1//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with C++ code generation of virtual tables.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/CodeGenOptions.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/CodeGen/ConstantInitBuilder.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/Support/Format.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include <algorithm>
26#include <cstdio>
27#include <utility>
28
29using namespace clang;
30using namespace CodeGen;
31
32CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33    : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
34
35llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
36                                              GlobalDecl GD) {
37  return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
38                                 /*DontDefer=*/true, /*IsThunk=*/true);
39}
40
41static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
42                               llvm::Function *ThunkFn, bool ForVTable,
43                               GlobalDecl GD) {
44  CGM.setFunctionLinkage(GD, ThunkFn);
45  CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
46                                  !Thunk.Return.isEmpty());
47
48  // Set the right visibility.
49  CGM.setGVProperties(ThunkFn, GD);
50
51  if (!CGM.getCXXABI().exportThunk()) {
52    ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
53    ThunkFn->setDSOLocal(true);
54  }
55
56  if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
57    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
58}
59
60#ifndef NDEBUG
61static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
62                    const ABIArgInfo &infoR, CanQualType typeR) {
63  return (infoL.getKind() == infoR.getKind() &&
64          (typeL == typeR ||
65           (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
66           (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
67}
68#endif
69
70static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
71                                      QualType ResultType, RValue RV,
72                                      const ThunkInfo &Thunk) {
73  // Emit the return adjustment.
74  bool NullCheckValue = !ResultType->isReferenceType();
75
76  llvm::BasicBlock *AdjustNull = nullptr;
77  llvm::BasicBlock *AdjustNotNull = nullptr;
78  llvm::BasicBlock *AdjustEnd = nullptr;
79
80  llvm::Value *ReturnValue = RV.getScalarVal();
81
82  if (NullCheckValue) {
83    AdjustNull = CGF.createBasicBlock("adjust.null");
84    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
85    AdjustEnd = CGF.createBasicBlock("adjust.end");
86
87    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
88    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
89    CGF.EmitBlock(AdjustNotNull);
90  }
91
92  auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
93  auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
94  ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(
95      CGF,
96      Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()),
97              ClassAlign),
98      Thunk.Return);
99
100  if (NullCheckValue) {
101    CGF.Builder.CreateBr(AdjustEnd);
102    CGF.EmitBlock(AdjustNull);
103    CGF.Builder.CreateBr(AdjustEnd);
104    CGF.EmitBlock(AdjustEnd);
105
106    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
107    PHI->addIncoming(ReturnValue, AdjustNotNull);
108    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
109                     AdjustNull);
110    ReturnValue = PHI;
111  }
112
113  return RValue::get(ReturnValue);
114}
115
116/// This function clones a function's DISubprogram node and enters it into
117/// a value map with the intent that the map can be utilized by the cloner
118/// to short-circuit Metadata node mapping.
119/// Furthermore, the function resolves any DILocalVariable nodes referenced
120/// by dbg.value intrinsics so they can be properly mapped during cloning.
121static void resolveTopLevelMetadata(llvm::Function *Fn,
122                                    llvm::ValueToValueMapTy &VMap) {
123  // Clone the DISubprogram node and put it into the Value map.
124  auto *DIS = Fn->getSubprogram();
125  if (!DIS)
126    return;
127  auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
128  VMap.MD()[DIS].reset(NewDIS);
129
130  // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
131  // they are referencing.
132  for (auto &BB : *Fn) {
133    for (auto &I : BB) {
134      if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
135        auto *DILocal = DII->getVariable();
136        if (!DILocal->isResolved())
137          DILocal->resolve();
138      }
139    }
140  }
141}
142
143// This function does roughly the same thing as GenerateThunk, but in a
144// very different way, so that va_start and va_end work correctly.
145// FIXME: This function assumes "this" is the first non-sret LLVM argument of
146//        a function, and that there is an alloca built in the entry block
147//        for all accesses to "this".
148// FIXME: This function assumes there is only one "ret" statement per function.
149// FIXME: Cloning isn't correct in the presence of indirect goto!
150// FIXME: This implementation of thunks bloats codesize by duplicating the
151//        function definition.  There are alternatives:
152//        1. Add some sort of stub support to LLVM for cases where we can
153//           do a this adjustment, then a sibcall.
154//        2. We could transform the definition to take a va_list instead of an
155//           actual variable argument list, then have the thunks (including a
156//           no-op thunk for the regular definition) call va_start/va_end.
157//           There's a bit of per-call overhead for this solution, but it's
158//           better for codesize if the definition is long.
159llvm::Function *
160CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
161                                      const CGFunctionInfo &FnInfo,
162                                      GlobalDecl GD, const ThunkInfo &Thunk) {
163  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
164  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
165  QualType ResultType = FPT->getReturnType();
166
167  // Get the original function
168  assert(FnInfo.isVariadic());
169  llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
170  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
171  llvm::Function *BaseFn = cast<llvm::Function>(Callee);
172
173  // Cloning can't work if we don't have a definition. The Microsoft ABI may
174  // require thunks when a definition is not available. Emit an error in these
175  // cases.
176  if (!MD->isDefined()) {
177    CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
178    return Fn;
179  }
180  assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
181
182  // Clone to thunk.
183  llvm::ValueToValueMapTy VMap;
184
185  // We are cloning a function while some Metadata nodes are still unresolved.
186  // Ensure that the value mapper does not encounter any of them.
187  resolveTopLevelMetadata(BaseFn, VMap);
188  llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
189  Fn->replaceAllUsesWith(NewFn);
190  NewFn->takeName(Fn);
191  Fn->eraseFromParent();
192  Fn = NewFn;
193
194  // "Initialize" CGF (minimally).
