym)->getOpcode()) &&
809           "Symbol comparison must be a comparison");
810    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
811  }
812
813  return NewState;
814}
815
816bool isBoundThroughLazyCompoundVal(const Environment &Env,
817                                   const MemRegion *Reg) {
818  for (const auto &Binding : Env) {
819    if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
820      if (LCVal->getRegion() == Reg)
821        return true;
822    }
823  }
824
825  return false;
826}
827
828const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
829  while (Node) {
830    ProgramPoint PP = Node->getLocation();
831    if (auto Enter = PP.getAs<CallEnter>()) {
832      if (Enter->getCallExpr() == Call)
833        break;
834    }
835
836    Node = Node->getFirstPred();
837  }
838
839  return Node;
840}
841
842} // namespace
843
844void ento::registerIteratorModeling(CheckerManager &mgr) {
845  mgr.registerChecker<IteratorModeling>();
846}
847
848bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
849  return true;
850}
851