1//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Objective-C code as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "clang/CodeGen/CodeGenABITypes.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Analysis/ObjCARCUtil.h"
28#include "llvm/BinaryFormat/MachO.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include <optional>
33using namespace clang;
34using namespace CodeGen;
35
36typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37static TryEmitResult
38tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40                                   QualType ET,
41                                   RValue Result);
42
43/// Given the address of a variable of pointer type, find the correct
44/// null to store into it.
45static llvm::Constant *getNullForVariable(Address addr) {
46  llvm::Type *type = addr.getElementType();
47  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48}
49
50/// Emits an instance of NSConstantString representing the object.
51llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52{
53  llvm::Constant *C =
54      CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55  return C;
56}
57
58/// EmitObjCBoxedExpr - This routine generates code to call
59/// the appropriate expression boxing method. This will either be
60/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61/// or [NSValue valueWithBytes:objCType:].
62///
63llvm::Value *
64CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65  // Generate the correct selector for this literal's concrete type.
66  // Get the method.
67  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68  const Expr *SubExpr = E->getSubExpr();
69
70  if (E->isExpressibleAsConstantInitializer()) {
71    ConstantEmitter ConstEmitter(CGM);
72    return ConstEmitter.tryEmitAbstract(E, E->getType());
73  }
74
75  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76  Selector Sel = BoxingMethod->getSelector();
77
78  // Generate a reference to the class pointer, which will be the receiver.
79  // Assumes that the method was introduced in the class that should be
80  // messaged (avoids pulling it out of the result type).
81  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
84
85  CallArgList Args;
86  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
88
89  // ObjCBoxedExpr supports boxing of structs and unions
90  // via [NSValue valueWithBytes:objCType:]
91  const QualType ValueType(SubExpr->getType().getCanonicalType());
92  if (ValueType->isObjCBoxableRecordType()) {
93    // Emit CodeGen for first parameter
94    // and cast value to correct type
95    Address Temporary = CreateMemTemp(SubExpr->getType());
96    EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
97    llvm::Value *BitCast =
98        Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT));
99    Args.add(RValue::get(BitCast), ArgQT);
100
101    // Create char array to store type encoding
102    std::string Str;
103    getContext().getObjCEncodingForType(ValueType, Str);
104    llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
105
106    // Cast type encoding to correct type
107    const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108    QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109    llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
110
111    Args.add(RValue::get(Cast), EncodingQT);
112  } else {
113    Args.add(EmitAnyExpr(SubExpr), ArgQT);
114  }
115
116  RValue result = Runtime.GenerateMessageSend(
117      *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
118      Args, ClassDecl, BoxingMethod);
119  return Builder.CreateBitCast(result.getScalarVal(),
120                               ConvertType(E->getType()));
121}
122
123llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124                                    const ObjCMethodDecl *MethodWithObjects) {
125  ASTContext &Context = CGM.getContext();
126  const ObjCDictionaryLiteral *DLE = nullptr;
127  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
128  if (!ALE)
129    DLE = cast<ObjCDictionaryLiteral>(E);
130
131  // Optimize empty collections by referencing constants, when available.
132  uint64_t NumElements =
133    ALE ? ALE->getNumElements() : DLE->getNumElements();
134  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135    StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136    QualType IdTy(CGM.getContext().getObjCIdType());
137    llvm::Constant *Constant =
138        CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
139    LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
140    llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141    cast<llvm::LoadInst>(Ptr)->setMetadata(
142        llvm::LLVMContext::MD_invariant_load,
143        llvm::MDNode::get(getLLVMContext(), std::nullopt));
144    return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
145  }
146
147  // Compute the type of the array we're initializing.
148  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
149                            NumElements);
150  QualType ElementType = Context.getObjCIdType().withConst();
151  QualType ElementArrayType = Context.getConstantArrayType(
152      ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
153      /*IndexTypeQuals=*/0);
154
155  // Allocate the temporary array(s).
156  Address Objects = CreateMemTemp(ElementArrayType, "objects");
157  Address Keys = Address::invalid();
158  if (DLE)
159    Keys = CreateMemTemp(ElementArrayType, "keys");
160
161  // In ARC, we may need to do extra work to keep all the keys and
162  // values alive until after the call.
163  SmallVector<llvm::Value *, 16> NeededObjects;
164  bool TrackNeededObjects =
165    (getLangOpts().ObjCAutoRefCount &&
166    CGM.getCodeGenOpts().OptimizationLevel != 0);
167
168  // Perform the actual initialialization of the array(s).
169  for (uint64_t i = 0; i < NumElements; i++) {
170    if (ALE) {
171      // Emit the element and store it to the appropriate array slot.
172      const Expr *Rhs = ALE->getElement(i);
173      LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
174                                 ElementType, AlignmentSource::Decl);
175
176      llvm::Value *value = EmitScalarExpr(Rhs);
177      EmitStoreThroughLValue(RValue::get(value), LV, true);
178      if (TrackNeededObjects) {
179        NeededObjects.push_back(value);
180      }
181    } else {
182      // Emit the key and store it to the appropriate array slot.
183      const Expr *Key = DLE->getKeyValueElement(i).Key;
184      LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
185                                    ElementType, AlignmentSource::Decl);
186      llvm::Value *keyValue = EmitScalarExpr(Key);
187      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
188
189      // Emit the value and store it to the appropriate array slot.
190      const Expr *Value = DLE->getKeyValueElement(i).Value;
191      LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
192                                      ElementType, AlignmentSource::Decl);
193      llvm::Value *valueValue = EmitScalarExpr(Value);
194      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
195      if (TrackNeededObjects) {
196        NeededObjects.push_back(keyValue);
197        NeededObjects.push_back(valueValue);
198      }
199    }
200  }
201
202  // Generate the argument list.
203  CallArgList Args;
204  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205  const ParmVarDecl *argDecl = *PI++;
206  QualType ArgQT = argDecl->getType().getUnqualifiedType();
207  Args.add(RValue::get(Objects.getPointer()), ArgQT);
208  if (DLE) {
209    argDecl = *PI++;
210    ArgQT = argDecl->getType().getUnqualifiedType();
211    Args.add(RValue::get(Keys.getPointer()), ArgQT);
212  }
213  argDecl = *PI;
214  ArgQT = argDecl->getType().getUnqualifiedType();
215  llvm::Value *Count =
216    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
217  Args.add(RValue::get(Count), ArgQT);
218
219  // Generate a reference to the class pointer, which will be the receiver.
220  Selector Sel = MethodWithObjects->getSelector();
221  QualType ResultType = E->getType();
222  const ObjCObjectPointerType *InterfacePointerType
223    = ResultType->getAsObjCInterfacePointerType();
224  assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225  ObjCInterfaceDecl *Class
226    = InterfacePointerType->getObjectType()->getInterface();
227  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229
230  // Generate the message send.
231  RValue result = Runtime.GenerateMessageSend(
232      *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233      Receiver, Args, Class, MethodWithObjects);
234
235  // The above message send needs these objects, but in ARC they are
236  // passed in a buffer that is essentially __unsafe_unretained.
237  // Therefore we must prevent the optimizer from releasing them until
238  // after the call.
239  if (TrackNeededObjects) {
240    EmitARCIntrinsicUse(NeededObjects);
241  }
242
243  return Builder.CreateBitCast(result.getScalarVal(),
244                               ConvertType(E->getType()));
245}
246
247llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249}
250
251llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252                                            const ObjCDictionaryLiteral *E) {
253  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254}
255
256/// Emit a selector.
257llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258  // Untyped selector.
259  // Note that this implementation allows for non-constant strings to be passed
260  // as arguments to @selector().  Currently, the only thing preventing this
261  // behaviour is the type checking in the front end.
262  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263}
264
265llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266  // FIXME: This should pass the Decl not the name.
267  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268}
269
270/// Adjust the type of an Objective-C object that doesn't match up due
271/// to type erasure at various points, e.g., related result types or the use
272/// of parameterized classes.
273static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274                                   RValue Result) {
275  if (!ExpT->isObjCRetainableType())
276    return Result;
277
278  // If the converted types are the same, we're done.
279  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280  if (ExpLLVMTy == Result.getScalarVal()->getType())
281    return Result;
282
283  // We have applied a substitution. Cast the rvalue appropriately.
284  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285                                               ExpLLVMTy));
286}
287
288/// Decide whether to extend the lifetime of the receiver of a
289/// returns-inner-pointer message.
290static bool
291shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292  switch (message->getReceiverKind()) {
293
294  // For a normal instance message, we should extend unless the
295  // receiver is loaded from a variable with precise lifetime.
296  case ObjCMessageExpr::Instance: {
297    const Expr *receiver = message->getInstanceReceiver();
298
299    // Look through OVEs.
300    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301      if (opaque->getSourceExpr())
302        receiver = opaque->getSourceExpr()->IgnoreParens();
303    }
304
305    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307    receiver = ice->getSubExpr()->IgnoreParens();
308
309    // Look through OVEs.
310    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311      if (opaque->getSourceExpr())
312        receiver = opaque->getSourceExpr()->IgnoreParens();
313    }
314
315    // Only __strong variables.
316    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317      return true;
318
319    // All ivars and fields have precise lifetime.
320    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321      return false;
322
323    // Otherwise, check for variables.
324    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325    if (!declRef) return true;
326    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327    if (!var) return true;
328
329    // All variables have precise lifetime except local variables with
330    // automatic storage duration that aren't specially marked.
331    return (var->hasLocalStorage() &&
332            !var->hasAttr<ObjCPreciseLifetimeAttr>());
333  }
334
335  case ObjCMessageExpr::Class:
336  case ObjCMessageExpr::SuperClass:
337    // It's never necessary for class objects.
338    return false;
339
340  case ObjCMessageExpr::SuperInstance:
341    // We generally assume that 'self' lives throughout a method call.
342    return false;
343  }
344
345  llvm_unreachable("invalid receiver kind");
346}
347
348/// Given an expression of ObjC pointer type, check whether it was
349/// immediately loaded from an ARC __weak l-value.
350static const Expr *findWeakLValue(const Expr *E) {
351  assert(E->getType()->isObjCRetainableType());
352  E = E->IgnoreParens();
353  if (auto CE = dyn_cast<CastExpr>(E)) {
354    if (CE->getCastKind() == CK_LValueToRValue) {
355      if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356        return CE->getSubExpr();
357    }
358  }
359
360  return nullptr;
361}
362
363/// The ObjC runtime may provide entrypoints that are likely to be faster
364/// than an ordinary message send of the appropriate selector.
365///
366/// The entrypoints are guaranteed to be equivalent to just sending the
367/// corresponding message.  If the entrypoint is implemented naively as just a
368/// message send, using it is a trade-off: it sacrifices a few cycles of
369/// overhead to save a small amount of code.  However, it's possible for
370/// runtimes to detect and special-case classes that use "standard"
371/// behavior; if that's dynamically a large proportion of all objects, using
372/// the entrypoint will also be faster than using a message send.
373///
374/// If the runtime does support a required entrypoint, then this method will
375/// generate a call and return the resulting value.  Otherwise it will return
376/// std::nullopt and the caller can generate a msgSend instead.
377static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378    CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379    const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380    bool isClassMessage) {
381  auto &CGM = CGF.CGM;
382  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383    return std::nullopt;
384
385  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386  switch (Sel.getMethodFamily()) {
387  case OMF_alloc:
388    if (isClassMessage &&
389        Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390        ResultType->isObjCObjectPointerType()) {
391        // [Foo alloc] -> objc_alloc(Foo) or
392        // [self alloc] -> objc_alloc(self)
393        if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394          return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395        // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396        // [self allocWithZone:nil] -> objc_allocWithZone(self)
397        if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398            Args.size() == 1 && Args.front().getType()->isPointerType() &&
399            Sel.getNameForSlot(0) == "allocWithZone") {
400          const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401          if (isa<llvm::ConstantPointerNull>(arg))
402            return CGF.EmitObjCAllocWithZone(Receiver,
403                                             CGF.ConvertType(ResultType));
404          return std::nullopt;
405        }
406    }
407    break;
408
409  case OMF_autorelease:
410    if (ResultType->isObjCObjectPointerType() &&
411        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412        Runtime.shouldUseARCFunctionsForRetainRelease())
413      return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414    break;
415
416  case OMF_retain:
417    if (ResultType->isObjCObjectPointerType() &&
418        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419        Runtime.shouldUseARCFunctionsForRetainRelease())
420      return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421    break;
422
423  case OMF_release:
424    if (ResultType->isVoidType() &&
425        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426        Runtime.shouldUseARCFunctionsForRetainRelease()) {
427      CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428      return nullptr;
429    }
430    break;
431
432  default:
433    break;
434  }
435  return std::nullopt;
436}
437
438CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439    CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440    Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441    const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442    bool isClassMessage) {
443  if (std::optional<llvm::Value *> SpecializedResult =
444          tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445                                            Sel, Method, isClassMessage)) {
446    return RValue::get(*SpecializedResult);
447  }
448  return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449                             Method);
450}
451
452static void AppendFirstImpliedRuntimeProtocols(
453    const ObjCProtocolDecl *PD,
454    llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455  if (!PD->isNonRuntimeProtocol()) {
456    const auto *Can = PD->getCanonicalDecl();
457    PDs.insert(Can);
458    return;
459  }
460
461  for (const auto *ParentPD : PD->protocols())
462    AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463}
464
465std::vector<const ObjCProtocolDecl *>
466CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467                                      ObjCProtocolDecl::protocol_iterator end) {
468  std::vector<const ObjCProtocolDecl *> RuntimePds;
469  llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470
471  for (; begin != end; ++begin) {
472    const auto *It = *begin;
473    const auto *Can = It->getCanonicalDecl();
474    if (Can->isNonRuntimeProtocol())
475      NonRuntimePDs.insert(Can);
476    else
477      RuntimePds.push_back(Can);
478  }
479
480  // If there are no non-runtime protocols then we can just stop now.
481  if (NonRuntimePDs.empty())
482    return RuntimePds;
483
484  // Else we have to search through the non-runtime protocol's inheritancy
485  // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486  // a non-runtime protocol without any parents. These are the "first-implied"
487  // protocols from a non-runtime protocol.
488  llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489  for (const auto *PD : NonRuntimePDs)
490    AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491
492  // Walk the Runtime list to get all protocols implied via the inclusion of
493  // this protocol, e.g. all protocols it inherits from including itself.
494  llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495  for (const auto *PD : RuntimePds) {
496    const auto *Can = PD->getCanonicalDecl();
497    AllImpliedProtocols.insert(Can);
498    Can->getImpliedProtocols(AllImpliedProtocols);
499  }
500
501  // Similar to above, walk the list of first-implied protocols to find the set
502  // all the protocols implied excluding the listed protocols themselves since
503  // they are not yet a part of the `RuntimePds` list.
504  for (const auto *PD : FirstImpliedProtos) {
505    PD->getImpliedProtocols(AllImpliedProtocols);
506  }
507
508  // From the first-implied list we have to finish building the final protocol
509  // list. If a protocol in the first-implied list was already implied via some
510  // inheritance path through some other protocols then it would be redundant to
511  // add it here and so we skip over it.
512  for (const auto *PD : FirstImpliedProtos) {
513    if (!AllImpliedProtocols.contains(PD)) {
514      RuntimePds.push_back(PD);
515    }
516  }
517
518  return RuntimePds;
519}
520
521/// Instead of '[[MyClass alloc] init]', try to generate
522/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523/// caller side, as well as the optimized objc_alloc.
524static std::optional<llvm::Value *>
525tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528    return std::nullopt;
529
530  // Match the exact pattern '[[MyClass alloc] init]'.
531  Selector Sel = OME->getSelector();
532  if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533      !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534      Sel.getNameForSlot(0) != "init")
535    return std::nullopt;
536
537  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538  // with 'cls' a Class.
