1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Constant Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGRecordLayout.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/Builtins.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/Sequence.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include <optional>
34using namespace clang;
35using namespace CodeGen;
36
37//===----------------------------------------------------------------------===//
38//                            ConstantAggregateBuilder
39//===----------------------------------------------------------------------===//
40
41namespace {
42class ConstExprEmitter;
43
44struct ConstantAggregateBuilderUtils {
45  CodeGenModule &CGM;
46
47  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
48
49  CharUnits getAlignment(const llvm::Constant *C) const {
50    return CharUnits::fromQuantity(
51        CGM.getDataLayout().getABITypeAlign(C->getType()));
52  }
53
54  CharUnits getSize(llvm::Type *Ty) const {
55    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
56  }
57
58  CharUnits getSize(const llvm::Constant *C) const {
59    return getSize(C->getType());
60  }
61
62  llvm::Constant *getPadding(CharUnits PadSize) const {
63    llvm::Type *Ty = CGM.CharTy;
64    if (PadSize > CharUnits::One())
65      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
66    return llvm::UndefValue::get(Ty);
67  }
68
69  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
70    llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
71    return llvm::ConstantAggregateZero::get(Ty);
72  }
73};
74
75/// Incremental builder for an llvm::Constant* holding a struct or array
76/// constant.
77class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
78  /// The elements of the constant. These two arrays must have the same size;
79  /// Offsets[i] describes the offset of Elems[i] within the constant. The
80  /// elements are kept in increasing offset order, and we ensure that there
81  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
82  ///
83  /// This may contain explicit padding elements (in order to create a
84  /// natural layout), but need not. Gaps between elements are implicitly
85  /// considered to be filled with undef.
86  llvm::SmallVector<llvm::Constant*, 32> Elems;
87  llvm::SmallVector<CharUnits, 32> Offsets;
88
89  /// The size of the constant (the maximum end offset of any added element).
90  /// May be larger than the end of Elems.back() if we split the last element
91  /// and removed some trailing undefs.
92  CharUnits Size = CharUnits::Zero();
93
94  /// This is true only if laying out Elems in order as the elements of a
95  /// non-packed LLVM struct will give the correct layout.
96  bool NaturalLayout = true;
97
98  bool split(size_t Index, CharUnits Hint);
99  std::optional<size_t> splitAt(CharUnits Pos);
100
101  static llvm::Constant *buildFrom(CodeGenModule &CGM,
102                                   ArrayRef<llvm::Constant *> Elems,
103                                   ArrayRef<CharUnits> Offsets,
104                                   CharUnits StartOffset, CharUnits Size,
105                                   bool NaturalLayout, llvm::Type *DesiredTy,
106                                   bool AllowOversized);
107
108public:
109  ConstantAggregateBuilder(CodeGenModule &CGM)
110      : ConstantAggregateBuilderUtils(CGM) {}
111
112  /// Update or overwrite the value starting at \p Offset with \c C.
113  ///
114  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
115  ///        a constant that has already been added. This flag is only used to
116  ///        detect bugs.
117  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
118
119  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
120  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
121
122  /// Attempt to condense the value starting at \p Offset to a constant of type
123  /// \p DesiredTy.
124  void condense(CharUnits Offset, llvm::Type *DesiredTy);
125
126  /// Produce a constant representing the entire accumulated value, ideally of
127  /// the specified type. If \p AllowOversized, the constant might be larger
128  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
129  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
130  /// even if we can't represent it as that type.
131  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
132    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
133                     NaturalLayout, DesiredTy, AllowOversized);
134  }
135};
136
137template<typename Container, typename Range = std::initializer_list<
138                                 typename Container::value_type>>
139static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
140  assert(BeginOff <= EndOff && "invalid replacement range");
141  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
142}
143
144bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
145                          bool AllowOverwrite) {
146  // Common case: appending to a layout.
147  if (Offset >= Size) {
148    CharUnits Align = getAlignment(C);
149    CharUnits AlignedSize = Size.alignTo(Align);
150    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
151      NaturalLayout = false;
152    else if (AlignedSize < Offset) {
153      Elems.push_back(getPadding(Offset - Size));
154      Offsets.push_back(Size);
155    }
156    Elems.push_back(C);
157    Offsets.push_back(Offset);
158    Size = Offset + getSize(C);
159    return true;
160  }
161
162  // Uncommon case: constant overlaps what we've already created.
163  std::optional<size_t> FirstElemToReplace = splitAt(Offset);
164  if (!FirstElemToReplace)
165    return false;
166
167  CharUnits CSize = getSize(C);
168  std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
169  if (!LastElemToReplace)
170    return false;
171
172  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
173         "unexpectedly overwriting field");
174
175  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
176  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
177  Size = std::max(Size, Offset + CSize);
178  NaturalLayout = false;
179  return true;
180}
181
182bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
183                              bool AllowOverwrite) {
184  const ASTContext &Context = CGM.getContext();
185  const uint64_t CharWidth = CGM.getContext().getCharWidth();
186
187  // Offset of where we want the first bit to go within the bits of the
188  // current char.
189  unsigned OffsetWithinChar = OffsetInBits % CharWidth;
190
191  // We split bit-fields up into individual bytes. Walk over the bytes and
192  // update them.
193  for (CharUnits OffsetInChars =
194           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
195       /**/; ++OffsetInChars) {
196    // Number of bits we want to fill in this char.
197    unsigned WantedBits =
198        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
199
200    // Get a char containing the bits we want in the right places. The other
201    // bits have unspecified values.
202    llvm::APInt BitsThisChar = Bits;
203    if (BitsThisChar.getBitWidth() < CharWidth)
204      BitsThisChar = BitsThisChar.zext(CharWidth);
205    if (CGM.getDataLayout().isBigEndian()) {
206      // Figure out how much to shift by. We may need to left-shift if we have
207      // less than one byte of Bits left.
208      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
209      if (Shift > 0)
210        BitsThisChar.lshrInPlace(Shift);
211      else if (Shift < 0)
212        BitsThisChar = BitsThisChar.shl(-Shift);
213    } else {
214      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
215    }
216    if (BitsThisChar.getBitWidth() > CharWidth)
217      BitsThisChar = BitsThisChar.trunc(CharWidth);
218
219    if (WantedBits == CharWidth) {
220      // Got a full byte: just add it directly.
221      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
222          OffsetInChars, AllowOverwrite);
223    } else {
224      // Partial byte: update the existing integer if there is one. If we
225      // can't split out a 1-CharUnit range to update, then we can't add
226      // these bits and fail the entire constant emission.
227      std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
228      if (!FirstElemToUpdate)
229        return false;
230      std::optional<size_t> LastElemToUpdate =
231          splitAt(OffsetInChars + CharUnits::One());
232      if (!LastElemToUpdate)
233        return false;
234      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
235             "should have at most one element covering one byte");
236
237      // Figure out which bits we want and discard the rest.
238      llvm::APInt UpdateMask(CharWidth, 0);
239      if (CGM.getDataLayout().isBigEndian())
240        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
241                           CharWidth - OffsetWithinChar);
242      else
243        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
244      BitsThisChar &= UpdateMask;
245
246      if (*FirstElemToUpdate == *LastElemToUpdate ||
247          Elems[*FirstElemToUpdate]->isNullValue() ||
248          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
249        // All existing bits are either zero or undef.
250        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
251            OffsetInChars, /*AllowOverwrite*/ true);
252      } else {
253        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
254        // In order to perform a partial update, we need the existing bitwise
255        // value, which we can only extract for a constant int.
256        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
257        if (!CI)
258          return false;
259        // Because this is a 1-CharUnit range, the constant occupying it must
260        // be exactly one CharUnit wide.
261        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
262        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
263               "unexpectedly overwriting bitfield");
264        BitsThisChar |= (CI->getValue() & ~UpdateMask);
265        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
266      }
267    }
268
269    // Stop if we've added all the bits.
270    if (WantedBits == Bits.getBitWidth())
271      break;
272
273    // Remove the consumed bits from Bits.
274    if (!CGM.getDataLayout().isBigEndian())
275      Bits.lshrInPlace(WantedBits);
276    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
277
278    // The remanining bits go at the start of the following bytes.
279    OffsetWithinChar = 0;
280  }
281
282  return true;
283}
284
285/// Returns a position within Elems and Offsets such that all elements
286/// before the returned index end before Pos and all elements at or after
287/// the returned index begin at or after Pos. Splits elements as necessary
288/// to ensure this. Returns std::nullopt if we find something we can't split.
289std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
290  if (Pos >= Size)
291    return Offsets.size();
292
293  while (true) {
294    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
295    if (FirstAfterPos == Offsets.begin())
296      return 0;
297
298    // If we already have an element starting at Pos, we're done.
299    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
300    if (Offsets[LastAtOrBeforePosIndex] == Pos)
301      return LastAtOrBeforePosIndex;
302
303    // We found an element starting before Pos. Check for overlap.
304    if (Offsets[LastAtOrBeforePosIndex] +
305        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
306      return LastAtOrBeforePosIndex + 1;
307
308    // Try to decompose it into smaller constants.
