1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29  RequiredArgs ReqArgs;
30  // Number of prefix arguments for the call. Ignores the `this` pointer.
31  unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37                                  llvm::Value *This, llvm::Value *ImplicitParam,
38                                  QualType ImplicitParamTy, const CallExpr *CE,
39                                  CallArgList &Args, CallArgList *RtlArgs) {
40  auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41
42  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43         isa<CXXOperatorCallExpr>(CE));
44  assert(MD->isImplicitObjectMemberFunction() &&
45         "Trying to emit a member or operator call expr on a static method!");
46
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
49      CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51
52  // If there is an implicit parameter (e.g. VTT), emit it.
53  if (ImplicitParam) {
54    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55  }
56
57  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59  unsigned PrefixSize = Args.size() - 1;
60
61  // And the rest of the call args.
62  if (RtlArgs) {
63    // Special case: if the caller emitted the arguments right-to-left already
64    // (prior to emitting the *this argument), we're done. This happens for
65    // assignment operators.
66    Args.addFrom(*RtlArgs);
67  } else if (CE) {
68    // Special case: skip first argument of CXXOperatorCall (it is "this").
69    unsigned ArgsToSkip = 0;
70    if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) {
71      if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72        ArgsToSkip =
73            static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74    }
75    CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
76                     CE->getDirectCallee());
77  } else {
78    assert(
79        FPT->getNumParams() == 0 &&
80        "No CallExpr specified for function with non-zero number of arguments");
81  }
82  return {required, PrefixSize};
83}
84
85RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86    const CXXMethodDecl *MD, const CGCallee &Callee,
87    ReturnValueSlot ReturnValue,
88    llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
89    const CallExpr *CE, CallArgList *RtlArgs) {
90  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91  CallArgList Args;
92  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93      *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95      Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
96  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
97                  CE && CE == MustTailCall,
98                  CE ? CE->getExprLoc() : SourceLocation());
99}
100
101RValue CodeGenFunction::EmitCXXDestructorCall(
102    GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103    llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
104  const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
105
106  assert(!ThisTy.isNull());
107  assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
108         "Pointer/Object mixup");
109
110  LangAS SrcAS = ThisTy.getAddressSpace();
111  LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
112  if (SrcAS != DstAS) {
113    QualType DstTy = DtorDecl->getThisType();
114    llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
115    This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
116                                                 NewType);
117  }
118
119  CallArgList Args;
120  commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
121                                    ImplicitParamTy, CE, Args, nullptr);
122  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
123                  ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
124                  CE ? CE->getExprLoc() : SourceLocation{});
125}
126
127RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
128                                            const CXXPseudoDestructorExpr *E) {
129  QualType DestroyedType = E->getDestroyedType();
130  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
131    // Automatic Reference Counting:
132    //   If the pseudo-expression names a retainable object with weak or
133    //   strong lifetime, the object shall be released.
134    Expr *BaseExpr = E->getBase();
135    Address BaseValue = Address::invalid();
136    Qualifiers BaseQuals;
137
138    // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
139    if (E->isArrow()) {
140      BaseValue = EmitPointerWithAlignment(BaseExpr);
141      const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
142      BaseQuals = PTy->getPointeeType().getQualifiers();
143    } else {
144      LValue BaseLV = EmitLValue(BaseExpr);
145      BaseValue = BaseLV.getAddress(*this);
146      QualType BaseTy = BaseExpr->getType();
147      BaseQuals = BaseTy.getQualifiers();
148    }
149
150    switch (DestroyedType.getObjCLifetime()) {
151    case Qualifiers::OCL_None:
152    case Qualifiers::OCL_ExplicitNone:
153    case Qualifiers::OCL_Autoreleasing:
154      break;
155
156    case Qualifiers::OCL_Strong:
157      EmitARCRelease(Builder.CreateLoad(BaseValue,
158                        DestroyedType.isVolatileQualified()),
159                     ARCPreciseLifetime);
160      break;
161
162    case Qualifiers::OCL_Weak:
163      EmitARCDestroyWeak(BaseValue);
164      break;
165    }
166  } else {
167    // C++ [expr.pseudo]p1:
168    //   The result shall only be used as the operand for the function call
169    //   operator (), and the result of such a call has type void. The only
170    //   effect is the evaluation of the postfix-expression before the dot or
171    //   arrow.
172    EmitIgnoredExpr(E->getBase());
173  }
174
175  return RValue::get(nullptr);
176}
177
178static CXXRecordDecl *getCXXRecord(const Expr *E) {
179  QualType T = E->getType();
180  if (const PointerType *PTy = T->getAs<PointerType>())
181    T = PTy->getPointeeType();
182  const RecordType *Ty = T->castAs<RecordType>();
183  return cast<CXXRecordDecl>(Ty->getDecl());
184}
185
186// Note: This function also emit constructor calls to support a MSVC
187// extensions allowing explicit constructor function call.
188RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
189                                              ReturnValueSlot ReturnValue) {
190  const Expr *callee = CE->getCallee()->IgnoreParens();
191
192  if (isa<BinaryOperator>(callee))
193    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
194
195  const MemberExpr *ME = cast<MemberExpr>(callee);
196  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
197
198  if (MD->isStatic()) {
199    // The method is static, emit it as we would a regular call.
200    CGCallee callee =
201        CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
202    return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
203                    ReturnValue);
204  }
205
206  bool HasQualifier = ME->hasQualifier();
207  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
208  bool IsArrow = ME->isArrow();
209  const Expr *Base = ME->getBase();
210
211  return EmitCXXMemberOrOperatorMemberCallExpr(
212      CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
213}
214
215RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216    const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
217    bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
218    const Expr *Base) {
219  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
220
221  // Compute the object pointer.
222  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
223
224  const CXXMethodDecl *DevirtualizedMethod = nullptr;
225  if (CanUseVirtualCall &&
226      MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
227    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
228    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
229    assert(DevirtualizedMethod);
230    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
231    const Expr *Inner = Base->IgnoreParenBaseCasts();
232    if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
233        MD->getReturnType().getCanonicalType())
234      // If the return types are not the same, this might be a case where more
235      // code needs to run to compensate for it. For example, the derived
236      // method might return a type that inherits form from the return
237      // type of MD and has a prefix.
238      // For now we just avoid devirtualizing these covariant cases.
239      DevirtualizedMethod = nullptr;
240    else if (getCXXRecord(Inner) == DevirtualizedClass)
241      // If the class of the Inner expression is where the dynamic method
242      // is defined, build the this pointer from it.
243      Base = Inner;
244    else if (getCXXRecord(Base) != DevirtualizedClass) {
245      // If the method is defined in a class that is not the best dynamic
246      // one or the one of the full expression, we would have to build
247      // a derived-to-base cast to compute the correct this pointer, but
248      // we don't have support for that yet, so do a virtual call.
249      DevirtualizedMethod = nullptr;
250    }
251  }
252
253  bool TrivialForCodegen =
254      MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
255  bool TrivialAssignment =
256      TrivialForCodegen &&
257      (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
258      !MD->getParent()->mayInsertExtraPadding();
259
260  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261  // operator before the LHS.
262  CallArgList RtlArgStorage;
263  CallArgList *RtlArgs = nullptr;
264  LValue TrivialAssignmentRHS;
265  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
266    if (OCE->isAssignmentOp()) {
267      if (TrivialAssignment) {
268        TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
269      } else {
270        RtlArgs = &RtlArgStorage;
271        EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
272                     drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
273                     /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
274      }
275    }
276  }
277
278  LValue This;
279  if (IsArrow) {
280    LValueBaseInfo BaseInfo;
281    TBAAAccessInfo TBAAInfo;
282    Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
283    This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
284  } else {
285    This = EmitLValue(Base);
286  }
287
288  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
289    // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
290    // constructing a new complete object of type Ctor.
291    assert(!RtlArgs);
292    assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
293    CallArgList Args;
294    commonEmitCXXMemberOrOperatorCall(
295        *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
296        /*ImplicitParam=*/nullptr,
297        /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
298
299    EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
300                           /*Delegating=*/false, This.getAddress(*this), Args,
301                           AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
302                           /*NewPointerIsChecked=*/false);
303    return RValue::get(nullptr);
304  }
305
306  if (TrivialForCodegen) {
307    if (isa<CXXDestructorDecl>(MD))
308      return RValue::get(nullptr);
309
310    if (TrivialAssignment) {
311      // We don't like to generate the trivial copy/move assignment operator
312      // when it isn't necessary; just produce the proper effect here.
313      // It's important that we use the result of EmitLValue here rather than
314      // emitting call arguments, in order to preserve TBAA information from
315      // the RHS.
316      LValue RHS = isa<CXXOperatorCallExpr>(CE)
317                       ? TrivialAssignmentRHS
318                       : EmitLValue(*CE->arg_begin());
319      EmitAggregateAssign(This, RHS, CE->getType());
320      return RValue::get(This.getPointer(*this));
321    }
322
323    assert(MD->getParent()->mayInsertExtraPadding() &&
324           "unknown trivial member function");
325  }
326
327  // Compute the function type we're calling.
328  const CXXMethodDecl *CalleeDecl =
329      DevirtualizedMethod ? DevirtualizedMethod : MD;
330  const CGFunctionInfo *FInfo = nullptr;
331  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
332    FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
333        GlobalDecl(Dtor, Dtor_Complete));
334  else
335    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
336
337  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
338
339  // C++11 [class.mfct.non-static]p2:
340  //   If a non-static member function of a class X is called for an object that
341  //   is not of type X, or of a type derived from X, the behavior is undefined.