539  auto *SubOME =
540      dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541  if (!SubOME)
542    return std::nullopt;
543  Selector SubSel = SubOME->getSelector();
544
545  if (!SubOME->getType()->isObjCObjectPointerType() ||
546      !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547    return std::nullopt;
548
549  llvm::Value *Receiver = nullptr;
550  switch (SubOME->getReceiverKind()) {
551  case ObjCMessageExpr::Instance:
552    if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553      return std::nullopt;
554    Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555    break;
556
557  case ObjCMessageExpr::Class: {
558    QualType ReceiverType = SubOME->getClassReceiver();
559    const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560    const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561    assert(ID && "null interface should be impossible here");
562    Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563    break;
564  }
565  case ObjCMessageExpr::SuperInstance:
566  case ObjCMessageExpr::SuperClass:
567    return std::nullopt;
568  }
569
570  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571}
572
573RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574                                            ReturnValueSlot Return) {
575  // Only the lookup mechanism and first two arguments of the method
576  // implementation vary between runtimes.  We can get the receiver and
577  // arguments in generic code.
578
579  bool isDelegateInit = E->isDelegateInitCall();
580
581  const ObjCMethodDecl *method = E->getMethodDecl();
582
583  // If the method is -retain, and the receiver's being loaded from
584  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586      method->getMethodFamily() == OMF_retain) {
587    if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588      LValue lvalue = EmitLValue(lvalueExpr);
589      llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
590      return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591    }
592  }
593
594  if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595    return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596
597  // We don't retain the receiver in delegate init calls, and this is
598  // safe because the receiver value is always loaded from 'self',
599  // which we zero out.  We don't want to Block_copy block receivers,
600  // though.
601  bool retainSelf =
602    (!isDelegateInit &&
603     CGM.getLangOpts().ObjCAutoRefCount &&
604     method &&
605     method->hasAttr<NSConsumesSelfAttr>());
606
607  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608  bool isSuperMessage = false;
609  bool isClassMessage = false;
610  ObjCInterfaceDecl *OID = nullptr;
611  // Find the receiver
612  QualType ReceiverType;
613  llvm::Value *Receiver = nullptr;
614  switch (E->getReceiverKind()) {
615  case ObjCMessageExpr::Instance:
616    ReceiverType = E->getInstanceReceiver()->getType();
617    isClassMessage = ReceiverType->isObjCClassType();
618    if (retainSelf) {
619      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620                                                   E->getInstanceReceiver());
621      Receiver = ter.getPointer();
622      if (ter.getInt()) retainSelf = false;
623    } else
624      Receiver = EmitScalarExpr(E->getInstanceReceiver());
625    break;
626
627  case ObjCMessageExpr::Class: {
628    ReceiverType = E->getClassReceiver();
629    OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630    assert(OID && "Invalid Objective-C class message send");
631    Receiver = Runtime.GetClass(*this, OID);
632    isClassMessage = true;
633    break;
634  }
635
636  case ObjCMessageExpr::SuperInstance:
637    ReceiverType = E->getSuperType();
638    Receiver = LoadObjCSelf();
639    isSuperMessage = true;
640    break;
641
642  case ObjCMessageExpr::SuperClass:
643    ReceiverType = E->getSuperType();
644    Receiver = LoadObjCSelf();
645    isSuperMessage = true;
646    isClassMessage = true;
647    break;
648  }
649
650  if (retainSelf)
651    Receiver = EmitARCRetainNonBlock(Receiver);
652
653  // In ARC, we sometimes want to "extend the lifetime"
654  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655  // messages.
656  if (getLangOpts().ObjCAutoRefCount && method &&
657      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658      shouldExtendReceiverForInnerPointerMessage(E))
659    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660
661  QualType ResultType = method ? method->getReturnType() : E->getType();
662
663  CallArgList Args;
664  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665
666  // For delegate init calls in ARC, do an unsafe store of null into
667  // self.  This represents the call taking direct ownership of that
668  // value.  We have to do this after emitting the other call
669  // arguments because they might also reference self, but we don't
670  // have to worry about any of them modifying self because that would
671  // be an undefined read and write of an object in unordered
672  // expressions.
673  if (isDelegateInit) {
674    assert(getLangOpts().ObjCAutoRefCount &&
675           "delegate init calls should only be marked in ARC");
676
677    // Do an unsafe store of null into self.
678    Address selfAddr =
679      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681  }
682
683  RValue result;
684  if (isSuperMessage) {
685    // super is only valid in an Objective-C method
686    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689                                              E->getSelector(),
690                                              OMD->getClassInterface(),
691                                              isCategoryImpl,
692                                              Receiver,
693                                              isClassMessage,
694                                              Args,
695                                              method);
696  } else {
697    // Call runtime methods directly if we can.
698    result = Runtime.GeneratePossiblySpecializedMessageSend(
699        *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700        method, isClassMessage);
701  }
702
703  // For delegate init calls in ARC, implicitly store the result of
704  // the call back into self.  This takes ownership of the value.
705  if (isDelegateInit) {
706    Address selfAddr =
707      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708    llvm::Value *newSelf = result.getScalarVal();
709
710    // The delegate return type isn't necessarily a matching type; in
711    // fact, it's quite likely to be 'id'.
712    llvm::Type *selfTy = selfAddr.getElementType();
713    newSelf = Builder.CreateBitCast(newSelf, selfTy);
714
715    Builder.CreateStore(newSelf, selfAddr);
716  }
717
718  return AdjustObjCObjectType(*this, E->getType(), result);
719}
720
721namespace {
722struct FinishARCDealloc final : EHScopeStack::Cleanup {
723  void Emit(CodeGenFunction &CGF, Flags flags) override {
724    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725
726    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727    const ObjCInterfaceDecl *iface = impl->getClassInterface();
728    if (!iface->getSuperClass()) return;
729
730    bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731
732    // Call [super dealloc] if we have a superclass.
733    llvm::Value *self = CGF.LoadObjCSelf();
734
735    CallArgList args;
736    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737                                                      CGF.getContext().VoidTy,
738                                                      method->getSelector(),
739                                                      iface,
740                                                      isCategory,
741                                                      self,
742                                                      /*is class msg*/ false,
743                                                      args,
744                                                      method);
745  }
746};
747}
748
749/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750/// the LLVM function and sets the other context used by
751/// CodeGenFunction.
752void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753                                      const ObjCContainerDecl *CD) {
754  SourceLocation StartLoc = OMD->getBeginLoc();
755  FunctionArgList args;
756  // Check if we should generate debug info for this method.
757  if (OMD->hasAttr<NoDebugAttr>())
758    DebugInfo = nullptr; // disable debug info indefinitely for this function
759
760  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761
762  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763  if (OMD->isDirectMethod()) {
764    Fn->setVisibility(llvm::Function::HiddenVisibility);
765    CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766    CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767  } else {
768    CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769  }
770
771  args.push_back(OMD->getSelfDecl());
772  if (!OMD->isDirectMethod())
773    args.push_back(OMD->getCmdDecl());
774
775  args.append(OMD->param_begin(), OMD->param_end());
776
777  CurGD = OMD;
778  CurEHLocation = OMD->getEndLoc();
779
780  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781                OMD->getLocation(), StartLoc);
782
783  if (OMD->isDirectMethod()) {
784    // This function is a direct call, it has to implement a nil check
785    // on entry.
786    //
787    // TODO: possibly have several entry points to elide the check
788    CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789  }
790
791  // In ARC, certain methods get an extra cleanup.
792  if (CGM.getLangOpts().ObjCAutoRefCount &&
793      OMD->isInstanceMethod() &&
794      OMD->getSelector().isUnarySelector()) {
795    const IdentifierInfo *ident =
796      OMD->getSelector().getIdentifierInfoForSlot(0);
797    if (ident->isStr("dealloc"))
798      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799  }
800}
801
802static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803                                              LValue lvalue, QualType type);
804
805/// Generate an Objective-C method.  An Objective-C method is a C function with
806/// its pointer, name, and types registered in the class structure.
807void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808  StartObjCMethod(OMD, OMD->getClassInterface());
809  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810  assert(isa<CompoundStmt>(OMD->getBody()));
811  incrementProfileCounter(OMD->getBody());
812  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813  FinishFunction(OMD->getBodyRBrace());
814}
815
816/// emitStructGetterCall - Call the runtime function to load a property
817/// into the return value slot.
818static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819                                 bool isAtomic, bool hasStrong) {
820  ASTContext &Context = CGF.getContext();
821
822  llvm::Value *src =
823      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824          .getPointer(CGF);
825
826  // objc_copyStruct (ReturnValue, &structIvar,
827  //                  sizeof (Type of Ivar), isAtomic, false);
828  CallArgList args;
829
830  llvm::Value *dest = CGF.ReturnValue.getPointer();
831  args.add(RValue::get(dest), Context.VoidPtrTy);
832  args.add(RValue::get(src), Context.VoidPtrTy);
833
834  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
836  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
837  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
838
839  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840  CGCallee callee = CGCallee::forDirect(fn);
841  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
842               callee, ReturnValueSlot(), args);
843}
844
845/// Determine whether the given architecture supports unaligned atomic
846/// accesses.  They don't have to be fast, just faster than a function
847/// call and a mutex.
848static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
850  // currently supported by the backend.)
851  return false;
852}
853
854/// Return the maximum size that permits atomic accesses for the given
855/// architecture.
856static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857                                        llvm::Triple::ArchType arch) {
858  // ARM has 8-byte atomic accesses, but it's not clear whether we
859  // want to rely on them here.
860
861  // In the default case, just assume that any size up to a pointer is
862  // fine given adequate alignment.
863  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
864}
865
866namespace {
867  class PropertyImplStrategy {
868  public:
869    enum StrategyKind {
870      /// The 'native' strategy is to use the architecture's provided
871      /// reads and writes.
872      Native,
873
874      /// Use objc_setProperty and objc_getProperty.
875      GetSetProperty,
876
877      /// Use objc_setProperty for the setter, but use expression
878      /// evaluation for the getter.
879      SetPropertyAndExpressionGet,
880
881      /// Use objc_copyStruct.
882      CopyStruct,
883
884      /// The 'expression' strategy is to emit normal assignment or
885      /// lvalue-to-rvalue expressions.
886      Expression
887    };
888
889    StrategyKind getKind() const { return StrategyKind(Kind); }
890
891    bool hasStrongMember() const { return HasStrong; }
892    bool isAtomic() const { return IsAtomic; }
893    bool isCopy() const { return IsCopy; }
894
895    CharUnits getIvarSize() const { return IvarSize; }
896    CharUnits getIvarAlignment() const { return IvarAlignment; }
897
898    PropertyImplStrategy(CodeGenModule &CGM,
899                         const ObjCPropertyImplDecl *propImpl);
900
901  private:
902    unsigned Kind : 8;
903    unsigned IsAtomic : 1;
904    unsigned IsCopy : 1;
905    unsigned HasStrong : 1;
906
907    CharUnits IvarSize;
908    CharUnits IvarAlignment;
909  };
910}
911
912/// Pick an implementation strategy for the given property synthesis.
913PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
914                                     const ObjCPropertyImplDecl *propImpl) {
915  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
916  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
917
918  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
919  IsAtomic = prop->isAtomic();
920  HasStrong = false; // doesn't matter here.
921
922  // Evaluate the ivar's size and alignment.
923  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
924  QualType ivarType = ivar->getType();
925  auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
926  IvarSize = TInfo.Width;
927  IvarAlignment = TInfo.Align;
928
929  // If we have a copy property, we always have to use setProperty.
930  // If the property is atomic we need to use getProperty, but in
931  // the nonatomic case we can just use expression.
932  if (IsCopy) {
933    Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
934    return;
935  }
936
937  // Handle retain.
938  if (setterKind == ObjCPropertyDecl::Retain) {
939    // In GC-only, there's nothing special that needs to be done.
940    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
941      // fallthrough
942
943    // In ARC, if the property is non-atomic, use expression emission,
944    // which translates to objc_storeStrong.  This isn't required, but
945    // it's slightly nicer.
946    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
947      // Using standard expression emission for the setter is only
948      // acceptable if the ivar is __strong, which won't be true if
949      // the property is annotated with __attribute__((NSObject)).
950      // TODO: falling all the way back to objc_setProperty here is
951      // just laziness, though;  we could still use objc_storeStrong
952      // if we hacked it right.
953      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
954        Kind = Expression;
955      else
956        Kind = SetPropertyAndExpressionGet;
957      return;
958
959    // Otherwise, we need to at least use setProperty.  However, if
960    // the property isn't atomic, we can use normal expression
961    // emission for the getter.
962    } else if (!IsAtomic) {
963      Kind = SetPropertyAndExpressionGet;
964      return;
965
966    // Otherwise, we have to use both setProperty and getProperty.
967    } else {
968      Kind = GetSetProperty;
969      return;
970    }
971  }
972
973  // If we're not atomic, just use expression accesses.
974  if (!IsAtomic) {
975    Kind = Expression;
976    return;
977  }
978
979  // Properties on bitfield ivars need to be emitted using expression
980  // accesses even if they're nominally atomic.
981  if (ivar->isBitField()) {
982    Kind = Expression;
983    return;
984  }
985
986  // GC-qualified or ARC-qualified ivars need to be emitted as
987  // expressions.  This actually works out to being atomic anyway,
988  // except for ARC __strong, but that should trigger the above code.
989  if (ivarType.hasNonTrivialObjCLifetime() ||
990      (CGM.getLangOpts().getGC() &&
991       CGM.getContext().getObjCGCAttrKind(ivarType))) {
992    Kind = Expression;
993    return;
994  }
995
996  // Compute whether the ivar has strong members.
997  if (CGM.getLangOpts().getGC())
998    if (const RecordType *recordType = ivarType->getAs<RecordType>())
999      HasStrong = recordType->getDecl()->hasObjectMember();
1000
1001  // We can never access structs with object members with a native
1002  // access, because we need to use write barriers.  This is what
1003  // objc_copyStruct is for.
1004  if (HasStrong) {
1005    Kind = CopyStruct;
1006    return;
1007  }
1008
1009  // Otherwise, this is target-dependent and based on the size and
1010  // alignment of the ivar.
1011
1012  // If the size of the ivar is not a power of two, give up.  We don't
1013  // want to get into the business of doing compare-and-swaps.
1014  if (!IvarSize.isPowerOfTwo()) {
1015    Kind = CopyStruct;
1016    return;
1017  }
1018
1019  llvm::Triple::ArchType arch =
1020    CGM.getTarget().getTriple().getArch();
1021
1022  // Most architectures require memory to fit within a single cache
1023  // line, so the alignment has to be at least the size of the access.
1024  // Otherwise we have to grab a lock.
1025  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1026    Kind = CopyStruct;
1027    return;
1028  }
1029
1030  // If the ivar's size exceeds the architecture's maximum atomic
1031  // access size, we have to use CopyStruct.
1032  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1033    Kind = CopyStruct;
1034    return;
1035  }
1036
1037  // Otherwise, we can use native loads and stores.
1038  Kind = Native;
1039}
1040
1041/// Generate an Objective-C property getter function.
1042///
1043/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1044/// is illegal within a category.
1045void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1046                                         const ObjCPropertyImplDecl *PID) {
1047  llvm::Constant *AtomicHelperFn =
1048      CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1049  ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1050  assert(OMD && "Invalid call to generate getter (empty method)");
1051  StartObjCMethod(OMD, IMP->getClassInterface());
1052
1053  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1054
1055  FinishFunction(OMD->getEndLoc());
1056}
1057
1058static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1059  const Expr *getter = propImpl->getGetterCXXConstructor();
1060  if (!getter) return true;
1061
1062  // Sema only makes only of these when the ivar has a C++ class type,
1063  // so the form is pretty constrained.