309    if (!split(LastAtOrBeforePosIndex, Pos))
310      return std::nullopt;
311  }
312}
313
314/// Split the constant at index Index, if possible. Return true if we did.
315/// Hint indicates the location at which we'd like to split, but may be
316/// ignored.
317bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
318  NaturalLayout = false;
319  llvm::Constant *C = Elems[Index];
320  CharUnits Offset = Offsets[Index];
321
322  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
323    // Expand the sequence into its contained elements.
324    // FIXME: This assumes vector elements are byte-sized.
325    replace(Elems, Index, Index + 1,
326            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
327                            [&](unsigned Op) { return CA->getOperand(Op); }));
328    if (isa<llvm::ArrayType>(CA->getType()) ||
329        isa<llvm::VectorType>(CA->getType())) {
330      // Array or vector.
331      llvm::Type *ElemTy =
332          llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
333      CharUnits ElemSize = getSize(ElemTy);
334      replace(
335          Offsets, Index, Index + 1,
336          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
337                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
338    } else {
339      // Must be a struct.
340      auto *ST = cast<llvm::StructType>(CA->getType());
341      const llvm::StructLayout *Layout =
342          CGM.getDataLayout().getStructLayout(ST);
343      replace(Offsets, Index, Index + 1,
344              llvm::map_range(
345                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
346                    return Offset + CharUnits::fromQuantity(
347                                        Layout->getElementOffset(Op));
348                  }));
349    }
350    return true;
351  }
352
353  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
354    // Expand the sequence into its contained elements.
355    // FIXME: This assumes vector elements are byte-sized.
356    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
357    CharUnits ElemSize = getSize(CDS->getElementType());
358    replace(Elems, Index, Index + 1,
359            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
360                            [&](unsigned Elem) {
361                              return CDS->getElementAsConstant(Elem);
362                            }));
363    replace(Offsets, Index, Index + 1,
364            llvm::map_range(
365                llvm::seq(0u, CDS->getNumElements()),
366                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
367    return true;
368  }
369
370  if (isa<llvm::ConstantAggregateZero>(C)) {
371    // Split into two zeros at the hinted offset.
372    CharUnits ElemSize = getSize(C);
373    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
374    replace(Elems, Index, Index + 1,
375            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
376    replace(Offsets, Index, Index + 1, {Offset, Hint});
377    return true;
378  }
379
380  if (isa<llvm::UndefValue>(C)) {
381    // Drop undef; it doesn't contribute to the final layout.
382    replace(Elems, Index, Index + 1, {});
383    replace(Offsets, Index, Index + 1, {});
384    return true;
385  }
386
387  // FIXME: We could split a ConstantInt if the need ever arose.
388  // We don't need to do this to handle bit-fields because we always eagerly
389  // split them into 1-byte chunks.
390
391  return false;
392}
393
394static llvm::Constant *
395EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
396                  llvm::Type *CommonElementType, unsigned ArrayBound,
397                  SmallVectorImpl<llvm::Constant *> &Elements,
398                  llvm::Constant *Filler);
399
400llvm::Constant *ConstantAggregateBuilder::buildFrom(
401    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
402    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
403    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
404  ConstantAggregateBuilderUtils Utils(CGM);
405
406  if (Elems.empty())
407    return llvm::UndefValue::get(DesiredTy);
408
409  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
410
411  // If we want an array type, see if all the elements are the same type and
412  // appropriately spaced.
413  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
414    assert(!AllowOversized && "oversized array emission not supported");
415
416    bool CanEmitArray = true;
417    llvm::Type *CommonType = Elems[0]->getType();
418    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
419    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
420    SmallVector<llvm::Constant*, 32> ArrayElements;
421    for (size_t I = 0; I != Elems.size(); ++I) {
422      // Skip zeroes; we'll use a zero value as our array filler.
423      if (Elems[I]->isNullValue())
424        continue;
425
426      // All remaining elements must be the same type.
427      if (Elems[I]->getType() != CommonType ||
428          Offset(I) % ElemSize != 0) {
429        CanEmitArray = false;
430        break;
431      }
432      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
433      ArrayElements.back() = Elems[I];
434    }
435
436    if (CanEmitArray) {
437      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
438                               ArrayElements, Filler);
439    }
440
441    // Can't emit as an array, carry on to emit as a struct.
442  }
443
444  // The size of the constant we plan to generate.  This is usually just
445  // the size of the initialized type, but in AllowOversized mode (i.e.
446  // flexible array init), it can be larger.
447  CharUnits DesiredSize = Utils.getSize(DesiredTy);
448  if (Size > DesiredSize) {
449    assert(AllowOversized && "Elems are oversized");
450    DesiredSize = Size;
451  }
452
453  // The natural alignment of an unpacked LLVM struct with the given elements.
454  CharUnits Align = CharUnits::One();
455  for (llvm::Constant *C : Elems)
456    Align = std::max(Align, Utils.getAlignment(C));
457
458  // The natural size of an unpacked LLVM struct with the given elements.
459  CharUnits AlignedSize = Size.alignTo(Align);
460
461  bool Packed = false;
462  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
463  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
464  if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
465    // The natural layout would be too big; force use of a packed layout.
466    NaturalLayout = false;
467    Packed = true;
468  } else if (DesiredSize > AlignedSize) {
469    // The natural layout would be too small. Add padding to fix it. (This
470    // is ignored if we choose a packed layout.)
471    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
472    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
473    UnpackedElems = UnpackedElemStorage;
474  }
475
476  // If we don't have a natural layout, insert padding as necessary.
477  // As we go, double-check to see if we can actually just emit Elems
478  // as a non-packed struct and do so opportunistically if possible.
479  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
480  if (!NaturalLayout) {
481    CharUnits SizeSoFar = CharUnits::Zero();
482    for (size_t I = 0; I != Elems.size(); ++I) {
483      CharUnits Align = Utils.getAlignment(Elems[I]);
484      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
485      CharUnits DesiredOffset = Offset(I);
486      assert(DesiredOffset >= SizeSoFar && "elements out of order");
487
488      if (DesiredOffset != NaturalOffset)
489        Packed = true;
490      if (DesiredOffset != SizeSoFar)
491        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
492      PackedElems.push_back(Elems[I]);
493      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
494    }
495    // If we're using the packed layout, pad it out to the desired size if
496    // necessary.
497    if (Packed) {
498      assert(SizeSoFar <= DesiredSize &&
499             "requested size is too small for contents");
500      if (SizeSoFar < DesiredSize)
501        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
502    }
503  }
504
505  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
506      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
507
508  // Pick the type to use.  If the type is layout identical to the desired
509  // type then use it, otherwise use whatever the builder produced for us.
510  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
511    if (DesiredSTy->isLayoutIdentical(STy))
512      STy = DesiredSTy;
513  }
514
515  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
516}
517
518void ConstantAggregateBuilder::condense(CharUnits Offset,
519                                        llvm::Type *DesiredTy) {
520  CharUnits Size = getSize(DesiredTy);
521
522  std::optional<size_t> FirstElemToReplace = splitAt(Offset);
523  if (!FirstElemToReplace)
524    return;
525  size_t First = *FirstElemToReplace;
526
527  std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
528  if (!LastElemToReplace)
529    return;
530  size_t Last = *LastElemToReplace;
531
532  size_t Length = Last - First;
533  if (Length == 0)
534    return;
535
536  if (Length == 1 && Offsets[First] == Offset &&
537      getSize(Elems[First]) == Size) {
538    // Re-wrap single element structs if necessary. Otherwise, leave any single
539    // element constant of the right size alone even if it has the wrong type.
540    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
541    if (STy && STy->getNumElements() == 1 &&
542        STy->getElementType(0) == Elems[First]->getType())
543      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
544    return;
545  }
546
547  llvm::Constant *Replacement = buildFrom(
548      CGM, ArrayRef(Elems).slice(First, Length),
549      ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
550      /*known to have natural layout=*/false, DesiredTy, false);
551  replace(Elems, First, Last, {Replacement});
552  replace(Offsets, First, Last, {Offset});
553}
554
555//===----------------------------------------------------------------------===//
556//                            ConstStructBuilder
557//===----------------------------------------------------------------------===//
558
559class ConstStructBuilder {
560  CodeGenModule &CGM;
561  ConstantEmitter &Emitter;
562  ConstantAggregateBuilder &Builder;
563  CharUnits StartOffset;
564
565public:
566  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567                                     InitListExpr *ILE, QualType StructTy);
568  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
569                                     const APValue &Value, QualType ValTy);
570  static bool UpdateStruct(ConstantEmitter &Emitter,
571                           ConstantAggregateBuilder &Const, CharUnits Offset,
572                           InitListExpr *Updater);
573
574private:
575  ConstStructBuilder(ConstantEmitter &Emitter,
576                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
577      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
578        StartOffset(StartOffset) {}
579
580  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
581                   llvm::Constant *InitExpr, bool AllowOverwrite = false);
582
583  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
584                   bool AllowOverwrite = false);
585
586  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
587                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
588
589  bool Build(InitListExpr *ILE, bool AllowOverwrite);
590  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
591             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
592  llvm::Constant *Finalize(QualType Ty);
593};
594
595bool ConstStructBuilder::AppendField(
596    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
597    bool AllowOverwrite) {
598  const ASTContext &Context = CGM.getContext();
599
600  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
601
602  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
603}
604
605bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
606                                     llvm::Constant *InitCst,
607                                     bool AllowOverwrite) {
608  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
609}
610
611bool ConstStructBuilder::AppendBitField(
612    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
613    bool AllowOverwrite) {
614  const CGRecordLayout &RL =
615      CGM.getTypes().getCGRecordLayout(Field->getParent());
616  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
617  llvm::APInt FieldValue = CI->getValue();
618
619  // Promote the size of FieldValue if necessary
620  // FIXME: This should never occur, but currently it can because initializer
621  // constants are cast to bool, and because clang is not enforcing bitfield
622  // width limits.