342  SourceLocation CallLoc;
343  ASTContext &C = getContext();
344  if (CE)
345    CallLoc = CE->getExprLoc();
346
347  SanitizerSet SkippedChecks;
348  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
349    auto *IOA = CMCE->getImplicitObjectArgument();
350    bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
351    if (IsImplicitObjectCXXThis)
352      SkippedChecks.set(SanitizerKind::Alignment, true);
353    if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
354      SkippedChecks.set(SanitizerKind::Null, true);
355  }
356  EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
357                This.getPointer(*this),
358                C.getRecordType(CalleeDecl->getParent()),
359                /*Alignment=*/CharUnits::Zero(), SkippedChecks);
360
361  // C++ [class.virtual]p12:
362  //   Explicit qualification with the scope operator (5.1) suppresses the
363  //   virtual call mechanism.
364  //
365  // We also don't emit a virtual call if the base expression has a record type
366  // because then we know what the type is.
367  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
368
369  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
370    assert(CE->arg_begin() == CE->arg_end() &&
371           "Destructor shouldn't have explicit parameters");
372    assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
373    if (UseVirtualCall) {
374      CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
375                                                This.getAddress(*this),
376                                                cast<CXXMemberCallExpr>(CE));
377    } else {
378      GlobalDecl GD(Dtor, Dtor_Complete);
379      CGCallee Callee;
380      if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
381        Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
382      else if (!DevirtualizedMethod)
383        Callee =
384            CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
385      else {
386        Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
387      }
388
389      QualType ThisTy =
390          IsArrow ? Base->getType()->getPointeeType() : Base->getType();
391      EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
392                            /*ImplicitParam=*/nullptr,
393                            /*ImplicitParamTy=*/QualType(), CE);
394    }
395    return RValue::get(nullptr);
396  }
397
398  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
399  // 'CalleeDecl' instead.
400
401  CGCallee Callee;
402  if (UseVirtualCall) {
403    Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
404  } else {
405    if (SanOpts.has(SanitizerKind::CFINVCall) &&
406        MD->getParent()->isDynamicClass()) {
407      llvm::Value *VTable;
408      const CXXRecordDecl *RD;
409      std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
410          *this, This.getAddress(*this), CalleeDecl->getParent());
411      EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
412    }
413
414    if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
415      Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
416    else if (!DevirtualizedMethod)
417      Callee =
418          CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
419    else {
420      Callee =
421          CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
422                              GlobalDecl(DevirtualizedMethod));
423    }
424  }
425
426  if (MD->isVirtual()) {
427    Address NewThisAddr =
428        CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
429            *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
430    This.setAddress(NewThisAddr);
431  }
432
433  return EmitCXXMemberOrOperatorCall(
434      CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
435      /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
436}
437
438RValue
439CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
440                                              ReturnValueSlot ReturnValue) {
441  const BinaryOperator *BO =
442      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
443  const Expr *BaseExpr = BO->getLHS();
444  const Expr *MemFnExpr = BO->getRHS();
445
446  const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
447  const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
448  const auto *RD =
449      cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
450
451  // Emit the 'this' pointer.
452  Address This = Address::invalid();
453  if (BO->getOpcode() == BO_PtrMemI)
454    This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
455  else
456    This = EmitLValue(BaseExpr, KnownNonNull).getAddress(*this);
457
458  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
459                QualType(MPT->getClass(), 0));
460
461  // Get the member function pointer.
462  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
463
464  // Ask the ABI to load the callee.  Note that This is modified.
465  llvm::Value *ThisPtrForCall = nullptr;
466  CGCallee Callee =
467    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
468                                             ThisPtrForCall, MemFnPtr, MPT);
469
470  CallArgList Args;
471
472  QualType ThisType =
473    getContext().getPointerType(getContext().getTagDeclType(RD));
474
475  // Push the this ptr.
476  Args.add(RValue::get(ThisPtrForCall), ThisType);
477
478  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
479
480  // And the rest of the call args
481  EmitCallArgs(Args, FPT, E->arguments());
482  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
483                                                      /*PrefixSize=*/0),
484                  Callee, ReturnValue, Args, nullptr, E == MustTailCall,
485                  E->getExprLoc());
486}
487
488RValue
489CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
490                                               const CXXMethodDecl *MD,
491                                               ReturnValueSlot ReturnValue) {
492  assert(MD->isImplicitObjectMemberFunction() &&
493         "Trying to emit a member call expr on a static method!");
494  return EmitCXXMemberOrOperatorMemberCallExpr(
495      E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
496      /*IsArrow=*/false, E->getArg(0));
497}
498
499RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
500                                               ReturnValueSlot ReturnValue) {
501  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
502}
503
504static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
505                                            Address DestPtr,
506                                            const CXXRecordDecl *Base) {
507  if (Base->isEmpty())
508    return;
509
510  DestPtr = DestPtr.withElementType(CGF.Int8Ty);
511
512  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
513  CharUnits NVSize = Layout.getNonVirtualSize();
514
515  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
516  // present, they are initialized by the most derived class before calling the
517  // constructor.
518  SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
519  Stores.emplace_back(CharUnits::Zero(), NVSize);
520
521  // Each store is split by the existence of a vbptr.
522  CharUnits VBPtrWidth = CGF.getPointerSize();
523  std::vector<CharUnits> VBPtrOffsets =
524      CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
525  for (CharUnits VBPtrOffset : VBPtrOffsets) {
526    // Stop before we hit any virtual base pointers located in virtual bases.
527    if (VBPtrOffset >= NVSize)
528      break;
529    std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
530    CharUnits LastStoreOffset = LastStore.first;
531    CharUnits LastStoreSize = LastStore.second;
532
533    CharUnits SplitBeforeOffset = LastStoreOffset;
534    CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
535    assert(!SplitBeforeSize.isNegative() && "negative store size!");
536    if (!SplitBeforeSize.isZero())
537      Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
538
539    CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
540    CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
541    assert(!SplitAfterSize.isNegative() && "negative store size!");
542    if (!SplitAfterSize.isZero())
543      Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
544  }
545
546  // If the type contains a pointer to data member we can't memset it to zero.
547  // Instead, create a null constant and copy it to the destination.
548  // TODO: there are other patterns besides zero that we can usefully memset,
549  // like -1, which happens to be the pattern used by member-pointers.
550  // TODO: isZeroInitializable can be over-conservative in the case where a
551  // virtual base contains a member pointer.
552  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
553  if (!NullConstantForBase->isNullValue()) {
554    llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
555        CGF.CGM.getModule(), NullConstantForBase->getType(),
556        /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
557        NullConstantForBase, Twine());
558
559    CharUnits Align =
560        std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
561    NullVariable->setAlignment(Align.getAsAlign());
562
563    Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
564
565    // Get and call the appropriate llvm.memcpy overload.
566    for (std::pair<CharUnits, CharUnits> Store : Stores) {
567      CharUnits StoreOffset = Store.first;
568      CharUnits StoreSize = Store.second;
569      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
570      CGF.Builder.CreateMemCpy(
571          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
572          CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
573          StoreSizeVal);
574    }
575
576  // Otherwise, just memset the whole thing to zero.  This is legal
577  // because in LLVM, all default initializers (other than the ones we just
578  // handled above) are guaranteed to have a bit pattern of all zeros.
579  } else {
580    for (std::pair<CharUnits, CharUnits> Store : Stores) {
581      CharUnits StoreOffset = Store.first;
582      CharUnits StoreSize = Store.second;
583      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
584      CGF.Builder.CreateMemSet(
585          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
586          CGF.Builder.getInt8(0), StoreSizeVal);
587    }
588  }
589}
590
591void
592CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
593                                      AggValueSlot Dest) {
594  assert(!Dest.isIgnored() && "Must have a destination!");
595  const CXXConstructorDecl *CD = E->getConstructor();
596
597  // If we require zero initialization before (or instead of) calling the
598  // constructor, as can be the case with a non-user-provided default
599  // constructor, emit the zero initialization now, unless destination is
600  // already zeroed.
601  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
602    switch (E->getConstructionKind()) {
603    case CXXConstructionKind::Delegating:
604    case CXXConstructionKind::Complete:
605      EmitNullInitialization(Dest.getAddress(), E->getType());
606      break;
607    case CXXConstructionKind::VirtualBase:
608    case CXXConstructionKind::NonVirtualBase:
609      EmitNullBaseClassInitialization(*this, Dest.getAddress(),
610                                      CD->getParent());
611      break;
612    }
613  }
614
615  // If this is a call to a trivial default constructor, do nothing.
616  if (CD->isTrivial() && CD->isDefaultConstructor())
617    return;
618
619  // Elide the constructor if we're constructing from a temporary.
620  if (getLangOpts().ElideConstructors && E->isElidable()) {
621    // FIXME: This only handles the simplest case, where the source object
622    //        is passed directly as the first argument to the constructor.
623    //        This should also handle stepping though implicit casts and
624    //        conversion sequences which involve two steps, with a
625    //        conversion operator followed by a converting constructor.
626    const Expr *SrcObj = E->getArg(0);
627    assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
628    assert(
629        getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
630    EmitAggExpr(SrcObj, Dest);
631    return;
632  }
633
634  if (const ArrayType *arrayType
635        = getContext().getAsArrayType(E->getType())) {
636    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
637                               Dest.isSanitizerChecked());
638  } else {
639    CXXCtorType Type = Ctor_Complete;
640    bool ForVirtualBase = false;
641    bool Delegating = false;
642
643    switch (E->getConstructionKind()) {
644    case CXXConstructionKind::Delegating:
645      // We should be emitting a constructor; GlobalDecl will assert this
646      Type = CurGD.getCtorType();
647      Delegating = true;
648      break;
649
650    case CXXConstructionKind::Complete:
651      Type = Ctor_Complete;
652      break;
653
654    case CXXConstructionKind::VirtualBase:
655      ForVirtualBase = true;
656      [[fallthrough]];
657
658    case CXXConstructionKind::NonVirtualBase:
659      Type = Ctor_Base;
660     }
661
662     // Call the constructor.
