1//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the C++ Decl subclasses, other than those for templates
11/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_DECLCXX_H
16#define LLVM_CLANG_AST_DECLCXX_H
17
18#include "clang/AST/ASTUnresolvedSet.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclarationName.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/LambdaCapture.h"
25#include "clang/AST/NestedNameSpecifier.h"
26#include "clang/AST/Redeclarable.h"
27#include "clang/AST/Stmt.h"
28#include "clang/AST/Type.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/UnresolvedSet.h"
31#include "clang/Basic/LLVM.h"
32#include "clang/Basic/Lambda.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/OperatorKinds.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/Specifiers.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/TinyPtrVector.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/TrailingObjects.h"
48#include <cassert>
49#include <cstddef>
50#include <iterator>
51#include <memory>
52#include <vector>
53
54namespace clang {
55
56class ASTContext;
57class ClassTemplateDecl;
58class ConstructorUsingShadowDecl;
59class CXXBasePath;
60class CXXBasePaths;
61class CXXConstructorDecl;
62class CXXDestructorDecl;
63class CXXFinalOverriderMap;
64class CXXIndirectPrimaryBaseSet;
65class CXXMethodDecl;
66class DecompositionDecl;
67class FriendDecl;
68class FunctionTemplateDecl;
69class IdentifierInfo;
70class MemberSpecializationInfo;
71class BaseUsingDecl;
72class TemplateDecl;
73class TemplateParameterList;
74class UsingDecl;
75
76/// Represents an access specifier followed by colon ':'.
77///
78/// An objects of this class represents sugar for the syntactic occurrence
79/// of an access specifier followed by a colon in the list of member
80/// specifiers of a C++ class definition.
81///
82/// Note that they do not represent other uses of access specifiers,
83/// such as those occurring in a list of base specifiers.
84/// Also note that this class has nothing to do with so-called
85/// "access declarations" (C++98 11.3 [class.access.dcl]).
86class AccessSpecDecl : public Decl {
87  /// The location of the ':'.
88  SourceLocation ColonLoc;
89
90  AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91                 SourceLocation ASLoc, SourceLocation ColonLoc)
92    : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93    setAccess(AS);
94  }
95
96  AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97
98  virtual void anchor();
99
100public:
101  /// The location of the access specifier.
102  SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103
104  /// Sets the location of the access specifier.
105  void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106
107  /// The location of the colon following the access specifier.
108  SourceLocation getColonLoc() const { return ColonLoc; }
109
110  /// Sets the location of the colon.
111  void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112
113  SourceRange getSourceRange() const override LLVM_READONLY {
114    return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115  }
116
117  static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118                                DeclContext *DC, SourceLocation ASLoc,
119                                SourceLocation ColonLoc) {
120    return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121  }
122
123  static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
124
125  // Implement isa/cast/dyncast/etc.
126  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
127  static bool classofKind(Kind K) { return K == AccessSpec; }
128};
129
130/// Represents a base class of a C++ class.
131///
132/// Each CXXBaseSpecifier represents a single, direct base class (or
133/// struct) of a C++ class (or struct). It specifies the type of that
134/// base class, whether it is a virtual or non-virtual base, and what
135/// level of access (public, protected, private) is used for the
136/// derivation. For example:
137///
138/// \code
139///   class A { };
140///   class B { };
141///   class C : public virtual A, protected B { };
142/// \endcode
143///
144/// In this code, C will have two CXXBaseSpecifiers, one for "public
145/// virtual A" and the other for "protected B".
146class CXXBaseSpecifier {
147  /// The source code range that covers the full base
148  /// specifier, including the "virtual" (if present) and access
149  /// specifier (if present).
150  SourceRange Range;
151
152  /// The source location of the ellipsis, if this is a pack
153  /// expansion.
154  SourceLocation EllipsisLoc;
155
156  /// Whether this is a virtual base class or not.
157  LLVM_PREFERRED_TYPE(bool)
158  unsigned Virtual : 1;
159
160  /// Whether this is the base of a class (true) or of a struct (false).
161  ///
162  /// This determines the mapping from the access specifier as written in the
163  /// source code to the access specifier used for semantic analysis.
164  LLVM_PREFERRED_TYPE(bool)
165  unsigned BaseOfClass : 1;
166
167  /// Access specifier as written in the source code (may be AS_none).
168  ///
169  /// The actual type of data stored here is an AccessSpecifier, but we use
170  /// "unsigned" here to work around Microsoft ABI.
171  LLVM_PREFERRED_TYPE(AccessSpecifier)
172  unsigned Access : 2;
173
174  /// Whether the class contains a using declaration
175  /// to inherit the named class's constructors.
176  LLVM_PREFERRED_TYPE(bool)
177  unsigned InheritConstructors : 1;
178
179  /// The type of the base class.
180  ///
181  /// This will be a class or struct (or a typedef of such). The source code
182  /// range does not include the \c virtual or the access specifier.
183  TypeSourceInfo *BaseTypeInfo;
184
185public:
186  CXXBaseSpecifier() = default;
187  CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
188                   TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
189    : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
190      Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
191
192  /// Retrieves the source range that contains the entire base specifier.
193  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
194  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
195  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
196
197  /// Get the location at which the base class type was written.
198  SourceLocation getBaseTypeLoc() const LLVM_READONLY {
199    return BaseTypeInfo->getTypeLoc().getBeginLoc();
200  }
201
202  /// Determines whether the base class is a virtual base class (or not).
203  bool isVirtual() const { return Virtual; }
204
205  /// Determine whether this base class is a base of a class declared
206  /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
207  bool isBaseOfClass() const { return BaseOfClass; }
208
209  /// Determine whether this base specifier is a pack expansion.
210  bool isPackExpansion() const { return EllipsisLoc.isValid(); }
211
212  /// Determine whether this base class's constructors get inherited.
213  bool getInheritConstructors() const { return InheritConstructors; }
214
215  /// Set that this base class's constructors should be inherited.
216  void setInheritConstructors(bool Inherit = true) {
217    InheritConstructors = Inherit;
218  }
219
220  /// For a pack expansion, determine the location of the ellipsis.
221  SourceLocation getEllipsisLoc() const {
222    return EllipsisLoc;
223  }
224
225  /// Returns the access specifier for this base specifier.
226  ///
227  /// This is the actual base specifier as used for semantic analysis, so
228  /// the result can never be AS_none. To retrieve the access specifier as
229  /// written in the source code, use getAccessSpecifierAsWritten().
230  AccessSpecifier getAccessSpecifier() const {
231    if ((AccessSpecifier)Access == AS_none)
232      return BaseOfClass? AS_private : AS_public;
233    else
234      return (AccessSpecifier)Access;
235  }
236
237  /// Retrieves the access specifier as written in the source code
238  /// (which may mean that no access specifier was explicitly written).
239  ///
240  /// Use getAccessSpecifier() to retrieve the access specifier for use in
241  /// semantic analysis.
242  AccessSpecifier getAccessSpecifierAsWritten() const {
243    return (AccessSpecifier)Access;
244  }
245
246  /// Retrieves the type of the base class.
247  ///
248  /// This type will always be an unqualified class type.
249  QualType getType() const {
250    return BaseTypeInfo->getType().getUnqualifiedType();
251  }
252
253  /// Retrieves the type and source location of the base class.
254  TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
255};
256
257/// Represents a C++ struct/union/class.
258class CXXRecordDecl : public RecordDecl {
259  friend class ASTDeclReader;
260  friend class ASTDeclWriter;
261  friend class ASTNodeImporter;
262  friend class ASTReader;
263  friend class ASTRecordWriter;
264  friend class ASTWriter;
265  friend class DeclContext;
266  friend class LambdaExpr;
267  friend class ODRDiagsEmitter;
268
269  friend void FunctionDecl::setIsPureVirtual(bool);
270  friend void TagDecl::startDefinition();
271
272  /// Values used in DefinitionData fields to represent special members.
273  enum SpecialMemberFlags {
274    SMF_DefaultConstructor = 0x1,
275    SMF_CopyConstructor = 0x2,
276    SMF_MoveConstructor = 0x4,
277    SMF_CopyAssignment = 0x8,
278    SMF_MoveAssignment = 0x10,
279    SMF_Destructor = 0x20,
280    SMF_All = 0x3f
281  };
282
283public:
284  enum LambdaDependencyKind {
285    LDK_Unknown = 0,
286    LDK_AlwaysDependent,
287    LDK_NeverDependent,
288  };
289
290private:
291  struct DefinitionData {
292    #define FIELD(Name, Width, Merge) \
293    unsigned Name : Width;
294    #include "CXXRecordDeclDefinitionBits.def"
295
296    /// Whether this class describes a C++ lambda.
297    LLVM_PREFERRED_TYPE(bool)
298    unsigned IsLambda : 1;
299
300    /// Whether we are currently parsing base specifiers.
301    LLVM_PREFERRED_TYPE(bool)
302    unsigned IsParsingBaseSpecifiers : 1;
303
304    /// True when visible conversion functions are already computed
305    /// and are available.
306    LLVM_PREFERRED_TYPE(bool)
307    unsigned ComputedVisibleConversions : 1;
308
309    LLVM_PREFERRED_TYPE(bool)
310    unsigned HasODRHash : 1;
311
312    /// A hash of parts of the class to help in ODR checking.
313    unsigned ODRHash = 0;
314
315    /// The number of base class specifiers in Bases.
316    unsigned NumBases = 0;
317
318    /// The number of virtual base class specifiers in VBases.
319    unsigned NumVBases = 0;
320
321    /// Base classes of this class.