195  CurFn = Fn;
196
197  // Get the "this" value
198  llvm::Function::arg_iterator AI = Fn->arg_begin();
199  if (CGM.ReturnTypeUsesSRet(FnInfo))
200    ++AI;
201
202  // Find the first store of "this", which will be to the alloca associated
203  // with "this".
204  Address ThisPtr =
205      Address(&*AI, ConvertTypeForMem(MD->getFunctionObjectParameterType()),
206              CGM.getClassPointerAlignment(MD->getParent()));
207  llvm::BasicBlock *EntryBB = &Fn->front();
208  llvm::BasicBlock::iterator ThisStore =
209      llvm::find_if(*EntryBB, [&](llvm::Instruction &I) {
210        return isa<llvm::StoreInst>(I) &&
211               I.getOperand(0) == ThisPtr.getPointer();
212      });
213  assert(ThisStore != EntryBB->end() &&
214         "Store of this should be in entry block?");
215  // Adjust "this", if necessary.
216  Builder.SetInsertPoint(&*ThisStore);
217  llvm::Value *AdjustedThisPtr =
218      CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
219  AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
220                                          ThisStore->getOperand(0)->getType());
221  ThisStore->setOperand(0, AdjustedThisPtr);
222
223  if (!Thunk.Return.isEmpty()) {
224    // Fix up the returned value, if necessary.
225    for (llvm::BasicBlock &BB : *Fn) {
226      llvm::Instruction *T = BB.getTerminator();
227      if (isa<llvm::ReturnInst>(T)) {
228        RValue RV = RValue::get(T->getOperand(0));
229        T->eraseFromParent();
230        Builder.SetInsertPoint(&BB);
231        RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
232        Builder.CreateRet(RV.getScalarVal());
233        break;
234      }
235    }
236  }
237
238  return Fn;
239}
240
241void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
242                                 const CGFunctionInfo &FnInfo,
243                                 bool IsUnprototyped) {
244  assert(!CurGD.getDecl() && "CurGD was already set!");
245  CurGD = GD;
246  CurFuncIsThunk = true;
247
248  // Build FunctionArgs.
249  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
250  QualType ThisType = MD->getThisType();
251  QualType ResultType;
252  if (IsUnprototyped)
253    ResultType = CGM.getContext().VoidTy;
254  else if (CGM.getCXXABI().HasThisReturn(GD))
255    ResultType = ThisType;
256  else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
257    ResultType = CGM.getContext().VoidPtrTy;
258  else
259    ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
260  FunctionArgList FunctionArgs;
261
262  // Create the implicit 'this' parameter declaration.
263  CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
264
265  // Add the rest of the parameters, if we have a prototype to work with.
266  if (!IsUnprototyped) {
267    FunctionArgs.append(MD->param_begin(), MD->param_end());
268
269    if (isa<CXXDestructorDecl>(MD))
270      CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
271                                                FunctionArgs);
272  }
273
274  // Start defining the function.
275  auto NL = ApplyDebugLocation::CreateEmpty(*this);
276  StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
277                MD->getLocation());
278  // Create a scope with an artificial location for the body of this function.
279  auto AL = ApplyDebugLocation::CreateArtificial(*this);
280
281  // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
282  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
283  CXXThisValue = CXXABIThisValue;
284  CurCodeDecl = MD;
285  CurFuncDecl = MD;
286}
287
288void CodeGenFunction::FinishThunk() {
289  // Clear these to restore the invariants expected by
290  // StartFunction/FinishFunction.
291  CurCodeDecl = nullptr;
292  CurFuncDecl = nullptr;
293
294  FinishFunction();
295}
296
297void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
298                                                const ThunkInfo *Thunk,
299                                                bool IsUnprototyped) {
300  assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
301         "Please use a new CGF for this thunk");
302  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
303
304  // Adjust the 'this' pointer if necessary
305  llvm::Value *AdjustedThisPtr =
306    Thunk ? CGM.getCXXABI().performThisAdjustment(
307                          *this, LoadCXXThisAddress(), Thunk->This)
308          : LoadCXXThis();
309
310  // If perfect forwarding is required a variadic method, a method using
311  // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
312  // thunk requires a return adjustment, since that is impossible with musttail.
313  if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
314    if (Thunk && !Thunk->Return.isEmpty()) {
315      if (IsUnprototyped)
316        CGM.ErrorUnsupported(
317            MD, "return-adjusting thunk with incomplete parameter type");
318      else if (CurFnInfo->isVariadic())
319        llvm_unreachable("shouldn't try to emit musttail return-adjusting "
320                         "thunks for variadic functions");
321      else
322        CGM.ErrorUnsupported(
323            MD, "non-trivial argument copy for return-adjusting thunk");
324    }
325    EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
326    return;
327  }
328
329  // Start building CallArgs.
330  CallArgList CallArgs;
331  QualType ThisType = MD->getThisType();
332  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
333
334  if (isa<CXXDestructorDecl>(MD))
335    CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
336
337#ifndef NDEBUG
338  unsigned PrefixArgs = CallArgs.size() - 1;
339#endif
340  // Add the rest of the arguments.
341  for (const ParmVarDecl *PD : MD->parameters())
342    EmitDelegateCallArg(CallArgs, PD, SourceLocation());
343
344  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
345
346#ifndef NDEBUG
347  const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
348      CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
349  assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
350         CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
351         CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
352  assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
353         similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
354                 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
355  assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
356  for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
357    assert(similar(CallFnInfo.arg_begin()[i].info,
358                   CallFnInfo.arg_begin()[i].type,
359                   CurFnInfo->arg_begin()[i].info,
360                   CurFnInfo->arg_begin()[i].type));
361#endif
362
363  // Determine whether we have a return value slot to use.