1064
1065  // If the property has a reference type, we might just be binding a
1066  // reference, in which case the result will be a gl-value.  We should
1067  // treat this as a non-trivial operation.
1068  if (getter->isGLValue())
1069    return false;
1070
1071  // If we selected a trivial copy-constructor, we're okay.
1072  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1073    return (construct->getConstructor()->isTrivial());
1074
1075  // The constructor might require cleanups (in which case it's never
1076  // trivial).
1077  assert(isa<ExprWithCleanups>(getter));
1078  return false;
1079}
1080
1081/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1082/// copy the ivar into the resturn slot.
1083static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1084                                          llvm::Value *returnAddr,
1085                                          ObjCIvarDecl *ivar,
1086                                          llvm::Constant *AtomicHelperFn) {
1087  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1088  //                           AtomicHelperFn);
1089  CallArgList args;
1090
1091  // The 1st argument is the return Slot.
1092  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1093
1094  // The 2nd argument is the address of the ivar.
1095  llvm::Value *ivarAddr =
1096      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1097          .getPointer(CGF);
1098  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1099
1100  // Third argument is the helper function.
1101  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1102
1103  llvm::FunctionCallee copyCppAtomicObjectFn =
1104      CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1105  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1106  CGF.EmitCall(
1107      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1108               callee, ReturnValueSlot(), args);
1109}
1110
1111// emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1112// the `_cmd` selector argument for getter/setter bodies. For direct methods,
1113// this returns an undefined/poison value; this matches behavior prior to `_cmd`
1114// being removed from the direct method ABI as the getter/setter caller would
1115// never load one. For non-direct methods, this emits a load of the implicit
1116// `_cmd` storage.
1117static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1118                                                   ObjCMethodDecl *MD) {
1119  if (MD->isDirectMethod()) {
1120    // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1121    // value. This will be passed to objc_getProperty/objc_setProperty, which
1122    // has not appeared bothered by the `_cmd` argument being undefined before.
1123    llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1124    return llvm::PoisonValue::get(selType);
1125  }
1126
1127  return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1128}
1129
1130void
1131CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1132                                        const ObjCPropertyImplDecl *propImpl,
1133                                        const ObjCMethodDecl *GetterMethodDecl,
1134                                        llvm::Constant *AtomicHelperFn) {
1135
1136  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1137
1138  if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1139    if (!AtomicHelperFn) {
1140      LValue Src =
1141          EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1142      LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1143      callCStructCopyConstructor(Dst, Src);
1144    } else {
1145      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1146      emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), ivar,
1147                                    AtomicHelperFn);
1148    }
1149    return;
1150  }
1151
1152  // If there's a non-trivial 'get' expression, we just have to emit that.
1153  if (!hasTrivialGetExpr(propImpl)) {
1154    if (!AtomicHelperFn) {
1155      auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1156                                     propImpl->getGetterCXXConstructor(),
1157                                     /* NRVOCandidate=*/nullptr);
1158      EmitReturnStmt(*ret);
1159    }
1160    else {
1161      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1162      emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1163                                    ivar, AtomicHelperFn);
1164    }
1165    return;
1166  }
1167
1168  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1169  QualType propType = prop->getType();
1170  ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1171
1172  // Pick an implementation strategy.
1173  PropertyImplStrategy strategy(CGM, propImpl);
1174  switch (strategy.getKind()) {
1175  case PropertyImplStrategy::Native: {
1176    // We don't need to do anything for a zero-size struct.
1177    if (strategy.getIvarSize().isZero())
1178      return;
1179
1180    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1181
1182    // Currently, all atomic accesses have to be through integer
1183    // types, so there's no point in trying to pick a prettier type.
1184    uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1185    llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1186
1187    // Perform an atomic load.  This does not impose ordering constraints.
1188    Address ivarAddr = LV.getAddress(*this);
1189    ivarAddr = ivarAddr.withElementType(bitcastType);
1190    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1191    load->setAtomic(llvm::AtomicOrdering::Unordered);
1192
1193    // Store that value into the return address.  Doing this with a
1194    // bitcast is likely to produce some pretty ugly IR, but it's not
1195    // the *most* terrible thing in the world.
1196    llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1197    uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1198    llvm::Value *ivarVal = load;
1199    if (ivarSize > retTySize) {
1200      bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1201      ivarVal = Builder.CreateTrunc(load, bitcastType);
1202    }
1203    Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1204
1205    // Make sure we don't do an autorelease.
1206    AutoreleaseResult = false;
1207    return;
1208  }
1209
1210  case PropertyImplStrategy::GetSetProperty: {
1211    llvm::FunctionCallee getPropertyFn =
1212        CGM.getObjCRuntime().GetPropertyGetFunction();
1213    if (!getPropertyFn) {
1214      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1215      return;
1216    }
1217    CGCallee callee = CGCallee::forDirect(getPropertyFn);
1218
1219    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1220    // FIXME: Can't this be simpler? This might even be worse than the
1221    // corresponding gcc code.
1222    llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1223    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1224    llvm::Value *ivarOffset =
1225        EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1226
1227    CallArgList args;
1228    args.add(RValue::get(self), getContext().getObjCIdType());
1229    args.add(RValue::get(cmd), getContext().getObjCSelType());
1230    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1231    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1232             getContext().BoolTy);
1233
1234    // FIXME: We shouldn't need to get the function info here, the
1235    // runtime already should have computed it to build the function.
1236    llvm::CallBase *CallInstruction;
1237    RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1238                             getContext().getObjCIdType(), args),
1239                         callee, ReturnValueSlot(), args, &CallInstruction);
1240    if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1241      call->setTailCall();
1242
1243    // We need to fix the type here. Ivars with copy & retain are
1244    // always objects so we don't need to worry about complex or
1245    // aggregates.
1246    RV = RValue::get(Builder.CreateBitCast(
1247        RV.getScalarVal(),
1248        getTypes().ConvertType(getterMethod->getReturnType())));
1249
1250    EmitReturnOfRValue(RV, propType);
1251
1252    // objc_getProperty does an autorelease, so we should suppress ours.
1253    AutoreleaseResult = false;
1254
1255    return;
1256  }
1257
1258  case PropertyImplStrategy::CopyStruct:
1259    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1260                         strategy.hasStrongMember());
1261    return;
1262
1263  case PropertyImplStrategy::Expression:
1264  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1265    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1266
1267    QualType ivarType = ivar->getType();
1268    switch (getEvaluationKind(ivarType)) {
1269    case TEK_Complex: {
1270      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1271      EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1272                         /*init*/ true);
1273      return;
1274    }
1275    case TEK_Aggregate: {
1276      // The return value slot is guaranteed to not be aliased, but
1277      // that's not necessarily the same as "on the stack", so
1278      // we still potentially need objc_memmove_collectable.
1279      EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1280                        /* Src= */ LV, ivarType, getOverlapForReturnValue());
1281      return;
1282    }
1283    case TEK_Scalar: {
1284      llvm::Value *value;
1285      if (propType->isReferenceType()) {
1286        value = LV.getAddress(*this).getPointer();
1287      } else {
1288        // We want to load and autoreleaseReturnValue ARC __weak ivars.
1289        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1290          if (getLangOpts().ObjCAutoRefCount) {
1291            value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1292          } else {
1293            value = EmitARCLoadWeak(LV.getAddress(*this));
1294          }
1295
1296        // Otherwise we want to do a simple load, suppressing the
1297        // final autorelease.
1298        } else {
1299          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1300          AutoreleaseResult = false;
1301        }
1302
1303        value = Builder.CreateBitCast(
1304            value, ConvertType(GetterMethodDecl->getReturnType()));
1305      }
1306
1307      EmitReturnOfRValue(RValue::get(value), propType);
1308      return;
1309    }
1310    }
1311    llvm_unreachable("bad evaluation kind");
1312  }
1313
1314  }
1315  llvm_unreachable("bad @property implementation strategy!");
1316}
1317
1318/// emitStructSetterCall - Call the runtime function to store the value
1319/// from the first formal parameter into the given ivar.
1320static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1321                                 ObjCIvarDecl *ivar) {
1322  // objc_copyStruct (&structIvar, &Arg,
1323  //                  sizeof (struct something), true, false);
1324  CallArgList args;
1325
1326  // The first argument is the address of the ivar.
1327  llvm::Value *ivarAddr =
1328      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1329          .getPointer(CGF);
1330  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1331  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1332
1333  // The second argument is the address of the parameter variable.
1334  ParmVarDecl *argVar = *OMD->param_begin();
1335  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1336                     argVar->getType().getNonReferenceType(), VK_LValue,
1337                     SourceLocation());
1338  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1339  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1340
1341  // The third argument is the sizeof the type.
1342  llvm::Value *size =
1343    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1344  args.add(RValue::get(size), CGF.getContext().getSizeType());
1345
1346  // The fourth argument is the 'isAtomic' flag.
1347  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1348
1349  // The fifth argument is the 'hasStrong' flag.
1350  // FIXME: should this really always be false?
1351  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1352
1353  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1354  CGCallee callee = CGCallee::forDirect(fn);
1355  CGF.EmitCall(
1356      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1357               callee, ReturnValueSlot(), args);
1358}
1359
1360/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1361/// the value from the first formal parameter into the given ivar, using
1362/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1363static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1364                                          ObjCMethodDecl *OMD,
1365                                          ObjCIvarDecl *ivar,
1366                                          llvm::Constant *AtomicHelperFn) {
1367  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1368  //                           AtomicHelperFn);
1369  CallArgList args;
1370
1371  // The first argument is the address of the ivar.
1372  llvm::Value *ivarAddr =
1373      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1374          .getPointer(CGF);
1375  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1376
1377  // The second argument is the address of the parameter variable.
1378  ParmVarDecl *argVar = *OMD->param_begin();
1379  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1380                     argVar->getType().getNonReferenceType(), VK_LValue,
1381                     SourceLocation());
1382  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1383  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1384
1385  // Third argument is the helper function.
1386  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1387
1388  llvm::FunctionCallee fn =
1389      CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1390  CGCallee callee = CGCallee::forDirect(fn);
1391  CGF.EmitCall(
1392      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1393               callee, ReturnValueSlot(), args);
1394}
1395
1396
1397static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1398  Expr *setter = PID->getSetterCXXAssignment();
1399  if (!setter) return true;
1400
1401  // Sema only makes only of these when the ivar has a C++ class type,
1402  // so the form is pretty constrained.
1403
1404  // An operator call is trivial if the function it calls is trivial.
1405  // This also implies that there's nothing non-trivial going on with
1406  // the arguments, because operator= can only be trivial if it's a
1407  // synthesized assignment operator and therefore both parameters are
1408  // references.
1409  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1410    if (const FunctionDecl *callee
1411          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1412      if (callee->isTrivial())
1413        return true;
1414    return false;
1415  }
1416
1417  assert(isa<ExprWithCleanups>(setter));
1418  return false;
1419}
1420
1421static bool UseOptimizedSetter(CodeGenModule &CGM) {
1422  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1423    return false;
1424  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1425}
1426
1427void
1428CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1429                                        const ObjCPropertyImplDecl *propImpl,
1430                                        llvm::Constant *AtomicHelperFn) {
1431  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1432  ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1433
1434  if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1435    ParmVarDecl *PVD = *setterMethod->param_begin();
1436    if (!AtomicHelperFn) {
1437      // Call the move assignment operator instead of calling the copy
1438      // assignment operator and destructor.
1439      LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1440                                     /*quals*/ 0);
1441      LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1442      callCStructMoveAssignmentOperator(Dst, Src);
1443    } else {
1444      // If atomic, assignment is called via a locking api.
1445      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1446    }
1447    // Decativate the destructor for the setter parameter.
1448    DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1449    return;
1450  }
1451
1452  // Just use the setter expression if Sema gave us one and it's
1453  // non-trivial.
1454  if (!hasTrivialSetExpr(propImpl)) {
1455    if (!AtomicHelperFn)
1456      // If non-atomic, assignment is called directly.
1457      EmitStmt(propImpl->getSetterCXXAssignment());
1458    else
1459      // If atomic, assignment is called via a locking api.
1460      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1461                                    AtomicHelperFn);
1462    return;
1463  }
1464
1465  PropertyImplStrategy strategy(CGM, propImpl);
1466  switch (strategy.getKind()) {
1467  case PropertyImplStrategy::Native: {
1468    // We don't need to do anything for a zero-size struct.
1469    if (strategy.getIvarSize().isZero())
1470      return;
1471
1472    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1473
1474    LValue ivarLValue =
1475      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1476    Address ivarAddr = ivarLValue.getAddress(*this);
1477
1478    // Currently, all atomic accesses have to be through integer
1479    // types, so there's no point in trying to pick a prettier type.
1480    llvm::Type *castType = llvm::Type::getIntNTy(
1481        getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1482
1483    // Cast both arguments to the chosen operation type.
1484    argAddr = argAddr.withElementType(castType);
1485    ivarAddr = ivarAddr.withElementType(castType);
1486
1487    llvm::Value *load = Builder.CreateLoad(argAddr);
1488
1489    // Perform an atomic store.  There are no memory ordering requirements.
1490    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1491    store->setAtomic(llvm::AtomicOrdering::Unordered);
1492    return;
1493  }
1494
1495  case PropertyImplStrategy::GetSetProperty:
1496  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1497
1498    llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1499    llvm::FunctionCallee setPropertyFn = nullptr;
1500    if (UseOptimizedSetter(CGM)) {
1501      // 10.8 and iOS 6.0 code and GC is off
1502      setOptimizedPropertyFn =
1503          CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1504              strategy.isAtomic(), strategy.isCopy());
1505      if (!setOptimizedPropertyFn) {
1506        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1507        return;
1508      }
1509    }
1510    else {
1511      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1512      if (!setPropertyFn) {
1513        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1514        return;
1515      }
1516    }
1517
1518    // Emit objc_setProperty((id) self, _cmd, offset, arg,
1519    //                       <is-atomic>, <is-copy>).
1520    llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1521    llvm::Value *self =
1522      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1523    llvm::Value *ivarOffset =
1524        EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1525    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1526    llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1527    arg = Builder.CreateBitCast(arg, VoidPtrTy);
1528
1529    CallArgList args;
1530    args.add(RValue::get(self), getContext().getObjCIdType());
1531    args.add(RValue::get(cmd), getContext().getObjCSelType());
1532    if (setOptimizedPropertyFn) {
1533      args.add(RValue::get(arg), getContext().getObjCIdType());
1534      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1535      CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1536      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1537               callee, ReturnValueSlot(), args);
1538    } else {
1539      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1540      args.add(RValue::get(arg), getContext().getObjCIdType());
1541      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1542               getContext().BoolTy);
1543      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1544               getContext().BoolTy);
1545      // FIXME: We shouldn't need to get the function info here, the runtime
1546      // already should have computed it to build the function.
1547      CGCallee callee = CGCallee::forDirect(setPropertyFn);
1548      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1549               callee, ReturnValueSlot(), args);
1550    }
1551
1552    return;
1553  }
1554
1555  case PropertyImplStrategy::CopyStruct:
1556    emitStructSetterCall(*this, setterMethod, ivar);
1557    return;
1558
1559  case PropertyImplStrategy::Expression:
1560    break;
1561  }
1562
1563  // Otherwise, fake up some ASTs and emit a normal assignment.
1564  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1565  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1566                   VK_LValue, SourceLocation());
1567  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1568                            CK_LValueToRValue, &self, VK_PRValue,
1569                            FPOptionsOverride());
1570  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1571                          SourceLocation(), SourceLocation(),
1572                          &selfLoad, true, true);
1573
1574  ParmVarDecl *argDecl = *setterMethod->param_begin();
1575  QualType argType = argDecl->getType().getNonReferenceType();
1576  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1577                  SourceLocation());
1578  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1579                           argType.getUnqualifiedType(), CK_LValueToRValue,
1580                           &arg, VK_PRValue, FPOptionsOverride());
1581
1582  // The property type can differ from the ivar type in some situations with
1583  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1584  // The following absurdity is just to ensure well-formed IR.