322    ///
323    /// FIXME: This is wasted space for a union.
324    LazyCXXBaseSpecifiersPtr Bases;
325
326    /// direct and indirect virtual base classes of this class.
327    LazyCXXBaseSpecifiersPtr VBases;
328
329    /// The conversion functions of this C++ class (but not its
330    /// inherited conversion functions).
331    ///
332    /// Each of the entries in this overload set is a CXXConversionDecl.
333    LazyASTUnresolvedSet Conversions;
334
335    /// The conversion functions of this C++ class and all those
336    /// inherited conversion functions that are visible in this class.
337    ///
338    /// Each of the entries in this overload set is a CXXConversionDecl or a
339    /// FunctionTemplateDecl.
340    LazyASTUnresolvedSet VisibleConversions;
341
342    /// The declaration which defines this record.
343    CXXRecordDecl *Definition;
344
345    /// The first friend declaration in this class, or null if there
346    /// aren't any.
347    ///
348    /// This is actually currently stored in reverse order.
349    LazyDeclPtr FirstFriend;
350
351    DefinitionData(CXXRecordDecl *D);
352
353    /// Retrieve the set of direct base classes.
354    CXXBaseSpecifier *getBases() const {
355      if (!Bases.isOffset())
356        return Bases.get(nullptr);
357      return getBasesSlowCase();
358    }
359
360    /// Retrieve the set of virtual base classes.
361    CXXBaseSpecifier *getVBases() const {
362      if (!VBases.isOffset())
363        return VBases.get(nullptr);
364      return getVBasesSlowCase();
365    }
366
367    ArrayRef<CXXBaseSpecifier> bases() const {
368      return llvm::ArrayRef(getBases(), NumBases);
369    }
370
371    ArrayRef<CXXBaseSpecifier> vbases() const {
372      return llvm::ArrayRef(getVBases(), NumVBases);
373    }
374
375  private:
376    CXXBaseSpecifier *getBasesSlowCase() const;
377    CXXBaseSpecifier *getVBasesSlowCase() const;
378  };
379
380  struct DefinitionData *DefinitionData;
381
382  /// Describes a C++ closure type (generated by a lambda expression).
383  struct LambdaDefinitionData : public DefinitionData {
384    using Capture = LambdaCapture;
385
386    /// Whether this lambda is known to be dependent, even if its
387    /// context isn't dependent.
388    ///
389    /// A lambda with a non-dependent context can be dependent if it occurs
390    /// within the default argument of a function template, because the
391    /// lambda will have been created with the enclosing context as its
392    /// declaration context, rather than function. This is an unfortunate
393    /// artifact of having to parse the default arguments before.
394    LLVM_PREFERRED_TYPE(LambdaDependencyKind)
395    unsigned DependencyKind : 2;
396
397    /// Whether this lambda is a generic lambda.
398    LLVM_PREFERRED_TYPE(bool)
399    unsigned IsGenericLambda : 1;
400
401    /// The Default Capture.
402    LLVM_PREFERRED_TYPE(LambdaCaptureDefault)
403    unsigned CaptureDefault : 2;
404
405    /// The number of captures in this lambda is limited 2^NumCaptures.
406    unsigned NumCaptures : 15;
407
408    /// The number of explicit captures in this lambda.
409    unsigned NumExplicitCaptures : 12;
410
411    /// Has known `internal` linkage.
412    LLVM_PREFERRED_TYPE(bool)
413    unsigned HasKnownInternalLinkage : 1;
414
415    /// The number used to indicate this lambda expression for name
416    /// mangling in the Itanium C++ ABI.
417    unsigned ManglingNumber : 31;
418
419    /// The index of this lambda within its context declaration. This is not in
420    /// general the same as the mangling number.
421    unsigned IndexInContext;
422
423    /// The declaration that provides context for this lambda, if the
424    /// actual DeclContext does not suffice. This is used for lambdas that
425    /// occur within default arguments of function parameters within the class
426    /// or within a data member initializer.
427    LazyDeclPtr ContextDecl;
428
429    /// The lists of captures, both explicit and implicit, for this
430    /// lambda. One list is provided for each merged copy of the lambda.
431    /// The first list corresponds to the canonical definition.
432    /// The destructor is registered by AddCaptureList when necessary.
433    llvm::TinyPtrVector<Capture*> Captures;
434
435    /// The type of the call method.
436    TypeSourceInfo *MethodTyInfo;
437
438    LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, unsigned DK,
439                         bool IsGeneric, LambdaCaptureDefault CaptureDefault)
440        : DefinitionData(D), DependencyKind(DK), IsGenericLambda(IsGeneric),
441          CaptureDefault(CaptureDefault), NumCaptures(0),
442          NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
443          IndexInContext(0), MethodTyInfo(Info) {
444      IsLambda = true;
445
446      // C++1z [expr.prim.lambda]p4:
447      //   This class type is not an aggregate type.
448      Aggregate = false;
449      PlainOldData = false;
450    }
451
452    // Add a list of captures.
453    void AddCaptureList(ASTContext &Ctx, Capture *CaptureList);
454  };
455
456  struct DefinitionData *dataPtr() const {
457    // Complete the redecl chain (if necessary).
458    getMostRecentDecl();
459    return DefinitionData;
460  }
461
462  struct DefinitionData &data() const {
463    auto *DD = dataPtr();
464    assert(DD && "queried property of class with no definition");
465    return *DD;
466  }
467
468  struct LambdaDefinitionData &getLambdaData() const {
469    // No update required: a merged definition cannot change any lambda
470    // properties.
471    auto *DD = DefinitionData;
472    assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
473    return static_cast<LambdaDefinitionData&>(*DD);
474  }
475
476  /// The template or declaration that this declaration
477  /// describes or was instantiated from, respectively.
478  ///
479  /// For non-templates, this value will be null. For record
480  /// declarations that describe a class template, this will be a
481  /// pointer to a ClassTemplateDecl. For member
482  /// classes of class template specializations, this will be the
483  /// MemberSpecializationInfo referring to the member class that was
484  /// instantiated or specialized.
485  llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
486      TemplateOrInstantiation;
487
488  /// Called from setBases and addedMember to notify the class that a
489  /// direct or virtual base class or a member of class type has been added.
490  void addedClassSubobject(CXXRecordDecl *Base);
491
492  /// Notify the class that member has been added.
493  ///
494  /// This routine helps maintain information about the class based on which
495  /// members have been added. It will be invoked by DeclContext::addDecl()
496  /// whenever a member is added to this record.
497  void addedMember(Decl *D);
498
499  void markedVirtualFunctionPure();
500
501  /// Get the head of our list of friend declarations, possibly
502  /// deserializing the friends from an external AST source.
503  FriendDecl *getFirstFriend() const;
504
505  /// Determine whether this class has an empty base class subobject of type X
506  /// or of one of the types that might be at offset 0 within X (per the C++
507  /// "standard layout" rules).
508  bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
509                                               const CXXRecordDecl *X);
510
511protected:
512  CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
513                SourceLocation StartLoc, SourceLocation IdLoc,
514                IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
515
516public:
517  /// Iterator that traverses the base classes of a class.
518  using base_class_iterator = CXXBaseSpecifier *;
519
520  /// Iterator that traverses the base classes of a class.
521  using base_class_const_iterator = const CXXBaseSpecifier *;
522
523  CXXRecordDecl *getCanonicalDecl() override {
524    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
525  }
526
527  const CXXRecordDecl *getCanonicalDecl() const {
528    return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
529  }
530
531  CXXRecordDecl *getPreviousDecl() {
532    return cast_or_null<CXXRecordDecl>(
533            static_cast<RecordDecl *>(this)->getPreviousDecl());
534  }
535
536  const CXXRecordDecl *getPreviousDecl() const {
537    return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
538  }
539
540  CXXRecordDecl *getMostRecentDecl() {
541    return cast<CXXRecordDecl>(
542            static_cast<RecordDecl *>(this)->getMostRecentDecl());
543  }
544
545  const CXXRecordDecl *getMostRecentDecl() const {
546    return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
547  }
548
549  CXXRecordDecl *getMostRecentNonInjectedDecl() {
550    CXXRecordDecl *Recent =
551        static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
552    while (Recent->isInjectedClassName()) {
553      // FIXME: Does injected class name need to be in the redeclarations chain?
554      assert(Recent->getPreviousDecl());
555      Recent = Recent->getPreviousDecl();
556    }
557    return Recent;
558  }
559
560  const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
561    return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
562  }
563
564  CXXRecordDecl *getDefinition() const {
565    // We only need an update if we don't already know which
566    // declaration is the definition.
567    auto *DD = DefinitionData ? DefinitionData : dataPtr();
568    return DD ? DD->Definition : nullptr;
569  }
570
571  bool hasDefinition() const { return DefinitionData || dataPtr(); }
572
573  static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
574                               SourceLocation StartLoc, SourceLocation IdLoc,
575                               IdentifierInfo *Id,
576                               CXXRecordDecl *PrevDecl = nullptr,
577                               bool DelayTypeCreation = false);
578  static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
579                                     TypeSourceInfo *Info, SourceLocation Loc,
580                                     unsigned DependencyKind, bool IsGeneric,
581                                     LambdaCaptureDefault CaptureDefault);
582  static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
583
584  bool isDynamicClass() const {
585    return data().Polymorphic || data().NumVBases != 0;
586  }
587
588  /// @returns true if class is dynamic or might be dynamic because the
589  /// definition is incomplete of dependent.
590  bool mayBeDynamicClass() const {
591    return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
592  }
593
594  /// @returns true if class is non dynamic or might be non dynamic because the
595  /// definition is incomplete of dependent.