364  QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
365                            ? ThisType
366                            : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
367                                  ? CGM.getContext().VoidPtrTy
368                                  : FPT->getReturnType();
369  ReturnValueSlot Slot;
370  if (!ResultType->isVoidType() &&
371      (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
372       hasAggregateEvaluationKind(ResultType)))
373    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
374                           /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
375
376  // Now emit our call.
377  llvm::CallBase *CallOrInvoke;
378  RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
379                       CallArgs, &CallOrInvoke);
380
381  // Consider return adjustment if we have ThunkInfo.
382  if (Thunk && !Thunk->Return.isEmpty())
383    RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
384  else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
385    Call->setTailCallKind(llvm::CallInst::TCK_Tail);
386
387  // Emit return.
388  if (!ResultType->isVoidType() && Slot.isNull())
389    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
390
391  // Disable the final ARC autorelease.
392  AutoreleaseResult = false;
393
394  FinishThunk();
395}
396
397void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
398                                        llvm::Value *AdjustedThisPtr,
399                                        llvm::FunctionCallee Callee) {
400  // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
401  // to translate AST arguments into LLVM IR arguments.  For thunks, we know
402  // that the caller prototype more or less matches the callee prototype with
403  // the exception of 'this'.
404  SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args()));
405
406  // Set the adjusted 'this' pointer.
407  const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
408  if (ThisAI.isDirect()) {
409    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
410    int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
411    llvm::Type *ThisType = Args[ThisArgNo]->getType();
412    if (ThisType != AdjustedThisPtr->getType())
413      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
414    Args[ThisArgNo] = AdjustedThisPtr;
415  } else {
416    assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
417    Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
418    llvm::Type *ThisType = ThisAddr.getElementType();
419    if (ThisType != AdjustedThisPtr->getType())
420      AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
421    Builder.CreateStore(AdjustedThisPtr, ThisAddr);
422  }
423
424  // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
425  // don't actually want to run them.
426  llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
427  Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
428
429  // Apply the standard set of call attributes.
430  unsigned CallingConv;
431  llvm::AttributeList Attrs;
432  CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
433                             Attrs, CallingConv, /*AttrOnCallSite=*/true,
434                             /*IsThunk=*/false);
435  Call->setAttributes(Attrs);
436  Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
437
438  if (Call->getType()->isVoidTy())
439    Builder.CreateRetVoid();
440  else
441    Builder.CreateRet(Call);
442
443  // Finish the function to maintain CodeGenFunction invariants.
444  // FIXME: Don't emit unreachable code.
445  EmitBlock(createBasicBlock());
446
447  FinishThunk();
448}
449
450void CodeGenFunction::generateThunk(llvm::Function *Fn,
451                                    const CGFunctionInfo &FnInfo, GlobalDecl GD,
452                                    const ThunkInfo &Thunk,
453                                    bool IsUnprototyped) {
454  StartThunk(Fn, GD, FnInfo, IsUnprototyped);
455  // Create a scope with an artificial location for the body of this function.
456  auto AL = ApplyDebugLocation::CreateArtificial(*this);
457
458  // Get our callee. Use a placeholder type if this method is unprototyped so
459  // that CodeGenModule doesn't try to set attributes.
460  llvm::Type *Ty;
461  if (IsUnprototyped)
462    Ty = llvm::StructType::get(getLLVMContext());
463  else
464    Ty = CGM.getTypes().GetFunctionType(FnInfo);
465
466  llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
467
468  // Make the call and return the result.
469  EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
470                            &Thunk, IsUnprototyped);
471}
472
473static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
474                                  bool IsUnprototyped, bool ForVTable) {
475  // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
476  // provide thunks for us.
477  if (CGM.getTarget().getCXXABI().isMicrosoft())
478    return true;
479
480  // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
481  // definitions of the main method. Therefore, emitting thunks with the vtable
482  // is purely an optimization. Emit the thunk if optimizations are enabled and
483  // all of the parameter types are complete.
484  if (ForVTable)
485    return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
486
487  // Always emit thunks along with the method definition.
488  return true;
489}
490
491llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
492                                               const ThunkInfo &TI,
493                                               bool ForVTable) {
494  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
495
496  // First, get a declaration. Compute the mangled name. Don't worry about
497  // getting the function prototype right, since we may only need this
498  // declaration to fill in a vtable slot.
499  SmallString<256> Name;
500  MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
501  llvm::raw_svector_ostream Out(Name);
502  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
503    MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
504  else
505    MCtx.mangleThunk(MD, TI, Out);
506  llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
507  llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
508
509  // If we don't need to emit a definition, return this declaration as is.
510  bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
511      MD->getType()->castAs<FunctionType>());
512  if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
513    return Thunk;
514
515  // Arrange a function prototype appropriate for a function definition. In some
516  // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
517  const CGFunctionInfo &FnInfo =
518      IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
519                     : CGM.getTypes().arrangeGlobalDeclaration(GD);
520  llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
521
522  // If the type of the underlying GlobalValue is wrong, we'll have to replace
523  // it. It should be a declaration.
524  llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
525  if (ThunkFn->getFunctionType() != ThunkFnTy) {
526    llvm::GlobalValue *OldThunkFn = ThunkFn;
527
528    assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
529
530    // Remove the name from the old thunk function and get a new thunk.
531    OldThunkFn->setName(StringRef());
532    ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
533                                     Name.str(), &CGM.getModule());
534    CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
535
536    if (!OldThunkFn->use_empty()) {
537      OldThunkFn->replaceAllUsesWith(ThunkFn);
538    }
539
540    // Remove the old thunk.
541    OldThunkFn->eraseFromParent();
542  }
543
544  bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
545  bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
546
547  if (!ThunkFn->isDeclaration()) {
548    if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
549      // There is already a thunk emitted for this function, do nothing.