623  if (Info.Size > FieldValue.getBitWidth())
624    FieldValue = FieldValue.zext(Info.Size);
625
626  // Truncate the size of FieldValue to the bit field size.
627  if (Info.Size < FieldValue.getBitWidth())
628    FieldValue = FieldValue.trunc(Info.Size);
629
630  return Builder.addBits(FieldValue,
631                         CGM.getContext().toBits(StartOffset) + FieldOffset,
632                         AllowOverwrite);
633}
634
635static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
636                                      ConstantAggregateBuilder &Const,
637                                      CharUnits Offset, QualType Type,
638                                      InitListExpr *Updater) {
639  if (Type->isRecordType())
640    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
641
642  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
643  if (!CAT)
644    return false;
645  QualType ElemType = CAT->getElementType();
646  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
647  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
648
649  llvm::Constant *FillC = nullptr;
650  if (Expr *Filler = Updater->getArrayFiller()) {
651    if (!isa<NoInitExpr>(Filler)) {
652      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
653      if (!FillC)
654        return false;
655    }
656  }
657
658  unsigned NumElementsToUpdate =
659      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
660  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
661    Expr *Init = nullptr;
662    if (I < Updater->getNumInits())
663      Init = Updater->getInit(I);
664
665    if (!Init && FillC) {
666      if (!Const.add(FillC, Offset, true))
667        return false;
668    } else if (!Init || isa<NoInitExpr>(Init)) {
669      continue;
670    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
671      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
672                                     ChildILE))
673        return false;
674      // Attempt to reduce the array element to a single constant if necessary.
675      Const.condense(Offset, ElemTy);
676    } else {
677      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
678      if (!Const.add(Val, Offset, true))
679        return false;
680    }
681  }
682
683  return true;
684}
685
686bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
687  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
688  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
689
690  unsigned FieldNo = -1;
691  unsigned ElementNo = 0;
692
693  // Bail out if we have base classes. We could support these, but they only
694  // arise in C++1z where we will have already constant folded most interesting
695  // cases. FIXME: There are still a few more cases we can handle this way.
696  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
697    if (CXXRD->getNumBases())
698      return false;
699
700  for (FieldDecl *Field : RD->fields()) {
701    ++FieldNo;
702
703    // If this is a union, skip all the fields that aren't being initialized.
704    if (RD->isUnion() &&
705        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
706      continue;
707
708    // Don't emit anonymous bitfields.
709    if (Field->isUnnamedBitfield())
710      continue;
711
712    // Get the initializer.  A struct can include fields without initializers,
713    // we just use explicit null values for them.
714    Expr *Init = nullptr;
715    if (ElementNo < ILE->getNumInits())
716      Init = ILE->getInit(ElementNo++);
717    if (Init && isa<NoInitExpr>(Init))
718      continue;
719
720    // Zero-sized fields are not emitted, but their initializers may still
721    // prevent emission of this struct as a constant.
722    if (Field->isZeroSize(CGM.getContext())) {
723      if (Init->HasSideEffects(CGM.getContext()))
724        return false;
725      continue;
726    }
727
728    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
729    // represents additional overwriting of our current constant value, and not
730    // a new constant to emit independently.
731    if (AllowOverwrite &&
732        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
733      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
734        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
735            Layout.getFieldOffset(FieldNo));
736        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
737                                       Field->getType(), SubILE))
738          return false;
739        // If we split apart the field's value, try to collapse it down to a
740        // single value now.
741        Builder.condense(StartOffset + Offset,
742                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
743        continue;
744      }
745    }
746
747    llvm::Constant *EltInit =
748        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
749             : Emitter.emitNullForMemory(Field->getType());
750    if (!EltInit)
751      return false;
752
753    if (!Field->isBitField()) {
754      // Handle non-bitfield members.
755      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
756                       AllowOverwrite))
757        return false;
758      // After emitting a non-empty field with [[no_unique_address]], we may
759      // need to overwrite its tail padding.
760      if (Field->hasAttr<NoUniqueAddressAttr>())
761        AllowOverwrite = true;
762    } else {
763      // Otherwise we have a bitfield.
764      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
765        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
766                            AllowOverwrite))
767          return false;
768      } else {
769        // We are trying to initialize a bitfield with a non-trivial constant,
770        // this must require run-time code.
771        return false;
772      }
773    }
774  }
775
776  return true;
777}
778
779namespace {
780struct BaseInfo {
781  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
782    : Decl(Decl), Offset(Offset), Index(Index) {
783  }
784
785  const CXXRecordDecl *Decl;
786  CharUnits Offset;
787  unsigned Index;
788
789  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
790};
791}
792
793bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
794                               bool IsPrimaryBase,
795                               const CXXRecordDecl *VTableClass,
796                               CharUnits Offset) {
797  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
798
799  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
800    // Add a vtable pointer, if we need one and it hasn't already been added.
801    if (Layout.hasOwnVFPtr()) {
802      llvm::Constant *VTableAddressPoint =
803          CGM.getCXXABI().getVTableAddressPointForConstExpr(
804              BaseSubobject(CD, Offset), VTableClass);
805      if (!AppendBytes(Offset, VTableAddressPoint))
806        return false;
807    }
808
809    // Accumulate and sort bases, in order to visit them in address order, which
810    // may not be the same as declaration order.
811    SmallVector<BaseInfo, 8> Bases;
812    Bases.reserve(CD->getNumBases());
813    unsigned BaseNo = 0;
814    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
815         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
816      assert(!Base->isVirtual() && "should not have virtual bases here");
817      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
818      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
819      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
820    }
821    llvm::stable_sort(Bases);
822
823    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
824      BaseInfo &Base = Bases[I];
825
826      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
827      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
828            VTableClass, Offset + Base.Offset);
829    }
830  }
831
832  unsigned FieldNo = 0;
833  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
834
835  bool AllowOverwrite = false;
836  for (RecordDecl::field_iterator Field = RD->field_begin(),
837       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
838    // If this is a union, skip all the fields that aren't being initialized.
839    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
840      continue;
841
842    // Don't emit anonymous bitfields or zero-sized fields.
843    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
844      continue;
845
846    // Emit the value of the initializer.
847    const APValue &FieldValue =
848      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
849    llvm::Constant *EltInit =
850      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
851    if (!EltInit)
852      return false;
853
854    if (!Field->isBitField()) {
855      // Handle non-bitfield members.
856      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
857                       EltInit, AllowOverwrite))
858        return false;
859      // After emitting a non-empty field with [[no_unique_address]], we may
860      // need to overwrite its tail padding.
861      if (Field->hasAttr<NoUniqueAddressAttr>())
862        AllowOverwrite = true;
863    } else {
864      // Otherwise we have a bitfield.
865      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
866                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
867        return false;
868    }
869  }
870
871  return true;
872}
873
874llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
875  Type = Type.getNonReferenceType();
876  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
877  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
878  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
879}
880
881llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
882                                                InitListExpr *ILE,
883                                                QualType ValTy) {
884  ConstantAggregateBuilder Const(Emitter.CGM);
885  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
886
887  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
888    return nullptr;
889
890  return Builder.Finalize(ValTy);
891}
892
893llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
894                                                const APValue &Val,
895                                                QualType ValTy) {
896  ConstantAggregateBuilder Const(Emitter.CGM);
897  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
898
899  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
900  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
901  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
902    return nullptr;
903
904  return Builder.Finalize(ValTy);
905}
906
907bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
908                                      ConstantAggregateBuilder &Const,
909                                      CharUnits Offset, InitListExpr *Updater) {
910  return ConstStructBuilder(Emitter, Const, Offset)
911      .Build(Updater, /*AllowOverwrite*/ true);
912}
913
914//===----------------------------------------------------------------------===//
915//                             ConstExprEmitter
916//===----------------------------------------------------------------------===//
917
918static ConstantAddress
919tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
920                             const CompoundLiteralExpr *E) {
921  CodeGenModule &CGM = emitter.CGM;
922  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
923  if (llvm::GlobalVariable *Addr =
924          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
925    return ConstantAddress(Addr, Addr->getValueType(), Align);
926
927  LangAS addressSpace = E->getType().getAddressSpace();
928  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
929                                                    addressSpace, E->getType());
930  if (!C) {
931    assert(!E->isFileScope() &&
932           "file-scope compound literal did not have constant initializer!");
933    return ConstantAddress::invalid();
934  }
935
936  auto GV = new llvm::GlobalVariable(
937      CGM.getModule(), C->getType(),
938      E->getType().isConstantStorage(CGM.getContext(), true, false),
939      llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
940      llvm::GlobalVariable::NotThreadLocal,
941      CGM.getContext().getTargetAddressSpace(addressSpace));
942  emitter.finalize(GV);
943  GV->setAlignment(Align.getAsAlign());
944  CGM.setAddrOfConstantCompoundLiteral(E, GV);
945  return ConstantAddress(GV, GV->getValueType(), Align);
946}
947
948static llvm::Constant *
949EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
950                  llvm::Type *CommonElementType, unsigned ArrayBound,
951                  SmallVectorImpl<llvm::Constant *> &Elements,
952                  llvm::Constant *Filler) {
953  // Figure out how long the initial prefix of non-zero elements is.