1585  CastKind argCK = CK_NoOp;
1586  if (ivarRef.getType()->isObjCObjectPointerType()) {
1587    if (argLoad.getType()->isObjCObjectPointerType())
1588      argCK = CK_BitCast;
1589    else if (argLoad.getType()->isBlockPointerType())
1590      argCK = CK_BlockPointerToObjCPointerCast;
1591    else
1592      argCK = CK_CPointerToObjCPointerCast;
1593  } else if (ivarRef.getType()->isBlockPointerType()) {
1594     if (argLoad.getType()->isBlockPointerType())
1595      argCK = CK_BitCast;
1596    else
1597      argCK = CK_AnyPointerToBlockPointerCast;
1598  } else if (ivarRef.getType()->isPointerType()) {
1599    argCK = CK_BitCast;
1600  } else if (argLoad.getType()->isAtomicType() &&
1601             !ivarRef.getType()->isAtomicType()) {
1602    argCK = CK_AtomicToNonAtomic;
1603  } else if (!argLoad.getType()->isAtomicType() &&
1604             ivarRef.getType()->isAtomicType()) {
1605    argCK = CK_NonAtomicToAtomic;
1606  }
1607  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1608                           &argLoad, VK_PRValue, FPOptionsOverride());
1609  Expr *finalArg = &argLoad;
1610  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1611                                           argLoad.getType()))
1612    finalArg = &argCast;
1613
1614  BinaryOperator *assign = BinaryOperator::Create(
1615      getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1616      VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1617  EmitStmt(assign);
1618}
1619
1620/// Generate an Objective-C property setter function.
1621///
1622/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1623/// is illegal within a category.
1624void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1625                                         const ObjCPropertyImplDecl *PID) {
1626  llvm::Constant *AtomicHelperFn =
1627      CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1628  ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1629  assert(OMD && "Invalid call to generate setter (empty method)");
1630  StartObjCMethod(OMD, IMP->getClassInterface());
1631
1632  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1633
1634  FinishFunction(OMD->getEndLoc());
1635}
1636
1637namespace {
1638  struct DestroyIvar final : EHScopeStack::Cleanup {
1639  private:
1640    llvm::Value *addr;
1641    const ObjCIvarDecl *ivar;
1642    CodeGenFunction::Destroyer *destroyer;
1643    bool useEHCleanupForArray;
1644  public:
1645    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1646                CodeGenFunction::Destroyer *destroyer,
1647                bool useEHCleanupForArray)
1648      : addr(addr), ivar(ivar), destroyer(destroyer),
1649        useEHCleanupForArray(useEHCleanupForArray) {}
1650
1651    void Emit(CodeGenFunction &CGF, Flags flags) override {
1652      LValue lvalue
1653        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1654      CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1655                      flags.isForNormalCleanup() && useEHCleanupForArray);
1656    }
1657  };
1658}
1659
1660/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1661static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1662                                      Address addr,
1663                                      QualType type) {
1664  llvm::Value *null = getNullForVariable(addr);
1665  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1666}
1667
1668static void emitCXXDestructMethod(CodeGenFunction &CGF,
1669                                  ObjCImplementationDecl *impl) {
1670  CodeGenFunction::RunCleanupsScope scope(CGF);
1671
1672  llvm::Value *self = CGF.LoadObjCSelf();
1673
1674  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1675  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1676       ivar; ivar = ivar->getNextIvar()) {
1677    QualType type = ivar->getType();
1678
1679    // Check whether the ivar is a destructible type.
1680    QualType::DestructionKind dtorKind = type.isDestructedType();
1681    if (!dtorKind) continue;
1682
1683    CodeGenFunction::Destroyer *destroyer = nullptr;
1684
1685    // Use a call to objc_storeStrong to destroy strong ivars, for the
1686    // general benefit of the tools.
1687    if (dtorKind == QualType::DK_objc_strong_lifetime) {
1688      destroyer = destroyARCStrongWithStore;
1689
1690    // Otherwise use the default for the destruction kind.
1691    } else {
1692      destroyer = CGF.getDestroyer(dtorKind);
1693    }
1694
1695    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1696
1697    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1698                                         cleanupKind & EHCleanup);
1699  }
1700
1701  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1702}
1703
1704void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1705                                                 ObjCMethodDecl *MD,
1706                                                 bool ctor) {
1707  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1708  StartObjCMethod(MD, IMP->getClassInterface());
1709
1710  // Emit .cxx_construct.
1711  if (ctor) {
1712    // Suppress the final autorelease in ARC.
1713    AutoreleaseResult = false;
1714
1715    for (const auto *IvarInit : IMP->inits()) {
1716      FieldDecl *Field = IvarInit->getAnyMember();
1717      ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1718      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1719                                    LoadObjCSelf(), Ivar, 0);
1720      EmitAggExpr(IvarInit->getInit(),
1721                  AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1722                                          AggValueSlot::DoesNotNeedGCBarriers,
1723                                          AggValueSlot::IsNotAliased,
1724                                          AggValueSlot::DoesNotOverlap));
1725    }
1726    // constructor returns 'self'.
1727    CodeGenTypes &Types = CGM.getTypes();
1728    QualType IdTy(CGM.getContext().getObjCIdType());
1729    llvm::Value *SelfAsId =
1730      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1731    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1732
1733  // Emit .cxx_destruct.
1734  } else {
1735    emitCXXDestructMethod(*this, IMP);
1736  }
1737  FinishFunction();
1738}
1739
1740llvm::Value *CodeGenFunction::LoadObjCSelf() {
1741  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1742  DeclRefExpr DRE(getContext(), Self,
1743                  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1744                  Self->getType(), VK_LValue, SourceLocation());
1745  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1746}
1747
1748QualType CodeGenFunction::TypeOfSelfObject() {
1749  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1750  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1751  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1752    getContext().getCanonicalType(selfDecl->getType()));
1753  return PTy->getPointeeType();
1754}
1755
1756void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1757  llvm::FunctionCallee EnumerationMutationFnPtr =
1758      CGM.getObjCRuntime().EnumerationMutationFunction();
1759  if (!EnumerationMutationFnPtr) {
1760    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1761    return;
1762  }
1763  CGCallee EnumerationMutationFn =
1764    CGCallee::forDirect(EnumerationMutationFnPtr);
1765
1766  CGDebugInfo *DI = getDebugInfo();
1767  if (DI)
1768    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1769
1770  RunCleanupsScope ForScope(*this);
1771
1772  // The local variable comes into scope immediately.
1773  AutoVarEmission variable = AutoVarEmission::invalid();
1774  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1775    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1776
1777  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1778
1779  // Fast enumeration state.
1780  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1781  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1782  EmitNullInitialization(StatePtr, StateTy);
1783
1784  // Number of elements in the items array.
1785  static const unsigned NumItems = 16;
1786
1787  // Fetch the countByEnumeratingWithState:objects:count: selector.
1788  IdentifierInfo *II[] = {
1789    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1790    &CGM.getContext().Idents.get("objects"),
1791    &CGM.getContext().Idents.get("count")
1792  };
1793  Selector FastEnumSel =
1794      CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1795
1796  QualType ItemsTy = getContext().getConstantArrayType(
1797      getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1798      ArraySizeModifier::Normal, 0);
1799  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1800
1801  // Emit the collection pointer.  In ARC, we do a retain.
1802  llvm::Value *Collection;
1803  if (getLangOpts().ObjCAutoRefCount) {
1804    Collection = EmitARCRetainScalarExpr(S.getCollection());
1805
1806    // Enter a cleanup to do the release.
1807    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1808  } else {
1809    Collection = EmitScalarExpr(S.getCollection());
1810  }
1811
1812  // The 'continue' label needs to appear within the cleanup for the
1813  // collection object.
1814  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1815
1816  // Send it our message:
1817  CallArgList Args;
1818
1819  // The first argument is a temporary of the enumeration-state type.
1820  Args.add(RValue::get(StatePtr.getPointer()),
1821           getContext().getPointerType(StateTy));
1822
1823  // The second argument is a temporary array with space for NumItems
1824  // pointers.  We'll actually be loading elements from the array
1825  // pointer written into the control state; this buffer is so that
1826  // collections that *aren't* backed by arrays can still queue up
1827  // batches of elements.
1828  Args.add(RValue::get(ItemsPtr.getPointer()),
1829           getContext().getPointerType(ItemsTy));
1830
1831  // The third argument is the capacity of that temporary array.
1832  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1833  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1834  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1835
1836  // Start the enumeration.
1837  RValue CountRV =
1838      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1839                                               getContext().getNSUIntegerType(),
1840                                               FastEnumSel, Collection, Args);
1841
1842  // The initial number of objects that were returned in the buffer.
1843  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1844
1845  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1846  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1847
1848  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1849
1850  // If the limit pointer was zero to begin with, the collection is
1851  // empty; skip all this. Set the branch weight assuming this has the same
1852  // probability of exiting the loop as any other loop exit.
1853  uint64_t EntryCount = getCurrentProfileCount();
1854  Builder.CreateCondBr(
1855      Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1856      LoopInitBB,
1857      createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1858
1859  // Otherwise, initialize the loop.
1860  EmitBlock(LoopInitBB);
1861
1862  // Save the initial mutations value.  This is the value at an
1863  // address that was written into the state object by
1864  // countByEnumeratingWithState:objects:count:.
1865  Address StateMutationsPtrPtr =
1866      Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1867  llvm::Value *StateMutationsPtr
1868    = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1869
1870  llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1871  llvm::Value *initialMutations =
1872    Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1873                              getPointerAlign(), "forcoll.initial-mutations");
1874
1875  // Start looping.  This is the point we return to whenever we have a
1876  // fresh, non-empty batch of objects.
1877  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1878  EmitBlock(LoopBodyBB);
1879
1880  // The current index into the buffer.
1881  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1882  index->addIncoming(zero, LoopInitBB);
1883
1884  // The current buffer size.
1885  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1886  count->addIncoming(initialBufferLimit, LoopInitBB);
1887
1888  incrementProfileCounter(&S);
1889
1890  // Check whether the mutations value has changed from where it was
1891  // at start.  StateMutationsPtr should actually be invariant between
1892  // refreshes.
1893  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1894  llvm::Value *currentMutations
1895    = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1896                                getPointerAlign(), "statemutations");
1897
1898  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1899  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1900
1901  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1902                       WasNotMutatedBB, WasMutatedBB);
1903
1904  // If so, call the enumeration-mutation function.
1905  EmitBlock(WasMutatedBB);
1906  llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1907  llvm::Value *V =
1908    Builder.CreateBitCast(Collection, ObjCIdType);
1909  CallArgList Args2;
1910  Args2.add(RValue::get(V), getContext().getObjCIdType());
1911  // FIXME: We shouldn't need to get the function info here, the runtime already
1912  // should have computed it to build the function.
1913  EmitCall(
1914          CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1915           EnumerationMutationFn, ReturnValueSlot(), Args2);
1916
1917  // Otherwise, or if the mutation function returns, just continue.
1918  EmitBlock(WasNotMutatedBB);
1919
1920  // Initialize the element variable.
1921  RunCleanupsScope elementVariableScope(*this);
1922  bool elementIsVariable;
1923  LValue elementLValue;
1924  QualType elementType;
1925  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1926    // Initialize the variable, in case it's a __block variable or something.
1927    EmitAutoVarInit(variable);
1928
1929    const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1930    DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1931                        D->getType(), VK_LValue, SourceLocation());
1932    elementLValue = EmitLValue(&tempDRE);
1933    elementType = D->getType();
1934    elementIsVariable = true;
1935
1936    if (D->isARCPseudoStrong())
1937      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1938  } else {
1939    elementLValue = LValue(); // suppress warning
1940    elementType = cast<Expr>(S.getElement())->getType();
1941    elementIsVariable = false;
1942  }
1943  llvm::Type *convertedElementType = ConvertType(elementType);
1944
1945  // Fetch the buffer out of the enumeration state.
1946  // TODO: this pointer should actually be invariant between
1947  // refreshes, which would help us do certain loop optimizations.
1948  Address StateItemsPtr =
1949      Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1950  llvm::Value *EnumStateItems =
1951    Builder.CreateLoad(StateItemsPtr, "stateitems");
1952
1953  // Fetch the value at the current index from the buffer.
1954  llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1955      ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1956  llvm::Value *CurrentItem =
1957    Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1958
1959  if (SanOpts.has(SanitizerKind::ObjCCast)) {
1960    // Before using an item from the collection, check that the implicit cast
1961    // from id to the element type is valid. This is done with instrumentation
1962    // roughly corresponding to:
1963    //
1964    //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1965    const ObjCObjectPointerType *ObjPtrTy =
1966        elementType->getAsObjCInterfacePointerType();
1967    const ObjCInterfaceType *InterfaceTy =
1968        ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1969    if (InterfaceTy) {
1970      SanitizerScope SanScope(this);
1971      auto &C = CGM.getContext();
1972      assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1973      Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1974      CallArgList IsKindOfClassArgs;
1975      llvm::Value *Cls =
1976          CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1977      IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1978      llvm::Value *IsClass =
1979          CGM.getObjCRuntime()
1980              .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1981                                   IsKindOfClassSel, CurrentItem,
1982                                   IsKindOfClassArgs)
1983              .getScalarVal();
1984      llvm::Constant *StaticData[] = {
1985          EmitCheckSourceLocation(S.getBeginLoc()),
1986          EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1987      EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1988                SanitizerHandler::InvalidObjCCast,
1989                ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1990    }
1991  }
1992
1993  // Cast that value to the right type.
1994  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1995                                      "currentitem");
1996
1997  // Make sure we have an l-value.  Yes, this gets evaluated every
1998  // time through the loop.
1999  if (!elementIsVariable) {
2000    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2001    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2002  } else {
2003    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2004                           /*isInit*/ true);
2005  }
2006
2007  // If we do have an element variable, this assignment is the end of
2008  // its initialization.
2009  if (elementIsVariable)
2010    EmitAutoVarCleanups(variable);
2011
2012  // Perform the loop body, setting up break and continue labels.
2013  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2014  {
2015    RunCleanupsScope Scope(*this);
2016    EmitStmt(S.getBody());
2017  }
2018  BreakContinueStack.pop_back();
2019
2020  // Destroy the element variable now.
2021  elementVariableScope.ForceCleanup();
2022
2023  // Check whether there are more elements.
2024  EmitBlock(AfterBody.getBlock());
2025
2026  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2027
2028  // First we check in the local buffer.
2029  llvm::Value *indexPlusOne =
2030      Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2031
2032  // If we haven't overrun the buffer yet, we can continue.
2033  // Set the branch weights based on the simplifying assumption that this is
2034  // like a while-loop, i.e., ignoring that the false branch fetches more
2035  // elements and then returns to the loop.
2036  Builder.CreateCondBr(
2037      Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2038      createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2039
2040  index->addIncoming(indexPlusOne, AfterBody.getBlock());
2041  count->addIncoming(count, AfterBody.getBlock());
2042
2043  // Otherwise, we have to fetch more elements.
2044  EmitBlock(FetchMoreBB);
2045
2046  CountRV =
2047      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2048                                               getContext().getNSUIntegerType(),
2049                                               FastEnumSel, Collection, Args);
2050
2051  // If we got a zero count, we're done.
2052  llvm::Value *refetchCount = CountRV.getScalarVal();
2053
2054  // (note that the message send might split FetchMoreBB)
2055  index->addIncoming(zero, Builder.GetInsertBlock());
2056  count->addIncoming(refetchCount, Builder.GetInsertBlock());
2057
2058  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2059                       EmptyBB, LoopBodyBB);
2060
2061  // No more elements.