596  bool mayBeNonDynamicClass() const {
597    return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
598  }
599
600  void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
601
602  bool isParsingBaseSpecifiers() const {
603    return data().IsParsingBaseSpecifiers;
604  }
605
606  unsigned getODRHash() const;
607
608  /// Sets the base classes of this struct or class.
609  void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
610
611  /// Retrieves the number of base classes of this class.
612  unsigned getNumBases() const { return data().NumBases; }
613
614  using base_class_range = llvm::iterator_range<base_class_iterator>;
615  using base_class_const_range =
616      llvm::iterator_range<base_class_const_iterator>;
617
618  base_class_range bases() {
619    return base_class_range(bases_begin(), bases_end());
620  }
621  base_class_const_range bases() const {
622    return base_class_const_range(bases_begin(), bases_end());
623  }
624
625  base_class_iterator bases_begin() { return data().getBases(); }
626  base_class_const_iterator bases_begin() const { return data().getBases(); }
627  base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
628  base_class_const_iterator bases_end() const {
629    return bases_begin() + data().NumBases;
630  }
631
632  /// Retrieves the number of virtual base classes of this class.
633  unsigned getNumVBases() const { return data().NumVBases; }
634
635  base_class_range vbases() {
636    return base_class_range(vbases_begin(), vbases_end());
637  }
638  base_class_const_range vbases() const {
639    return base_class_const_range(vbases_begin(), vbases_end());
640  }
641
642  base_class_iterator vbases_begin() { return data().getVBases(); }
643  base_class_const_iterator vbases_begin() const { return data().getVBases(); }
644  base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
645  base_class_const_iterator vbases_end() const {
646    return vbases_begin() + data().NumVBases;
647  }
648
649  /// Determine whether this class has any dependent base classes which
650  /// are not the current instantiation.
651  bool hasAnyDependentBases() const;
652
653  /// Iterator access to method members.  The method iterator visits
654  /// all method members of the class, including non-instance methods,
655  /// special methods, etc.
656  using method_iterator = specific_decl_iterator<CXXMethodDecl>;
657  using method_range =
658      llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
659
660  method_range methods() const {
661    return method_range(method_begin(), method_end());
662  }
663
664  /// Method begin iterator.  Iterates in the order the methods
665  /// were declared.
666  method_iterator method_begin() const {
667    return method_iterator(decls_begin());
668  }
669
670  /// Method past-the-end iterator.
671  method_iterator method_end() const {
672    return method_iterator(decls_end());
673  }
674
675  /// Iterator access to constructor members.
676  using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
677  using ctor_range =
678      llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
679
680  ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
681
682  ctor_iterator ctor_begin() const {
683    return ctor_iterator(decls_begin());
684  }
685
686  ctor_iterator ctor_end() const {
687    return ctor_iterator(decls_end());
688  }
689
690  /// An iterator over friend declarations.  All of these are defined
691  /// in DeclFriend.h.
692  class friend_iterator;
693  using friend_range = llvm::iterator_range<friend_iterator>;
694
695  friend_range friends() const;
696  friend_iterator friend_begin() const;
697  friend_iterator friend_end() const;
698  void pushFriendDecl(FriendDecl *FD);
699
700  /// Determines whether this record has any friends.
701  bool hasFriends() const {
702    return data().FirstFriend.isValid();
703  }
704
705  /// \c true if a defaulted copy constructor for this class would be
706  /// deleted.
707  bool defaultedCopyConstructorIsDeleted() const {
708    assert((!needsOverloadResolutionForCopyConstructor() ||
709            (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
710           "this property has not yet been computed by Sema");
711    return data().DefaultedCopyConstructorIsDeleted;
712  }
713
714  /// \c true if a defaulted move constructor for this class would be
715  /// deleted.
716  bool defaultedMoveConstructorIsDeleted() const {
717    assert((!needsOverloadResolutionForMoveConstructor() ||
718            (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
719           "this property has not yet been computed by Sema");
720    return data().DefaultedMoveConstructorIsDeleted;
721  }
722
723  /// \c true if a defaulted destructor for this class would be deleted.
724  bool defaultedDestructorIsDeleted() const {
725    assert((!needsOverloadResolutionForDestructor() ||
726            (data().DeclaredSpecialMembers & SMF_Destructor)) &&
727           "this property has not yet been computed by Sema");
728    return data().DefaultedDestructorIsDeleted;
729  }
730
731  /// \c true if we know for sure that this class has a single,
732  /// accessible, unambiguous copy constructor that is not deleted.
733  bool hasSimpleCopyConstructor() const {
734    return !hasUserDeclaredCopyConstructor() &&
735           !data().DefaultedCopyConstructorIsDeleted;
736  }
737
738  /// \c true if we know for sure that this class has a single,
739  /// accessible, unambiguous move constructor that is not deleted.
740  bool hasSimpleMoveConstructor() const {
741    return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
742           !data().DefaultedMoveConstructorIsDeleted;
743  }
744
745  /// \c true if we know for sure that this class has a single,
746  /// accessible, unambiguous copy assignment operator that is not deleted.
747  bool hasSimpleCopyAssignment() const {
748    return !hasUserDeclaredCopyAssignment() &&
749           !data().DefaultedCopyAssignmentIsDeleted;
750  }
751
752  /// \c true if we know for sure that this class has a single,
753  /// accessible, unambiguous move assignment operator that is not deleted.
754  bool hasSimpleMoveAssignment() const {
755    return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
756           !data().DefaultedMoveAssignmentIsDeleted;
757  }
758
759  /// \c true if we know for sure that this class has an accessible
760  /// destructor that is not deleted.
761  bool hasSimpleDestructor() const {
762    return !hasUserDeclaredDestructor() &&
763           !data().DefaultedDestructorIsDeleted;
764  }
765
766  /// Determine whether this class has any default constructors.
767  bool hasDefaultConstructor() const {
768    return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
769           needsImplicitDefaultConstructor();
770  }
771
772  /// Determine if we need to declare a default constructor for
773  /// this class.
774  ///
775  /// This value is used for lazy creation of default constructors.
776  bool needsImplicitDefaultConstructor() const {
777    return (!data().UserDeclaredConstructor &&
778            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
779            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
780           // FIXME: Proposed fix to core wording issue: if a class inherits
781           // a default constructor and doesn't explicitly declare one, one
782           // is declared implicitly.
783           (data().HasInheritedDefaultConstructor &&
784            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
785  }
786
787  /// Determine whether this class has any user-declared constructors.
788  ///
789  /// When true, a default constructor will not be implicitly declared.
790  bool hasUserDeclaredConstructor() const {
791    return data().UserDeclaredConstructor;
792  }
793
794  /// Whether this class has a user-provided default constructor
795  /// per C++11.
796  bool hasUserProvidedDefaultConstructor() const {
797    return data().UserProvidedDefaultConstructor;
798  }
799
800  /// Determine whether this class has a user-declared copy constructor.
801  ///
802  /// When false, a copy constructor will be implicitly declared.
803  bool hasUserDeclaredCopyConstructor() const {
804    return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
805  }
806
807  /// Determine whether this class needs an implicit copy
808  /// constructor to be lazily declared.
809  bool needsImplicitCopyConstructor() const {
810    return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
811  }
812
813  /// Determine whether we need to eagerly declare a defaulted copy
814  /// constructor for this class.
815  bool needsOverloadResolutionForCopyConstructor() const {
816    // C++17 [class.copy.ctor]p6:
817    //   If the class definition declares a move constructor or move assignment
818    //   operator, the implicitly declared copy constructor is defined as
819    //   deleted.
820    // In MSVC mode, sometimes a declared move assignment does not delete an
821    // implicit copy constructor, so defer this choice to Sema.
822    if (data().UserDeclaredSpecialMembers &
823        (SMF_MoveConstructor | SMF_MoveAssignment))
824      return true;
825    return data().NeedOverloadResolutionForCopyConstructor;
826  }
827
828  /// Determine whether an implicit copy constructor for this type
829  /// would have a parameter with a const-qualified reference type.
830  bool implicitCopyConstructorHasConstParam() const {
831    return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
832           (isAbstract() ||
833            data().ImplicitCopyConstructorCanHaveConstParamForVBase);
834  }
835
836  /// Determine whether this class has a copy constructor with
837  /// a parameter type which is a reference to a const-qualified type.
838  bool hasCopyConstructorWithConstParam() const {
839    return data().HasDeclaredCopyConstructorWithConstParam ||
840           (needsImplicitCopyConstructor() &&
841            implicitCopyConstructorHasConstParam());
842  }
843
844  /// Whether this class has a user-declared move constructor or
845  /// assignment operator.
846  ///
847  /// When false, a move constructor and assignment operator may be
848  /// implicitly declared.
849  bool hasUserDeclaredMoveOperation() const {
850    return data().UserDeclaredSpecialMembers &
851             (SMF_MoveConstructor | SMF_MoveAssignment);
852  }
853
854  /// Determine whether this class has had a move constructor
855  /// declared by the user.
856  bool hasUserDeclaredMoveConstructor() const {
857    return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
858  }
859
860  /// Determine whether this class has a move constructor.
861  bool hasMoveConstructor() const {
862    return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
863           needsImplicitMoveConstructor();
864  }
865
866  /// Set that we attempted to declare an implicit copy
867  /// constructor, but overload resolution failed so we deleted it.