954  unsigned NonzeroLength = ArrayBound;
955  if (Elements.size() < NonzeroLength && Filler->isNullValue())
956    NonzeroLength = Elements.size();
957  if (NonzeroLength == Elements.size()) {
958    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
959      --NonzeroLength;
960  }
961
962  if (NonzeroLength == 0)
963    return llvm::ConstantAggregateZero::get(DesiredType);
964
965  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
966  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
967  if (TrailingZeroes >= 8) {
968    assert(Elements.size() >= NonzeroLength &&
969           "missing initializer for non-zero element");
970
971    // If all the elements had the same type up to the trailing zeroes, emit a
972    // struct of two arrays (the nonzero data and the zeroinitializer).
973    if (CommonElementType && NonzeroLength >= 8) {
974      llvm::Constant *Initial = llvm::ConstantArray::get(
975          llvm::ArrayType::get(CommonElementType, NonzeroLength),
976          ArrayRef(Elements).take_front(NonzeroLength));
977      Elements.resize(2);
978      Elements[0] = Initial;
979    } else {
980      Elements.resize(NonzeroLength + 1);
981    }
982
983    auto *FillerType =
984        CommonElementType ? CommonElementType : DesiredType->getElementType();
985    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
986    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
987    CommonElementType = nullptr;
988  } else if (Elements.size() != ArrayBound) {
989    // Otherwise pad to the right size with the filler if necessary.
990    Elements.resize(ArrayBound, Filler);
991    if (Filler->getType() != CommonElementType)
992      CommonElementType = nullptr;
993  }
994
995  // If all elements have the same type, just emit an array constant.
996  if (CommonElementType)
997    return llvm::ConstantArray::get(
998        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
999
1000  // We have mixed types. Use a packed struct.
1001  llvm::SmallVector<llvm::Type *, 16> Types;
1002  Types.reserve(Elements.size());
1003  for (llvm::Constant *Elt : Elements)
1004    Types.push_back(Elt->getType());
1005  llvm::StructType *SType =
1006      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1007  return llvm::ConstantStruct::get(SType, Elements);
1008}
1009
1010// This class only needs to handle arrays, structs and unions. Outside C++11
1011// mode, we don't currently constant fold those types.  All other types are
1012// handled by constant folding.
1013//
1014// Constant folding is currently missing support for a few features supported
1015// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1016class ConstExprEmitter :
1017  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
1018  CodeGenModule &CGM;
1019  ConstantEmitter &Emitter;
1020  llvm::LLVMContext &VMContext;
1021public:
1022  ConstExprEmitter(ConstantEmitter &emitter)
1023    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1024  }
1025
1026  //===--------------------------------------------------------------------===//
1027  //                            Visitor Methods
1028  //===--------------------------------------------------------------------===//
1029
1030  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1031    return nullptr;
1032  }
1033
1034  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1035    if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1036      return Result;
1037    return Visit(CE->getSubExpr(), T);
1038  }
1039
1040  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1041    return Visit(PE->getSubExpr(), T);
1042  }
1043
1044  llvm::Constant *
1045  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1046                                    QualType T) {
1047    return Visit(PE->getReplacement(), T);
1048  }
1049
1050  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1051                                            QualType T) {
1052    return Visit(GE->getResultExpr(), T);
1053  }
1054
1055  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1056    return Visit(CE->getChosenSubExpr(), T);
1057  }
1058
1059  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1060    return Visit(E->getInitializer(), T);
1061  }
1062
1063  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1064    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1065      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1066    Expr *subExpr = E->getSubExpr();
1067
1068    switch (E->getCastKind()) {
1069    case CK_ToUnion: {
1070      // GCC cast to union extension
1071      assert(E->getType()->isUnionType() &&
1072             "Destination type is not union type!");
1073
1074      auto field = E->getTargetUnionField();
1075
1076      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1077      if (!C) return nullptr;
1078
1079      auto destTy = ConvertType(destType);
1080      if (C->getType() == destTy) return C;
1081
1082      // Build a struct with the union sub-element as the first member,
1083      // and padded to the appropriate size.
1084      SmallVector<llvm::Constant*, 2> Elts;
1085      SmallVector<llvm::Type*, 2> Types;
1086      Elts.push_back(C);
1087      Types.push_back(C->getType());
1088      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1089      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1090
1091      assert(CurSize <= TotalSize && "Union size mismatch!");
1092      if (unsigned NumPadBytes = TotalSize - CurSize) {
1093        llvm::Type *Ty = CGM.CharTy;
1094        if (NumPadBytes > 1)
1095          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1096
1097        Elts.push_back(llvm::UndefValue::get(Ty));
1098        Types.push_back(Ty);
1099      }
1100
1101      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1102      return llvm::ConstantStruct::get(STy, Elts);
1103    }
1104
1105    case CK_AddressSpaceConversion: {
1106      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1107      if (!C) return nullptr;
1108      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1109      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1110      llvm::Type *destTy = ConvertType(E->getType());
1111      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1112                                                             destAS, destTy);
1113    }
1114
1115    case CK_LValueToRValue: {
1116      // We don't really support doing lvalue-to-rvalue conversions here; any
1117      // interesting conversions should be done in Evaluate().  But as a
1118      // special case, allow compound literals to support the gcc extension
1119      // allowing "struct x {int x;} x = (struct x) {};".
1120      if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1121        return Visit(E->getInitializer(), destType);
1122      return nullptr;
1123    }
1124
1125    case CK_AtomicToNonAtomic:
1126    case CK_NonAtomicToAtomic:
1127    case CK_NoOp:
1128    case CK_ConstructorConversion:
1129      return Visit(subExpr, destType);
1130
1131    case CK_ArrayToPointerDecay:
1132      if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1133        return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1134      return nullptr;
1135    case CK_NullToPointer:
1136      if (Visit(subExpr, destType))
1137        return CGM.EmitNullConstant(destType);
1138      return nullptr;
1139
1140    case CK_IntToOCLSampler:
1141      llvm_unreachable("global sampler variables are not generated");
1142
1143    case CK_IntegralCast: {
1144      QualType FromType = subExpr->getType();
1145      // See also HandleIntToIntCast in ExprConstant.cpp
1146      if (FromType->isIntegerType())
1147        if (llvm::Constant *C = Visit(subExpr, FromType))
1148          if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1149            unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1150            unsigned DstWidth = CGM.getContext().getIntWidth(destType);
1151            if (DstWidth == SrcWidth)
1152              return CI;
1153            llvm::APInt A = FromType->isSignedIntegerType()
1154                                ? CI->getValue().sextOrTrunc(DstWidth)
1155                                : CI->getValue().zextOrTrunc(DstWidth);
1156            return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1157          }
1158      return nullptr;
1159    }
1160
1161    case CK_Dependent: llvm_unreachable("saw dependent cast!");
1162
1163    case CK_BuiltinFnToFnPtr:
1164      llvm_unreachable("builtin functions are handled elsewhere");
1165
1166    case CK_ReinterpretMemberPointer:
1167    case CK_DerivedToBaseMemberPointer:
1168    case CK_BaseToDerivedMemberPointer: {
1169      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1170      if (!C) return nullptr;
1171      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1172    }
1173
1174    // These will never be supported.
1175    case CK_ObjCObjectLValueCast:
1176    case CK_ARCProduceObject:
1177    case CK_ARCConsumeObject:
1178    case CK_ARCReclaimReturnedObject:
1179    case CK_ARCExtendBlockObject:
1180    case CK_CopyAndAutoreleaseBlockObject:
1181      return nullptr;
1182
1183    // These don't need to be handled here because Evaluate knows how to
1184    // evaluate them in the cases where they can be folded.