2062  EmitBlock(EmptyBB);
2063
2064  if (!elementIsVariable) {
2065    // If the element was not a declaration, set it to be null.
2066
2067    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2068    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2069    EmitStoreThroughLValue(RValue::get(null), elementLValue);
2070  }
2071
2072  if (DI)
2073    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2074
2075  ForScope.ForceCleanup();
2076  EmitBlock(LoopEnd.getBlock());
2077}
2078
2079void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2080  CGM.getObjCRuntime().EmitTryStmt(*this, S);
2081}
2082
2083void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2084  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2085}
2086
2087void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2088                                              const ObjCAtSynchronizedStmt &S) {
2089  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2090}
2091
2092namespace {
2093  struct CallObjCRelease final : EHScopeStack::Cleanup {
2094    CallObjCRelease(llvm::Value *object) : object(object) {}
2095    llvm::Value *object;
2096
2097    void Emit(CodeGenFunction &CGF, Flags flags) override {
2098      // Releases at the end of the full-expression are imprecise.
2099      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2100    }
2101  };
2102}
2103
2104/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2105/// release at the end of the full-expression.
2106llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2107                                                    llvm::Value *object) {
2108  // If we're in a conditional branch, we need to make the cleanup
2109  // conditional.
2110  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2111  return object;
2112}
2113
2114llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2115                                                           llvm::Value *value) {
2116  return EmitARCRetainAutorelease(type, value);
2117}
2118
2119/// Given a number of pointers, inform the optimizer that they're
2120/// being intrinsically used up until this point in the program.
2121void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2122  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2123  if (!fn)
2124    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2125
2126  // This isn't really a "runtime" function, but as an intrinsic it
2127  // doesn't really matter as long as we align things up.
2128  EmitNounwindRuntimeCall(fn, values);
2129}
2130
2131/// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2132/// that has operand bundle "clang.arc.attachedcall".
2133void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2134  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2135  if (!fn)
2136    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2137  EmitNounwindRuntimeCall(fn, values);
2138}
2139
2140static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2141  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2142    // If the target runtime doesn't naturally support ARC, emit weak
2143    // references to the runtime support library.  We don't really
2144    // permit this to fail, but we need a particular relocation style.
2145    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2146        !CGM.getTriple().isOSBinFormatCOFF()) {
2147      F->setLinkage(llvm::Function::ExternalWeakLinkage);
2148    }
2149  }
2150}
2151
2152static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2153                                         llvm::FunctionCallee RTF) {
2154  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2155}
2156
2157static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2158                                       CodeGenModule &CGM) {
2159  llvm::Function *fn = CGM.getIntrinsic(IntID);
2160  setARCRuntimeFunctionLinkage(CGM, fn);
2161  return fn;
2162}
2163
2164/// Perform an operation having the signature
2165///   i8* (i8*)
2166/// where a null input causes a no-op and returns null.
2167static llvm::Value *emitARCValueOperation(
2168    CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2169    llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2170    llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2171  if (isa<llvm::ConstantPointerNull>(value))
2172    return value;
2173
2174  if (!fn)
2175    fn = getARCIntrinsic(IntID, CGF.CGM);
2176
2177  // Cast the argument to 'id'.
2178  llvm::Type *origType = returnType ? returnType : value->getType();
2179  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2180
2181  // Call the function.
2182  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2183  call->setTailCallKind(tailKind);
2184
2185  // Cast the result back to the original type.
2186  return CGF.Builder.CreateBitCast(call, origType);
2187}
2188
2189/// Perform an operation having the following signature:
2190///   i8* (i8**)
2191static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2192                                         llvm::Function *&fn,
2193                                         llvm::Intrinsic::ID IntID) {
2194  if (!fn)
2195    fn = getARCIntrinsic(IntID, CGF.CGM);
2196
2197  return CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2198}
2199
2200/// Perform an operation having the following signature:
2201///   i8* (i8**, i8*)
2202static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2203                                          llvm::Value *value,
2204                                          llvm::Function *&fn,
2205                                          llvm::Intrinsic::ID IntID,
2206                                          bool ignored) {
2207  assert(addr.getElementType() == value->getType());
2208
2209  if (!fn)
2210    fn = getARCIntrinsic(IntID, CGF.CGM);
2211
2212  llvm::Type *origType = value->getType();
2213
2214  llvm::Value *args[] = {
2215    CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2216    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2217  };
2218  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2219
2220  if (ignored) return nullptr;
2221
2222  return CGF.Builder.CreateBitCast(result, origType);
2223}
2224
2225/// Perform an operation having the following signature:
2226///   void (i8**, i8**)
2227static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2228                                 llvm::Function *&fn,
2229                                 llvm::Intrinsic::ID IntID) {
2230  assert(dst.getType() == src.getType());
2231
2232  if (!fn)
2233    fn = getARCIntrinsic(IntID, CGF.CGM);
2234
2235  llvm::Value *args[] = {
2236    CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2237    CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2238  };
2239  CGF.EmitNounwindRuntimeCall(fn, args);
2240}
2241
2242/// Perform an operation having the signature
2243///   i8* (i8*)
2244/// where a null input causes a no-op and returns null.
2245static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2246                                           llvm::Value *value,
2247                                           llvm::Type *returnType,
2248                                           llvm::FunctionCallee &fn,
2249                                           StringRef fnName) {
2250  if (isa<llvm::ConstantPointerNull>(value))
2251    return value;
2252
2253  if (!fn) {
2254    llvm::FunctionType *fnType =
2255      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2256    fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2257
2258    // We have Native ARC, so set nonlazybind attribute for performance
2259    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2260      if (fnName == "objc_retain")
2261        f->addFnAttr(llvm::Attribute::NonLazyBind);
2262  }
2263
2264  // Cast the argument to 'id'.
2265  llvm::Type *origType = returnType ? returnType : value->getType();
2266  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2267
2268  // Call the function.
2269  llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2270
2271  // Mark calls to objc_autorelease as tail on the assumption that methods
2272  // overriding autorelease do not touch anything on the stack.
2273  if (fnName == "objc_autorelease")
2274    if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2275      Call->setTailCall();
2276
2277  // Cast the result back to the original type.
2278  return CGF.Builder.CreateBitCast(Inst, origType);
2279}
2280
2281/// Produce the code to do a retain.  Based on the type, calls one of:
2282///   call i8* \@objc_retain(i8* %value)
2283///   call i8* \@objc_retainBlock(i8* %value)
2284llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2285  if (type->isBlockPointerType())
2286    return EmitARCRetainBlock(value, /*mandatory*/ false);
2287  else
2288    return EmitARCRetainNonBlock(value);
2289}
2290
2291/// Retain the given object, with normal retain semantics.
2292///   call i8* \@objc_retain(i8* %value)
2293llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2294  return emitARCValueOperation(*this, value, nullptr,
2295                               CGM.getObjCEntrypoints().objc_retain,
2296                               llvm::Intrinsic::objc_retain);
2297}
2298
2299/// Retain the given block, with _Block_copy semantics.
2300///   call i8* \@objc_retainBlock(i8* %value)
2301///
2302/// \param mandatory - If false, emit the call with metadata
2303/// indicating that it's okay for the optimizer to eliminate this call
2304/// if it can prove that the block never escapes except down the stack.
2305llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2306                                                 bool mandatory) {
2307  llvm::Value *result
2308    = emitARCValueOperation(*this, value, nullptr,
2309                            CGM.getObjCEntrypoints().objc_retainBlock,
2310                            llvm::Intrinsic::objc_retainBlock);
2311
2312  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2313  // tell the optimizer that it doesn't need to do this copy if the
2314  // block doesn't escape, where being passed as an argument doesn't
2315  // count as escaping.
2316  if (!mandatory && isa<llvm::Instruction>(result)) {
2317    llvm::CallInst *call
2318      = cast<llvm::CallInst>(result->stripPointerCasts());
2319    assert(call->getCalledOperand() ==
2320           CGM.getObjCEntrypoints().objc_retainBlock);
2321
2322    call->setMetadata("clang.arc.copy_on_escape",
2323                      llvm::MDNode::get(Builder.getContext(), std::nullopt));
2324  }
2325
2326  return result;
2327}
2328
2329static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2330  // Fetch the void(void) inline asm which marks that we're going to
2331  // do something with the autoreleased return value.
2332  llvm::InlineAsm *&marker
2333    = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2334  if (!marker) {
2335    StringRef assembly
2336      = CGF.CGM.getTargetCodeGenInfo()
2337           .getARCRetainAutoreleasedReturnValueMarker();
2338
2339    // If we have an empty assembly string, there's nothing to do.
2340    if (assembly.empty()) {
2341
2342    // Otherwise, at -O0, build an inline asm that we're going to call
2343    // in a moment.
2344    } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2345      llvm::FunctionType *type =
2346        llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2347
2348      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2349
2350    // If we're at -O1 and above, we don't want to litter the code
2351    // with this marker yet, so leave a breadcrumb for the ARC
2352    // optimizer to pick up.
2353    } else {
2354      const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2355      if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2356        auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2357        CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2358                                          retainRVMarkerKey, str);
2359      }
2360    }
2361  }
2362
2363  // Call the marker asm if we made one, which we do only at -O0.
2364  if (marker)
2365    CGF.Builder.CreateCall(marker, std::nullopt,
2366                           CGF.getBundlesForFunclet(marker));
2367}
2368
2369static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2370                                               bool IsRetainRV,
2371                                               CodeGenFunction &CGF) {
2372  emitAutoreleasedReturnValueMarker(CGF);
2373
2374  // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2375  // retainRV or claimRV calls in the IR. We currently do this only when the
2376  // optimization level isn't -O0 since global-isel, which is currently run at
2377  // -O0, doesn't know about the operand bundle.
2378  ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2379  llvm::Function *&EP = IsRetainRV
2380                            ? EPs.objc_retainAutoreleasedReturnValue
2381                            : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2382  llvm::Intrinsic::ID IID =
2383      IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2384                 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2385  EP = getARCIntrinsic(IID, CGF.CGM);
2386
2387  llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2388
2389  // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2390  // the target backend knows how to handle the operand bundle.
2391  if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2392      (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2393    llvm::Value *bundleArgs[] = {EP};
2394    llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2395    auto *oldCall = cast<llvm::CallBase>(value);
2396    llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2397        oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2398    newCall->copyMetadata(*oldCall);
2399    oldCall->replaceAllUsesWith(newCall);
2400    oldCall->eraseFromParent();
2401    CGF.EmitARCNoopIntrinsicUse(newCall);
2402    return newCall;
2403  }
2404
2405  bool isNoTail =
2406      CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2407  llvm::CallInst::TailCallKind tailKind =
2408      isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2409  return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2410}
2411
2412/// Retain the given object which is the result of a function call.
2413///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2414///
2415/// Yes, this function name is one character away from a different
2416/// call with completely different semantics.
2417llvm::Value *
2418CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2419  return emitOptimizedARCReturnCall(value, true, *this);
2420}
2421
2422/// Claim a possibly-autoreleased return value at +0.  This is only
2423/// valid to do in contexts which do not rely on the retain to keep
2424/// the object valid for all of its uses; for example, when
2425/// the value is ignored, or when it is being assigned to an
2426/// __unsafe_unretained variable.
2427///
2428///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2429llvm::Value *
2430CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2431  return emitOptimizedARCReturnCall(value, false, *this);
2432}
2433
2434/// Release the given object.
2435///   call void \@objc_release(i8* %value)
2436void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2437                                     ARCPreciseLifetime_t precise) {
2438  if (isa<llvm::ConstantPointerNull>(value)) return;
2439
2440  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2441  if (!fn)
2442    fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2443
2444  // Cast the argument to 'id'.
2445  value = Builder.CreateBitCast(value, Int8PtrTy);
2446
2447  // Call objc_release.
2448  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2449
2450  if (precise == ARCImpreciseLifetime) {
2451    call->setMetadata("clang.imprecise_release",
2452                      llvm::MDNode::get(Builder.getContext(), std::nullopt));
2453  }
2454}
2455
2456/// Destroy a __strong variable.
2457///
2458/// At -O0, emit a call to store 'null' into the address;
2459/// instrumenting tools prefer this because the address is exposed,
2460/// but it's relatively cumbersome to optimize.
2461///
2462/// At -O1 and above, just load and call objc_release.
2463///
2464///   call void \@objc_storeStrong(i8** %addr, i8* null)
2465void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2466                                           ARCPreciseLifetime_t precise) {
2467  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2468    llvm::Value *null = getNullForVariable(addr);
2469    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2470    return;
2471  }
2472
2473  llvm::Value *value = Builder.CreateLoad(addr);
2474  EmitARCRelease(value, precise);
2475}
2476
2477/// Store into a strong object.  Always calls this:
2478///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2479llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2480                                                     llvm::Value *value,
2481                                                     bool ignored) {
2482  assert(addr.getElementType() == value->getType());
2483
2484  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2485  if (!fn)
2486    fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2487
2488  llvm::Value *args[] = {
2489    Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2490    Builder.CreateBitCast(value, Int8PtrTy)
2491  };
2492  EmitNounwindRuntimeCall(fn, args);
2493
2494  if (ignored) return nullptr;
2495  return value;
2496}
2497
2498/// Store into a strong object.  Sometimes calls this:
2499///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2500/// Other times, breaks it down into components.
2501llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2502                                                 llvm::Value *newValue,
2503                                                 bool ignored) {
2504  QualType type = dst.getType();
2505  bool isBlock = type->isBlockPointerType();
2506
2507  // Use a store barrier at -O0 unless this is a block type or the
2508  // lvalue is inadequately aligned.
2509  if (shouldUseFusedARCCalls() &&
2510      !isBlock &&
2511      (dst.getAlignment().isZero() ||
2512       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2513    return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2514  }
2515
2516  // Otherwise, split it out.
2517
2518  // Retain the new value.
2519  newValue = EmitARCRetain(type, newValue);
2520
2521  // Read the old value.
2522  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2523
2524  // Store.  We do this before the release so that any deallocs won't
2525  // see the old value.
2526  EmitStoreOfScalar(newValue, dst);
2527
2528  // Finally, release the old value.
2529  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2530
2531  return newValue;
2532}
2533
2534/// Autorelease the given object.
2535///   call i8* \@objc_autorelease(i8* %value)
2536llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2537  return emitARCValueOperation(*this, value, nullptr,
2538                               CGM.getObjCEntrypoints().objc_autorelease,
2539                               llvm::Intrinsic::objc_autorelease);
2540}
2541
2542/// Autorelease the given object.
2543///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2544llvm::Value *
2545CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2546  return emitARCValueOperation(*this, value, nullptr,
2547                            CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2548                               llvm::Intrinsic::objc_autoreleaseReturnValue,
2549                               llvm::CallInst::TCK_Tail);
2550}
2551
2552/// Do a fused retain/autorelease of the given object.
2553///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2554llvm::Value *
2555CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2556  return emitARCValueOperation(*this, value, nullptr,
2557                     CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2558                             llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2559                               llvm::CallInst::TCK_Tail);
2560}
2561
2562/// Do a fused retain/autorelease of the given object.
2563///   call i8* \@objc_retainAutorelease(i8* %value)
2564/// or
2565///   %retain = call i8* \@objc_retainBlock(i8* %value)
2566///   call i8* \@objc_autorelease(i8* %retain)
2567llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2568                                                       llvm::Value *value) {
2569  if (!type->isBlockPointerType())
2570    return EmitARCRetainAutoreleaseNonBlock(value);
2571
2572  if (isa<llvm::ConstantPointerNull>(value)) return value;
2573
2574  llvm::Type *origType = value->getType();
2575  value = Builder.CreateBitCast(value, Int8PtrTy);
2576  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2577  value = EmitARCAutorelease(value);
2578  return Builder.CreateBitCast(value, origType);
2579}
2580
2581/// Do a fused retain/autorelease of the given object.