868  void setImplicitCopyConstructorIsDeleted() {
869    assert((data().DefaultedCopyConstructorIsDeleted ||
870            needsOverloadResolutionForCopyConstructor()) &&
871           "Copy constructor should not be deleted");
872    data().DefaultedCopyConstructorIsDeleted = true;
873  }
874
875  /// Set that we attempted to declare an implicit move
876  /// constructor, but overload resolution failed so we deleted it.
877  void setImplicitMoveConstructorIsDeleted() {
878    assert((data().DefaultedMoveConstructorIsDeleted ||
879            needsOverloadResolutionForMoveConstructor()) &&
880           "move constructor should not be deleted");
881    data().DefaultedMoveConstructorIsDeleted = true;
882  }
883
884  /// Set that we attempted to declare an implicit destructor,
885  /// but overload resolution failed so we deleted it.
886  void setImplicitDestructorIsDeleted() {
887    assert((data().DefaultedDestructorIsDeleted ||
888            needsOverloadResolutionForDestructor()) &&
889           "destructor should not be deleted");
890    data().DefaultedDestructorIsDeleted = true;
891  }
892
893  /// Determine whether this class should get an implicit move
894  /// constructor or if any existing special member function inhibits this.
895  bool needsImplicitMoveConstructor() const {
896    return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
897           !hasUserDeclaredCopyConstructor() &&
898           !hasUserDeclaredCopyAssignment() &&
899           !hasUserDeclaredMoveAssignment() &&
900           !hasUserDeclaredDestructor();
901  }
902
903  /// Determine whether we need to eagerly declare a defaulted move
904  /// constructor for this class.
905  bool needsOverloadResolutionForMoveConstructor() const {
906    return data().NeedOverloadResolutionForMoveConstructor;
907  }
908
909  /// Determine whether this class has a user-declared copy assignment
910  /// operator.
911  ///
912  /// When false, a copy assignment operator will be implicitly declared.
913  bool hasUserDeclaredCopyAssignment() const {
914    return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
915  }
916
917  /// Set that we attempted to declare an implicit copy assignment
918  /// operator, but overload resolution failed so we deleted it.
919  void setImplicitCopyAssignmentIsDeleted() {
920    assert((data().DefaultedCopyAssignmentIsDeleted ||
921            needsOverloadResolutionForCopyAssignment()) &&
922           "copy assignment should not be deleted");
923    data().DefaultedCopyAssignmentIsDeleted = true;
924  }
925
926  /// Determine whether this class needs an implicit copy
927  /// assignment operator to be lazily declared.
928  bool needsImplicitCopyAssignment() const {
929    return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
930  }
931
932  /// Determine whether we need to eagerly declare a defaulted copy
933  /// assignment operator for this class.
934  bool needsOverloadResolutionForCopyAssignment() const {
935    // C++20 [class.copy.assign]p2:
936    //   If the class definition declares a move constructor or move assignment
937    //   operator, the implicitly declared copy assignment operator is defined
938    //   as deleted.
939    // In MSVC mode, sometimes a declared move constructor does not delete an
940    // implicit copy assignment, so defer this choice to Sema.
941    if (data().UserDeclaredSpecialMembers &
942        (SMF_MoveConstructor | SMF_MoveAssignment))
943      return true;
944    return data().NeedOverloadResolutionForCopyAssignment;
945  }
946
947  /// Determine whether an implicit copy assignment operator for this
948  /// type would have a parameter with a const-qualified reference type.
949  bool implicitCopyAssignmentHasConstParam() const {
950    return data().ImplicitCopyAssignmentHasConstParam;
951  }
952
953  /// Determine whether this class has a copy assignment operator with
954  /// a parameter type which is a reference to a const-qualified type or is not
955  /// a reference.
956  bool hasCopyAssignmentWithConstParam() const {
957    return data().HasDeclaredCopyAssignmentWithConstParam ||
958           (needsImplicitCopyAssignment() &&
959            implicitCopyAssignmentHasConstParam());
960  }
961
962  /// Determine whether this class has had a move assignment
963  /// declared by the user.
964  bool hasUserDeclaredMoveAssignment() const {
965    return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
966  }
967
968  /// Determine whether this class has a move assignment operator.
969  bool hasMoveAssignment() const {
970    return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
971           needsImplicitMoveAssignment();
972  }
973
974  /// Set that we attempted to declare an implicit move assignment
975  /// operator, but overload resolution failed so we deleted it.
976  void setImplicitMoveAssignmentIsDeleted() {
977    assert((data().DefaultedMoveAssignmentIsDeleted ||
978            needsOverloadResolutionForMoveAssignment()) &&
979           "move assignment should not be deleted");
980    data().DefaultedMoveAssignmentIsDeleted = true;
981  }
982
983  /// Determine whether this class should get an implicit move
984  /// assignment operator or if any existing special member function inhibits
985  /// this.
986  bool needsImplicitMoveAssignment() const {
987    return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
988           !hasUserDeclaredCopyConstructor() &&
989           !hasUserDeclaredCopyAssignment() &&
990           !hasUserDeclaredMoveConstructor() &&
991           !hasUserDeclaredDestructor() &&
992           (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
993  }
994
995  /// Determine whether we need to eagerly declare a move assignment
996  /// operator for this class.
997  bool needsOverloadResolutionForMoveAssignment() const {
998    return data().NeedOverloadResolutionForMoveAssignment;
999  }
1000
1001  /// Determine whether this class has a user-declared destructor.
1002  ///
1003  /// When false, a destructor will be implicitly declared.
1004  bool hasUserDeclaredDestructor() const {
1005    return data().UserDeclaredSpecialMembers & SMF_Destructor;
1006  }
1007
1008  /// Determine whether this class needs an implicit destructor to
1009  /// be lazily declared.
1010  bool needsImplicitDestructor() const {
1011    return !(data().DeclaredSpecialMembers & SMF_Destructor);
1012  }
1013
1014  /// Determine whether we need to eagerly declare a destructor for this
1015  /// class.
1016  bool needsOverloadResolutionForDestructor() const {
1017    return data().NeedOverloadResolutionForDestructor;
1018  }
1019
1020  /// Determine whether this class describes a lambda function object.
1021  bool isLambda() const {
1022    // An update record can't turn a non-lambda into a lambda.
1023    auto *DD = DefinitionData;
1024    return DD && DD->IsLambda;
1025  }
1026
1027  /// Determine whether this class describes a generic
1028  /// lambda function object (i.e. function call operator is
1029  /// a template).
1030  bool isGenericLambda() const;
1031
1032  /// Determine whether this lambda should have an implicit default constructor
1033  /// and copy and move assignment operators.
1034  bool lambdaIsDefaultConstructibleAndAssignable() const;
1035
1036  /// Retrieve the lambda call operator of the closure type
1037  /// if this is a closure type.
1038  CXXMethodDecl *getLambdaCallOperator() const;
1039
1040  /// Retrieve the dependent lambda call operator of the closure type
1041  /// if this is a templated closure type.
1042  FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1043
1044  /// Retrieve the lambda static invoker, the address of which
1045  /// is returned by the conversion operator, and the body of which
1046  /// is forwarded to the lambda call operator. The version that does not
1047  /// take a calling convention uses the 'default' calling convention for free
1048  /// functions if the Lambda's calling convention was not modified via
1049  /// attribute. Otherwise, it will return the calling convention specified for
1050  /// the lambda.
1051  CXXMethodDecl *getLambdaStaticInvoker() const;
1052  CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1053
1054  /// Retrieve the generic lambda's template parameter list.
1055  /// Returns null if the class does not represent a lambda or a generic
1056  /// lambda.
1057  TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1058
1059  /// Retrieve the lambda template parameters that were specified explicitly.
1060  ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1061
1062  LambdaCaptureDefault getLambdaCaptureDefault() const {
1063    assert(isLambda());
1064    return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1065  }
1066
1067  bool isCapturelessLambda() const {
1068    if (!isLambda())
1069      return false;
1070    return getLambdaCaptureDefault() == LCD_None && capture_size() == 0;
1071  }
1072
1073  /// Set the captures for this lambda closure type.
1074  void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1075
1076  /// For a closure type, retrieve the mapping from captured
1077  /// variables and \c this to the non-static data members that store the
1078  /// values or references of the captures.
1079  ///
1080  /// \param Captures Will be populated with the mapping from captured
1081  /// variables to the corresponding fields.
1082  ///
1083  /// \param ThisCapture Will be set to the field declaration for the
1084  /// \c this capture.
1085  ///
1086  /// \note No entries will be added for init-captures, as they do not capture
1087  /// variables.
1088  ///
1089  /// \note If multiple versions of the lambda are merged together, they may
1090  /// have different variable declarations corresponding to the same capture.
1091  /// In that case, all of those variable declarations will be added to the
1092  /// Captures list, so it may have more than one variable listed per field.
1093  void
1094  getCaptureFields(llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1095                   FieldDecl *&ThisCapture) const;
1096
1097  using capture_const_iterator = const LambdaCapture *;
1098  using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1099
1100  capture_const_range captures() const {
1101    return capture_const_range(captures_begin(), captures_end());
1102  }
1103
1104  capture_const_iterator captures_begin() const {
1105    if (!isLambda()) return nullptr;
1106    LambdaDefinitionData &LambdaData = getLambdaData();
1107    return LambdaData.Captures.empty() ? nullptr : LambdaData.Captures.front();
1108  }
1109
1110  capture_const_iterator captures_end() const {
1111    return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1112                      : nullptr;
1113  }
1114
1115  unsigned capture_size() const { return getLambdaData().NumCaptures; }
1116
1117  const LambdaCapture *getCapture(unsigned I) const {
1118    assert(isLambda() && I < capture_size() && "invalid index for capture");
1119    return captures_begin() + I;
1120  }
1121
1122  using conversion_iterator = UnresolvedSetIterator;
1123
1124  conversion_iterator conversion_begin() const {
1125    return data().Conversions.get(getASTContext()).begin();
1126  }
1127
1128  conversion_iterator conversion_end() const {
1129    return data().Conversions.get(getASTContext()).end();
1130  }
1131
1132  /// Removes a conversion function from this class.  The conversion
1133  /// function must currently be a member of this class.  Furthermore,
1134  /// this class must currently be in the process of being defined.