1185    case CK_BitCast:
1186    case CK_ToVoid:
1187    case CK_Dynamic:
1188    case CK_LValueBitCast:
1189    case CK_LValueToRValueBitCast:
1190    case CK_NullToMemberPointer:
1191    case CK_UserDefinedConversion:
1192    case CK_CPointerToObjCPointerCast:
1193    case CK_BlockPointerToObjCPointerCast:
1194    case CK_AnyPointerToBlockPointerCast:
1195    case CK_FunctionToPointerDecay:
1196    case CK_BaseToDerived:
1197    case CK_DerivedToBase:
1198    case CK_UncheckedDerivedToBase:
1199    case CK_MemberPointerToBoolean:
1200    case CK_VectorSplat:
1201    case CK_FloatingRealToComplex:
1202    case CK_FloatingComplexToReal:
1203    case CK_FloatingComplexToBoolean:
1204    case CK_FloatingComplexCast:
1205    case CK_FloatingComplexToIntegralComplex:
1206    case CK_IntegralRealToComplex:
1207    case CK_IntegralComplexToReal:
1208    case CK_IntegralComplexToBoolean:
1209    case CK_IntegralComplexCast:
1210    case CK_IntegralComplexToFloatingComplex:
1211    case CK_PointerToIntegral:
1212    case CK_PointerToBoolean:
1213    case CK_BooleanToSignedIntegral:
1214    case CK_IntegralToPointer:
1215    case CK_IntegralToBoolean:
1216    case CK_IntegralToFloating:
1217    case CK_FloatingToIntegral:
1218    case CK_FloatingToBoolean:
1219    case CK_FloatingCast:
1220    case CK_FloatingToFixedPoint:
1221    case CK_FixedPointToFloating:
1222    case CK_FixedPointCast:
1223    case CK_FixedPointToBoolean:
1224    case CK_FixedPointToIntegral:
1225    case CK_IntegralToFixedPoint:
1226    case CK_ZeroToOCLOpaqueType:
1227    case CK_MatrixCast:
1228      return nullptr;
1229    }
1230    llvm_unreachable("Invalid CastKind");
1231  }
1232
1233  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1234    // No need for a DefaultInitExprScope: we don't handle 'this' in a
1235    // constant expression.
1236    return Visit(DIE->getExpr(), T);
1237  }
1238
1239  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1240    return Visit(E->getSubExpr(), T);
1241  }
1242
1243  llvm::Constant *VisitIntegerLiteral(IntegerLiteral *I, QualType T) {
1244    return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1245  }
1246
1247  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1248    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1249    assert(CAT && "can't emit array init for non-constant-bound array");
1250    unsigned NumInitElements = ILE->getNumInits();
1251    unsigned NumElements = CAT->getSize().getZExtValue();
1252
1253    // Initialising an array requires us to automatically
1254    // initialise any elements that have not been initialised explicitly
1255    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1256
1257    QualType EltType = CAT->getElementType();
1258
1259    // Initialize remaining array elements.
1260    llvm::Constant *fillC = nullptr;
1261    if (Expr *filler = ILE->getArrayFiller()) {
1262      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1263      if (!fillC)
1264        return nullptr;
1265    }
1266
1267    // Copy initializer elements.
1268    SmallVector<llvm::Constant*, 16> Elts;
1269    if (fillC && fillC->isNullValue())
1270      Elts.reserve(NumInitableElts + 1);
1271    else
1272      Elts.reserve(NumElements);
1273
1274    llvm::Type *CommonElementType = nullptr;
1275    for (unsigned i = 0; i < NumInitableElts; ++i) {
1276      Expr *Init = ILE->getInit(i);
1277      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1278      if (!C)
1279        return nullptr;
1280      if (i == 0)
1281        CommonElementType = C->getType();
1282      else if (C->getType() != CommonElementType)
1283        CommonElementType = nullptr;
1284      Elts.push_back(C);
1285    }
1286
1287    llvm::ArrayType *Desired =
1288        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1289    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1290                             fillC);
1291  }
1292
1293  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1294    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1295  }
1296
1297  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1298                                             QualType T) {
1299    return CGM.EmitNullConstant(T);
1300  }
1301
1302  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1303    if (ILE->isTransparent())
1304      return Visit(ILE->getInit(0), T);
1305
1306    if (ILE->getType()->isArrayType())
1307      return EmitArrayInitialization(ILE, T);
1308
1309    if (ILE->getType()->isRecordType())
1310      return EmitRecordInitialization(ILE, T);
1311
1312    return nullptr;
1313  }
1314
1315  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1316                                                QualType destType) {
1317    auto C = Visit(E->getBase(), destType);
1318    if (!C)
1319      return nullptr;
1320
1321    ConstantAggregateBuilder Const(CGM);
1322    Const.add(C, CharUnits::Zero(), false);
1323
1324    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1325                                   E->getUpdater()))
1326      return nullptr;
1327
1328    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1329    bool HasFlexibleArray = false;
1330    if (auto *RT = destType->getAs<RecordType>())
1331      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1332    return Const.build(ValTy, HasFlexibleArray);
1333  }
1334
1335  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1336    if (!E->getConstructor()->isTrivial())
1337      return nullptr;
1338
1339    // Only default and copy/move constructors can be trivial.
1340    if (E->getNumArgs()) {
1341      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1342      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1343             "trivial ctor has argument but isn't a copy/move ctor");
1344
1345      Expr *Arg = E->getArg(0);
1346      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1347             "argument to copy ctor is of wrong type");
1348
1349      // Look through the temporary; it's just converting the value to an
1350      // lvalue to pass it to the constructor.
1351      if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1352        return Visit(MTE->getSubExpr(), Ty);
1353      // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1354      return nullptr;
1355    }
1356
1357    return CGM.EmitNullConstant(Ty);
1358  }
1359
1360  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1361    // This is a string literal initializing an array in an initializer.
1362    return CGM.GetConstantArrayFromStringLiteral(E);
1363  }
1364
1365  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1366    // This must be an @encode initializing an array in a static initializer.
1367    // Don't emit it as the address of the string, emit the string data itself
1368    // as an inline array.
1369    std::string Str;
1370    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1371    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1372    assert(CAT && "String data not of constant array type!");
1373
1374    // Resize the string to the right size, adding zeros at the end, or
1375    // truncating as needed.
1376    Str.resize(CAT->getSize().getZExtValue(), '\0');
1377    return llvm::ConstantDataArray::getString(VMContext, Str, false);
1378  }
1379
1380  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1381    return Visit(E->getSubExpr(), T);
1382  }
1383
1384  llvm::Constant *VisitUnaryMinus(UnaryOperator *U, QualType T) {
1385    if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1386      if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1387        return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1388    return nullptr;
1389  }
1390
1391  // Utility methods
1392  llvm::Type *ConvertType(QualType T) {
1393    return CGM.getTypes().ConvertType(T);
1394  }
1395};
1396
1397}  // end anonymous namespace.
1398
1399llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1400                                                        AbstractState saved) {
1401  Abstract = saved.OldValue;
1402
1403  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1404         "created a placeholder while doing an abstract emission?");
1405
1406  // No validation necessary for now.
1407  // No cleanup to do for now.
1408  return C;
1409}
1410
1411llvm::Constant *
1412ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1413  auto state = pushAbstract();
1414  auto C = tryEmitPrivateForVarInit(D);
1415  return validateAndPopAbstract(C, state);
1416}
1417
1418llvm::Constant *
1419ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1420  auto state = pushAbstract();
1421  auto C = tryEmitPrivate(E, destType);
1422  return validateAndPopAbstract(C, state);
1423}
1424
1425llvm::Constant *
1426ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1427  auto state = pushAbstract();
1428  auto C = tryEmitPrivate(value, destType);
1429  return validateAndPopAbstract(C, state);
1430}
1431
1432llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1433  if (!CE->hasAPValueResult())
1434    return nullptr;
1435
1436  QualType RetType = CE->getType();
1437  if (CE->isGLValue())
1438    RetType = CGM.getContext().getLValueReferenceType(RetType);
1439
1440  return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1441}
1442
1443llvm::Constant *
1444ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1445  auto state = pushAbstract();
1446  auto C = tryEmitPrivate(E, destType);
1447  C = validateAndPopAbstract(C, state);
1448  if (!C) {
1449    CGM.Error(E->getExprLoc(),
1450              "internal error: could not emit constant value \"abstractly\"");
1451    C = CGM.EmitNullConstant(destType);
1452  }
1453  return C;
1454}
1455
1456llvm::Constant *
1457ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1458                              QualType destType) {
1459  auto state = pushAbstract();
1460  auto C = tryEmitPrivate(value, destType);
1461  C = validateAndPopAbstract(C, state);
1462  if (!C) {
1463    CGM.Error(loc,
1464              "internal error: could not emit constant value \"abstractly\"");
1465    C = CGM.EmitNullConstant(destType);
1466  }
1467  return C;
1468}
1469
1470llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1471  initializeNonAbstract(D.getType().getAddressSpace());
1472  return markIfFailed(tryEmitPrivateForVarInit(D));
1473}
1474
1475llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1476                                                       LangAS destAddrSpace,
1477                                                       QualType destType) {
1478  initializeNonAbstract(destAddrSpace);
1479  return markIfFailed(tryEmitPrivateForMemory(E, destType));
1480}
1481
1482llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1483                                                    LangAS destAddrSpace,
1484                                                    QualType destType) {
1485  initializeNonAbstract(destAddrSpace);
1486  auto C = tryEmitPrivateForMemory(value, destType);
1487  assert(C && "couldn't emit constant value non-abstractly?");
1488  return C;
1489}
1490
1491llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1492  assert(!Abstract && "cannot get current address for abstract constant");
1493
1494
1495
1496  // Make an obviously ill-formed global that should blow up compilation
1497  // if it survives.