663     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
664  }
665}
666
667void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
668                                                 const Expr *Exp) {
669  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
670    Exp = E->getSubExpr();
671  assert(isa<CXXConstructExpr>(Exp) &&
672         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
673  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
674  const CXXConstructorDecl *CD = E->getConstructor();
675  RunCleanupsScope Scope(*this);
676
677  // If we require zero initialization before (or instead of) calling the
678  // constructor, as can be the case with a non-user-provided default
679  // constructor, emit the zero initialization now.
680  // FIXME. Do I still need this for a copy ctor synthesis?
681  if (E->requiresZeroInitialization())
682    EmitNullInitialization(Dest, E->getType());
683
684  assert(!getContext().getAsConstantArrayType(E->getType())
685         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
686  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
687}
688
689static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
690                                        const CXXNewExpr *E) {
691  if (!E->isArray())
692    return CharUnits::Zero();
693
694  // No cookie is required if the operator new[] being used is the
695  // reserved placement operator new[].
696  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
697    return CharUnits::Zero();
698
699  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
700}
701
702static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
703                                        const CXXNewExpr *e,
704                                        unsigned minElements,
705                                        llvm::Value *&numElements,
706                                        llvm::Value *&sizeWithoutCookie) {
707  QualType type = e->getAllocatedType();
708
709  if (!e->isArray()) {
710    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
711    sizeWithoutCookie
712      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
713    return sizeWithoutCookie;
714  }
715
716  // The width of size_t.
717  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
718
719  // Figure out the cookie size.
720  llvm::APInt cookieSize(sizeWidth,
721                         CalculateCookiePadding(CGF, e).getQuantity());
722
723  // Emit the array size expression.
724  // We multiply the size of all dimensions for NumElements.
725  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
726  numElements =
727    ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
728  if (!numElements)
729    numElements = CGF.EmitScalarExpr(*e->getArraySize());
730  assert(isa<llvm::IntegerType>(numElements->getType()));
731
732  // The number of elements can be have an arbitrary integer type;
733  // essentially, we need to multiply it by a constant factor, add a
734  // cookie size, and verify that the result is representable as a
735  // size_t.  That's just a gloss, though, and it's wrong in one
736  // important way: if the count is negative, it's an error even if
737  // the cookie size would bring the total size >= 0.
738  bool isSigned
739    = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
740  llvm::IntegerType *numElementsType
741    = cast<llvm::IntegerType>(numElements->getType());
742  unsigned numElementsWidth = numElementsType->getBitWidth();
743
744  // Compute the constant factor.
745  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
746  while (const ConstantArrayType *CAT
747             = CGF.getContext().getAsConstantArrayType(type)) {
748    type = CAT->getElementType();
749    arraySizeMultiplier *= CAT->getSize();
750  }
751
752  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
753  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
754  typeSizeMultiplier *= arraySizeMultiplier;
755
756  // This will be a size_t.
757  llvm::Value *size;
758
759  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
760  // Don't bloat the -O0 code.
761  if (llvm::ConstantInt *numElementsC =
762        dyn_cast<llvm::ConstantInt>(numElements)) {
763    const llvm::APInt &count = numElementsC->getValue();
764
765    bool hasAnyOverflow = false;
766
767    // If 'count' was a negative number, it's an overflow.
768    if (isSigned && count.isNegative())
769      hasAnyOverflow = true;
770
771    // We want to do all this arithmetic in size_t.  If numElements is
772    // wider than that, check whether it's already too big, and if so,
773    // overflow.
774    else if (numElementsWidth > sizeWidth &&
775             numElementsWidth - sizeWidth > count.countl_zero())
776      hasAnyOverflow = true;
777
778    // Okay, compute a count at the right width.
779    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
780
781    // If there is a brace-initializer, we cannot allocate fewer elements than
782    // there are initializers. If we do, that's treated like an overflow.
783    if (adjustedCount.ult(minElements))
784      hasAnyOverflow = true;
785
786    // Scale numElements by that.  This might overflow, but we don't
787    // care because it only overflows if allocationSize does, too, and
788    // if that overflows then we shouldn't use this.
789    numElements = llvm::ConstantInt::get(CGF.SizeTy,
790                                         adjustedCount * arraySizeMultiplier);
791
792    // Compute the size before cookie, and track whether it overflowed.
793    bool overflow;
794    llvm::APInt allocationSize
795      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
796    hasAnyOverflow |= overflow;
797
798    // Add in the cookie, and check whether it's overflowed.
799    if (cookieSize != 0) {
800      // Save the current size without a cookie.  This shouldn't be
801      // used if there was overflow.
802      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
803
804      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
805      hasAnyOverflow |= overflow;
806    }
807
808    // On overflow, produce a -1 so operator new will fail.
809    if (hasAnyOverflow) {
810      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
811    } else {
812      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
813    }
814
815  // Otherwise, we might need to use the overflow intrinsics.
816  } else {
817    // There are up to five conditions we need to test for:
818    // 1) if isSigned, we need to check whether numElements is negative;
819    // 2) if numElementsWidth > sizeWidth, we need to check whether
820    //   numElements is larger than something representable in size_t;
821    // 3) if minElements > 0, we need to check whether numElements is smaller
822    //    than that.
823    // 4) we need to compute
824    //      sizeWithoutCookie := numElements * typeSizeMultiplier
825    //    and check whether it overflows; and
826    // 5) if we need a cookie, we need to compute
827    //      size := sizeWithoutCookie + cookieSize
828    //    and check whether it overflows.
829
830    llvm::Value *hasOverflow = nullptr;
831
832    // If numElementsWidth > sizeWidth, then one way or another, we're
833    // going to have to do a comparison for (2), and this happens to
834    // take care of (1), too.
835    if (numElementsWidth > sizeWidth) {
836      llvm::APInt threshold =
837          llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
838
839      llvm::Value *thresholdV
840        = llvm::ConstantInt::get(numElementsType, threshold);
841
842      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
843      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
844
845    // Otherwise, if we're signed, we want to sext up to size_t.
846    } else if (isSigned) {
847      if (numElementsWidth < sizeWidth)
848        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
849
850      // If there's a non-1 type size multiplier, then we can do the
851      // signedness check at the same time as we do the multiply
852      // because a negative number times anything will cause an
853      // unsigned overflow.  Otherwise, we have to do it here. But at least
854      // in this case, we can subsume the >= minElements check.
855      if (typeSizeMultiplier == 1)
856        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
857                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
858
859    // Otherwise, zext up to size_t if necessary.
860    } else if (numElementsWidth < sizeWidth) {
861      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
862    }
863
864    assert(numElements->getType() == CGF.SizeTy);
865
866    if (minElements) {
867      // Don't allow allocation of fewer elements than we have initializers.
868      if (!hasOverflow) {
869        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
870                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
871      } else if (numElementsWidth > sizeWidth) {
872        // The other existing overflow subsumes this check.
873        // We do an unsigned comparison, since any signed value < -1 is
874        // taken care of either above or below.
875        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
876                          CGF.Builder.CreateICmpULT(numElements,
877                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
878      }
879    }
880
881    size = numElements;
882
883    // Multiply by the type size if necessary.  This multiplier
884    // includes all the factors for nested arrays.
885    //
886    // This step also causes numElements to be scaled up by the
887    // nested-array factor if necessary.  Overflow on this computation
888    // can be ignored because the result shouldn't be used if
889    // allocation fails.
890    if (typeSizeMultiplier != 1) {
891      llvm::Function *umul_with_overflow
892        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
893
894      llvm::Value *tsmV =
895        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
896      llvm::Value *result =
897          CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
898
899      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
900      if (hasOverflow)
901        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
902      else
903        hasOverflow = overflowed;
904
905      size = CGF.Builder.CreateExtractValue(result, 0);
906
907      // Also scale up numElements by the array size multiplier.
908      if (arraySizeMultiplier != 1) {
909        // If the base element type size is 1, then we can re-use the
910        // multiply we just did.
911        if (typeSize.isOne()) {
912          assert(arraySizeMultiplier == typeSizeMultiplier);
913          numElements = size;
914
915        // Otherwise we need a separate multiply.
916        } else {
917          llvm::Value *asmV =
918            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
919          numElements = CGF.Builder.CreateMul(numElements, asmV);
920        }
921      }
922    } else {
923      // numElements doesn't need to be scaled.
924      assert(arraySizeMultiplier == 1);
925    }
926
927    // Add in the cookie size if necessary.
928    if (cookieSize != 0) {
929      sizeWithoutCookie = size;
930
931      llvm::Function *uadd_with_overflow
932        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
933
934      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
935      llvm::Value *result =
936          CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
937
938      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
939      if (hasOverflow)
940        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
941      else
942        hasOverflow = overflowed;
943
944      size = CGF.Builder.CreateExtractValue(result, 0);
945    }
946
947    // If we had any possibility of dynamic overflow, make a select to
948    // overwrite 'size' with an all-ones value, which should cause
949    // operator new to throw.