1135  void removeConversion(const NamedDecl *Old);
1136
1137  /// Get all conversion functions visible in current class,
1138  /// including conversion function templates.
1139  llvm::iterator_range<conversion_iterator>
1140  getVisibleConversionFunctions() const;
1141
1142  /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1143  /// which is a class with no user-declared constructors, no private
1144  /// or protected non-static data members, no base classes, and no virtual
1145  /// functions (C++ [dcl.init.aggr]p1).
1146  bool isAggregate() const { return data().Aggregate; }
1147
1148  /// Whether this class has any in-class initializers
1149  /// for non-static data members (including those in anonymous unions or
1150  /// structs).
1151  bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1152
1153  /// Whether this class or any of its subobjects has any members of
1154  /// reference type which would make value-initialization ill-formed.
1155  ///
1156  /// Per C++03 [dcl.init]p5:
1157  ///  - if T is a non-union class type without a user-declared constructor,
1158  ///    then every non-static data member and base-class component of T is
1159  ///    value-initialized [...] A program that calls for [...]
1160  ///    value-initialization of an entity of reference type is ill-formed.
1161  bool hasUninitializedReferenceMember() const {
1162    return !isUnion() && !hasUserDeclaredConstructor() &&
1163           data().HasUninitializedReferenceMember;
1164  }
1165
1166  /// Whether this class is a POD-type (C++ [class]p4)
1167  ///
1168  /// For purposes of this function a class is POD if it is an aggregate
1169  /// that has no non-static non-POD data members, no reference data
1170  /// members, no user-defined copy assignment operator and no
1171  /// user-defined destructor.
1172  ///
1173  /// Note that this is the C++ TR1 definition of POD.
1174  bool isPOD() const { return data().PlainOldData; }
1175
1176  /// True if this class is C-like, without C++-specific features, e.g.
1177  /// it contains only public fields, no bases, tag kind is not 'class', etc.
1178  bool isCLike() const;
1179
1180  /// Determine whether this is an empty class in the sense of
1181  /// (C++11 [meta.unary.prop]).
1182  ///
1183  /// The CXXRecordDecl is a class type, but not a union type,
1184  /// with no non-static data members other than bit-fields of length 0,
1185  /// no virtual member functions, no virtual base classes,
1186  /// and no base class B for which is_empty<B>::value is false.
1187  ///
1188  /// \note This does NOT include a check for union-ness.
1189  bool isEmpty() const { return data().Empty; }
1190  /// Marks this record as empty. This is used by DWARFASTParserClang
1191  /// when parsing records with empty fields having [[no_unique_address]]
1192  /// attribute
1193  void markEmpty() { data().Empty = true; }
1194
1195  void setInitMethod(bool Val) { data().HasInitMethod = Val; }
1196  bool hasInitMethod() const { return data().HasInitMethod; }
1197
1198  bool hasPrivateFields() const {
1199    return data().HasPrivateFields;
1200  }
1201
1202  bool hasProtectedFields() const {
1203    return data().HasProtectedFields;
1204  }
1205
1206  /// Determine whether this class has direct non-static data members.
1207  bool hasDirectFields() const {
1208    auto &D = data();
1209    return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1210  }
1211
1212  /// Whether this class is polymorphic (C++ [class.virtual]),
1213  /// which means that the class contains or inherits a virtual function.
1214  bool isPolymorphic() const { return data().Polymorphic; }
1215
1216  /// Determine whether this class has a pure virtual function.
1217  ///
1218  /// The class is abstract per (C++ [class.abstract]p2) if it declares
1219  /// a pure virtual function or inherits a pure virtual function that is
1220  /// not overridden.
1221  bool isAbstract() const { return data().Abstract; }
1222
1223  /// Determine whether this class is standard-layout per
1224  /// C++ [class]p7.
1225  bool isStandardLayout() const { return data().IsStandardLayout; }
1226
1227  /// Determine whether this class was standard-layout per
1228  /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
1229  bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1230
1231  /// Determine whether this class, or any of its class subobjects,
1232  /// contains a mutable field.
1233  bool hasMutableFields() const { return data().HasMutableFields; }
1234
1235  /// Determine whether this class has any variant members.
1236  bool hasVariantMembers() const { return data().HasVariantMembers; }
1237
1238  /// Determine whether this class has a trivial default constructor
1239  /// (C++11 [class.ctor]p5).
1240  bool hasTrivialDefaultConstructor() const {
1241    return hasDefaultConstructor() &&
1242           (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1243  }
1244
1245  /// Determine whether this class has a non-trivial default constructor
1246  /// (C++11 [class.ctor]p5).
1247  bool hasNonTrivialDefaultConstructor() const {
1248    return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1249           (needsImplicitDefaultConstructor() &&
1250            !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1251  }
1252
1253  /// Determine whether this class has at least one constexpr constructor
1254  /// other than the copy or move constructors.
1255  bool hasConstexprNonCopyMoveConstructor() const {
1256    return data().HasConstexprNonCopyMoveConstructor ||
1257           (needsImplicitDefaultConstructor() &&
1258            defaultedDefaultConstructorIsConstexpr());
1259  }
1260
1261  /// Determine whether a defaulted default constructor for this class
1262  /// would be constexpr.
1263  bool defaultedDefaultConstructorIsConstexpr() const {
1264    return data().DefaultedDefaultConstructorIsConstexpr &&
1265           (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1266            getLangOpts().CPlusPlus20);
1267  }
1268
1269  /// Determine whether this class has a constexpr default constructor.
1270  bool hasConstexprDefaultConstructor() const {
1271    return data().HasConstexprDefaultConstructor ||
1272           (needsImplicitDefaultConstructor() &&
1273            defaultedDefaultConstructorIsConstexpr());
1274  }
1275
1276  /// Determine whether this class has a trivial copy constructor
1277  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1278  bool hasTrivialCopyConstructor() const {
1279    return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1280  }
1281
1282  bool hasTrivialCopyConstructorForCall() const {
1283    return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1284  }
1285
1286  /// Determine whether this class has a non-trivial copy constructor
1287  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1288  bool hasNonTrivialCopyConstructor() const {
1289    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1290           !hasTrivialCopyConstructor();
1291  }
1292
1293  bool hasNonTrivialCopyConstructorForCall() const {
1294    return (data().DeclaredNonTrivialSpecialMembersForCall &
1295            SMF_CopyConstructor) ||
1296           !hasTrivialCopyConstructorForCall();
1297  }
1298
1299  /// Determine whether this class has a trivial move constructor
1300  /// (C++11 [class.copy]p12)
1301  bool hasTrivialMoveConstructor() const {
1302    return hasMoveConstructor() &&
1303           (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1304  }
1305
1306  bool hasTrivialMoveConstructorForCall() const {
1307    return hasMoveConstructor() &&
1308           (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1309  }
1310
1311  /// Determine whether this class has a non-trivial move constructor
1312  /// (C++11 [class.copy]p12)
1313  bool hasNonTrivialMoveConstructor() const {
1314    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1315           (needsImplicitMoveConstructor() &&
1316            !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1317  }
1318
1319  bool hasNonTrivialMoveConstructorForCall() const {
1320    return (data().DeclaredNonTrivialSpecialMembersForCall &
1321            SMF_MoveConstructor) ||
1322           (needsImplicitMoveConstructor() &&
1323            !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1324  }
1325
1326  /// Determine whether this class has a trivial copy assignment operator
1327  /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1328  bool hasTrivialCopyAssignment() const {
1329    return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1330  }
1331
1332  /// Determine whether this class has a non-trivial copy assignment
1333  /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1334  bool hasNonTrivialCopyAssignment() const {
1335    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1336           !hasTrivialCopyAssignment();
1337  }
1338
1339  /// Determine whether this class has a trivial move assignment operator
1340  /// (C++11 [class.copy]p25)
1341  bool hasTrivialMoveAssignment() const {
1342    return hasMoveAssignment() &&
1343           (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1344  }
1345
1346  /// Determine whether this class has a non-trivial move assignment
1347  /// operator (C++11 [class.copy]p25)
1348  bool hasNonTrivialMoveAssignment() const {
1349    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1350           (needsImplicitMoveAssignment() &&
1351            !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1352  }
1353
1354  /// Determine whether a defaulted default constructor for this class
1355  /// would be constexpr.
1356  bool defaultedDestructorIsConstexpr() const {
1357    return data().DefaultedDestructorIsConstexpr &&
1358           getLangOpts().CPlusPlus20;
1359  }
1360
1361  /// Determine whether this class has a constexpr destructor.
1362  bool hasConstexprDestructor() const;
1363
1364  /// Determine whether this class has a trivial destructor
1365  /// (C++ [class.dtor]p3)
1366  bool hasTrivialDestructor() const {
1367    return data().HasTrivialSpecialMembers & SMF_Destructor;
1368  }
1369
1370  bool hasTrivialDestructorForCall() const {
1371    return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1372  }
1373
1374  /// Determine whether this class has a non-trivial destructor
1375  /// (C++ [class.dtor]p3)
1376  bool hasNonTrivialDestructor() const {
1377    return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1378  }
1379
1380  bool hasNonTrivialDestructorForCall() const {
1381    return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1382  }
1383
1384  void setHasTrivialSpecialMemberForCall() {
1385    data().HasTrivialSpecialMembersForCall =
1386        (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1387  }
1388
1389  /// Determine whether declaring a const variable with this type is ok
1390  /// per core issue 253.