550      return ThunkFn;
551    }
552
553    setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
554    return ThunkFn;
555  }
556
557  // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
558  // that the return type is meaningless. These thunks can be used to call
559  // functions with differing return types, and the caller is required to cast
560  // the prototype appropriately to extract the correct value.
561  if (IsUnprototyped)
562    ThunkFn->addFnAttr("thunk");
563
564  CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
565
566  // Thunks for variadic methods are special because in general variadic
567  // arguments cannot be perfectly forwarded. In the general case, clang
568  // implements such thunks by cloning the original function body. However, for
569  // thunks with no return adjustment on targets that support musttail, we can
570  // use musttail to perfectly forward the variadic arguments.
571  bool ShouldCloneVarArgs = false;
572  if (!IsUnprototyped && ThunkFn->isVarArg()) {
573    ShouldCloneVarArgs = true;
574    if (TI.Return.isEmpty()) {
575      switch (CGM.getTriple().getArch()) {
576      case llvm::Triple::x86_64:
577      case llvm::Triple::x86:
578      case llvm::Triple::aarch64:
579        ShouldCloneVarArgs = false;
580        break;
581      default:
582        break;
583      }
584    }
585  }
586
587  if (ShouldCloneVarArgs) {
588    if (UseAvailableExternallyLinkage)
589      return ThunkFn;
590    ThunkFn =
591        CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
592  } else {
593    // Normal thunk body generation.
594    CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
595  }
596
597  setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
598  return ThunkFn;
599}
600
601void CodeGenVTables::EmitThunks(GlobalDecl GD) {
602  const CXXMethodDecl *MD =
603    cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
604
605  // We don't need to generate thunks for the base destructor.
606  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
607    return;
608
609  const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
610      VTContext->getThunkInfo(GD);
611
612  if (!ThunkInfoVector)
613    return;
614
615  for (const ThunkInfo& Thunk : *ThunkInfoVector)
616    maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
617}
618
619void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
620                                          llvm::Constant *component,
621                                          unsigned vtableAddressPoint,
622                                          bool vtableHasLocalLinkage,
623                                          bool isCompleteDtor) const {
624  // No need to get the offset of a nullptr.
625  if (component->isNullValue())
626    return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
627
628  auto *globalVal =
629      cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
630  llvm::Module &module = CGM.getModule();
631
632  // We don't want to copy the linkage of the vtable exactly because we still
633  // want the stub/proxy to be emitted for properly calculating the offset.
634  // Examples where there would be no symbol emitted are available_externally
635  // and private linkages.
636  //
637  // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a
638  // local symbol.
639  //
640  // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for
641  // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a
642  // target that supports this replacement.
643  auto stubLinkage = vtableHasLocalLinkage
644                         ? llvm::GlobalValue::InternalLinkage
645                         : llvm::GlobalValue::LinkOnceODRLinkage;
646
647  llvm::Constant *target;
648  if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
649    target = llvm::DSOLocalEquivalent::get(func);
650  } else {
651    llvm::SmallString<16> rttiProxyName(globalVal->getName());
652    rttiProxyName.append(".rtti_proxy");
653
654    // The RTTI component may not always be emitted in the same linkage unit as
655    // the vtable. As a general case, we can make a dso_local proxy to the RTTI
656    // that points to the actual RTTI struct somewhere. This will result in a
657    // GOTPCREL relocation when taking the relative offset to the proxy.
658    llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
659    if (!proxy) {
660      proxy = new llvm::GlobalVariable(module, globalVal->getType(),
661                                       /*isConstant=*/true, stubLinkage,
662                                       globalVal, rttiProxyName);
663      proxy->setDSOLocal(true);
664      proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
665      if (!proxy->hasLocalLinkage()) {
666        proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
667        proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
668      }
669      // Do not instrument the rtti proxies with hwasan to avoid a duplicate
670      // symbol error. Aliases generated by hwasan will retain the same namebut
671      // the addresses they are set to may have different tags from different
672      // compilation units. We don't run into this without hwasan because the
673      // proxies are in comdat groups, but those aren't propagated to the alias.
674      RemoveHwasanMetadata(proxy);
675    }
676    target = proxy;
677  }
678
679  builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
680                                      /*position=*/vtableAddressPoint);
681}
682
683static bool UseRelativeLayout(const CodeGenModule &CGM) {
684  return CGM.getTarget().getCXXABI().isItaniumFamily() &&
685         CGM.getItaniumVTableContext().isRelativeLayout();
686}
687
688bool CodeGenVTables::useRelativeLayout() const {
689  return UseRelativeLayout(CGM);
690}
691
692llvm::Type *CodeGenModule::getVTableComponentType() const {
693  if (UseRelativeLayout(*this))
694    return Int32Ty;
695  return GlobalsInt8PtrTy;
696}
697
698llvm::Type *CodeGenVTables::getVTableComponentType() const {
699  return CGM.getVTableComponentType();
700}
701
702static void AddPointerLayoutOffset(const CodeGenModule &CGM,
703                                   ConstantArrayBuilder &builder,
704                                   CharUnits offset) {
705  builder.add(llvm::ConstantExpr::getIntToPtr(
706      llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
707      CGM.GlobalsInt8PtrTy));
708}
709
710static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
711                                    ConstantArrayBuilder &builder,
712                                    CharUnits offset) {
713  builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
714}
715
716void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
717                                        const VTableLayout &layout,
718                                        unsigned componentIndex,
719                                        llvm::Constant *rtti,
720                                        unsigned &nextVTableThunkIndex,
721                                        unsigned vtableAddressPoint,
722                                        bool vtableHasLocalLinkage) {
723  auto &component = layout.vtable_components()[componentIndex];
724
725  auto addOffsetConstant =
726      useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
727
728  switch (component.getKind()) {
729  case VTableComponent::CK_VCallOffset:
730    return addOffsetConstant(CGM, builder, component.getVCallOffset());
731
732  case VTableComponent::CK_VBaseOffset:
733    return addOffsetConstant(CGM, builder, component.getVBaseOffset());
734
735  case VTableComponent::CK_OffsetToTop:
736    return addOffsetConstant(CGM, builder, component.getOffsetToTop());
737
738  case VTableComponent::CK_RTTI:
739    if (useRelativeLayout())
740      return addRelativeComponent(builder, rtti, vtableAddressPoint,
741                                  vtableHasLocalLinkage,
742                                  /*isCompleteDtor=*/false);
743    else
744      return builder.add(rtti);
745
746  case VTableComponent::CK_FunctionPointer:
747  case VTableComponent::CK_CompleteDtorPointer:
748  case VTableComponent::CK_DeletingDtorPointer: {
749    GlobalDecl GD = component.getGlobalDecl();
750
751    if (CGM.getLangOpts().CUDA) {
752      // Emit NULL for methods we can't codegen on this
753      // side. Otherwise we'd end up with vtable with unresolved
754      // references.