950    if (hasOverflow)
951      size = CGF.Builder.CreateSelect(hasOverflow,
952                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
953                                      size);
954  }
955
956  if (cookieSize == 0)
957    sizeWithoutCookie = size;
958  else
959    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
960
961  return size;
962}
963
964static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
965                                    QualType AllocType, Address NewPtr,
966                                    AggValueSlot::Overlap_t MayOverlap) {
967  // FIXME: Refactor with EmitExprAsInit.
968  switch (CGF.getEvaluationKind(AllocType)) {
969  case TEK_Scalar:
970    CGF.EmitScalarInit(Init, nullptr,
971                       CGF.MakeAddrLValue(NewPtr, AllocType), false);
972    return;
973  case TEK_Complex:
974    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
975                                  /*isInit*/ true);
976    return;
977  case TEK_Aggregate: {
978    AggValueSlot Slot
979      = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
980                              AggValueSlot::IsDestructed,
981                              AggValueSlot::DoesNotNeedGCBarriers,
982                              AggValueSlot::IsNotAliased,
983                              MayOverlap, AggValueSlot::IsNotZeroed,
984                              AggValueSlot::IsSanitizerChecked);
985    CGF.EmitAggExpr(Init, Slot);
986    return;
987  }
988  }
989  llvm_unreachable("bad evaluation kind");
990}
991
992void CodeGenFunction::EmitNewArrayInitializer(
993    const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
994    Address BeginPtr, llvm::Value *NumElements,
995    llvm::Value *AllocSizeWithoutCookie) {
996  // If we have a type with trivial initialization and no initializer,
997  // there's nothing to do.
998  if (!E->hasInitializer())
999    return;
1000
1001  Address CurPtr = BeginPtr;
1002
1003  unsigned InitListElements = 0;
1004
1005  const Expr *Init = E->getInitializer();
1006  Address EndOfInit = Address::invalid();
1007  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1008  EHScopeStack::stable_iterator Cleanup;
1009  llvm::Instruction *CleanupDominator = nullptr;
1010
1011  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1012  CharUnits ElementAlign =
1013    BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1014
1015  // Attempt to perform zero-initialization using memset.
1016  auto TryMemsetInitialization = [&]() -> bool {
1017    // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1018    // we can initialize with a memset to -1.
1019    if (!CGM.getTypes().isZeroInitializable(ElementType))
1020      return false;
1021
1022    // Optimization: since zero initialization will just set the memory
1023    // to all zeroes, generate a single memset to do it in one shot.
1024
1025    // Subtract out the size of any elements we've already initialized.
1026    auto *RemainingSize = AllocSizeWithoutCookie;
1027    if (InitListElements) {
1028      // We know this can't overflow; we check this when doing the allocation.
1029      auto *InitializedSize = llvm::ConstantInt::get(
1030          RemainingSize->getType(),
1031          getContext().getTypeSizeInChars(ElementType).getQuantity() *
1032              InitListElements);
1033      RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1034    }
1035
1036    // Create the memset.
1037    Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1038    return true;
1039  };
1040
1041  const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1042  const CXXParenListInitExpr *CPLIE = nullptr;
1043  const StringLiteral *SL = nullptr;
1044  const ObjCEncodeExpr *OCEE = nullptr;
1045  const Expr *IgnoreParen = nullptr;
1046  if (!ILE) {
1047    IgnoreParen = Init->IgnoreParenImpCasts();
1048    CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen);
1049    SL = dyn_cast<StringLiteral>(IgnoreParen);
1050    OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen);
1051  }
1052
1053  // If the initializer is an initializer list, first do the explicit elements.
1054  if (ILE || CPLIE || SL || OCEE) {
1055    // Initializing from a (braced) string literal is a special case; the init
1056    // list element does not initialize a (single) array element.
1057    if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1058      if (!ILE)
1059        Init = IgnoreParen;
1060      // Initialize the initial portion of length equal to that of the string
1061      // literal. The allocation must be for at least this much; we emitted a
1062      // check for that earlier.
1063      AggValueSlot Slot =
1064          AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1065                                AggValueSlot::IsDestructed,
1066                                AggValueSlot::DoesNotNeedGCBarriers,
1067                                AggValueSlot::IsNotAliased,
1068                                AggValueSlot::DoesNotOverlap,
1069                                AggValueSlot::IsNotZeroed,
1070                                AggValueSlot::IsSanitizerChecked);
1071      EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot);
1072
1073      // Move past these elements.
1074      InitListElements =
1075          cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1076              ->getSize()
1077              .getZExtValue();
1078      CurPtr = Builder.CreateConstInBoundsGEP(
1079          CurPtr, InitListElements, "string.init.end");
1080
1081      // Zero out the rest, if any remain.
1082      llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1083      if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1084        bool OK = TryMemsetInitialization();
1085        (void)OK;
1086        assert(OK && "couldn't memset character type?");
1087      }
1088      return;
1089    }
1090
1091    ArrayRef<const Expr *> InitExprs =
1092        ILE ? ILE->inits() : CPLIE->getInitExprs();
1093    InitListElements = InitExprs.size();
1094
1095    // If this is a multi-dimensional array new, we will initialize multiple
1096    // elements with each init list element.
1097    QualType AllocType = E->getAllocatedType();
1098    if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1099            AllocType->getAsArrayTypeUnsafe())) {
1100      ElementTy = ConvertTypeForMem(AllocType);
1101      CurPtr = CurPtr.withElementType(ElementTy);
1102      InitListElements *= getContext().getConstantArrayElementCount(CAT);
1103    }
1104
1105    // Enter a partial-destruction Cleanup if necessary.
1106    if (needsEHCleanup(DtorKind)) {
1107      // In principle we could tell the Cleanup where we are more
1108      // directly, but the control flow can get so varied here that it
1109      // would actually be quite complex.  Therefore we go through an
1110      // alloca.
1111      EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1112                                   "array.init.end");
1113      CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1114      pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1115                                       ElementType, ElementAlign,
1116                                       getDestroyer(DtorKind));
1117      Cleanup = EHStack.stable_begin();
1118    }
1119
1120    CharUnits StartAlign = CurPtr.getAlignment();
1121    unsigned i = 0;
1122    for (const Expr *IE : InitExprs) {
1123      // Tell the cleanup that it needs to destroy up to this
1124      // element.  TODO: some of these stores can be trivially
1125      // observed to be unnecessary.
1126      if (EndOfInit.isValid()) {
1127        Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1128      }
1129      // FIXME: If the last initializer is an incomplete initializer list for
1130      // an array, and we have an array filler, we can fold together the two
1131      // initialization loops.
1132      StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr,
1133                              AggValueSlot::DoesNotOverlap);
1134      CurPtr = Address(Builder.CreateInBoundsGEP(
1135                           CurPtr.getElementType(), CurPtr.getPointer(),
1136                           Builder.getSize(1), "array.exp.next"),
1137                       CurPtr.getElementType(),
1138                       StartAlign.alignmentAtOffset((++i) * ElementSize));
1139    }
1140
1141    // The remaining elements are filled with the array filler expression.
1142    Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1143
1144    // Extract the initializer for the individual array elements by pulling
1145    // out the array filler from all the nested initializer lists. This avoids
1146    // generating a nested loop for the initialization.
1147    while (Init && Init->getType()->isConstantArrayType()) {
1148      auto *SubILE = dyn_cast<InitListExpr>(Init);
1149      if (!SubILE)
1150        break;
1151      assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1152      Init = SubILE->getArrayFiller();
1153    }
1154
1155    // Switch back to initializing one base element at a time.
1156    CurPtr = CurPtr.withElementType(BeginPtr.getElementType());
1157  }
1158
1159  // If all elements have already been initialized, skip any further
1160  // initialization.
1161  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1162  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1163    // If there was a Cleanup, deactivate it.
1164    if (CleanupDominator)
1165      DeactivateCleanupBlock(Cleanup, CleanupDominator);
1166    return;
1167  }
1168
1169  assert(Init && "have trailing elements to initialize but no initializer");
1170
1171  // If this is a constructor call, try to optimize it out, and failing that
1172  // emit a single loop to initialize all remaining elements.
1173  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1174    CXXConstructorDecl *Ctor = CCE->getConstructor();
1175    if (Ctor->isTrivial()) {
1176      // If new expression did not specify value-initialization, then there
1177      // is no initialization.
1178      if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1179        return;
1180
1181      if (TryMemsetInitialization())
1182        return;
1183    }
1184
1185    // Store the new Cleanup position for irregular Cleanups.
1186    //
1187    // FIXME: Share this cleanup with the constructor call emission rather than
1188    // having it create a cleanup of its own.
1189    if (EndOfInit.isValid())
1190      Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1191
1192    // Emit a constructor call loop to initialize the remaining elements.
1193    if (InitListElements)
1194      NumElements = Builder.CreateSub(
1195          NumElements,
1196          llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1197    EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1198                               /*NewPointerIsChecked*/true,
1199                               CCE->requiresZeroInitialization());
1200    return;
1201  }
1202
1203  // If this is value-initialization, we can usually use memset.
1204  ImplicitValueInitExpr IVIE(ElementType);
1205  if (isa<ImplicitValueInitExpr>(Init)) {
1206    if (TryMemsetInitialization())
1207      return;
1208
1209    // Switch to an ImplicitValueInitExpr for the element type. This handles
1210    // only one case: multidimensional array new of pointers to members. In
1211    // all other cases, we already have an initializer for the array element.
1212    Init = &IVIE;
1213  }
1214
1215  // At this point we should have found an initializer for the individual
1216  // elements of the array.
1217  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1218         "got wrong type of element to initialize");
1219
1220  // If we have an empty initializer list, we can usually use memset.