1391  bool allowConstDefaultInit() const {
1392    return !data().HasUninitializedFields ||
1393           !(data().HasDefaultedDefaultConstructor ||
1394             needsImplicitDefaultConstructor());
1395  }
1396
1397  /// Determine whether this class has a destructor which has no
1398  /// semantic effect.
1399  ///
1400  /// Any such destructor will be trivial, public, defaulted and not deleted,
1401  /// and will call only irrelevant destructors.
1402  bool hasIrrelevantDestructor() const {
1403    return data().HasIrrelevantDestructor;
1404  }
1405
1406  /// Determine whether this class has a non-literal or/ volatile type
1407  /// non-static data member or base class.
1408  bool hasNonLiteralTypeFieldsOrBases() const {
1409    return data().HasNonLiteralTypeFieldsOrBases;
1410  }
1411
1412  /// Determine whether this class has a using-declaration that names
1413  /// a user-declared base class constructor.
1414  bool hasInheritedConstructor() const {
1415    return data().HasInheritedConstructor;
1416  }
1417
1418  /// Determine whether this class has a using-declaration that names
1419  /// a base class assignment operator.
1420  bool hasInheritedAssignment() const {
1421    return data().HasInheritedAssignment;
1422  }
1423
1424  /// Determine whether this class is considered trivially copyable per
1425  /// (C++11 [class]p6).
1426  bool isTriviallyCopyable() const;
1427
1428  /// Determine whether this class is considered trivially copyable per
1429  bool isTriviallyCopyConstructible() const;
1430
1431  /// Determine whether this class is considered trivial.
1432  ///
1433  /// C++11 [class]p6:
1434  ///    "A trivial class is a class that has a trivial default constructor and
1435  ///    is trivially copyable."
1436  bool isTrivial() const {
1437    return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1438  }
1439
1440  /// Determine whether this class is a literal type.
1441  ///
1442  /// C++20 [basic.types]p10:
1443  ///   A class type that has all the following properties:
1444  ///     - it has a constexpr destructor
1445  ///     - all of its non-static non-variant data members and base classes
1446  ///       are of non-volatile literal types, and it:
1447  ///        - is a closure type
1448  ///        - is an aggregate union type that has either no variant members
1449  ///          or at least one variant member of non-volatile literal type
1450  ///        - is a non-union aggregate type for which each of its anonymous
1451  ///          union members satisfies the above requirements for an aggregate
1452  ///          union type, or
1453  ///        - has at least one constexpr constructor or constructor template
1454  ///          that is not a copy or move constructor.
1455  bool isLiteral() const;
1456
1457  /// Determine whether this is a structural type.
1458  bool isStructural() const {
1459    return isLiteral() && data().StructuralIfLiteral;
1460  }
1461
1462  /// Notify the class that this destructor is now selected.
1463  ///
1464  /// Important properties of the class depend on destructor properties. Since
1465  /// C++20, it is possible to have multiple destructor declarations in a class
1466  /// out of which one will be selected at the end.
1467  /// This is called separately from addedMember because it has to be deferred
1468  /// to the completion of the class.
1469  void addedSelectedDestructor(CXXDestructorDecl *DD);
1470
1471  /// Notify the class that an eligible SMF has been added.
1472  /// This updates triviality and destructor based properties of the class accordingly.
1473  void addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, unsigned SMKind);
1474
1475  /// If this record is an instantiation of a member class,
1476  /// retrieves the member class from which it was instantiated.
1477  ///
1478  /// This routine will return non-null for (non-templated) member
1479  /// classes of class templates. For example, given:
1480  ///
1481  /// \code
1482  /// template<typename T>
1483  /// struct X {
1484  ///   struct A { };
1485  /// };
1486  /// \endcode
1487  ///
1488  /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1489  /// whose parent is the class template specialization X<int>. For
1490  /// this declaration, getInstantiatedFromMemberClass() will return
1491  /// the CXXRecordDecl X<T>::A. When a complete definition of
1492  /// X<int>::A is required, it will be instantiated from the
1493  /// declaration returned by getInstantiatedFromMemberClass().
1494  CXXRecordDecl *getInstantiatedFromMemberClass() const;
1495
1496  /// If this class is an instantiation of a member class of a
1497  /// class template specialization, retrieves the member specialization
1498  /// information.
1499  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1500
1501  /// Specify that this record is an instantiation of the
1502  /// member class \p RD.
1503  void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1504                                     TemplateSpecializationKind TSK);
1505
1506  /// Retrieves the class template that is described by this
1507  /// class declaration.
1508  ///
1509  /// Every class template is represented as a ClassTemplateDecl and a
1510  /// CXXRecordDecl. The former contains template properties (such as
1511  /// the template parameter lists) while the latter contains the
1512  /// actual description of the template's
1513  /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1514  /// CXXRecordDecl that from a ClassTemplateDecl, while
1515  /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1516  /// a CXXRecordDecl.
1517  ClassTemplateDecl *getDescribedClassTemplate() const;
1518
1519  void setDescribedClassTemplate(ClassTemplateDecl *Template);
1520
1521  /// Determine whether this particular class is a specialization or
1522  /// instantiation of a class template or member class of a class template,
1523  /// and how it was instantiated or specialized.
1524  TemplateSpecializationKind getTemplateSpecializationKind() const;
1525
1526  /// Set the kind of specialization or template instantiation this is.
1527  void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1528
1529  /// Retrieve the record declaration from which this record could be
1530  /// instantiated. Returns null if this class is not a template instantiation.
1531  const CXXRecordDecl *getTemplateInstantiationPattern() const;
1532
1533  CXXRecordDecl *getTemplateInstantiationPattern() {
1534    return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1535                                           ->getTemplateInstantiationPattern());
1536  }
1537
1538  /// Returns the destructor decl for this class.
1539  CXXDestructorDecl *getDestructor() const;
1540
1541  /// Returns true if the class destructor, or any implicitly invoked
1542  /// destructors are marked noreturn.
1543  bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
1544
1545  /// If the class is a local class [class.local], returns
1546  /// the enclosing function declaration.
1547  const FunctionDecl *isLocalClass() const {
1548    if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1549      return RD->isLocalClass();
1550
1551    return dyn_cast<FunctionDecl>(getDeclContext());
1552  }
1553
1554  FunctionDecl *isLocalClass() {
1555    return const_cast<FunctionDecl*>(
1556        const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1557  }
1558
1559  /// Determine whether this dependent class is a current instantiation,
1560  /// when viewed from within the given context.
1561  bool isCurrentInstantiation(const DeclContext *CurContext) const;
1562
1563  /// Determine whether this class is derived from the class \p Base.
1564  ///
1565  /// This routine only determines whether this class is derived from \p Base,
1566  /// but does not account for factors that may make a Derived -> Base class
1567  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1568  /// base class subobjects.
1569  ///
1570  /// \param Base the base class we are searching for.
1571  ///
1572  /// \returns true if this class is derived from Base, false otherwise.
1573  bool isDerivedFrom(const CXXRecordDecl *Base) const;
1574
1575  /// Determine whether this class is derived from the type \p Base.
1576  ///
1577  /// This routine only determines whether this class is derived from \p Base,
1578  /// but does not account for factors that may make a Derived -> Base class
1579  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1580  /// base class subobjects.
1581  ///
1582  /// \param Base the base class we are searching for.
1583  ///
1584  /// \param Paths will contain the paths taken from the current class to the
1585  /// given \p Base class.
1586  ///
1587  /// \returns true if this class is derived from \p Base, false otherwise.
1588  ///
1589  /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1590  /// tangling input and output in \p Paths
1591  bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1592
1593  /// Determine whether this class is virtually derived from
1594  /// the class \p Base.
1595  ///
1596  /// This routine only determines whether this class is virtually
1597  /// derived from \p Base, but does not account for factors that may
1598  /// make a Derived -> Base class ill-formed, such as
1599  /// private/protected inheritance or multiple, ambiguous base class
1600  /// subobjects.
1601  ///
1602  /// \param Base the base class we are searching for.
1603  ///
1604  /// \returns true if this class is virtually derived from Base,
1605  /// false otherwise.
1606  bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1607
1608  /// Determine whether this class is provably not derived from
1609  /// the type \p Base.
1610  bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1611
1612  /// Function type used by forallBases() as a callback.
1613  ///
1614  /// \param BaseDefinition the definition of the base class
1615  ///
1616  /// \returns true if this base matched the search criteria
1617  using ForallBasesCallback =
1618      llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1619
1620  /// Determines if the given callback holds for all the direct
1621  /// or indirect base classes of this type.
1622  ///
1623  /// The class itself does not count as a base class.  This routine
1624  /// returns false if the class has non-computable base classes.
1625  ///
1626  /// \param BaseMatches Callback invoked for each (direct or indirect) base
1627  /// class of this type until a call returns false.
1628  bool forallBases(ForallBasesCallback BaseMatches) const;
1629
1630  /// Function type used by lookupInBases() to determine whether a
1631  /// specific base class subobject matches the lookup criteria.
1632  ///
1633  /// \param Specifier the base-class specifier that describes the inheritance
1634  /// from the base class we are trying to match.