755      const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
756      // OK on device side: functions w/ __device__ attribute
757      // OK on host side: anything except __device__-only functions.
758      bool CanEmitMethod =
759          CGM.getLangOpts().CUDAIsDevice
760              ? MD->hasAttr<CUDADeviceAttr>()
761              : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
762      if (!CanEmitMethod)
763        return builder.add(
764            llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy));
765      // Method is acceptable, continue processing as usual.
766    }
767
768    auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
769      // FIXME(PR43094): When merging comdat groups, lld can select a local
770      // symbol as the signature symbol even though it cannot be accessed
771      // outside that symbol's TU. The relative vtables ABI would make
772      // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
773      // depending on link order, the comdat groups could resolve to the one
774      // with the local symbol. As a temporary solution, fill these components
775      // with zero. We shouldn't be calling these in the first place anyway.
776      if (useRelativeLayout())
777        return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
778
779      // For NVPTX devices in OpenMP emit special functon as null pointers,
780      // otherwise linking ends up with unresolved references.
781      if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice &&
782          CGM.getTriple().isNVPTX())
783        return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
784      llvm::FunctionType *fnTy =
785          llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
786      llvm::Constant *fn = cast<llvm::Constant>(
787          CGM.CreateRuntimeFunction(fnTy, name).getCallee());
788      if (auto f = dyn_cast<llvm::Function>(fn))
789        f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
790      return fn;
791    };
792
793    llvm::Constant *fnPtr;
794
795    // Pure virtual member functions.
796    if (cast<CXXMethodDecl>(GD.getDecl())->isPureVirtual()) {
797      if (!PureVirtualFn)
798        PureVirtualFn =
799            getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
800      fnPtr = PureVirtualFn;
801
802    // Deleted virtual member functions.
803    } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
804      if (!DeletedVirtualFn)
805        DeletedVirtualFn =
806            getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
807      fnPtr = DeletedVirtualFn;
808
809    // Thunks.
810    } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
811               layout.vtable_thunks()[nextVTableThunkIndex].first ==
812                   componentIndex) {
813      auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
814
815      nextVTableThunkIndex++;
816      fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
817
818    // Otherwise we can use the method definition directly.
819    } else {
820      llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
821      fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
822    }
823
824    if (useRelativeLayout()) {
825      return addRelativeComponent(
826          builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
827          component.getKind() == VTableComponent::CK_CompleteDtorPointer);
828    } else {
829      // TODO: this icky and only exists due to functions being in the generic
830      //       address space, rather than the global one, even though they are
831      //       globals;  fixing said issue might be intrusive, and will be done
832      //       later.
833      unsigned FnAS = fnPtr->getType()->getPointerAddressSpace();
834      unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace();
835
836      if (FnAS != GVAS)
837        fnPtr =
838            llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy);
839      return builder.add(fnPtr);
840    }
841  }
842
843  case VTableComponent::CK_UnusedFunctionPointer:
844    if (useRelativeLayout())
845      return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
846    else
847      return builder.addNullPointer(CGM.GlobalsInt8PtrTy);
848  }
849
850  llvm_unreachable("Unexpected vtable component kind");
851}
852
853llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
854  SmallVector<llvm::Type *, 4> tys;
855  llvm::Type *componentType = getVTableComponentType();
856  for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
857    tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
858
859  return llvm::StructType::get(CGM.getLLVMContext(), tys);
860}
861
862void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
863                                             const VTableLayout &layout,
864                                             llvm::Constant *rtti,
865                                             bool vtableHasLocalLinkage) {
866  llvm::Type *componentType = getVTableComponentType();
867
868  const auto &addressPoints = layout.getAddressPointIndices();
869  unsigned nextVTableThunkIndex = 0;
870  for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
871       vtableIndex != endIndex; ++vtableIndex) {
872    auto vtableElem = builder.beginArray(componentType);
873
874    size_t vtableStart = layout.getVTableOffset(vtableIndex);
875    size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
876    for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
877         ++componentIndex) {
878      addVTableComponent(vtableElem, layout, componentIndex, rtti,
879                         nextVTableThunkIndex, addressPoints[vtableIndex],
880                         vtableHasLocalLinkage);
881    }
882    vtableElem.finishAndAddTo(builder);
883  }
884}
885
886llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
887    const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
888    llvm::GlobalVariable::LinkageTypes Linkage,
889    VTableAddressPointsMapTy &AddressPoints) {
890  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
891    DI->completeClassData(Base.getBase());
892
893  std::unique_ptr<VTableLayout> VTLayout(
894      getItaniumVTableContext().createConstructionVTableLayout(
895          Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
896
897  // Add the address points.