1498  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1499                                         llvm::GlobalValue::PrivateLinkage,
1500                                         /*init*/ nullptr,
1501                                         /*name*/ "",
1502                                         /*before*/ nullptr,
1503                                         llvm::GlobalVariable::NotThreadLocal,
1504                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1505
1506  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1507
1508  return global;
1509}
1510
1511void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1512                                           llvm::GlobalValue *placeholder) {
1513  assert(!PlaceholderAddresses.empty());
1514  assert(PlaceholderAddresses.back().first == nullptr);
1515  assert(PlaceholderAddresses.back().second == placeholder);
1516  PlaceholderAddresses.back().first = signal;
1517}
1518
1519namespace {
1520  struct ReplacePlaceholders {
1521    CodeGenModule &CGM;
1522
1523    /// The base address of the global.
1524    llvm::Constant *Base;
1525    llvm::Type *BaseValueTy = nullptr;
1526
1527    /// The placeholder addresses that were registered during emission.
1528    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1529
1530    /// The locations of the placeholder signals.
1531    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1532
1533    /// The current index stack.  We use a simple unsigned stack because
1534    /// we assume that placeholders will be relatively sparse in the
1535    /// initializer, but we cache the index values we find just in case.
1536    llvm::SmallVector<unsigned, 8> Indices;
1537    llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1538
1539    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1540                        ArrayRef<std::pair<llvm::Constant*,
1541                                           llvm::GlobalVariable*>> addresses)
1542        : CGM(CGM), Base(base),
1543          PlaceholderAddresses(addresses.begin(), addresses.end()) {
1544    }
1545
1546    void replaceInInitializer(llvm::Constant *init) {
1547      // Remember the type of the top-most initializer.
1548      BaseValueTy = init->getType();
1549
1550      // Initialize the stack.
1551      Indices.push_back(0);
1552      IndexValues.push_back(nullptr);
1553
1554      // Recurse into the initializer.
1555      findLocations(init);
1556
1557      // Check invariants.
1558      assert(IndexValues.size() == Indices.size() && "mismatch");
1559      assert(Indices.size() == 1 && "didn't pop all indices");
1560
1561      // Do the replacement; this basically invalidates 'init'.
1562      assert(Locations.size() == PlaceholderAddresses.size() &&
1563             "missed a placeholder?");
1564
1565      // We're iterating over a hashtable, so this would be a source of
1566      // non-determinism in compiler output *except* that we're just
1567      // messing around with llvm::Constant structures, which never itself
1568      // does anything that should be visible in compiler output.
1569      for (auto &entry : Locations) {
1570        assert(entry.first->getParent() == nullptr && "not a placeholder!");
1571        entry.first->replaceAllUsesWith(entry.second);
1572        entry.first->eraseFromParent();
1573      }
1574    }
1575
1576  private:
1577    void findLocations(llvm::Constant *init) {
1578      // Recurse into aggregates.
1579      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1580        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1581          Indices.push_back(i);
1582          IndexValues.push_back(nullptr);
1583
1584          findLocations(agg->getOperand(i));
1585
1586          IndexValues.pop_back();
1587          Indices.pop_back();
1588        }
1589        return;
1590      }
1591
1592      // Otherwise, check for registered constants.
1593      while (true) {
1594        auto it = PlaceholderAddresses.find(init);
1595        if (it != PlaceholderAddresses.end()) {
1596          setLocation(it->second);
1597          break;
1598        }
1599
1600        // Look through bitcasts or other expressions.
1601        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1602          init = expr->getOperand(0);
1603        } else {
1604          break;
1605        }
1606      }
1607    }
1608
1609    void setLocation(llvm::GlobalVariable *placeholder) {
1610      assert(!Locations.contains(placeholder) &&
1611             "already found location for placeholder!");
1612
1613      // Lazily fill in IndexValues with the values from Indices.
1614      // We do this in reverse because we should always have a strict
1615      // prefix of indices from the start.
1616      assert(Indices.size() == IndexValues.size());
1617      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1618        if (IndexValues[i]) {
1619#ifndef NDEBUG
1620          for (size_t j = 0; j != i + 1; ++j) {
1621            assert(IndexValues[j] &&
1622                   isa<llvm::ConstantInt>(IndexValues[j]) &&
1623                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1624                     == Indices[j]);
1625          }
1626#endif
1627          break;
1628        }
1629
1630        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1631      }
1632
1633      llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1634          BaseValueTy, Base, IndexValues);
1635
1636      Locations.insert({placeholder, location});
1637    }
1638  };
1639}
1640
1641void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1642  assert(InitializedNonAbstract &&
1643         "finalizing emitter that was used for abstract emission?");
1644  assert(!Finalized && "finalizing emitter multiple times");
1645  assert(global->getInitializer());
1646
1647  // Note that we might also be Failed.
1648  Finalized = true;
1649
1650  if (!PlaceholderAddresses.empty()) {
1651    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1652      .replaceInInitializer(global->getInitializer());
1653    PlaceholderAddresses.clear(); // satisfy
1654  }
1655}
1656
1657ConstantEmitter::~ConstantEmitter() {
1658  assert((!InitializedNonAbstract || Finalized || Failed) &&
1659         "not finalized after being initialized for non-abstract emission");
1660  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1661}
1662
1663static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1664  if (auto AT = type->getAs<AtomicType>()) {
1665    return CGM.getContext().getQualifiedType(AT->getValueType(),
1666                                             type.getQualifiers());
1667  }
1668  return type;
1669}
1670
1671llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1672  // Make a quick check if variable can be default NULL initialized
1673  // and avoid going through rest of code which may do, for c++11,
1674  // initialization of memory to all NULLs.
1675  if (!D.hasLocalStorage()) {
1676    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1677    if (Ty->isRecordType())
1678      if (const CXXConstructExpr *E =
1679          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1680        const CXXConstructorDecl *CD = E->getConstructor();
1681        if (CD->isTrivial() && CD->isDefaultConstructor())
1682          return CGM.EmitNullConstant(D.getType());
1683      }
1684  }
1685  InConstantContext = D.hasConstantInitialization();
1686
1687  QualType destType = D.getType();
1688  const Expr *E = D.getInit();
1689  assert(E && "No initializer to emit");
1690
1691  if (!destType->isReferenceType()) {
1692    QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1693    if (llvm::Constant *C = ConstExprEmitter(*this).Visit(const_cast<Expr *>(E),
1694                                                          nonMemoryDestType))
1695      return emitForMemory(C, destType);
1696  }
1697
1698  // Try to emit the initializer.  Note that this can allow some things that
1699  // are not allowed by tryEmitPrivateForMemory alone.
1700  if (APValue *value = D.evaluateValue())
1701    return tryEmitPrivateForMemory(*value, destType);
1702
1703  return nullptr;
1704}
1705
1706llvm::Constant *
1707ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1708  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1709  auto C = tryEmitAbstract(E, nonMemoryDestType);
1710  return (C ? emitForMemory(C, destType) : nullptr);
1711}
1712
1713llvm::Constant *
1714ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1715                                          QualType destType) {
1716  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1717  auto C = tryEmitAbstract(value, nonMemoryDestType);
1718  return (C ? emitForMemory(C, destType) : nullptr);
1719}
1720
1721llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1722                                                         QualType destType) {
1723  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1724  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1725  return (C ? emitForMemory(C, destType) : nullptr);
1726}
1727
1728llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1729                                                         QualType destType) {
1730  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1731  auto C = tryEmitPrivate(value, nonMemoryDestType);
1732  return (C ? emitForMemory(C, destType) : nullptr);
1733}
1734
1735llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1736                                               llvm::Constant *C,
1737                                               QualType destType) {
1738  // For an _Atomic-qualified constant, we may need to add tail padding.
1739  if (auto AT = destType->getAs<AtomicType>()) {
1740    QualType destValueType = AT->getValueType();
1741    C = emitForMemory(CGM, C, destValueType);
1742
1743    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1744    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1745    if (innerSize == outerSize)
1746      return C;
1747
1748    assert(innerSize < outerSize && "emitted over-large constant for atomic");
1749    llvm::Constant *elts[] = {
1750      C,
1751      llvm::ConstantAggregateZero::get(
1752          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1753    };
1754    return llvm::ConstantStruct::getAnon(elts);
1755  }
1756
1757  // Zero-extend bool.