1635  ///
1636  /// \param Path the current path, from the most-derived class down to the
1637  /// base named by the \p Specifier.
1638  ///
1639  /// \returns true if this base matched the search criteria, false otherwise.
1640  using BaseMatchesCallback =
1641      llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1642                              CXXBasePath &Path)>;
1643
1644  /// Look for entities within the base classes of this C++ class,
1645  /// transitively searching all base class subobjects.
1646  ///
1647  /// This routine uses the callback function \p BaseMatches to find base
1648  /// classes meeting some search criteria, walking all base class subobjects
1649  /// and populating the given \p Paths structure with the paths through the
1650  /// inheritance hierarchy that resulted in a match. On a successful search,
1651  /// the \p Paths structure can be queried to retrieve the matching paths and
1652  /// to determine if there were any ambiguities.
1653  ///
1654  /// \param BaseMatches callback function used to determine whether a given
1655  /// base matches the user-defined search criteria.
1656  ///
1657  /// \param Paths used to record the paths from this class to its base class
1658  /// subobjects that match the search criteria.
1659  ///
1660  /// \param LookupInDependent can be set to true to extend the search to
1661  /// dependent base classes.
1662  ///
1663  /// \returns true if there exists any path from this class to a base class
1664  /// subobject that matches the search criteria.
1665  bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1666                     bool LookupInDependent = false) const;
1667
1668  /// Base-class lookup callback that determines whether the given
1669  /// base class specifier refers to a specific class declaration.
1670  ///
1671  /// This callback can be used with \c lookupInBases() to determine whether
1672  /// a given derived class has is a base class subobject of a particular type.
1673  /// The base record pointer should refer to the canonical CXXRecordDecl of the
1674  /// base class that we are searching for.
1675  static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1676                            CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1677
1678  /// Base-class lookup callback that determines whether the
1679  /// given base class specifier refers to a specific class
1680  /// declaration and describes virtual derivation.
1681  ///
1682  /// This callback can be used with \c lookupInBases() to determine
1683  /// whether a given derived class has is a virtual base class
1684  /// subobject of a particular type.  The base record pointer should
1685  /// refer to the canonical CXXRecordDecl of the base class that we
1686  /// are searching for.
1687  static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1688                                   CXXBasePath &Path,
1689                                   const CXXRecordDecl *BaseRecord);
1690
1691  /// Retrieve the final overriders for each virtual member
1692  /// function in the class hierarchy where this class is the
1693  /// most-derived class in the class hierarchy.
1694  void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1695
1696  /// Get the indirect primary bases for this class.
1697  void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1698
1699  /// Determine whether this class has a member with the given name, possibly
1700  /// in a non-dependent base class.
1701  ///
1702  /// No check for ambiguity is performed, so this should never be used when
1703  /// implementing language semantics, but it may be appropriate for warnings,
1704  /// static analysis, or similar.
1705  bool hasMemberName(DeclarationName N) const;
1706
1707  /// Performs an imprecise lookup of a dependent name in this class.
1708  ///
1709  /// This function does not follow strict semantic rules and should be used
1710  /// only when lookup rules can be relaxed, e.g. indexing.
1711  std::vector<const NamedDecl *>
1712  lookupDependentName(DeclarationName Name,
1713                      llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1714
1715  /// Renders and displays an inheritance diagram
1716  /// for this C++ class and all of its base classes (transitively) using
1717  /// GraphViz.
1718  void viewInheritance(ASTContext& Context) const;
1719
1720  /// Calculates the access of a decl that is reached
1721  /// along a path.
1722  static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1723                                     AccessSpecifier DeclAccess) {
1724    assert(DeclAccess != AS_none);
1725    if (DeclAccess == AS_private) return AS_none;
1726    return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1727  }
1728
1729  /// Indicates that the declaration of a defaulted or deleted special
1730  /// member function is now complete.
1731  void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1732
1733  void setTrivialForCallFlags(CXXMethodDecl *MD);
1734
1735  /// Indicates that the definition of this class is now complete.
1736  void completeDefinition() override;
1737
1738  /// Indicates that the definition of this class is now complete,
1739  /// and provides a final overrider map to help determine
1740  ///
1741  /// \param FinalOverriders The final overrider map for this class, which can
1742  /// be provided as an optimization for abstract-class checking. If NULL,
1743  /// final overriders will be computed if they are needed to complete the
1744  /// definition.
1745  void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1746
1747  /// Determine whether this class may end up being abstract, even though
1748  /// it is not yet known to be abstract.
1749  ///
1750  /// \returns true if this class is not known to be abstract but has any
1751  /// base classes that are abstract. In this case, \c completeDefinition()
1752  /// will need to compute final overriders to determine whether the class is
1753  /// actually abstract.
1754  bool mayBeAbstract() const;
1755
1756  /// Determine whether it's impossible for a class to be derived from this
1757  /// class. This is best-effort, and may conservatively return false.
1758  bool isEffectivelyFinal() const;
1759
1760  /// If this is the closure type of a lambda expression, retrieve the
1761  /// number to be used for name mangling in the Itanium C++ ABI.
1762  ///
1763  /// Zero indicates that this closure type has internal linkage, so the
1764  /// mangling number does not matter, while a non-zero value indicates which
1765  /// lambda expression this is in this particular context.
1766  unsigned getLambdaManglingNumber() const {
1767    assert(isLambda() && "Not a lambda closure type!");
1768    return getLambdaData().ManglingNumber;
1769  }
1770
1771  /// The lambda is known to has internal linkage no matter whether it has name
1772  /// mangling number.
1773  bool hasKnownLambdaInternalLinkage() const {
1774    assert(isLambda() && "Not a lambda closure type!");
1775    return getLambdaData().HasKnownInternalLinkage;
1776  }
1777
1778  /// Retrieve the declaration that provides additional context for a
1779  /// lambda, when the normal declaration context is not specific enough.
1780  ///
1781  /// Certain contexts (default arguments of in-class function parameters and
1782  /// the initializers of data members) have separate name mangling rules for
1783  /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1784  /// the declaration in which the lambda occurs, e.g., the function parameter
1785  /// or the non-static data member. Otherwise, it returns NULL to imply that
1786  /// the declaration context suffices.
1787  Decl *getLambdaContextDecl() const;
1788
1789  /// Retrieve the index of this lambda within the context declaration returned
1790  /// by getLambdaContextDecl().
1791  unsigned getLambdaIndexInContext() const {
1792    assert(isLambda() && "Not a lambda closure type!");
1793    return getLambdaData().IndexInContext;
1794  }
1795
1796  /// Information about how a lambda is numbered within its context.
1797  struct LambdaNumbering {
1798    Decl *ContextDecl = nullptr;
1799    unsigned IndexInContext = 0;
1800    unsigned ManglingNumber = 0;
1801    unsigned DeviceManglingNumber = 0;
1802    bool HasKnownInternalLinkage = false;
1803  };
1804
1805  /// Set the mangling numbers and context declaration for a lambda class.
1806  void setLambdaNumbering(LambdaNumbering Numbering);
1807
1808  // Get the mangling numbers and context declaration for a lambda class.
1809  LambdaNumbering getLambdaNumbering() const {
1810    return {getLambdaContextDecl(), getLambdaIndexInContext(),
1811            getLambdaManglingNumber(), getDeviceLambdaManglingNumber(),
1812            hasKnownLambdaInternalLinkage()};
1813  }
1814
1815  /// Retrieve the device side mangling number.
1816  unsigned getDeviceLambdaManglingNumber() const;
1817
1818  /// Returns the inheritance model used for this record.
1819  MSInheritanceModel getMSInheritanceModel() const;
1820
1821  /// Calculate what the inheritance model would be for this class.
1822  MSInheritanceModel calculateInheritanceModel() const;
1823
1824  /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1825  /// member pointer if we can guarantee that zero is not a valid field offset,
1826  /// or if the member pointer has multiple fields.  Polymorphic classes have a
1827  /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1828  /// fields, we can use zero even if it is a valid field offset because
1829  /// null-ness testing will check the other fields.
1830  bool nullFieldOffsetIsZero() const;
1831
1832  /// Controls when vtordisps will be emitted if this record is used as a
1833  /// virtual base.
1834  MSVtorDispMode getMSVtorDispMode() const;
1835
1836  /// Determine whether this lambda expression was known to be dependent
1837  /// at the time it was created, even if its context does not appear to be
1838  /// dependent.
1839  ///
1840  /// This flag is a workaround for an issue with parsing, where default
1841  /// arguments are parsed before their enclosing function declarations have
1842  /// been created. This means that any lambda expressions within those
1843  /// default arguments will have as their DeclContext the context enclosing
1844  /// the function declaration, which may be non-dependent even when the
1845  /// function declaration itself is dependent. This flag indicates when we
1846  /// know that the lambda is dependent despite that.
1847  bool isDependentLambda() const {
1848    return isLambda() && getLambdaData().DependencyKind == LDK_AlwaysDependent;
1849  }
1850
1851  bool isNeverDependentLambda() const {
1852    return isLambda() && getLambdaData().DependencyKind == LDK_NeverDependent;
1853  }
1854
1855  unsigned getLambdaDependencyKind() const {
1856    if (!isLambda())
1857      return LDK_Unknown;
1858    return getLambdaData().DependencyKind;
1859  }
1860
1861  TypeSourceInfo *getLambdaTypeInfo() const {
1862    return getLambdaData().MethodTyInfo;
1863  }
1864
1865  void setLambdaTypeInfo(TypeSourceInfo *TS) {
1866    assert(DefinitionData && DefinitionData->IsLambda &&
1867           "setting lambda property of non-lambda class");
1868    auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1869    DL.MethodTyInfo = TS;
1870  }
1871
1872  void setLambdaIsGeneric(bool IsGeneric) {
1873    assert(DefinitionData && DefinitionData->IsLambda &&
1874           "setting lambda property of non-lambda class");
1875    auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1876    DL.IsGenericLambda = IsGeneric;
1877  }
1878
1879  // Determine whether this type is an Interface Like type for
1880  // __interface inheritance purposes.