2582///   call i8* \@objc_retainAutorelease(i8* %value)
2583llvm::Value *
2584CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2585  return emitARCValueOperation(*this, value, nullptr,
2586                               CGM.getObjCEntrypoints().objc_retainAutorelease,
2587                               llvm::Intrinsic::objc_retainAutorelease);
2588}
2589
2590/// i8* \@objc_loadWeak(i8** %addr)
2591/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2592llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2593  return emitARCLoadOperation(*this, addr,
2594                              CGM.getObjCEntrypoints().objc_loadWeak,
2595                              llvm::Intrinsic::objc_loadWeak);
2596}
2597
2598/// i8* \@objc_loadWeakRetained(i8** %addr)
2599llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2600  return emitARCLoadOperation(*this, addr,
2601                              CGM.getObjCEntrypoints().objc_loadWeakRetained,
2602                              llvm::Intrinsic::objc_loadWeakRetained);
2603}
2604
2605/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2606/// Returns %value.
2607llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2608                                               llvm::Value *value,
2609                                               bool ignored) {
2610  return emitARCStoreOperation(*this, addr, value,
2611                               CGM.getObjCEntrypoints().objc_storeWeak,
2612                               llvm::Intrinsic::objc_storeWeak, ignored);
2613}
2614
2615/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2616/// Returns %value.  %addr is known to not have a current weak entry.
2617/// Essentially equivalent to:
2618///   *addr = nil; objc_storeWeak(addr, value);
2619void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2620  // If we're initializing to null, just write null to memory; no need
2621  // to get the runtime involved.  But don't do this if optimization
2622  // is enabled, because accounting for this would make the optimizer
2623  // much more complicated.
2624  if (isa<llvm::ConstantPointerNull>(value) &&
2625      CGM.getCodeGenOpts().OptimizationLevel == 0) {
2626    Builder.CreateStore(value, addr);
2627    return;
2628  }
2629
2630  emitARCStoreOperation(*this, addr, value,
2631                        CGM.getObjCEntrypoints().objc_initWeak,
2632                        llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2633}
2634
2635/// void \@objc_destroyWeak(i8** %addr)
2636/// Essentially objc_storeWeak(addr, nil).
2637void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2638  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2639  if (!fn)
2640    fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2641
2642  EmitNounwindRuntimeCall(fn, addr.getPointer());
2643}
2644
2645/// void \@objc_moveWeak(i8** %dest, i8** %src)
2646/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2647/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2648void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2649  emitARCCopyOperation(*this, dst, src,
2650                       CGM.getObjCEntrypoints().objc_moveWeak,
2651                       llvm::Intrinsic::objc_moveWeak);
2652}
2653
2654/// void \@objc_copyWeak(i8** %dest, i8** %src)
2655/// Disregards the current value in %dest.  Essentially
2656///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2657void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2658  emitARCCopyOperation(*this, dst, src,
2659                       CGM.getObjCEntrypoints().objc_copyWeak,
2660                       llvm::Intrinsic::objc_copyWeak);
2661}
2662
2663void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2664                                            Address SrcAddr) {
2665  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2666  Object = EmitObjCConsumeObject(Ty, Object);
2667  EmitARCStoreWeak(DstAddr, Object, false);
2668}
2669
2670void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2671                                            Address SrcAddr) {
2672  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2673  Object = EmitObjCConsumeObject(Ty, Object);
2674  EmitARCStoreWeak(DstAddr, Object, false);
2675  EmitARCDestroyWeak(SrcAddr);
2676}
2677
2678/// Produce the code to do a objc_autoreleasepool_push.
2679///   call i8* \@objc_autoreleasePoolPush(void)
2680llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2681  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2682  if (!fn)
2683    fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2684
2685  return EmitNounwindRuntimeCall(fn);
2686}
2687
2688/// Produce the code to do a primitive release.
2689///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2690void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2691  assert(value->getType() == Int8PtrTy);
2692
2693  if (getInvokeDest()) {
2694    // Call the runtime method not the intrinsic if we are handling exceptions
2695    llvm::FunctionCallee &fn =
2696        CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2697    if (!fn) {
2698      llvm::FunctionType *fnType =
2699        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2700      fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2701      setARCRuntimeFunctionLinkage(CGM, fn);
2702    }
2703
2704    // objc_autoreleasePoolPop can throw.
2705    EmitRuntimeCallOrInvoke(fn, value);
2706  } else {
2707    llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2708    if (!fn)
2709      fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2710
2711    EmitRuntimeCall(fn, value);
2712  }
2713}
2714
2715/// Produce the code to do an MRR version objc_autoreleasepool_push.
2716/// Which is: [[NSAutoreleasePool alloc] init];
2717/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2718/// init is declared as: - (id) init; in its NSObject super class.
2719///
2720llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2721  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2722  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2723  // [NSAutoreleasePool alloc]
2724  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2725  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2726  CallArgList Args;
2727  RValue AllocRV =
2728    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2729                                getContext().getObjCIdType(),
2730                                AllocSel, Receiver, Args);
2731
2732  // [Receiver init]
2733  Receiver = AllocRV.getScalarVal();
2734  II = &CGM.getContext().Idents.get("init");
2735  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2736  RValue InitRV =
2737    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2738                                getContext().getObjCIdType(),
2739                                InitSel, Receiver, Args);
2740  return InitRV.getScalarVal();
2741}
2742
2743/// Allocate the given objc object.
2744///   call i8* \@objc_alloc(i8* %value)
2745llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2746                                            llvm::Type *resultType) {
2747  return emitObjCValueOperation(*this, value, resultType,
2748                                CGM.getObjCEntrypoints().objc_alloc,
2749                                "objc_alloc");
2750}
2751
2752/// Allocate the given objc object.
2753///   call i8* \@objc_allocWithZone(i8* %value)
2754llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2755                                                    llvm::Type *resultType) {
2756  return emitObjCValueOperation(*this, value, resultType,
2757                                CGM.getObjCEntrypoints().objc_allocWithZone,
2758                                "objc_allocWithZone");
2759}
2760
2761llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2762                                                llvm::Type *resultType) {
2763  return emitObjCValueOperation(*this, value, resultType,
2764                                CGM.getObjCEntrypoints().objc_alloc_init,
2765                                "objc_alloc_init");
2766}
2767
2768/// Produce the code to do a primitive release.
2769/// [tmp drain];
2770void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2771  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2772  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2773  CallArgList Args;
2774  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2775                              getContext().VoidTy, DrainSel, Arg, Args);
2776}
2777
2778void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2779                                              Address addr,
2780                                              QualType type) {
2781  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2782}
2783
2784void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2785                                                Address addr,
2786                                                QualType type) {
2787  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2788}
2789
2790void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2791                                     Address addr,
2792                                     QualType type) {
2793  CGF.EmitARCDestroyWeak(addr);
2794}
2795
2796void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2797                                          QualType type) {
2798  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2799  CGF.EmitARCIntrinsicUse(value);
2800}
2801
2802/// Autorelease the given object.
2803///   call i8* \@objc_autorelease(i8* %value)
2804llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2805                                                  llvm::Type *returnType) {
2806  return emitObjCValueOperation(
2807      *this, value, returnType,
2808      CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2809      "objc_autorelease");
2810}
2811
2812/// Retain the given object, with normal retain semantics.
2813///   call i8* \@objc_retain(i8* %value)
2814llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2815                                                     llvm::Type *returnType) {
2816  return emitObjCValueOperation(
2817      *this, value, returnType,
2818      CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2819}
2820
2821/// Release the given object.
2822///   call void \@objc_release(i8* %value)
2823void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2824                                      ARCPreciseLifetime_t precise) {
2825  if (isa<llvm::ConstantPointerNull>(value)) return;
2826
2827  llvm::FunctionCallee &fn =
2828      CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2829  if (!fn) {
2830    llvm::FunctionType *fnType =
2831        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2832    fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2833    setARCRuntimeFunctionLinkage(CGM, fn);
2834    // We have Native ARC, so set nonlazybind attribute for performance
2835    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2836      f->addFnAttr(llvm::Attribute::NonLazyBind);
2837  }
2838
2839  // Cast the argument to 'id'.
2840  value = Builder.CreateBitCast(value, Int8PtrTy);
2841
2842  // Call objc_release.
2843  llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2844
2845  if (precise == ARCImpreciseLifetime) {
2846    call->setMetadata("clang.imprecise_release",
2847                      llvm::MDNode::get(Builder.getContext(), std::nullopt));
2848  }
2849}
2850
2851namespace {
2852  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2853    llvm::Value *Token;
2854
2855    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2856
2857    void Emit(CodeGenFunction &CGF, Flags flags) override {
2858      CGF.EmitObjCAutoreleasePoolPop(Token);
2859    }
2860  };
2861  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2862    llvm::Value *Token;
2863
2864    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2865
2866    void Emit(CodeGenFunction &CGF, Flags flags) override {
2867      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2868    }
2869  };
2870}
2871
2872void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2873  if (CGM.getLangOpts().ObjCAutoRefCount)
2874    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2875  else
2876    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2877}
2878
2879static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2880  switch (lifetime) {
2881  case Qualifiers::OCL_None:
2882  case Qualifiers::OCL_ExplicitNone:
2883  case Qualifiers::OCL_Strong:
2884  case Qualifiers::OCL_Autoreleasing:
2885    return true;
2886
2887  case Qualifiers::OCL_Weak:
2888    return false;
2889  }
2890
2891  llvm_unreachable("impossible lifetime!");
2892}
2893
2894static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2895                                                  LValue lvalue,
2896                                                  QualType type) {
2897  llvm::Value *result;
2898  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2899  if (shouldRetain) {
2900    result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2901  } else {
2902    assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2903    result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2904  }
2905  return TryEmitResult(result, !shouldRetain);
2906}
2907
2908static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2909                                                  const Expr *e) {
2910  e = e->IgnoreParens();
2911  QualType type = e->getType();
2912
2913  // If we're loading retained from a __strong xvalue, we can avoid
2914  // an extra retain/release pair by zeroing out the source of this
2915  // "move" operation.
2916  if (e->isXValue() &&
2917      !type.isConstQualified() &&
2918      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2919    // Emit the lvalue.
2920    LValue lv = CGF.EmitLValue(e);
2921
2922    // Load the object pointer.
2923    llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2924                                               SourceLocation()).getScalarVal();
2925
2926    // Set the source pointer to NULL.
2927    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2928
2929    return TryEmitResult(result, true);
2930  }
2931
2932  // As a very special optimization, in ARC++, if the l-value is the
2933  // result of a non-volatile assignment, do a simple retain of the
2934  // result of the call to objc_storeWeak instead of reloading.
2935  if (CGF.getLangOpts().CPlusPlus &&
2936      !type.isVolatileQualified() &&
2937      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2938      isa<BinaryOperator>(e) &&
2939      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2940    return TryEmitResult(CGF.EmitScalarExpr(e), false);
2941
2942  // Try to emit code for scalar constant instead of emitting LValue and
2943  // loading it because we are not guaranteed to have an l-value. One of such
2944  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2945  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2946    auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2947    if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2948      return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2949                           !shouldRetainObjCLifetime(type.getObjCLifetime()));
2950  }
2951
2952  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2953}
2954
2955typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2956                                         llvm::Value *value)>
2957  ValueTransform;
2958
2959/// Insert code immediately after a call.
2960
2961// FIXME: We should find a way to emit the runtime call immediately
2962// after the call is emitted to eliminate the need for this function.
2963static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2964                                              llvm::Value *value,
2965                                              ValueTransform doAfterCall,
2966                                              ValueTransform doFallback) {
2967  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2968  auto *callBase = dyn_cast<llvm::CallBase>(value);
2969
2970  if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2971    // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2972    value = doFallback(CGF, value);
2973  } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2974    // Place the retain immediately following the call.
2975    CGF.Builder.SetInsertPoint(call->getParent(),
2976                               ++llvm::BasicBlock::iterator(call));
2977    value = doAfterCall(CGF, value);
2978  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2979    // Place the retain at the beginning of the normal destination block.
2980    llvm::BasicBlock *BB = invoke->getNormalDest();
2981    CGF.Builder.SetInsertPoint(BB, BB->begin());
2982    value = doAfterCall(CGF, value);
2983
2984  // Bitcasts can arise because of related-result returns.  Rewrite
2985  // the operand.
2986  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2987    // Change the insert point to avoid emitting the fall-back call after the
2988    // bitcast.
2989    CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2990    llvm::Value *operand = bitcast->getOperand(0);
2991    operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2992    bitcast->setOperand(0, operand);
2993    value = bitcast;
2994  } else {
2995    auto *phi = dyn_cast<llvm::PHINode>(value);
2996    if (phi && phi->getNumIncomingValues() == 2 &&
2997        isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2998        isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2999      // Handle phi instructions that are generated when it's necessary to check
3000      // whether the receiver of a message is null.
3001      llvm::Value *inVal = phi->getIncomingValue(0);
3002      inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3003      phi->setIncomingValue(0, inVal);
3004      value = phi;
3005    } else {
3006      // Generic fall-back case.
3007      // Retain using the non-block variant: we never need to do a copy
3008      // of a block that's been returned to us.
3009      value = doFallback(CGF, value);
3010    }
3011  }
3012
3013  CGF.Builder.restoreIP(ip);
3014  return value;
3015}
3016
3017/// Given that the given expression is some sort of call (which does
3018/// not return retained), emit a retain following it.
3019static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3020                                            const Expr *e) {
3021  llvm::Value *value = CGF.EmitScalarExpr(e);
3022  return emitARCOperationAfterCall(CGF, value,
3023           [](CodeGenFunction &CGF, llvm::Value *value) {
3024             return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3025           },
3026           [](CodeGenFunction &CGF, llvm::Value *value) {
3027             return CGF.EmitARCRetainNonBlock(value);
3028           });
3029}
3030
3031/// Given that the given expression is some sort of call (which does
3032/// not return retained), perform an unsafeClaim following it.
3033static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3034                                                 const Expr *e) {
3035  llvm::Value *value = CGF.EmitScalarExpr(e);
3036  return emitARCOperationAfterCall(CGF, value,
3037           [](CodeGenFunction &CGF, llvm::Value *value) {
3038             return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3039           },
3040           [](CodeGenFunction &CGF, llvm::Value *value) {
3041             return value;
3042           });
3043}
3044
3045llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3046                                                      bool allowUnsafeClaim) {
3047  if (allowUnsafeClaim &&
3048      CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3049    return emitARCUnsafeClaimCallResult(*this, E);
3050  } else {
3051    llvm::Value *value = emitARCRetainCallResult(*this, E);
3052    return EmitObjCConsumeObject(E->getType(), value);
3053  }
3054}
3055
3056/// Determine whether it might be important to emit a separate
3057/// objc_retain_block on the result of the given expression, or
3058/// whether it's okay to just emit it in a +1 context.
3059static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3060  assert(e->getType()->isBlockPointerType());
3061  e = e->IgnoreParens();
3062
3063  // For future goodness, emit block expressions directly in +1
3064  // contexts if we can.
3065  if (isa<BlockExpr>(e))
3066    return false;
3067
3068  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3069    switch (cast->getCastKind()) {
3070    // Emitting these operations in +1 contexts is goodness.
3071    case CK_LValueToRValue:
3072    case CK_ARCReclaimReturnedObject:
3073    case CK_ARCConsumeObject:
3074    case CK_ARCProduceObject:
3075      return false;
3076
3077    // These operations preserve a block type.
3078    case CK_NoOp:
3079    case CK_BitCast:
3080      return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3081
3082    // These operations are known to be bad (or haven't been considered).