1758  if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1759    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1760    llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1761        llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1762    assert(Res && "Constant folding must succeed");
1763    return Res;
1764  }
1765
1766  return C;
1767}
1768
1769llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1770                                                QualType destType) {
1771  assert(!destType->isVoidType() && "can't emit a void constant");
1772
1773  if (!destType->isReferenceType())
1774    if (llvm::Constant *C =
1775            ConstExprEmitter(*this).Visit(const_cast<Expr *>(E), destType))
1776      return C;
1777
1778  Expr::EvalResult Result;
1779
1780  bool Success = false;
1781
1782  if (destType->isReferenceType())
1783    Success = E->EvaluateAsLValue(Result, CGM.getContext());
1784  else
1785    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1786
1787  if (Success && !Result.HasSideEffects)
1788    return tryEmitPrivate(Result.Val, destType);
1789
1790  return nullptr;
1791}
1792
1793llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1794  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1795}
1796
1797namespace {
1798/// A struct which can be used to peephole certain kinds of finalization
1799/// that normally happen during l-value emission.
1800struct ConstantLValue {
1801  llvm::Constant *Value;
1802  bool HasOffsetApplied;
1803
1804  /*implicit*/ ConstantLValue(llvm::Constant *value,
1805                              bool hasOffsetApplied = false)
1806    : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1807
1808  /*implicit*/ ConstantLValue(ConstantAddress address)
1809    : ConstantLValue(address.getPointer()) {}
1810};
1811
1812/// A helper class for emitting constant l-values.
1813class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1814                                                      ConstantLValue> {
1815  CodeGenModule &CGM;
1816  ConstantEmitter &Emitter;
1817  const APValue &Value;
1818  QualType DestType;
1819
1820  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1821  friend StmtVisitorBase;
1822
1823public:
1824  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1825                        QualType destType)
1826    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1827
1828  llvm::Constant *tryEmit();
1829
1830private:
1831  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1832  ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1833
1834  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1835  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1836  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1837  ConstantLValue VisitStringLiteral(const StringLiteral *E);
1838  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1839  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1840  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1841  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1842  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1843  ConstantLValue VisitCallExpr(const CallExpr *E);
1844  ConstantLValue VisitBlockExpr(const BlockExpr *E);
1845  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1846  ConstantLValue VisitMaterializeTemporaryExpr(
1847                                         const MaterializeTemporaryExpr *E);
1848
1849  bool hasNonZeroOffset() const {
1850    return !Value.getLValueOffset().isZero();
1851  }
1852
1853  /// Return the value offset.
1854  llvm::Constant *getOffset() {
1855    return llvm::ConstantInt::get(CGM.Int64Ty,
1856                                  Value.getLValueOffset().getQuantity());
1857  }
1858
1859  /// Apply the value offset to the given constant.
1860  llvm::Constant *applyOffset(llvm::Constant *C) {
1861    if (!hasNonZeroOffset())
1862      return C;
1863
1864    return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1865  }
1866};
1867
1868}
1869
1870llvm::Constant *ConstantLValueEmitter::tryEmit() {
1871  const APValue::LValueBase &base = Value.getLValueBase();
1872
1873  // The destination type should be a pointer or reference
1874  // type, but it might also be a cast thereof.
1875  //
1876  // FIXME: the chain of casts required should be reflected in the APValue.
1877  // We need this in order to correctly handle things like a ptrtoint of a
1878  // non-zero null pointer and addrspace casts that aren't trivially
1879  // represented in LLVM IR.
1880  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1881  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1882
1883  // If there's no base at all, this is a null or absolute pointer,
1884  // possibly cast back to an integer type.
1885  if (!base) {
1886    return tryEmitAbsolute(destTy);
1887  }
1888
1889  // Otherwise, try to emit the base.
1890  ConstantLValue result = tryEmitBase(base);
1891
1892  // If that failed, we're done.
1893  llvm::Constant *value = result.Value;
1894  if (!value) return nullptr;
1895
1896  // Apply the offset if necessary and not already done.
1897  if (!result.HasOffsetApplied) {
1898    value = applyOffset(value);
1899  }
1900
1901  // Convert to the appropriate type; this could be an lvalue for
1902  // an integer.  FIXME: performAddrSpaceCast
1903  if (isa<llvm::PointerType>(destTy))
1904    return llvm::ConstantExpr::getPointerCast(value, destTy);
1905
1906  return llvm::ConstantExpr::getPtrToInt(value, destTy);
1907}
1908
1909/// Try to emit an absolute l-value, such as a null pointer or an integer
1910/// bitcast to pointer type.
1911llvm::Constant *
1912ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1913  // If we're producing a pointer, this is easy.
1914  auto destPtrTy = cast<llvm::PointerType>(destTy);
1915  if (Value.isNullPointer()) {
1916    // FIXME: integer offsets from non-zero null pointers.
1917    return CGM.getNullPointer(destPtrTy, DestType);
1918  }
1919
1920  // Convert the integer to a pointer-sized integer before converting it
1921  // to a pointer.
1922  // FIXME: signedness depends on the original integer type.
1923  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1924  llvm::Constant *C;
1925  C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
1926                                    CGM.getDataLayout());
1927  assert(C && "Must have folded, as Offset is a ConstantInt");
1928  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1929  return C;
1930}
1931
1932ConstantLValue
1933ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1934  // Handle values.
1935  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1936    // The constant always points to the canonical declaration. We want to look
1937    // at properties of the most recent declaration at the point of emission.
1938    D = cast<ValueDecl>(D->getMostRecentDecl());
1939
1940    if (D->hasAttr<WeakRefAttr>())
1941      return CGM.GetWeakRefReference(D).getPointer();
1942
1943    if (auto FD = dyn_cast<FunctionDecl>(D))
1944      return CGM.GetAddrOfFunction(FD);
1945
1946    if (auto VD = dyn_cast<VarDecl>(D)) {
1947      // We can never refer to a variable with local storage.
1948      if (!VD->hasLocalStorage()) {
1949        if (VD->isFileVarDecl() || VD->hasExternalStorage())
1950          return CGM.GetAddrOfGlobalVar(VD);
1951
1952        if (VD->isLocalVarDecl()) {
1953          return CGM.getOrCreateStaticVarDecl(
1954              *VD, CGM.getLLVMLinkageVarDefinition(VD));
1955        }
1956      }
1957    }
1958
1959    if (auto *GD = dyn_cast<MSGuidDecl>(D))
1960      return CGM.GetAddrOfMSGuidDecl(GD);
1961
1962    if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
1963      return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1964
1965    if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1966      return CGM.GetAddrOfTemplateParamObject(TPO);
1967
1968    return nullptr;
1969  }
1970
1971  // Handle typeid(T).
1972  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
1973    return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1974
1975  // Otherwise, it must be an expression.
1976  return Visit(base.get<const Expr*>());
1977}
1978
1979ConstantLValue
1980ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1981  if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1982    return Result;
1983  return Visit(E->getSubExpr());
1984}
1985
1986ConstantLValue
1987ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1988  ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
1989  CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
1990  return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
1991}
1992
1993ConstantLValue
1994ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1995  return CGM.GetAddrOfConstantStringFromLiteral(E);
1996}
1997
1998ConstantLValue
1999ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2000  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2001}
2002
2003static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2004                                                    QualType T,
2005                                                    CodeGenModule &CGM) {
2006  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2007  return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2008}
2009
2010ConstantLValue
2011ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2012  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2013}
2014
2015ConstantLValue
2016ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2017  assert(E->isExpressibleAsConstantInitializer() &&
2018         "this boxed expression can't be emitted as a compile-time constant");
2019  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2020  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2021}
2022
2023ConstantLValue
2024ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2025  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2026}
2027
2028ConstantLValue
2029ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2030  assert(Emitter.CGF && "Invalid address of label expression outside function");
2031  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2032  return Ptr;
2033}
2034
2035ConstantLValue
2036ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2037  unsigned builtin = E->getBuiltinCallee();
2038  if (builtin == Builtin::BI__builtin_function_start)
2039    return CGM.GetFunctionStart(
2040        E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2041  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2042      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2043    return nullptr;
2044
2045  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2046  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2047    return CGM.getObjCRuntime().GenerateConstantString(literal);
2048  } else {
2049    // FIXME: need to deal with UCN conversion issues.
2050    return CGM.GetAddrOfConstantCFString(literal);
2051  }
2052}
2053
2054ConstantLValue
2055ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2056  StringRef functionName;
2057  if (auto CGF = Emitter.CGF)
2058    functionName = CGF->CurFn->getName();
2059  else
2060    functionName = "global";
2061
2062  return CGM.GetAddrOfGlobalBlock(E, functionName);
2063}
2064
2065ConstantLValue
2066ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2067  QualType T;
2068  if (E->isTypeOperand())
2069    T = E->getTypeOperand(CGM.getContext());
2070  else
2071    T = E->getExprOperand()->getType();
2072  return CGM.GetAddrOfRTTIDescriptor(T);
2073}
2074
2075ConstantLValue
2076ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2077                                            const MaterializeTemporaryExpr *E) {
2078  assert(E->getStorageDuration() == SD_Static);
2079  SmallVector<const Expr *, 2> CommaLHSs;
2080  SmallVector<SubobjectAdjustment, 2> Adjustments;
2081  const Expr *Inner =
2082      E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2083  return CGM.GetAddrOfGlobalTemporary(E, Inner);
2084}
2085
2086llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2087                                                QualType DestType) {
2088  switch (Value.getKind()) {
2089  case APValue::None:
2090  case APValue::Indeterminate:
2091    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2092    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2093  case APValue::LValue:
2094    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2095  case APValue::Int:
2096    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2097  case APValue::FixedPoint:
2098    return llvm::ConstantInt::get(CGM.getLLVMContext(),
2099                                  Value.getFixedPoint().getValue());
2100  case APValue::ComplexInt: {
2101    llvm::Constant *Complex[2];
2102
2103    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2104                                        Value.getComplexIntReal());
2105    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2106                                        Value.getComplexIntImag());
2107
2108    // FIXME: the target may want to specify that this is packed.