898  AddressPoints = VTLayout->getAddressPoints();
899
900  // Get the mangled construction vtable name.
901  SmallString<256> OutName;
902  llvm::raw_svector_ostream Out(OutName);
903  cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
904      .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
905                           Base.getBase(), Out);
906  SmallString<256> Name(OutName);
907
908  bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
909  bool VTableAliasExists =
910      UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
911  if (VTableAliasExists) {
912    // We previously made the vtable hidden and changed its name.
913    Name.append(".local");
914  }
915
916  llvm::Type *VTType = getVTableType(*VTLayout);
917
918  // Construction vtable symbols are not part of the Itanium ABI, so we cannot
919  // guarantee that they actually will be available externally. Instead, when
920  // emitting an available_externally VTT, we provide references to an internal
921  // linkage construction vtable. The ABI only requires complete-object vtables
922  // to be the same for all instances of a type, not construction vtables.
923  if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
924    Linkage = llvm::GlobalVariable::InternalLinkage;
925
926  llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType);
927
928  // Create the variable that will hold the construction vtable.
929  llvm::GlobalVariable *VTable =
930      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
931
932  // V-tables are always unnamed_addr.
933  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
934
935  llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
936      CGM.getContext().getTagDeclType(Base.getBase()));
937
938  // Create and set the initializer.
939  ConstantInitBuilder builder(CGM);
940  auto components = builder.beginStruct();
941  createVTableInitializer(components, *VTLayout, RTTI,
942                          VTable->hasLocalLinkage());
943  components.finishAndSetAsInitializer(VTable);
944
945  // Set properties only after the initializer has been set to ensure that the
946  // GV is treated as definition and not declaration.
947  assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
948  CGM.setGVProperties(VTable, RD);
949
950  CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
951
952  if (UsingRelativeLayout) {
953    RemoveHwasanMetadata(VTable);
954    if (!VTable->isDSOLocal())
955      GenerateRelativeVTableAlias(VTable, OutName);
956  }
957
958  return VTable;
959}
960
961// Ensure this vtable is not instrumented by hwasan. That is, a global alias is
962// not generated for it. This is mainly used by the relative-vtables ABI where
963// vtables instead contain 32-bit offsets between the vtable and function
964// pointers. Hwasan is disabled for these vtables for now because the tag in a
965// vtable pointer may fail the overflow check when resolving 32-bit PLT
966// relocations. A future alternative for this would be finding which usages of
967// the vtable can continue to use the untagged hwasan value without any loss of
968// value in hwasan.
969void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const {
970  if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) {
971    llvm::GlobalValue::SanitizerMetadata Meta;
972    if (GV->hasSanitizerMetadata())
973      Meta = GV->getSanitizerMetadata();
974    Meta.NoHWAddress = true;
975    GV->setSanitizerMetadata(Meta);
976  }
977}
978
979// If the VTable is not dso_local, then we will not be able to indicate that
980// the VTable does not need a relocation and move into rodata. A frequent
981// time this can occur is for classes that should be made public from a DSO
982// (like in libc++). For cases like these, we can make the vtable hidden or
983// private and create a public alias with the same visibility and linkage as
984// the original vtable type.
985void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
986                                                 llvm::StringRef AliasNameRef) {
987  assert(getItaniumVTableContext().isRelativeLayout() &&
988         "Can only use this if the relative vtable ABI is used");
989  assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
990                                  "not guaranteed to be dso_local");
991
992  // If the vtable is available_externally, we shouldn't (or need to) generate
993  // an alias for it in the first place since the vtable won't actually by
994  // emitted in this compilation unit.
995  if (VTable->hasAvailableExternallyLinkage())
996    return;
997
998  // Create a new string in the event the alias is already the name of the
999  // vtable. Using the reference directly could lead to use of an inititialized
1000  // value in the module's StringMap.
1001  llvm::SmallString<256> AliasName(AliasNameRef);
1002  VTable->setName(AliasName + ".local");
1003
1004  auto Linkage = VTable->getLinkage();
1005  assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
1006         "Invalid vtable alias linkage");
1007
1008  llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
1009  if (!VTableAlias) {
1010    VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
1011                                            VTable->getAddressSpace(), Linkage,
1012                                            AliasName, &CGM.getModule());
1013  } else {
1014    assert(VTableAlias->getValueType() == VTable->getValueType());
1015    assert(VTableAlias->getLinkage() == Linkage);
1016  }
1017  VTableAlias->setVisibility(VTable->getVisibility());
1018  VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
1019
1020  // Both of these imply dso_local for the vtable.
1021  if (!VTable->hasComdat()) {
1022    // If this is in a comdat, then we shouldn't make the linkage private due to
1023    // an issue in lld where private symbols can be used as the key symbol when
1024    // choosing the prevelant group. This leads to "relocation refers to a
1025    // symbol in a discarded section".
1026    VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
1027  } else {
1028    // We should at least make this hidden since we don't want to expose it.
1029    VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
1030  }
1031
1032  VTableAlias->setAliasee(VTable);
1033}
1034
1035static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
1036                                                const CXXRecordDecl *RD) {
1037  return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1038         CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
1039}
1040
1041/// Compute the required linkage of the vtable for the given class.
1042///
1043/// Note that we only call this at the end of the translation unit.
1044llvm::GlobalVariable::LinkageTypes
1045CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1046  if (!RD->isExternallyVisible())
1047    return llvm::GlobalVariable::InternalLinkage;
1048
1049  // We're at the end of the translation unit, so the current key
1050  // function is fully correct.
1051  const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
1052  if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
1053    // If this class has a key function, use that to determine the
1054    // linkage of the vtable.