1221  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1222    if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1223      return;
1224
1225  // If we have a struct whose every field is value-initialized, we can
1226  // usually use memset.
1227  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1228    if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1229      if (RType->getDecl()->isStruct()) {
1230        unsigned NumElements = 0;
1231        if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1232          NumElements = CXXRD->getNumBases();
1233        for (auto *Field : RType->getDecl()->fields())
1234          if (!Field->isUnnamedBitfield())
1235            ++NumElements;
1236        // FIXME: Recurse into nested InitListExprs.
1237        if (ILE->getNumInits() == NumElements)
1238          for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1239            if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1240              --NumElements;
1241        if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1242          return;
1243      }
1244    }
1245  }
1246
1247  // Create the loop blocks.
1248  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1249  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1250  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1251
1252  // Find the end of the array, hoisted out of the loop.
1253  llvm::Value *EndPtr =
1254    Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1255                              NumElements, "array.end");
1256
1257  // If the number of elements isn't constant, we have to now check if there is
1258  // anything left to initialize.
1259  if (!ConstNum) {
1260    llvm::Value *IsEmpty =
1261      Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1262    Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1263  }
1264
1265  // Enter the loop.
1266  EmitBlock(LoopBB);
1267
1268  // Set up the current-element phi.
1269  llvm::PHINode *CurPtrPhi =
1270      Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1271  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1272
1273  CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1274
1275  // Store the new Cleanup position for irregular Cleanups.
1276  if (EndOfInit.isValid())
1277    Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1278
1279  // Enter a partial-destruction Cleanup if necessary.
1280  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1281    pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1282                                   ElementType, ElementAlign,
1283                                   getDestroyer(DtorKind));
1284    Cleanup = EHStack.stable_begin();
1285    CleanupDominator = Builder.CreateUnreachable();
1286  }
1287
1288  // Emit the initializer into this element.
1289  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1290                          AggValueSlot::DoesNotOverlap);
1291
1292  // Leave the Cleanup if we entered one.
1293  if (CleanupDominator) {
1294    DeactivateCleanupBlock(Cleanup, CleanupDominator);
1295    CleanupDominator->eraseFromParent();
1296  }
1297
1298  // Advance to the next element by adjusting the pointer type as necessary.
1299  llvm::Value *NextPtr =
1300    Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1301                                       "array.next");
1302
1303  // Check whether we've gotten to the end of the array and, if so,
1304  // exit the loop.
1305  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1306  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1307  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1308
1309  EmitBlock(ContBB);
1310}
1311
1312static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1313                               QualType ElementType, llvm::Type *ElementTy,
1314                               Address NewPtr, llvm::Value *NumElements,
1315                               llvm::Value *AllocSizeWithoutCookie) {
1316  ApplyDebugLocation DL(CGF, E);
1317  if (E->isArray())
1318    CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1319                                AllocSizeWithoutCookie);
1320  else if (const Expr *Init = E->getInitializer())
1321    StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1322                            AggValueSlot::DoesNotOverlap);
1323}
1324
1325/// Emit a call to an operator new or operator delete function, as implicitly
1326/// created by new-expressions and delete-expressions.
1327static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1328                                const FunctionDecl *CalleeDecl,
1329                                const FunctionProtoType *CalleeType,
1330                                const CallArgList &Args) {
1331  llvm::CallBase *CallOrInvoke;
1332  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1333  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1334  RValue RV =
1335      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1336                       Args, CalleeType, /*ChainCall=*/false),
1337                   Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1338
1339  /// C++1y [expr.new]p10:
1340  ///   [In a new-expression,] an implementation is allowed to omit a call
1341  ///   to a replaceable global allocation function.
1342  ///
1343  /// We model such elidable calls with the 'builtin' attribute.
1344  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1345  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1346      Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1347    CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1348  }
1349
1350  return RV;
1351}
1352
1353RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1354                                                 const CallExpr *TheCall,
1355                                                 bool IsDelete) {
1356  CallArgList Args;
1357  EmitCallArgs(Args, Type, TheCall->arguments());
1358  // Find the allocation or deallocation function that we're calling.
1359  ASTContext &Ctx = getContext();
1360  DeclarationName Name = Ctx.DeclarationNames
1361      .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1362
1363  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1364    if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1365      if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1366        return EmitNewDeleteCall(*this, FD, Type, Args);
1367  llvm_unreachable("predeclared global operator new/delete is missing");
1368}
1369
1370namespace {
1371/// The parameters to pass to a usual operator delete.
1372struct UsualDeleteParams {
1373  bool DestroyingDelete = false;
1374  bool Size = false;
1375  bool Alignment = false;
1376};
1377}
1378
1379static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1380  UsualDeleteParams Params;
1381
1382  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1383  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1384
1385  // The first argument is always a void*.
1386  ++AI;
1387
1388  // The next parameter may be a std::destroying_delete_t.
1389  if (FD->isDestroyingOperatorDelete()) {
1390    Params.DestroyingDelete = true;
1391    assert(AI != AE);
1392    ++AI;
1393  }
1394
1395  // Figure out what other parameters we should be implicitly passing.
1396  if (AI != AE && (*AI)->isIntegerType()) {
1397    Params.Size = true;
1398    ++AI;
1399  }
1400
1401  if (AI != AE && (*AI)->isAlignValT()) {
1402    Params.Alignment = true;
1403    ++AI;
1404  }
1405
1406  assert(AI == AE && "unexpected usual deallocation function parameter");
1407  return Params;
1408}
1409
1410namespace {
1411  /// A cleanup to call the given 'operator delete' function upon abnormal
1412  /// exit from a new expression. Templated on a traits type that deals with
1413  /// ensuring that the arguments dominate the cleanup if necessary.
1414  template<typename Traits>
1415  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1416    /// Type used to hold llvm::Value*s.
1417    typedef typename Traits::ValueTy ValueTy;
1418    /// Type used to hold RValues.
1419    typedef typename Traits::RValueTy RValueTy;
1420    struct PlacementArg {
1421      RValueTy ArgValue;
1422      QualType ArgType;
1423    };
1424
1425    unsigned NumPlacementArgs : 31;
1426    unsigned PassAlignmentToPlacementDelete : 1;
1427    const FunctionDecl *OperatorDelete;
1428    ValueTy Ptr;
1429    ValueTy AllocSize;
1430    CharUnits AllocAlign;
1431
1432    PlacementArg *getPlacementArgs() {
1433      return reinterpret_cast<PlacementArg *>(this + 1);
1434    }
1435
1436  public:
1437    static size_t getExtraSize(size_t NumPlacementArgs) {
1438      return NumPlacementArgs * sizeof(PlacementArg);
1439    }
1440
1441    CallDeleteDuringNew(size_t NumPlacementArgs,
1442                        const FunctionDecl *OperatorDelete, ValueTy Ptr,
1443                        ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1444                        CharUnits AllocAlign)
1445      : NumPlacementArgs(NumPlacementArgs),
1446        PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1447        OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1448        AllocAlign(AllocAlign) {}
1449
1450    void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1451      assert(I < NumPlacementArgs && "index out of range");
1452      getPlacementArgs()[I] = {Arg, Type};
1453    }
1454
1455    void Emit(CodeGenFunction &CGF, Flags flags) override {
1456      const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1457      CallArgList DeleteArgs;
1458
1459      // The first argument is always a void* (or C* for a destroying operator
1460      // delete for class type C).
1461      DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1462
1463      // Figure out what other parameters we should be implicitly passing.
1464      UsualDeleteParams Params;
1465      if (NumPlacementArgs) {
1466        // A placement deallocation function is implicitly passed an alignment
1467        // if the placement allocation function was, but is never passed a size.
1468        Params.Alignment = PassAlignmentToPlacementDelete;
1469      } else {
1470        // For a non-placement new-expression, 'operator delete' can take a
1471        // size and/or an alignment if it has the right parameters.
1472        Params = getUsualDeleteParams(OperatorDelete);
1473      }
1474
1475      assert(!Params.DestroyingDelete &&
1476             "should not call destroying delete in a new-expression");
1477
1478      // The second argument can be a std::size_t (for non-placement delete).
1479      if (Params.Size)
1480        DeleteArgs.add(Traits::get(CGF, AllocSize),
1481                       CGF.getContext().getSizeType());
1482
1483      // The next (second or third) argument can be a std::align_val_t, which
1484      // is an enum whose underlying type is std::size_t.
1485      // FIXME: Use the right type as the parameter type. Note that in a call
1486      // to operator delete(size_t, ...), we may not have it available.
1487      if (Params.Alignment)
1488        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1489                           CGF.SizeTy, AllocAlign.getQuantity())),
1490                       CGF.getContext().getSizeType());
1491
1492      // Pass the rest of the arguments, which must match exactly.
1493      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1494        auto Arg = getPlacementArgs()[I];
1495        DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1496      }
1497
1498      // Call 'operator delete'.
1499      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1500    }
1501  };
1502}
1503
1504/// Enter a cleanup to call 'operator delete' if the initializer in a
1505/// new-expression throws.
1506static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1507                                  const CXXNewExpr *E,
1508                                  Address NewPtr,
1509                                  llvm::Value *AllocSize,
1510                                  CharUnits AllocAlign,
1511                                  const CallArgList &NewArgs) {
1512  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1513
1514  // If we're not inside a conditional branch, then the cleanup will
1515  // dominate and we can do the easier (and more efficient) thing.