3083    case CK_AnyPointerToBlockPointerCast:
3084    default:
3085      return true;
3086    }
3087  }
3088
3089  return true;
3090}
3091
3092namespace {
3093/// A CRTP base class for emitting expressions of retainable object
3094/// pointer type in ARC.
3095template <typename Impl, typename Result> class ARCExprEmitter {
3096protected:
3097  CodeGenFunction &CGF;
3098  Impl &asImpl() { return *static_cast<Impl*>(this); }
3099
3100  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3101
3102public:
3103  Result visit(const Expr *e);
3104  Result visitCastExpr(const CastExpr *e);
3105  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3106  Result visitBlockExpr(const BlockExpr *e);
3107  Result visitBinaryOperator(const BinaryOperator *e);
3108  Result visitBinAssign(const BinaryOperator *e);
3109  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3110  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3111  Result visitBinAssignWeak(const BinaryOperator *e);
3112  Result visitBinAssignStrong(const BinaryOperator *e);
3113
3114  // Minimal implementation:
3115  //   Result visitLValueToRValue(const Expr *e)
3116  //   Result visitConsumeObject(const Expr *e)
3117  //   Result visitExtendBlockObject(const Expr *e)
3118  //   Result visitReclaimReturnedObject(const Expr *e)
3119  //   Result visitCall(const Expr *e)
3120  //   Result visitExpr(const Expr *e)
3121  //
3122  //   Result emitBitCast(Result result, llvm::Type *resultType)
3123  //   llvm::Value *getValueOfResult(Result result)
3124};
3125}
3126
3127/// Try to emit a PseudoObjectExpr under special ARC rules.
3128///
3129/// This massively duplicates emitPseudoObjectRValue.
3130template <typename Impl, typename Result>
3131Result
3132ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3133  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3134
3135  // Find the result expression.
3136  const Expr *resultExpr = E->getResultExpr();
3137  assert(resultExpr);
3138  Result result;
3139
3140  for (PseudoObjectExpr::const_semantics_iterator
3141         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3142    const Expr *semantic = *i;
3143
3144    // If this semantic expression is an opaque value, bind it
3145    // to the result of its source expression.
3146    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3147      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3148      OVMA opaqueData;
3149
3150      // If this semantic is the result of the pseudo-object
3151      // expression, try to evaluate the source as +1.
3152      if (ov == resultExpr) {
3153        assert(!OVMA::shouldBindAsLValue(ov));
3154        result = asImpl().visit(ov->getSourceExpr());
3155        opaqueData = OVMA::bind(CGF, ov,
3156                            RValue::get(asImpl().getValueOfResult(result)));
3157
3158      // Otherwise, just bind it.
3159      } else {
3160        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3161      }
3162      opaques.push_back(opaqueData);
3163
3164    // Otherwise, if the expression is the result, evaluate it
3165    // and remember the result.
3166    } else if (semantic == resultExpr) {
3167      result = asImpl().visit(semantic);
3168
3169    // Otherwise, evaluate the expression in an ignored context.
3170    } else {
3171      CGF.EmitIgnoredExpr(semantic);
3172    }
3173  }
3174
3175  // Unbind all the opaques now.
3176  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3177    opaques[i].unbind(CGF);
3178
3179  return result;
3180}
3181
3182template <typename Impl, typename Result>
3183Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3184  // The default implementation just forwards the expression to visitExpr.
3185  return asImpl().visitExpr(e);
3186}
3187
3188template <typename Impl, typename Result>
3189Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3190  switch (e->getCastKind()) {
3191
3192  // No-op casts don't change the type, so we just ignore them.
3193  case CK_NoOp:
3194    return asImpl().visit(e->getSubExpr());
3195
3196  // These casts can change the type.
3197  case CK_CPointerToObjCPointerCast:
3198  case CK_BlockPointerToObjCPointerCast:
3199  case CK_AnyPointerToBlockPointerCast:
3200  case CK_BitCast: {
3201    llvm::Type *resultType = CGF.ConvertType(e->getType());
3202    assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3203    Result result = asImpl().visit(e->getSubExpr());
3204    return asImpl().emitBitCast(result, resultType);
3205  }
3206
3207  // Handle some casts specially.
3208  case CK_LValueToRValue:
3209    return asImpl().visitLValueToRValue(e->getSubExpr());
3210  case CK_ARCConsumeObject:
3211    return asImpl().visitConsumeObject(e->getSubExpr());
3212  case CK_ARCExtendBlockObject:
3213    return asImpl().visitExtendBlockObject(e->getSubExpr());
3214  case CK_ARCReclaimReturnedObject:
3215    return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3216
3217  // Otherwise, use the default logic.
3218  default:
3219    return asImpl().visitExpr(e);
3220  }
3221}
3222
3223template <typename Impl, typename Result>
3224Result
3225ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3226  switch (e->getOpcode()) {
3227  case BO_Comma:
3228    CGF.EmitIgnoredExpr(e->getLHS());
3229    CGF.EnsureInsertPoint();
3230    return asImpl().visit(e->getRHS());
3231
3232  case BO_Assign:
3233    return asImpl().visitBinAssign(e);
3234
3235  default:
3236    return asImpl().visitExpr(e);
3237  }
3238}
3239
3240template <typename Impl, typename Result>
3241Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3242  switch (e->getLHS()->getType().getObjCLifetime()) {
3243  case Qualifiers::OCL_ExplicitNone:
3244    return asImpl().visitBinAssignUnsafeUnretained(e);
3245
3246  case Qualifiers::OCL_Weak:
3247    return asImpl().visitBinAssignWeak(e);
3248
3249  case Qualifiers::OCL_Autoreleasing:
3250    return asImpl().visitBinAssignAutoreleasing(e);
3251
3252  case Qualifiers::OCL_Strong:
3253    return asImpl().visitBinAssignStrong(e);
3254
3255  case Qualifiers::OCL_None:
3256    return asImpl().visitExpr(e);
3257  }
3258  llvm_unreachable("bad ObjC ownership qualifier");
3259}
3260
3261/// The default rule for __unsafe_unretained emits the RHS recursively,
3262/// stores into the unsafe variable, and propagates the result outward.
3263template <typename Impl, typename Result>
3264Result ARCExprEmitter<Impl,Result>::
3265                    visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3266  // Recursively emit the RHS.
3267  // For __block safety, do this before emitting the LHS.
3268  Result result = asImpl().visit(e->getRHS());
3269
3270  // Perform the store.
3271  LValue lvalue =
3272    CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3273  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3274                             lvalue);
3275
3276  return result;
3277}
3278
3279template <typename Impl, typename Result>
3280Result
3281ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3282  return asImpl().visitExpr(e);
3283}
3284
3285template <typename Impl, typename Result>
3286Result
3287ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3288  return asImpl().visitExpr(e);
3289}
3290
3291template <typename Impl, typename Result>
3292Result
3293ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3294  return asImpl().visitExpr(e);
3295}
3296
3297/// The general expression-emission logic.
3298template <typename Impl, typename Result>
3299Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3300  // We should *never* see a nested full-expression here, because if
3301  // we fail to emit at +1, our caller must not retain after we close
3302  // out the full-expression.  This isn't as important in the unsafe
3303  // emitter.
3304  assert(!isa<ExprWithCleanups>(e));
3305
3306  // Look through parens, __extension__, generic selection, etc.
3307  e = e->IgnoreParens();
3308
3309  // Handle certain kinds of casts.
3310  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3311    return asImpl().visitCastExpr(ce);
3312
3313  // Handle the comma operator.
3314  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3315    return asImpl().visitBinaryOperator(op);
3316
3317  // TODO: handle conditional operators here
3318
3319  // For calls and message sends, use the retained-call logic.
3320  // Delegate inits are a special case in that they're the only
3321  // returns-retained expression that *isn't* surrounded by
3322  // a consume.
3323  } else if (isa<CallExpr>(e) ||
3324             (isa<ObjCMessageExpr>(e) &&
3325              !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3326    return asImpl().visitCall(e);
3327
3328  // Look through pseudo-object expressions.
3329  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3330    return asImpl().visitPseudoObjectExpr(pseudo);
3331  } else if (auto *be = dyn_cast<BlockExpr>(e))
3332    return asImpl().visitBlockExpr(be);
3333
3334  return asImpl().visitExpr(e);
3335}
3336
3337namespace {
3338
3339/// An emitter for +1 results.
3340struct ARCRetainExprEmitter :
3341  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3342
3343  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3344
3345  llvm::Value *getValueOfResult(TryEmitResult result) {
3346    return result.getPointer();
3347  }
3348
3349  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3350    llvm::Value *value = result.getPointer();
3351    value = CGF.Builder.CreateBitCast(value, resultType);
3352    result.setPointer(value);
3353    return result;
3354  }
3355
3356  TryEmitResult visitLValueToRValue(const Expr *e) {
3357    return tryEmitARCRetainLoadOfScalar(CGF, e);
3358  }
3359
3360  /// For consumptions, just emit the subexpression and thus elide
3361  /// the retain/release pair.
3362  TryEmitResult visitConsumeObject(const Expr *e) {
3363    llvm::Value *result = CGF.EmitScalarExpr(e);
3364    return TryEmitResult(result, true);
3365  }
3366
3367  TryEmitResult visitBlockExpr(const BlockExpr *e) {
3368    TryEmitResult result = visitExpr(e);
3369    // Avoid the block-retain if this is a block literal that doesn't need to be
3370    // copied to the heap.
3371    if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3372        e->getBlockDecl()->canAvoidCopyToHeap())
3373      result.setInt(true);
3374    return result;
3375  }
3376
3377  /// Block extends are net +0.  Naively, we could just recurse on
3378  /// the subexpression, but actually we need to ensure that the
3379  /// value is copied as a block, so there's a little filter here.
3380  TryEmitResult visitExtendBlockObject(const Expr *e) {
3381    llvm::Value *result; // will be a +0 value
3382
3383    // If we can't safely assume the sub-expression will produce a
3384    // block-copied value, emit the sub-expression at +0.
3385    if (shouldEmitSeparateBlockRetain(e)) {
3386      result = CGF.EmitScalarExpr(e);
3387
3388    // Otherwise, try to emit the sub-expression at +1 recursively.
3389    } else {
3390      TryEmitResult subresult = asImpl().visit(e);
3391
3392      // If that produced a retained value, just use that.
3393      if (subresult.getInt()) {
3394        return subresult;
3395      }
3396
3397      // Otherwise it's +0.
3398      result = subresult.getPointer();
3399    }
3400
3401    // Retain the object as a block.
3402    result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3403    return TryEmitResult(result, true);
3404  }
3405
3406  /// For reclaims, emit the subexpression as a retained call and
3407  /// skip the consumption.
3408  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3409    llvm::Value *result = emitARCRetainCallResult(CGF, e);
3410    return TryEmitResult(result, true);
3411  }
3412
3413  /// When we have an undecorated call, retroactively do a claim.
3414  TryEmitResult visitCall(const Expr *e) {
3415    llvm::Value *result = emitARCRetainCallResult(CGF, e);
3416    return TryEmitResult(result, true);
3417  }
3418
3419  // TODO: maybe special-case visitBinAssignWeak?
3420
3421  TryEmitResult visitExpr(const Expr *e) {
3422    // We didn't find an obvious production, so emit what we've got and
3423    // tell the caller that we didn't manage to retain.
3424    llvm::Value *result = CGF.EmitScalarExpr(e);
3425    return TryEmitResult(result, false);
3426  }
3427};
3428}
3429
3430static TryEmitResult
3431tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3432  return ARCRetainExprEmitter(CGF).visit(e);
3433}
3434
3435static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3436                                                LValue lvalue,
3437                                                QualType type) {
3438  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3439  llvm::Value *value = result.getPointer();
3440  if (!result.getInt())
3441    value = CGF.EmitARCRetain(type, value);
3442  return value;
3443}
3444
3445/// EmitARCRetainScalarExpr - Semantically equivalent to
3446/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3447/// best-effort attempt to peephole expressions that naturally produce
3448/// retained objects.
3449llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3450  // The retain needs to happen within the full-expression.
3451  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3452    RunCleanupsScope scope(*this);
3453    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3454  }
3455
3456  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3457  llvm::Value *value = result.getPointer();
3458  if (!result.getInt())
3459    value = EmitARCRetain(e->getType(), value);
3460  return value;
3461}
3462
3463llvm::Value *
3464CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3465  // The retain needs to happen within the full-expression.
3466  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3467    RunCleanupsScope scope(*this);
3468    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3469  }
3470
3471  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3472  llvm::Value *value = result.getPointer();
3473  if (result.getInt())
3474    value = EmitARCAutorelease(value);
3475  else
3476    value = EmitARCRetainAutorelease(e->getType(), value);
3477  return value;
3478}
3479
3480llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3481  llvm::Value *result;
3482  bool doRetain;
3483
3484  if (shouldEmitSeparateBlockRetain(e)) {
3485    result = EmitScalarExpr(e);
3486    doRetain = true;
3487  } else {
3488    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3489    result = subresult.getPointer();
3490    doRetain = !subresult.getInt();
3491  }
3492
3493  if (doRetain)
3494    result = EmitARCRetainBlock(result, /*mandatory*/ true);
3495  return EmitObjCConsumeObject(e->getType(), result);
3496}
3497
3498llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3499  // In ARC, retain and autorelease the expression.
3500  if (getLangOpts().ObjCAutoRefCount) {
3501    // Do so before running any cleanups for the full-expression.
3502    // EmitARCRetainAutoreleaseScalarExpr does this for us.
3503    return EmitARCRetainAutoreleaseScalarExpr(expr);
3504  }
3505
3506  // Otherwise, use the normal scalar-expression emission.  The
3507  // exception machinery doesn't do anything special with the
3508  // exception like retaining it, so there's no safety associated with
3509  // only running cleanups after the throw has started, and when it
3510  // matters it tends to be substantially inferior code.
3511  return EmitScalarExpr(expr);
3512}
3513
3514namespace {
3515
3516/// An emitter for assigning into an __unsafe_unretained context.
3517struct ARCUnsafeUnretainedExprEmitter :
3518  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3519
3520  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3521
3522  llvm::Value *getValueOfResult(llvm::Value *value) {
3523    return value;
3524  }
3525
3526  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3527    return CGF.Builder.CreateBitCast(value, resultType);
3528  }
3529
3530  llvm::Value *visitLValueToRValue(const Expr *e) {
3531    return CGF.EmitScalarExpr(e);
3532  }
3533
3534  /// For consumptions, just emit the subexpression and perform the
3535  /// consumption like normal.
3536  llvm::Value *visitConsumeObject(const Expr *e) {
3537    llvm::Value *value = CGF.EmitScalarExpr(e);
3538    return CGF.EmitObjCConsumeObject(e->getType(), value);
3539  }
3540
3541  /// No special logic for block extensions.  (This probably can't
3542  /// actually happen in this emitter, though.)
3543  llvm::Value *visitExtendBlockObject(const Expr *e) {
3544    return CGF.EmitARCExtendBlockObject(e);
3545  }
3546
3547  /// For reclaims, perform an unsafeClaim if that's enabled.
3548  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3549    return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3550  }
3551
3552  /// When we have an undecorated call, just emit it without adding
3553  /// the unsafeClaim.
3554  llvm::Value *visitCall(const Expr *e) {
3555    return CGF.EmitScalarExpr(e);
3556  }
3557
3558  /// Just do normal scalar emission in the default case.
3559  llvm::Value *visitExpr(const Expr *e) {
3560    return CGF.EmitScalarExpr(e);
3561  }
3562};
3563}
3564
3565static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3566                                                      const Expr *e) {
3567  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3568}
3569
3570/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3571/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3572/// avoiding any spurious retains, including by performing reclaims
3573/// with objc_unsafeClaimAutoreleasedReturnValue.