2109    llvm::StructType *STy =
2110        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2111    return llvm::ConstantStruct::get(STy, Complex);
2112  }
2113  case APValue::Float: {
2114    const llvm::APFloat &Init = Value.getFloat();
2115    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2116        !CGM.getContext().getLangOpts().NativeHalfType &&
2117        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2118      return llvm::ConstantInt::get(CGM.getLLVMContext(),
2119                                    Init.bitcastToAPInt());
2120    else
2121      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2122  }
2123  case APValue::ComplexFloat: {
2124    llvm::Constant *Complex[2];
2125
2126    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2127                                       Value.getComplexFloatReal());
2128    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2129                                       Value.getComplexFloatImag());
2130
2131    // FIXME: the target may want to specify that this is packed.
2132    llvm::StructType *STy =
2133        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2134    return llvm::ConstantStruct::get(STy, Complex);
2135  }
2136  case APValue::Vector: {
2137    unsigned NumElts = Value.getVectorLength();
2138    SmallVector<llvm::Constant *, 4> Inits(NumElts);
2139
2140    for (unsigned I = 0; I != NumElts; ++I) {
2141      const APValue &Elt = Value.getVectorElt(I);
2142      if (Elt.isInt())
2143        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2144      else if (Elt.isFloat())
2145        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2146      else if (Elt.isIndeterminate())
2147        Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2148            DestType->castAs<VectorType>()->getElementType()));
2149      else
2150        llvm_unreachable("unsupported vector element type");
2151    }
2152    return llvm::ConstantVector::get(Inits);
2153  }
2154  case APValue::AddrLabelDiff: {
2155    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2156    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2157    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2158    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2159    if (!LHS || !RHS) return nullptr;
2160
2161    // Compute difference
2162    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2163    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2164    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2165    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2166
2167    // LLVM is a bit sensitive about the exact format of the
2168    // address-of-label difference; make sure to truncate after
2169    // the subtraction.
2170    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2171  }
2172  case APValue::Struct:
2173  case APValue::Union:
2174    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2175  case APValue::Array: {
2176    const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2177    unsigned NumElements = Value.getArraySize();
2178    unsigned NumInitElts = Value.getArrayInitializedElts();
2179
2180    // Emit array filler, if there is one.
2181    llvm::Constant *Filler = nullptr;
2182    if (Value.hasArrayFiller()) {
2183      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2184                                        ArrayTy->getElementType());
2185      if (!Filler)
2186        return nullptr;
2187    }
2188
2189    // Emit initializer elements.
2190    SmallVector<llvm::Constant*, 16> Elts;
2191    if (Filler && Filler->isNullValue())
2192      Elts.reserve(NumInitElts + 1);
2193    else
2194      Elts.reserve(NumElements);
2195
2196    llvm::Type *CommonElementType = nullptr;
2197    for (unsigned I = 0; I < NumInitElts; ++I) {
2198      llvm::Constant *C = tryEmitPrivateForMemory(
2199          Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2200      if (!C) return nullptr;
2201
2202      if (I == 0)
2203        CommonElementType = C->getType();
2204      else if (C->getType() != CommonElementType)
2205        CommonElementType = nullptr;
2206      Elts.push_back(C);
2207    }
2208
2209    llvm::ArrayType *Desired =
2210        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2211
2212    // Fix the type of incomplete arrays if the initializer isn't empty.
2213    if (DestType->isIncompleteArrayType() && !Elts.empty())
2214      Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2215
2216    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2217                             Filler);
2218  }
2219  case APValue::MemberPointer:
2220    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2221  }
2222  llvm_unreachable("Unknown APValue kind");
2223}
2224
2225llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2226    const CompoundLiteralExpr *E) {
2227  return EmittedCompoundLiterals.lookup(E);
2228}
2229
2230void CodeGenModule::setAddrOfConstantCompoundLiteral(
2231    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2232  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2233  (void)Ok;
2234  assert(Ok && "CLE has already been emitted!");
2235}
2236
2237ConstantAddress
2238CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2239  assert(E->isFileScope() && "not a file-scope compound literal expr");
2240  ConstantEmitter emitter(*this);
2241  return tryEmitGlobalCompoundLiteral(emitter, E);
2242}
2243
2244llvm::Constant *
2245CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2246  // Member pointer constants always have a very particular form.
2247  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2248  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2249
2250  // A member function pointer.
2251  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2252    return getCXXABI().EmitMemberFunctionPointer(method);
2253
2254  // Otherwise, a member data pointer.
2255  uint64_t fieldOffset = getContext().getFieldOffset(decl);
2256  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2257  return getCXXABI().EmitMemberDataPointer(type, chars);
2258}
2259
2260static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2261                                               llvm::Type *baseType,
2262                                               const CXXRecordDecl *base);
2263
2264static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2265                                        const RecordDecl *record,
2266                                        bool asCompleteObject) {
2267  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2268  llvm::StructType *structure =
2269    (asCompleteObject ? layout.getLLVMType()
2270                      : layout.getBaseSubobjectLLVMType());
2271
2272  unsigned numElements = structure->getNumElements();
2273  std::vector<llvm::Constant *> elements(numElements);
2274
2275  auto CXXR = dyn_cast<CXXRecordDecl>(record);
2276  // Fill in all the bases.
2277  if (CXXR) {
2278    for (const auto &I : CXXR->bases()) {
2279      if (I.isVirtual()) {
2280        // Ignore virtual bases; if we're laying out for a complete
2281        // object, we'll lay these out later.
2282        continue;
2283      }
2284
2285      const CXXRecordDecl *base =
2286        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2287
2288      // Ignore empty bases.
2289      if (base->isEmpty() ||
2290          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2291              .isZero())
2292        continue;
2293
2294      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2295      llvm::Type *baseType = structure->getElementType(fieldIndex);
2296      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2297    }
2298  }
2299
2300  // Fill in all the fields.
2301  for (const auto *Field : record->fields()) {
2302    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2303    // will fill in later.)
2304    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2305      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2306      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2307    }
2308
2309    // For unions, stop after the first named field.
2310    if (record->isUnion()) {
2311      if (Field->getIdentifier())
2312        break;
2313      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2314        if (FieldRD->findFirstNamedDataMember())
2315          break;
2316    }
2317  }
2318
2319  // Fill in the virtual bases, if we're working with the complete object.
2320  if (CXXR && asCompleteObject) {
2321    for (const auto &I : CXXR->vbases()) {
2322      const CXXRecordDecl *base =
2323        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2324
2325      // Ignore empty bases.
2326      if (base->isEmpty())
2327        continue;
2328
2329      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2330
2331      // We might have already laid this field out.
2332      if (elements[fieldIndex]) continue;
2333
2334      llvm::Type *baseType = structure->getElementType(fieldIndex);
2335      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2336    }
2337  }
2338
2339  // Now go through all other fields and zero them out.
2340  for (unsigned i = 0; i != numElements; ++i) {
2341    if (!elements[i])
2342      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2343  }
2344
2345  return llvm::ConstantStruct::get(structure, elements);
2346}
2347
2348/// Emit the null constant for a base subobject.
2349static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2350                                               llvm::Type *baseType,
2351                                               const CXXRecordDecl *base) {
2352  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2353
2354  // Just zero out bases that don't have any pointer to data members.
2355  if (baseLayout.isZeroInitializableAsBase())
2356    return llvm::Constant::getNullValue(baseType);
2357
2358  // Otherwise, we can just use its null constant.
2359  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2360}
2361
2362llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2363                                                   QualType T) {
2364  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2365}
2366
2367llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2368  if (T->getAs<PointerType>())
2369    return getNullPointer(
2370        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2371
2372  if (getTypes().isZeroInitializable(T))
2373    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2374
2375  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2376    llvm::ArrayType *ATy =
2377      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2378
2379    QualType ElementTy = CAT->getElementType();
2380
2381    llvm::Constant *Element =
2382      ConstantEmitter::emitNullForMemory(*this, ElementTy);
2383    unsigned NumElements = CAT->getSize().getZExtValue();
2384    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2385    return llvm::ConstantArray::get(ATy, Array);
2386  }
2387
2388  if (const RecordType *RT = T->getAs<RecordType>())
2389    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2390
2391  assert(T->isMemberDataPointerType() &&
2392         "Should only see pointers to data members here!");
2393
2394  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2395}
2396
2397llvm::Constant *
2398CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2399  return ::EmitNullConstant(*this, Record, false);
2400}
2401