1516  if (!CGF.isInConditionalBranch()) {
1517    struct DirectCleanupTraits {
1518      typedef llvm::Value *ValueTy;
1519      typedef RValue RValueTy;
1520      static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1521      static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1522    };
1523
1524    typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1525
1526    DirectCleanup *Cleanup = CGF.EHStack
1527      .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1528                                           E->getNumPlacementArgs(),
1529                                           E->getOperatorDelete(),
1530                                           NewPtr.getPointer(),
1531                                           AllocSize,
1532                                           E->passAlignment(),
1533                                           AllocAlign);
1534    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1535      auto &Arg = NewArgs[I + NumNonPlacementArgs];
1536      Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1537    }
1538
1539    return;
1540  }
1541
1542  // Otherwise, we need to save all this stuff.
1543  DominatingValue<RValue>::saved_type SavedNewPtr =
1544    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1545  DominatingValue<RValue>::saved_type SavedAllocSize =
1546    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1547
1548  struct ConditionalCleanupTraits {
1549    typedef DominatingValue<RValue>::saved_type ValueTy;
1550    typedef DominatingValue<RValue>::saved_type RValueTy;
1551    static RValue get(CodeGenFunction &CGF, ValueTy V) {
1552      return V.restore(CGF);
1553    }
1554  };
1555  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1556
1557  ConditionalCleanup *Cleanup = CGF.EHStack
1558    .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1559                                              E->getNumPlacementArgs(),
1560                                              E->getOperatorDelete(),
1561                                              SavedNewPtr,
1562                                              SavedAllocSize,
1563                                              E->passAlignment(),
1564                                              AllocAlign);
1565  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1566    auto &Arg = NewArgs[I + NumNonPlacementArgs];
1567    Cleanup->setPlacementArg(
1568        I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1569  }
1570
1571  CGF.initFullExprCleanup();
1572}
1573
1574llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1575  // The element type being allocated.
1576  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1577
1578  // 1. Build a call to the allocation function.
1579  FunctionDecl *allocator = E->getOperatorNew();
1580
1581  // If there is a brace-initializer or C++20 parenthesized initializer, cannot
1582  // allocate fewer elements than inits.
1583  unsigned minElements = 0;
1584  if (E->isArray() && E->hasInitializer()) {
1585    const Expr *Init = E->getInitializer();
1586    const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1587    const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init);
1588    const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1589    if ((ILE && ILE->isStringLiteralInit()) ||
1590        isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) {
1591      minElements =
1592          cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1593              ->getSize()
1594              .getZExtValue();
1595    } else if (ILE || CPLIE) {
1596      minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1597    }
1598  }
1599
1600  llvm::Value *numElements = nullptr;
1601  llvm::Value *allocSizeWithoutCookie = nullptr;
1602  llvm::Value *allocSize =
1603    EmitCXXNewAllocSize(*this, E, minElements, numElements,
1604                        allocSizeWithoutCookie);
1605  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1606
1607  // Emit the allocation call.  If the allocator is a global placement
1608  // operator, just "inline" it directly.
1609  Address allocation = Address::invalid();
1610  CallArgList allocatorArgs;
1611  if (allocator->isReservedGlobalPlacementOperator()) {
1612    assert(E->getNumPlacementArgs() == 1);
1613    const Expr *arg = *E->placement_arguments().begin();
1614
1615    LValueBaseInfo BaseInfo;
1616    allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1617
1618    // The pointer expression will, in many cases, be an opaque void*.
1619    // In these cases, discard the computed alignment and use the
1620    // formal alignment of the allocated type.
1621    if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1622      allocation = allocation.withAlignment(allocAlign);
1623
1624    // Set up allocatorArgs for the call to operator delete if it's not
1625    // the reserved global operator.
1626    if (E->getOperatorDelete() &&
1627        !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1628      allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1629      allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1630    }
1631
1632  } else {
1633    const FunctionProtoType *allocatorType =
1634      allocator->getType()->castAs<FunctionProtoType>();
1635    unsigned ParamsToSkip = 0;
1636
1637    // The allocation size is the first argument.
1638    QualType sizeType = getContext().getSizeType();
1639    allocatorArgs.add(RValue::get(allocSize), sizeType);
1640    ++ParamsToSkip;
1641
1642    if (allocSize != allocSizeWithoutCookie) {
1643      CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1644      allocAlign = std::max(allocAlign, cookieAlign);
1645    }
1646
1647    // The allocation alignment may be passed as the second argument.
1648    if (E->passAlignment()) {
1649      QualType AlignValT = sizeType;
1650      if (allocatorType->getNumParams() > 1) {
1651        AlignValT = allocatorType->getParamType(1);
1652        assert(getContext().hasSameUnqualifiedType(
1653                   AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1654                   sizeType) &&
1655               "wrong type for alignment parameter");
1656        ++ParamsToSkip;
1657      } else {
1658        // Corner case, passing alignment to 'operator new(size_t, ...)'.
1659        assert(allocator->isVariadic() && "can't pass alignment to allocator");
1660      }
1661      allocatorArgs.add(
1662          RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1663          AlignValT);
1664    }
1665
1666    // FIXME: Why do we not pass a CalleeDecl here?
1667    EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1668                 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1669
1670    RValue RV =
1671      EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1672
1673    // Set !heapallocsite metadata on the call to operator new.
1674    if (getDebugInfo())
1675      if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1676        getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1677                                                 E->getExprLoc());
1678
1679    // If this was a call to a global replaceable allocation function that does
1680    // not take an alignment argument, the allocator is known to produce
1681    // storage that's suitably aligned for any object that fits, up to a known
1682    // threshold. Otherwise assume it's suitably aligned for the allocated type.
1683    CharUnits allocationAlign = allocAlign;
1684    if (!E->passAlignment() &&
1685        allocator->isReplaceableGlobalAllocationFunction()) {
1686      unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1687          Target.getNewAlign(), getContext().getTypeSize(allocType)));
1688      allocationAlign = std::max(
1689          allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1690    }
1691
1692    allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1693  }
1694
1695  // Emit a null check on the allocation result if the allocation
1696  // function is allowed to return null (because it has a non-throwing
1697  // exception spec or is the reserved placement new) and we have an
1698  // interesting initializer will be running sanitizers on the initialization.
1699  bool nullCheck = E->shouldNullCheckAllocation() &&
1700                   (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1701                    sanitizePerformTypeCheck());
1702
1703  llvm::BasicBlock *nullCheckBB = nullptr;
1704  llvm::BasicBlock *contBB = nullptr;
1705
1706  // The null-check means that the initializer is conditionally
1707  // evaluated.
1708  ConditionalEvaluation conditional(*this);
1709
1710  if (nullCheck) {
1711    conditional.begin(*this);
1712
1713    nullCheckBB = Builder.GetInsertBlock();
1714    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1715    contBB = createBasicBlock("new.cont");
1716
1717    llvm::Value *isNull =
1718      Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1719    Builder.CreateCondBr(isNull, contBB, notNullBB);
1720    EmitBlock(notNullBB);
1721  }
1722
1723  // If there's an operator delete, enter a cleanup to call it if an
1724  // exception is thrown.
1725  EHScopeStack::stable_iterator operatorDeleteCleanup;
1726  llvm::Instruction *cleanupDominator = nullptr;
1727  if (E->getOperatorDelete() &&
1728      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1729    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1730                          allocatorArgs);
1731    operatorDeleteCleanup = EHStack.stable_begin();
1732    cleanupDominator = Builder.CreateUnreachable();
1733  }
1734
1735  assert((allocSize == allocSizeWithoutCookie) ==
1736         CalculateCookiePadding(*this, E).isZero());
1737  if (allocSize != allocSizeWithoutCookie) {
1738    assert(E->isArray());
1739    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1740                                                       numElements,
1741                                                       E, allocType);
1742  }
1743
1744  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1745  Address result = allocation.withElementType(elementTy);
1746
1747  // Passing pointer through launder.invariant.group to avoid propagation of
1748  // vptrs information which may be included in previous type.
1749  // To not break LTO with different optimizations levels, we do it regardless
1750  // of optimization level.
1751  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1752      allocator->isReservedGlobalPlacementOperator())
1753    result = Builder.CreateLaunderInvariantGroup(result);
1754
1755  // Emit sanitizer checks for pointer value now, so that in the case of an
1756  // array it was checked only once and not at each constructor call. We may
1757  // have already checked that the pointer is non-null.
1758  // FIXME: If we have an array cookie and a potentially-throwing allocator,
1759  // we'll null check the wrong pointer here.
1760  SanitizerSet SkippedChecks;
1761  SkippedChecks.set(SanitizerKind::Null, nullCheck);
1762  EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1763                E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1764                result.getPointer(), allocType, result.getAlignment(),
1765                SkippedChecks, numElements);
1766
1767  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1768                     allocSizeWithoutCookie);
1769  llvm::Value *resultPtr = result.getPointer();
1770  if (E->isArray()) {
1771    // NewPtr is a pointer to the base element type.  If we're
1772    // allocating an array of arrays, we'll need to cast back to the
1773    // array pointer type.
1774    llvm::Type *resultType = ConvertTypeForMem(E->getType());
1775    if (resultPtr->getType() != resultType)
1776      resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1777  }
1778
1779  // Deactivate the 'operator delete' cleanup if we finished
1780  // initialization.