1055    const FunctionDecl *def = nullptr;
1056    if (keyFunction->hasBody(def))
1057      keyFunction = cast<CXXMethodDecl>(def);
1058
1059    switch (keyFunction->getTemplateSpecializationKind()) {
1060      case TSK_Undeclared:
1061      case TSK_ExplicitSpecialization:
1062      assert(
1063          (def || CodeGenOpts.OptimizationLevel > 0 ||
1064           CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) &&
1065          "Shouldn't query vtable linkage without key function, "
1066          "optimizations, or debug info");
1067      if (!def && CodeGenOpts.OptimizationLevel > 0)
1068        return llvm::GlobalVariable::AvailableExternallyLinkage;
1069
1070      if (keyFunction->isInlined())
1071        return !Context.getLangOpts().AppleKext
1072                   ? llvm::GlobalVariable::LinkOnceODRLinkage
1073                   : llvm::Function::InternalLinkage;
1074
1075      return llvm::GlobalVariable::ExternalLinkage;
1076
1077      case TSK_ImplicitInstantiation:
1078        return !Context.getLangOpts().AppleKext ?
1079                 llvm::GlobalVariable::LinkOnceODRLinkage :
1080                 llvm::Function::InternalLinkage;
1081
1082      case TSK_ExplicitInstantiationDefinition:
1083        return !Context.getLangOpts().AppleKext ?
1084                 llvm::GlobalVariable::WeakODRLinkage :
1085                 llvm::Function::InternalLinkage;
1086
1087      case TSK_ExplicitInstantiationDeclaration:
1088        llvm_unreachable("Should not have been asked to emit this");
1089    }
1090  }
1091
1092  // -fapple-kext mode does not support weak linkage, so we must use
1093  // internal linkage.
1094  if (Context.getLangOpts().AppleKext)
1095    return llvm::Function::InternalLinkage;
1096
1097  llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1098      llvm::GlobalValue::LinkOnceODRLinkage;
1099  llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1100      llvm::GlobalValue::WeakODRLinkage;
1101  if (RD->hasAttr<DLLExportAttr>()) {
1102    // Cannot discard exported vtables.
1103    DiscardableODRLinkage = NonDiscardableODRLinkage;
1104  } else if (RD->hasAttr<DLLImportAttr>()) {
1105    // Imported vtables are available externally.
1106    DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1107    NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1108  }
1109
1110  switch (RD->getTemplateSpecializationKind()) {
1111    case TSK_Undeclared:
1112    case TSK_ExplicitSpecialization:
1113    case TSK_ImplicitInstantiation:
1114      return DiscardableODRLinkage;
1115
1116    case TSK_ExplicitInstantiationDeclaration:
1117      // Explicit instantiations in MSVC do not provide vtables, so we must emit
1118      // our own.
1119      if (getTarget().getCXXABI().isMicrosoft())
1120        return DiscardableODRLinkage;
1121      return shouldEmitAvailableExternallyVTable(*this, RD)
1122                 ? llvm::GlobalVariable::AvailableExternallyLinkage
1123                 : llvm::GlobalVariable::ExternalLinkage;
1124
1125    case TSK_ExplicitInstantiationDefinition:
1126      return NonDiscardableODRLinkage;
1127  }
1128
1129  llvm_unreachable("Invalid TemplateSpecializationKind!");
1130}
1131
1132/// This is a callback from Sema to tell us that a particular vtable is
1133/// required to be emitted in this translation unit.
1134///
1135/// This is only called for vtables that _must_ be emitted (mainly due to key
1136/// functions).  For weak vtables, CodeGen tracks when they are needed and
1137/// emits them as-needed.
1138void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1139  VTables.GenerateClassData(theClass);
1140}
1141
1142void
1143CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1144  if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1145    DI->completeClassData(RD);
1146
1147  if (RD->getNumVBases())
1148    CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1149
1150  CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1151}
1152
1153/// At this point in the translation unit, does it appear that can we
1154/// rely on the vtable being defined elsewhere in the program?
1155///
1156/// The response is really only definitive when called at the end of
1157/// the translation unit.
1158///
1159/// The only semantic restriction here is that the object file should
1160/// not contain a vtable definition when that vtable is defined
1161/// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
1162/// vtables when unnecessary.
1163bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1164  assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1165
1166  // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1167  // emit them even if there is an explicit template instantiation.
1168  if (CGM.getTarget().getCXXABI().isMicrosoft())
1169    return false;
1170
1171  // If we have an explicit instantiation declaration (and not a
1172  // definition), the vtable is defined elsewhere.
1173  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1174  if (TSK == TSK_ExplicitInstantiationDeclaration)
1175    return true;
1176
1177  // Otherwise, if the class is an instantiated template, the
1178  // vtable must be defined here.
1179  if (TSK == TSK_ImplicitInstantiation ||
1180      TSK == TSK_ExplicitInstantiationDefinition)
1181    return false;
1182
1183  // Otherwise, if the class doesn't have a key function (possibly
1184  // anymore), the vtable must be defined here.
1185  const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1186  if (!keyFunction)
1187    return false;
1188
1189  const FunctionDecl *Def;
1190  // Otherwise, if we don't have a definition of the key function, the
1191  // vtable must be defined somewhere else.
1192  if (!keyFunction->hasBody(Def))
1193    return true;
1194
1195  assert(Def && "The body of the key function is not assigned to Def?");
1196  // If the non-inline key function comes from another module unit, the vtable
1197  // must be defined there.
1198  return Def->isInAnotherModuleUnit() && !Def->isInlineSpecified();
1199}
1200
1201/// Given that we're currently at the end of the translation unit, and
1202/// we've emitted a reference to the vtable for this class, should
1203/// we define that vtable?
1204static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1205                                                   const CXXRecordDecl *RD) {
1206  // If vtable is internal then it has to be done.
1207  if (!CGM.getVTables().isVTableExternal(RD))
1208    return true;
1209
1210  // If it's external then maybe we will need it as available_externally.