3574llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3575  // Look through full-expressions.
3576  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3577    RunCleanupsScope scope(*this);
3578    return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3579  }
3580
3581  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3582}
3583
3584std::pair<LValue,llvm::Value*>
3585CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3586                                              bool ignored) {
3587  // Evaluate the RHS first.  If we're ignoring the result, assume
3588  // that we can emit at an unsafe +0.
3589  llvm::Value *value;
3590  if (ignored) {
3591    value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3592  } else {
3593    value = EmitScalarExpr(e->getRHS());
3594  }
3595
3596  // Emit the LHS and perform the store.
3597  LValue lvalue = EmitLValue(e->getLHS());
3598  EmitStoreOfScalar(value, lvalue);
3599
3600  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3601}
3602
3603std::pair<LValue,llvm::Value*>
3604CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3605                                    bool ignored) {
3606  // Evaluate the RHS first.
3607  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3608  llvm::Value *value = result.getPointer();
3609
3610  bool hasImmediateRetain = result.getInt();
3611
3612  // If we didn't emit a retained object, and the l-value is of block
3613  // type, then we need to emit the block-retain immediately in case
3614  // it invalidates the l-value.
3615  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3616    value = EmitARCRetainBlock(value, /*mandatory*/ false);
3617    hasImmediateRetain = true;
3618  }
3619
3620  LValue lvalue = EmitLValue(e->getLHS());
3621
3622  // If the RHS was emitted retained, expand this.
3623  if (hasImmediateRetain) {
3624    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3625    EmitStoreOfScalar(value, lvalue);
3626    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3627  } else {
3628    value = EmitARCStoreStrong(lvalue, value, ignored);
3629  }
3630
3631  return std::pair<LValue,llvm::Value*>(lvalue, value);
3632}
3633
3634std::pair<LValue,llvm::Value*>
3635CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3636  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3637  LValue lvalue = EmitLValue(e->getLHS());
3638
3639  EmitStoreOfScalar(value, lvalue);
3640
3641  return std::pair<LValue,llvm::Value*>(lvalue, value);
3642}
3643
3644void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3645                                          const ObjCAutoreleasePoolStmt &ARPS) {
3646  const Stmt *subStmt = ARPS.getSubStmt();
3647  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3648
3649  CGDebugInfo *DI = getDebugInfo();
3650  if (DI)
3651    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3652
3653  // Keep track of the current cleanup stack depth.
3654  RunCleanupsScope Scope(*this);
3655  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3656    llvm::Value *token = EmitObjCAutoreleasePoolPush();
3657    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3658  } else {
3659    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3660    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3661  }
3662
3663  for (const auto *I : S.body())
3664    EmitStmt(I);
3665
3666  if (DI)
3667    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3668}
3669
3670/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3671/// make sure it survives garbage collection until this point.
3672void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3673  // We just use an inline assembly.
3674  llvm::FunctionType *extenderType
3675    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3676  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3677                                                   /* assembly */ "",
3678                                                   /* constraints */ "r",
3679                                                   /* side effects */ true);
3680
3681  EmitNounwindRuntimeCall(extender, object);
3682}
3683
3684/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3685/// non-trivial copy assignment function, produce following helper function.
3686/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3687///
3688llvm::Constant *
3689CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3690                                        const ObjCPropertyImplDecl *PID) {
3691  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3692  if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3693    return nullptr;
3694
3695  QualType Ty = PID->getPropertyIvarDecl()->getType();
3696  ASTContext &C = getContext();
3697
3698  if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3699    // Call the move assignment operator instead of calling the copy assignment
3700    // operator and destructor.
3701    CharUnits Alignment = C.getTypeAlignInChars(Ty);
3702    llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3703        CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3704    return Fn;
3705  }
3706
3707  if (!getLangOpts().CPlusPlus ||
3708      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3709    return nullptr;
3710  if (!Ty->isRecordType())
3711    return nullptr;
3712  llvm::Constant *HelperFn = nullptr;
3713  if (hasTrivialSetExpr(PID))
3714    return nullptr;
3715  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3716  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3717    return HelperFn;
3718
3719  IdentifierInfo *II
3720    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3721
3722  QualType ReturnTy = C.VoidTy;
3723  QualType DestTy = C.getPointerType(Ty);
3724  QualType SrcTy = Ty;
3725  SrcTy.addConst();
3726  SrcTy = C.getPointerType(SrcTy);
3727
3728  SmallVector<QualType, 2> ArgTys;
3729  ArgTys.push_back(DestTy);
3730  ArgTys.push_back(SrcTy);
3731  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3732
3733  FunctionDecl *FD = FunctionDecl::Create(
3734      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3735      FunctionTy, nullptr, SC_Static, false, false, false);
3736
3737  FunctionArgList args;
3738  ParmVarDecl *Params[2];
3739  ParmVarDecl *DstDecl = ParmVarDecl::Create(
3740      C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3741      C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3742      /*DefArg=*/nullptr);
3743  args.push_back(Params[0] = DstDecl);
3744  ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3745      C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3746      C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3747      /*DefArg=*/nullptr);
3748  args.push_back(Params[1] = SrcDecl);
3749  FD->setParams(Params);
3750
3751  const CGFunctionInfo &FI =
3752      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3753
3754  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3755
3756  llvm::Function *Fn =
3757    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3758                           "__assign_helper_atomic_property_",
3759                           &CGM.getModule());
3760
3761  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3762
3763  StartFunction(FD, ReturnTy, Fn, FI, args);
3764
3765  DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3766  UnaryOperator *DST = UnaryOperator::Create(
3767      C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3768      SourceLocation(), false, FPOptionsOverride());
3769
3770  DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3771  UnaryOperator *SRC = UnaryOperator::Create(
3772      C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3773      SourceLocation(), false, FPOptionsOverride());
3774
3775  Expr *Args[2] = {DST, SRC};
3776  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3777  CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3778      C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3779      VK_LValue, SourceLocation(), FPOptionsOverride());
3780
3781  EmitStmt(TheCall);
3782
3783  FinishFunction();
3784  HelperFn = Fn;
3785  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3786  return HelperFn;
3787}
3788
3789llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3790    const ObjCPropertyImplDecl *PID) {
3791  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3792  if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3793    return nullptr;
3794
3795  QualType Ty = PD->getType();
3796  ASTContext &C = getContext();
3797
3798  if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3799    CharUnits Alignment = C.getTypeAlignInChars(Ty);
3800    llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3801        CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3802    return Fn;
3803  }
3804
3805  if (!getLangOpts().CPlusPlus ||
3806      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3807    return nullptr;
3808  if (!Ty->isRecordType())
3809    return nullptr;
3810  llvm::Constant *HelperFn = nullptr;
3811  if (hasTrivialGetExpr(PID))
3812    return nullptr;
3813  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3814  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3815    return HelperFn;
3816
3817  IdentifierInfo *II =
3818      &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3819
3820  QualType ReturnTy = C.VoidTy;
3821  QualType DestTy = C.getPointerType(Ty);
3822  QualType SrcTy = Ty;
3823  SrcTy.addConst();
3824  SrcTy = C.getPointerType(SrcTy);
3825
3826  SmallVector<QualType, 2> ArgTys;
3827  ArgTys.push_back(DestTy);
3828  ArgTys.push_back(SrcTy);
3829  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3830
3831  FunctionDecl *FD = FunctionDecl::Create(
3832      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3833      FunctionTy, nullptr, SC_Static, false, false, false);
3834
3835  FunctionArgList args;
3836  ParmVarDecl *Params[2];
3837  ParmVarDecl *DstDecl = ParmVarDecl::Create(
3838      C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3839      C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3840      /*DefArg=*/nullptr);
3841  args.push_back(Params[0] = DstDecl);
3842  ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3843      C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3844      C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3845      /*DefArg=*/nullptr);
3846  args.push_back(Params[1] = SrcDecl);
3847  FD->setParams(Params);
3848
3849  const CGFunctionInfo &FI =
3850      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3851
3852  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3853
3854  llvm::Function *Fn = llvm::Function::Create(
3855      LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3856      &CGM.getModule());
3857
3858  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3859
3860  StartFunction(FD, ReturnTy, Fn, FI, args);
3861
3862  DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3863                      SourceLocation());
3864
3865  UnaryOperator *SRC = UnaryOperator::Create(
3866      C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3867      SourceLocation(), false, FPOptionsOverride());
3868
3869  CXXConstructExpr *CXXConstExpr =
3870    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3871
3872  SmallVector<Expr*, 4> ConstructorArgs;
3873  ConstructorArgs.push_back(SRC);
3874  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3875                         CXXConstExpr->arg_end());
3876
3877  CXXConstructExpr *TheCXXConstructExpr =
3878    CXXConstructExpr::Create(C, Ty, SourceLocation(),
3879                             CXXConstExpr->getConstructor(),
3880                             CXXConstExpr->isElidable(),
3881                             ConstructorArgs,
3882                             CXXConstExpr->hadMultipleCandidates(),
3883                             CXXConstExpr->isListInitialization(),
3884                             CXXConstExpr->isStdInitListInitialization(),
3885                             CXXConstExpr->requiresZeroInitialization(),
3886                             CXXConstExpr->getConstructionKind(),
3887                             SourceRange());
3888
3889  DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3890                      SourceLocation());
3891
3892  RValue DV = EmitAnyExpr(&DstExpr);
3893  CharUnits Alignment =
3894      getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3895  EmitAggExpr(TheCXXConstructExpr,
3896              AggValueSlot::forAddr(
3897                  Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3898                  Qualifiers(), AggValueSlot::IsDestructed,
3899                  AggValueSlot::DoesNotNeedGCBarriers,
3900                  AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3901
3902  FinishFunction();
3903  HelperFn = Fn;
3904  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3905  return HelperFn;
3906}
3907
3908llvm::Value *
3909CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3910  // Get selectors for retain/autorelease.
3911  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3912  Selector CopySelector =
3913      getContext().Selectors.getNullarySelector(CopyID);
3914  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3915  Selector AutoreleaseSelector =
3916      getContext().Selectors.getNullarySelector(AutoreleaseID);
3917
3918  // Emit calls to retain/autorelease.
3919  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3920  llvm::Value *Val = Block;
3921  RValue Result;
3922  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3923                                       Ty, CopySelector,
3924                                       Val, CallArgList(), nullptr, nullptr);
3925  Val = Result.getScalarVal();
3926  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3927                                       Ty, AutoreleaseSelector,
3928                                       Val, CallArgList(), nullptr, nullptr);
3929  Val = Result.getScalarVal();
3930  return Val;
3931}
3932
3933static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3934  switch (TT.getOS()) {
3935  case llvm::Triple::Darwin:
3936  case llvm::Triple::MacOSX:
3937    return llvm::MachO::PLATFORM_MACOS;
3938  case llvm::Triple::IOS:
3939    return llvm::MachO::PLATFORM_IOS;
3940  case llvm::Triple::TvOS:
3941    return llvm::MachO::PLATFORM_TVOS;
3942  case llvm::Triple::WatchOS:
3943    return llvm::MachO::PLATFORM_WATCHOS;
3944  case llvm::Triple::XROS:
3945    return llvm::MachO::PLATFORM_XROS;
3946  case llvm::Triple::DriverKit:
3947    return llvm::MachO::PLATFORM_DRIVERKIT;
3948  default:
3949    return llvm::MachO::PLATFORM_UNKNOWN;
3950  }
3951}
3952
3953static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3954                                                 const VersionTuple &Version) {
3955  CodeGenModule &CGM = CGF.CGM;
3956  // Note: we intend to support multi-platform version checks, so reserve
3957  // the room for a dual platform checking invocation that will be
3958  // implemented in the future.
3959  llvm::SmallVector<llvm::Value *, 8> Args;
3960
3961  auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3962    std::optional<unsigned> Min = Version.getMinor(),
3963                            SMin = Version.getSubminor();
3964    Args.push_back(
3965        llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3966    Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3967    Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3968    Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3969  };
3970
3971  assert(!Version.empty() && "unexpected empty version");
3972  EmitArgs(Version, CGM.getTarget().getTriple());
3973
3974  if (!CGM.IsPlatformVersionAtLeastFn) {
3975    llvm::FunctionType *FTy = llvm::FunctionType::get(
3976        CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3977        false);
3978    CGM.IsPlatformVersionAtLeastFn =
3979        CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3980  }
3981
3982  llvm::Value *Check =
3983      CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3984  return CGF.Builder.CreateICmpNE(Check,
3985                                  llvm::Constant::getNullValue(CGM.Int32Ty));
3986}
3987
3988llvm::Value *
3989CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3990  // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3991  if (CGM.getTarget().getTriple().isOSDarwin())
3992    return emitIsPlatformVersionAtLeast(*this, Version);
3993
3994  if (!CGM.IsOSVersionAtLeastFn) {
3995    llvm::FunctionType *FTy =
3996        llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3997    CGM.IsOSVersionAtLeastFn =
3998        CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3999  }
4000
4001  std::optional<unsigned> Min = Version.getMinor(),
4002                          SMin = Version.getSubminor();
4003  llvm::Value *Args[] = {
4004      llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4005      llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4006      llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4007
4008  llvm::Value *CallRes =
4009      EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4010
4011  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4012}
4013
4014static bool isFoundationNeededForDarwinAvailabilityCheck(
4015    const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4016  VersionTuple FoundationDroppedInVersion;
4017  switch (TT.getOS()) {
4018  case llvm::Triple::IOS:
4019  case llvm::Triple::TvOS:
4020    FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4021    break;
4022  case llvm::Triple::WatchOS:
4023    FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4024    break;
4025  case llvm::Triple::Darwin:
4026  case llvm::Triple::MacOSX:
4027    FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4028    break;
4029  case llvm::Triple::XROS:
4030    // XROS doesn't need Foundation.
4031    return false;
4032  case llvm::Triple::DriverKit:
4033    // DriverKit doesn't need Foundation.
4034    return false;
4035  default:
4036    llvm_unreachable("Unexpected OS");
4037  }
4038  return TargetVersion < FoundationDroppedInVersion;
4039}
4040
4041void CodeGenModule::emitAtAvailableLinkGuard() {
4042  if (!IsPlatformVersionAtLeastFn)
4043    return;
4044  // @available requires CoreFoundation only on Darwin.
4045  if (!Target.getTriple().isOSDarwin())
4046    return;
4047  // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4048  // watchOS 6+.
4049  if (!isFoundationNeededForDarwinAvailabilityCheck(
4050          Target.getTriple(), Target.getPlatformMinVersion()))
4051    return;
4052  // Add -framework CoreFoundation to the linker commands. We still want to
4053  // emit the core foundation reference down below because otherwise if
4054  // CoreFoundation is not used in the code, the linker won't link the
4055  // framework.
4056  auto &Context = getLLVMContext();
4057  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4058                             llvm::MDString::get(Context, "CoreFoundation")};
4059  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4060  // Emit a reference to a symbol from CoreFoundation to ensure that
4061  // CoreFoundation is linked into the final binary.
4062  llvm::FunctionType *FTy =
4063      llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4064  llvm::FunctionCallee CFFunc =
4065      CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4066
4067  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4068  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4069      CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4070      llvm::AttributeList(), /*Local=*/true);
4071  llvm::Function *CFLinkCheckFunc =
4072      cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4073  if (CFLinkCheckFunc->empty()) {
4074    CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4075    CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4076    CodeGenFunction CGF(*this);
4077    CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4078    CGF.EmitNounwindRuntimeCall(CFFunc,
4079                                llvm::Constant::getNullValue(VoidPtrTy));
4080    CGF.Builder.CreateUnreachable();
4081    addCompilerUsedGlobal(CFLinkCheckFunc);
4082  }
4083}
4084
4085CGObjCRuntime::~CGObjCRuntime() {}
4086