1781  if (operatorDeleteCleanup.isValid()) {
1782    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1783    cleanupDominator->eraseFromParent();
1784  }
1785
1786  if (nullCheck) {
1787    conditional.end(*this);
1788
1789    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1790    EmitBlock(contBB);
1791
1792    llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1793    PHI->addIncoming(resultPtr, notNullBB);
1794    PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1795                     nullCheckBB);
1796
1797    resultPtr = PHI;
1798  }
1799
1800  return resultPtr;
1801}
1802
1803void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1804                                     llvm::Value *Ptr, QualType DeleteTy,
1805                                     llvm::Value *NumElements,
1806                                     CharUnits CookieSize) {
1807  assert((!NumElements && CookieSize.isZero()) ||
1808         DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1809
1810  const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1811  CallArgList DeleteArgs;
1812
1813  auto Params = getUsualDeleteParams(DeleteFD);
1814  auto ParamTypeIt = DeleteFTy->param_type_begin();
1815
1816  // Pass the pointer itself.
1817  QualType ArgTy = *ParamTypeIt++;
1818  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1819  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1820
1821  // Pass the std::destroying_delete tag if present.
1822  llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1823  if (Params.DestroyingDelete) {
1824    QualType DDTag = *ParamTypeIt++;
1825    llvm::Type *Ty = getTypes().ConvertType(DDTag);
1826    CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1827    DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1828    DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1829    DeleteArgs.add(
1830        RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1831  }
1832
1833  // Pass the size if the delete function has a size_t parameter.
1834  if (Params.Size) {
1835    QualType SizeType = *ParamTypeIt++;
1836    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1837    llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1838                                               DeleteTypeSize.getQuantity());
1839
1840    // For array new, multiply by the number of elements.
1841    if (NumElements)
1842      Size = Builder.CreateMul(Size, NumElements);
1843
1844    // If there is a cookie, add the cookie size.
1845    if (!CookieSize.isZero())
1846      Size = Builder.CreateAdd(
1847          Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1848
1849    DeleteArgs.add(RValue::get(Size), SizeType);
1850  }
1851
1852  // Pass the alignment if the delete function has an align_val_t parameter.
1853  if (Params.Alignment) {
1854    QualType AlignValType = *ParamTypeIt++;
1855    CharUnits DeleteTypeAlign =
1856        getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1857            DeleteTy, true /* NeedsPreferredAlignment */));
1858    llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1859                                                DeleteTypeAlign.getQuantity());
1860    DeleteArgs.add(RValue::get(Align), AlignValType);
1861  }
1862
1863  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1864         "unknown parameter to usual delete function");
1865
1866  // Emit the call to delete.
1867  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1868
1869  // If call argument lowering didn't use the destroying_delete_t alloca,
1870  // remove it again.
1871  if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1872    DestroyingDeleteTag->eraseFromParent();
1873}
1874
1875namespace {
1876  /// Calls the given 'operator delete' on a single object.
1877  struct CallObjectDelete final : EHScopeStack::Cleanup {
1878    llvm::Value *Ptr;
1879    const FunctionDecl *OperatorDelete;
1880    QualType ElementType;
1881
1882    CallObjectDelete(llvm::Value *Ptr,
1883                     const FunctionDecl *OperatorDelete,
1884                     QualType ElementType)
1885      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1886
1887    void Emit(CodeGenFunction &CGF, Flags flags) override {
1888      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1889    }
1890  };
1891}
1892
1893void
1894CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1895                                             llvm::Value *CompletePtr,
1896                                             QualType ElementType) {
1897  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1898                                        OperatorDelete, ElementType);
1899}
1900
1901/// Emit the code for deleting a single object with a destroying operator
1902/// delete. If the element type has a non-virtual destructor, Ptr has already
1903/// been converted to the type of the parameter of 'operator delete'. Otherwise
1904/// Ptr points to an object of the static type.
1905static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1906                                       const CXXDeleteExpr *DE, Address Ptr,
1907                                       QualType ElementType) {
1908  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1909  if (Dtor && Dtor->isVirtual())
1910    CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1911                                                Dtor);
1912  else
1913    CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1914}
1915
1916/// Emit the code for deleting a single object.
1917/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1918/// if not.
1919static bool EmitObjectDelete(CodeGenFunction &CGF,
1920                             const CXXDeleteExpr *DE,
1921                             Address Ptr,
1922                             QualType ElementType,
1923                             llvm::BasicBlock *UnconditionalDeleteBlock) {
1924  // C++11 [expr.delete]p3:
1925  //   If the static type of the object to be deleted is different from its
1926  //   dynamic type, the static type shall be a base class of the dynamic type
1927  //   of the object to be deleted and the static type shall have a virtual
1928  //   destructor or the behavior is undefined.
1929  CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1930                    DE->getExprLoc(), Ptr.getPointer(),
1931                    ElementType);
1932
1933  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1934  assert(!OperatorDelete->isDestroyingOperatorDelete());
1935
1936  // Find the destructor for the type, if applicable.  If the
1937  // destructor is virtual, we'll just emit the vcall and return.
1938  const CXXDestructorDecl *Dtor = nullptr;
1939  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1940    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1941    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1942      Dtor = RD->getDestructor();
1943
1944      if (Dtor->isVirtual()) {
1945        bool UseVirtualCall = true;
1946        const Expr *Base = DE->getArgument();
1947        if (auto *DevirtualizedDtor =
1948                dyn_cast_or_null<const CXXDestructorDecl>(
1949                    Dtor->getDevirtualizedMethod(
1950                        Base, CGF.CGM.getLangOpts().AppleKext))) {
1951          UseVirtualCall = false;
1952          const CXXRecordDecl *DevirtualizedClass =
1953              DevirtualizedDtor->getParent();
1954          if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1955            // Devirtualized to the class of the base type (the type of the
1956            // whole expression).
1957            Dtor = DevirtualizedDtor;
1958          } else {
1959            // Devirtualized to some other type. Would need to cast the this
1960            // pointer to that type but we don't have support for that yet, so
1961            // do a virtual call. FIXME: handle the case where it is
1962            // devirtualized to the derived type (the type of the inner
1963            // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1964            UseVirtualCall = true;
1965          }
1966        }
1967        if (UseVirtualCall) {
1968          CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1969                                                      Dtor);
1970          return false;
1971        }
1972      }
1973    }
1974  }
1975
1976  // Make sure that we call delete even if the dtor throws.
1977  // This doesn't have to a conditional cleanup because we're going
1978  // to pop it off in a second.
1979  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1980                                            Ptr.getPointer(),
1981                                            OperatorDelete, ElementType);
1982
1983  if (Dtor)
1984    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1985                              /*ForVirtualBase=*/false,
1986                              /*Delegating=*/false,
1987                              Ptr, ElementType);
1988  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1989    switch (Lifetime) {
1990    case Qualifiers::OCL_None:
1991    case Qualifiers::OCL_ExplicitNone:
1992    case Qualifiers::OCL_Autoreleasing:
1993      break;
1994
1995    case Qualifiers::OCL_Strong:
1996      CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1997      break;
1998
1999    case Qualifiers::OCL_Weak:
2000      CGF.EmitARCDestroyWeak(Ptr);
2001      break;
2002    }
2003  }
2004
2005  // When optimizing for size, call 'operator delete' unconditionally.
2006  if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2007    CGF.EmitBlock(UnconditionalDeleteBlock);
2008    CGF.PopCleanupBlock();
2009    return true;
2010  }
2011
2012  CGF.PopCleanupBlock();
2013  return false;
2014}
2015
2016namespace {
2017  /// Calls the given 'operator delete' on an array of objects.
2018  struct CallArrayDelete final : EHScopeStack::Cleanup {
2019    llvm::Value *Ptr;
2020    const FunctionDecl *OperatorDelete;
2021    llvm::Value *NumElements;
2022    QualType ElementType;
2023    CharUnits CookieSize;
2024
2025    CallArrayDelete(llvm::Value *Ptr,
2026                    const FunctionDecl *OperatorDelete,
2027                    llvm::Value *NumElements,
2028                    QualType ElementType,
2029                    CharUnits CookieSize)
2030      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2031        ElementType(ElementType), CookieSize(CookieSize) {}
2032
2033    void Emit(CodeGenFunction &CGF, Flags flags) override {
2034      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2035                         CookieSize);
2036    }
2037  };
2038}
2039
2040/// Emit the code for deleting an array of objects.
2041static void EmitArrayDelete(CodeGenFunction &CGF,
2042                            const CXXDeleteExpr *E,
2043                            Address deletedPtr,
2044                            QualType elementType) {
2045  llvm::Value *numElements = nullptr;
2046  llvm::Value *allocatedPtr = nullptr;
2047  CharUnits cookieSize;
2048  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2049                                      numElements, allocatedPtr, cookieSize);
2050
2051  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2052
2053  // Make sure that we call delete even if one of the dtors throws.
2054  const FunctionDecl *operatorDelete = E->getOperatorDelete();
2055  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2056                                           allocatedPtr, operatorDelete,
2057                                           numElements, elementType,
2058                                           cookieSize);
2059
2060  // Destroy the elements.
2061  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2062    assert(numElements && "no element count for a type with a destructor!");
2063
2064    CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2065    CharUnits elementAlign =
2066      deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2067
2068    llvm::Value *arrayBegin = deletedPtr.getPointer();
2069    llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2070      deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2071
2072    // Note that it is legal to allocate a zero-length array, and we
2073    // can never fold the check away because the length should always
2074    // come from a cookie.
2075    CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2076                         CGF.getDestroyer(dtorKind),
2077                         /*checkZeroLength*/ true,
2078                         CGF.needsEHCleanup(dtorKind));
2079  }
2080
2081  // Pop the cleanup block.
2082  CGF.PopCleanupBlock();
2083}
2084
2085void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2086  const Expr *Arg = E->getArgument();
2087  Address Ptr = EmitPointerWithAlignment(Arg);
2088
2089  // Null check the pointer.