1211  return shouldEmitAvailableExternallyVTable(CGM, RD);
1212}
1213
1214/// Given that at some point we emitted a reference to one or more
1215/// vtables, and that we are now at the end of the translation unit,
1216/// decide whether we should emit them.
1217void CodeGenModule::EmitDeferredVTables() {
1218#ifndef NDEBUG
1219  // Remember the size of DeferredVTables, because we're going to assume
1220  // that this entire operation doesn't modify it.
1221  size_t savedSize = DeferredVTables.size();
1222#endif
1223
1224  for (const CXXRecordDecl *RD : DeferredVTables)
1225    if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1226      VTables.GenerateClassData(RD);
1227    else if (shouldOpportunisticallyEmitVTables())
1228      OpportunisticVTables.push_back(RD);
1229
1230  assert(savedSize == DeferredVTables.size() &&
1231         "deferred extra vtables during vtable emission?");
1232  DeferredVTables.clear();
1233}
1234
1235bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) {
1236  if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() ||
1237      RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1238    return true;
1239
1240  if (!getCodeGenOpts().LTOVisibilityPublicStd)
1241    return false;
1242
1243  const DeclContext *DC = RD;
1244  while (true) {
1245    auto *D = cast<Decl>(DC);
1246    DC = DC->getParent();
1247    if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1248      if (auto *ND = dyn_cast<NamespaceDecl>(D))
1249        if (const IdentifierInfo *II = ND->getIdentifier())
1250          if (II->isStr("std") || II->isStr("stdext"))
1251            return true;
1252      break;
1253    }
1254  }
1255
1256  return false;
1257}
1258
1259bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1260  LinkageInfo LV = RD->getLinkageAndVisibility();
1261  if (!isExternallyVisible(LV.getLinkage()))
1262    return true;
1263
1264  if (!getTriple().isOSBinFormatCOFF() &&
1265      LV.getVisibility() != HiddenVisibility)
1266    return false;
1267
1268  return !AlwaysHasLTOVisibilityPublic(RD);
1269}
1270
1271llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
1272    const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
1273  // If we have already visited this RD (which means this is a recursive call
1274  // since the initial call should have an empty Visited set), return the max
1275  // visibility. The recursive calls below compute the min between the result
1276  // of the recursive call and the current TypeVis, so returning the max here
1277  // ensures that it will have no effect on the current TypeVis.
1278  if (!Visited.insert(RD).second)
1279    return llvm::GlobalObject::VCallVisibilityTranslationUnit;
1280
1281  LinkageInfo LV = RD->getLinkageAndVisibility();
1282  llvm::GlobalObject::VCallVisibility TypeVis;
1283  if (!isExternallyVisible(LV.getLinkage()))
1284    TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1285  else if (HasHiddenLTOVisibility(RD))
1286    TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1287  else
1288    TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1289
1290  for (const auto &B : RD->bases())
1291    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1292      TypeVis = std::min(
1293          TypeVis,
1294          GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1295
1296  for (const auto &B : RD->vbases())
1297    if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1298      TypeVis = std::min(
1299          TypeVis,
1300          GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1301
1302  return TypeVis;
1303}
1304
1305void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1306                                           llvm::GlobalVariable *VTable,
1307                                           const VTableLayout &VTLayout) {
1308  // Emit type metadata on vtables with LTO or IR instrumentation.
1309  // In IR instrumentation, the type metadata is used to find out vtable
1310  // definitions (for type profiling) among all global variables.
1311  if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr())
1312    return;
1313
1314  CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType());
1315
1316  struct AddressPoint {
1317    const CXXRecordDecl *Base;
1318    size_t Offset;
1319    std::string TypeName;
1320    bool operator<(const AddressPoint &RHS) const {
1321      int D = TypeName.compare(RHS.TypeName);
1322      return D < 0 || (D == 0 && Offset < RHS.Offset);
1323    }
1324  };
1325  std::vector<AddressPoint> AddressPoints;
1326  for (auto &&AP : VTLayout.getAddressPoints()) {
1327    AddressPoint N{AP.first.getBase(),
1328                   VTLayout.getVTableOffset(AP.second.VTableIndex) +
1329                       AP.second.AddressPointIndex,
1330                   {}};
1331    llvm::raw_string_ostream Stream(N.TypeName);
1332    getCXXABI().getMangleContext().mangleCanonicalTypeName(
1333        QualType(N.Base->getTypeForDecl(), 0), Stream);
1334    AddressPoints.push_back(std::move(N));
1335  }
1336
1337  // Sort the address points for determinism.
1338  llvm::sort(AddressPoints);
1339
1340  ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1341  for (auto AP : AddressPoints) {
1342    // Create type metadata for the address point.
1343    AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base);
1344
1345    // The class associated with each address point could also potentially be
1346    // used for indirect calls via a member function pointer, so we need to
1347    // annotate the address of each function pointer with the appropriate member
1348    // function pointer type.
1349    for (unsigned I = 0; I != Comps.size(); ++I) {
1350      if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1351        continue;
1352      llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1353          Context.getMemberPointerType(
1354              Comps[I].getFunctionDecl()->getType(),
1355              Context.getRecordType(AP.Base).getTypePtr()));
1356      VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD);
1357    }
1358  }
1359
1360  if (getCodeGenOpts().VirtualFunctionElimination ||
1361      getCodeGenOpts().WholeProgramVTables) {
1362    llvm::DenseSet<const CXXRecordDecl *> Visited;
1363    llvm::GlobalObject::VCallVisibility TypeVis =
1364        GetVCallVisibilityLevel(RD, Visited);
1365    if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1366      VTable->setVCallVisibilityMetadata(TypeVis);
1367  }
1368}
1369