2090  //
2091  // We could avoid this null check if we can determine that the object
2092  // destruction is trivial and doesn't require an array cookie; we can
2093  // unconditionally perform the operator delete call in that case. For now, we
2094  // assume that deleted pointers are null rarely enough that it's better to
2095  // keep the branch. This might be worth revisiting for a -O0 code size win.
2096  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2097  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2098
2099  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2100
2101  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2102  EmitBlock(DeleteNotNull);
2103  Ptr.setKnownNonNull();
2104
2105  QualType DeleteTy = E->getDestroyedType();
2106
2107  // A destroying operator delete overrides the entire operation of the
2108  // delete expression.
2109  if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2110    EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2111    EmitBlock(DeleteEnd);
2112    return;
2113  }
2114
2115  // We might be deleting a pointer to array.  If so, GEP down to the
2116  // first non-array element.
2117  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2118  if (DeleteTy->isConstantArrayType()) {
2119    llvm::Value *Zero = Builder.getInt32(0);
2120    SmallVector<llvm::Value*,8> GEP;
2121
2122    GEP.push_back(Zero); // point at the outermost array
2123
2124    // For each layer of array type we're pointing at:
2125    while (const ConstantArrayType *Arr
2126             = getContext().getAsConstantArrayType(DeleteTy)) {
2127      // 1. Unpeel the array type.
2128      DeleteTy = Arr->getElementType();
2129
2130      // 2. GEP to the first element of the array.
2131      GEP.push_back(Zero);
2132    }
2133
2134    Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2135                                            Ptr.getPointer(), GEP, "del.first"),
2136                  ConvertTypeForMem(DeleteTy), Ptr.getAlignment(),
2137                  Ptr.isKnownNonNull());
2138  }
2139
2140  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2141
2142  if (E->isArrayForm()) {
2143    EmitArrayDelete(*this, E, Ptr, DeleteTy);
2144    EmitBlock(DeleteEnd);
2145  } else {
2146    if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2147      EmitBlock(DeleteEnd);
2148  }
2149}
2150
2151static bool isGLValueFromPointerDeref(const Expr *E) {
2152  E = E->IgnoreParens();
2153
2154  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2155    if (!CE->getSubExpr()->isGLValue())
2156      return false;
2157    return isGLValueFromPointerDeref(CE->getSubExpr());
2158  }
2159
2160  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2161    return isGLValueFromPointerDeref(OVE->getSourceExpr());
2162
2163  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2164    if (BO->getOpcode() == BO_Comma)
2165      return isGLValueFromPointerDeref(BO->getRHS());
2166
2167  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2168    return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2169           isGLValueFromPointerDeref(ACO->getFalseExpr());
2170
2171  // C++11 [expr.sub]p1:
2172  //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2173  if (isa<ArraySubscriptExpr>(E))
2174    return true;
2175
2176  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2177    if (UO->getOpcode() == UO_Deref)
2178      return true;
2179
2180  return false;
2181}
2182
2183static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2184                                         llvm::Type *StdTypeInfoPtrTy) {
2185  // Get the vtable pointer.
2186  Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2187
2188  QualType SrcRecordTy = E->getType();
2189
2190  // C++ [class.cdtor]p4:
2191  //   If the operand of typeid refers to the object under construction or
2192  //   destruction and the static type of the operand is neither the constructor
2193  //   or destructor���s class nor one of its bases, the behavior is undefined.
2194  CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2195                    ThisPtr.getPointer(), SrcRecordTy);
2196
2197  // C++ [expr.typeid]p2:
2198  //   If the glvalue expression is obtained by applying the unary * operator to
2199  //   a pointer and the pointer is a null pointer value, the typeid expression
2200  //   throws the std::bad_typeid exception.
2201  //
2202  // However, this paragraph's intent is not clear.  We choose a very generous
2203  // interpretation which implores us to consider comma operators, conditional
2204  // operators, parentheses and other such constructs.
2205  if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2206          isGLValueFromPointerDeref(E), SrcRecordTy)) {
2207    llvm::BasicBlock *BadTypeidBlock =
2208        CGF.createBasicBlock("typeid.bad_typeid");
2209    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2210
2211    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2212    CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2213
2214    CGF.EmitBlock(BadTypeidBlock);
2215    CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2216    CGF.EmitBlock(EndBlock);
2217  }
2218
2219  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2220                                        StdTypeInfoPtrTy);
2221}
2222
2223llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2224  llvm::Type *PtrTy = llvm::PointerType::getUnqual(getLLVMContext());
2225  LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr);
2226
2227  auto MaybeASCast = [=](auto &&TypeInfo) {
2228    if (GlobAS == LangAS::Default)
2229      return TypeInfo;
2230    return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2231                                                 LangAS::Default, PtrTy);
2232  };
2233
2234  if (E->isTypeOperand()) {
2235    llvm::Constant *TypeInfo =
2236        CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2237    return MaybeASCast(TypeInfo);
2238  }
2239
2240  // C++ [expr.typeid]p2:
2241  //   When typeid is applied to a glvalue expression whose type is a
2242  //   polymorphic class type, the result refers to a std::type_info object
2243  //   representing the type of the most derived object (that is, the dynamic
2244  //   type) to which the glvalue refers.
2245  // If the operand is already most derived object, no need to look up vtable.
2246  if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2247    return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy);
2248
2249  QualType OperandTy = E->getExprOperand()->getType();
2250  return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy));
2251}
2252
2253static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2254                                          QualType DestTy) {
2255  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2256  if (DestTy->isPointerType())
2257    return llvm::Constant::getNullValue(DestLTy);
2258
2259  /// C++ [expr.dynamic.cast]p9:
2260  ///   A failed cast to reference type throws std::bad_cast
2261  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2262    return nullptr;
2263
2264  CGF.Builder.ClearInsertionPoint();
2265  return llvm::PoisonValue::get(DestLTy);
2266}
2267
2268llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2269                                              const CXXDynamicCastExpr *DCE) {
2270  CGM.EmitExplicitCastExprType(DCE, this);
2271  QualType DestTy = DCE->getTypeAsWritten();
2272
2273  QualType SrcTy = DCE->getSubExpr()->getType();
2274
2275  // C++ [expr.dynamic.cast]p7:
2276  //   If T is "pointer to cv void," then the result is a pointer to the most
2277  //   derived object pointed to by v.
2278  bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2279  QualType SrcRecordTy;
2280  QualType DestRecordTy;
2281  if (IsDynamicCastToVoid) {
2282    SrcRecordTy = SrcTy->getPointeeType();
2283    // No DestRecordTy.
2284  } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2285    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2286    DestRecordTy = DestPTy->getPointeeType();
2287  } else {
2288    SrcRecordTy = SrcTy;
2289    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2290  }
2291
2292  // C++ [class.cdtor]p5:
2293  //   If the operand of the dynamic_cast refers to the object under
2294  //   construction or destruction and the static type of the operand is not a
2295  //   pointer to or object of the constructor or destructor���s own class or one
2296  //   of its bases, the dynamic_cast results in undefined behavior.
2297  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2298                SrcRecordTy);
2299
2300  if (DCE->isAlwaysNull()) {
2301    if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) {
2302      // Expression emission is expected to retain a valid insertion point.
2303      if (!Builder.GetInsertBlock())
2304        EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2305      return T;
2306    }
2307  }
2308
2309  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2310
2311  // If the destination is effectively final, the cast succeeds if and only
2312  // if the dynamic type of the pointer is exactly the destination type.
2313  bool IsExact = !IsDynamicCastToVoid &&
2314                 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2315                 DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2316                 CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2317
2318  // C++ [expr.dynamic.cast]p4:
2319  //   If the value of v is a null pointer value in the pointer case, the result
2320  //   is the null pointer value of type T.
2321  bool ShouldNullCheckSrcValue =
2322      IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2323                     SrcTy->isPointerType(), SrcRecordTy);
2324
2325  llvm::BasicBlock *CastNull = nullptr;
2326  llvm::BasicBlock *CastNotNull = nullptr;
2327  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2328
2329  if (ShouldNullCheckSrcValue) {
2330    CastNull = createBasicBlock("dynamic_cast.null");
2331    CastNotNull = createBasicBlock("dynamic_cast.notnull");
2332
2333    llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2334    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2335    EmitBlock(CastNotNull);
2336  }
2337
2338  llvm::Value *Value;
2339  if (IsDynamicCastToVoid) {
2340    Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy);
2341  } else if (IsExact) {
2342    // If the destination type is effectively final, this pointer points to the
2343    // right type if and only if its vptr has the right value.
2344    Value = CGM.getCXXABI().emitExactDynamicCast(
2345        *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull);
2346  } else {
2347    assert(DestRecordTy->isRecordType() &&
2348           "destination type must be a record type!");
2349    Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2350                                                DestTy, DestRecordTy, CastEnd);
2351  }
2352  CastNotNull = Builder.GetInsertBlock();
2353
2354  llvm::Value *NullValue = nullptr;
2355  if (ShouldNullCheckSrcValue) {
2356    EmitBranch(CastEnd);
2357
2358    EmitBlock(CastNull);
2359    NullValue = EmitDynamicCastToNull(*this, DestTy);
2360    CastNull = Builder.GetInsertBlock();
2361
2362    EmitBranch(CastEnd);
2363  }
2364
2365  EmitBlock(CastEnd);
2366
2367  if (CastNull) {
2368    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2369    PHI->addIncoming(Value, CastNotNull);
2370    PHI->addIncoming(NullValue, CastNull);
2371
2372    Value = PHI;
2373  }
2374
2375  return Value;
2376}
2377