1881  bool isInterfaceLike() const;
1882
1883  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1884  static bool classofKind(Kind K) {
1885    return K >= firstCXXRecord && K <= lastCXXRecord;
1886  }
1887  void markAbstract() { data().Abstract = true; }
1888};
1889
1890/// Store information needed for an explicit specifier.
1891/// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1892class ExplicitSpecifier {
1893  llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1894      nullptr, ExplicitSpecKind::ResolvedFalse};
1895
1896public:
1897  ExplicitSpecifier() = default;
1898  ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1899      : ExplicitSpec(Expression, Kind) {}
1900  ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
1901  const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
1902  Expr *getExpr() { return ExplicitSpec.getPointer(); }
1903
1904  /// Determine if the declaration had an explicit specifier of any kind.
1905  bool isSpecified() const {
1906    return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1907           ExplicitSpec.getPointer();
1908  }
1909
1910  /// Check for equivalence of explicit specifiers.
1911  /// \return true if the explicit specifier are equivalent, false otherwise.
1912  bool isEquivalent(const ExplicitSpecifier Other) const;
1913  /// Determine whether this specifier is known to correspond to an explicit
1914  /// declaration. Returns false if the specifier is absent or has an
1915  /// expression that is value-dependent or evaluates to false.
1916  bool isExplicit() const {
1917    return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1918  }
1919  /// Determine if the explicit specifier is invalid.
1920  /// This state occurs after a substitution failures.
1921  bool isInvalid() const {
1922    return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1923           !ExplicitSpec.getPointer();
1924  }
1925  void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
1926  void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1927  // Retrieve the explicit specifier in the given declaration, if any.
1928  static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
1929  static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1930    return getFromDecl(const_cast<FunctionDecl *>(Function));
1931  }
1932  static ExplicitSpecifier Invalid() {
1933    return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1934  }
1935};
1936
1937/// Represents a C++ deduction guide declaration.
1938///
1939/// \code
1940/// template<typename T> struct A { A(); A(T); };
1941/// A() -> A<int>;
1942/// \endcode
1943///
1944/// In this example, there will be an explicit deduction guide from the
1945/// second line, and implicit deduction guide templates synthesized from
1946/// the constructors of \c A.
1947class CXXDeductionGuideDecl : public FunctionDecl {
1948  void anchor() override;
1949
1950private:
1951  CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1952                        ExplicitSpecifier ES,
1953                        const DeclarationNameInfo &NameInfo, QualType T,
1954                        TypeSourceInfo *TInfo, SourceLocation EndLocation,
1955                        CXXConstructorDecl *Ctor, DeductionCandidate Kind)
1956      : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1957                     SC_None, false, false, ConstexprSpecKind::Unspecified),
1958        Ctor(Ctor), ExplicitSpec(ES) {
1959    if (EndLocation.isValid())
1960      setRangeEnd(EndLocation);
1961    setDeductionCandidateKind(Kind);
1962  }
1963
1964  CXXConstructorDecl *Ctor;
1965  ExplicitSpecifier ExplicitSpec;
1966  void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1967
1968public:
1969  friend class ASTDeclReader;
1970  friend class ASTDeclWriter;
1971
1972  static CXXDeductionGuideDecl *
1973  Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1974         ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1975         TypeSourceInfo *TInfo, SourceLocation EndLocation,
1976         CXXConstructorDecl *Ctor = nullptr,
1977         DeductionCandidate Kind = DeductionCandidate::Normal);
1978
1979  static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1980
1981  ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
1982  const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1983
1984  /// Return true if the declaration is already resolved to be explicit.
1985  bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1986
1987  /// Get the template for which this guide performs deduction.
1988  TemplateDecl *getDeducedTemplate() const {
1989    return getDeclName().getCXXDeductionGuideTemplate();
1990  }
1991
1992  /// Get the constructor from which this deduction guide was generated, if
1993  /// this is an implicit deduction guide.
1994  CXXConstructorDecl *getCorrespondingConstructor() const { return Ctor; }
1995
1996  void setDeductionCandidateKind(DeductionCandidate K) {
1997    FunctionDeclBits.DeductionCandidateKind = static_cast<unsigned char>(K);
1998  }
1999
2000  DeductionCandidate getDeductionCandidateKind() const {
2001    return static_cast<DeductionCandidate>(
2002        FunctionDeclBits.DeductionCandidateKind);
2003  }
2004
2005  // Implement isa/cast/dyncast/etc.
2006  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2007  static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
2008};
2009
2010/// \brief Represents the body of a requires-expression.
2011///
2012/// This decl exists merely to serve as the DeclContext for the local
2013/// parameters of the requires expression as well as other declarations inside
2014/// it.
2015///
2016/// \code
2017/// template<typename T> requires requires (T t) { {t++} -> regular; }
2018/// \endcode
2019///
2020/// In this example, a RequiresExpr object will be generated for the expression,
2021/// and a RequiresExprBodyDecl will be created to hold the parameter t and the
2022/// template argument list imposed by the compound requirement.
2023class RequiresExprBodyDecl : public Decl, public DeclContext {
2024  RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
2025      : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
2026
2027public:
2028  friend class ASTDeclReader;
2029  friend class ASTDeclWriter;
2030
2031  static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
2032                                      SourceLocation StartLoc);
2033
2034  static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2035
2036  // Implement isa/cast/dyncast/etc.
2037  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2038  static bool classofKind(Kind K) { return K == RequiresExprBody; }
2039
2040  static DeclContext *castToDeclContext(const RequiresExprBodyDecl *D) {
2041    return static_cast<DeclContext *>(const_cast<RequiresExprBodyDecl *>(D));
2042  }
2043
2044  static RequiresExprBodyDecl *castFromDeclContext(const DeclContext *DC) {
2045    return static_cast<RequiresExprBodyDecl *>(const_cast<DeclContext *>(DC));
2046  }
2047};
2048
2049/// Represents a static or instance method of a struct/union/class.
2050///
2051/// In the terminology of the C++ Standard, these are the (static and
2052/// non-static) member functions, whether virtual or not.
2053class CXXMethodDecl : public FunctionDecl {
2054  void anchor() override;
2055
2056protected:
2057  CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
2058                SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
2059                QualType T, TypeSourceInfo *TInfo, StorageClass SC,
2060                bool UsesFPIntrin, bool isInline,
2061                ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2062                Expr *TrailingRequiresClause = nullptr)
2063      : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2064                     isInline, ConstexprKind, TrailingRequiresClause) {
2065    if (EndLocation.isValid())
2066      setRangeEnd(EndLocation);
2067  }
2068
2069public:
2070  static CXXMethodDecl *
2071  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2072         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2073         StorageClass SC, bool UsesFPIntrin, bool isInline,
2074         ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2075         Expr *TrailingRequiresClause = nullptr);
2076
2077  static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2078
2079  bool isStatic() const;
2080  bool isInstance() const { return !isStatic(); }
2081
2082  /// [C++2b][dcl.fct]/p7
2083  /// An explicit object member function is a non-static
2084  /// member function with an explicit object parameter. e.g.,
2085  ///   void func(this SomeType);
2086  bool isExplicitObjectMemberFunction() const;
2087
2088  /// [C++2b][dcl.fct]/p7
2089  /// An implicit object member function is a non-static
2090  /// member function without an explicit object parameter.
2091  bool isImplicitObjectMemberFunction() const;
2092
2093  /// Returns true if the given operator is implicitly static in a record
2094  /// context.
2095  static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
2096    // [class.free]p1:
2097    // Any allocation function for a class T is a static member
2098    // (even if not explicitly declared static).
2099    // [class.free]p6 Any deallocation function for a class X is a static member
2100    // (even if not explicitly declared static).
2101    return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
2102           OOK == OO_Array_Delete;
2103  }
2104
2105  bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
2106  bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
2107
2108  bool isVirtual() const {
2109    CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2110
2111    // Member function is virtual if it is marked explicitly so, or if it is
2112    // declared in __interface -- then it is automatically pure virtual.
2113    if (CD->isVirtualAsWritten() || CD->isPureVirtual())
2114      return true;
2115
2116    return CD->size_overridden_methods() != 0;
2117  }
2118
2119  /// If it's possible to devirtualize a call to this method, return the called
2120  /// function. Otherwise, return null.
2121
2122  /// \param Base The object on which this virtual function is called.
2123  /// \param IsAppleKext True if we are compiling for Apple kext.
2124  CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2125
2126  const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2127                                              bool IsAppleKext) const {
2128    return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2129        Base, IsAppleKext);
2130  }
2131
2132  /// Determine whether this is a usual deallocation function (C++
2133  /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2134  /// delete[] operator with a particular signature. Populates \p PreventedBy
2135  /// with the declarations of the functions of the same kind if they were the
2136  /// reason for this function returning false. This is used by
2137  /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2138  /// context.
2139  bool isUsualDeallocationFunction(
2140      SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2141
2142  /// Determine whether this is a copy-assignment operator, regardless
2143  /// of whether it was declared implicitly or explicitly.
2144  bool isCopyAssignmentOperator() const;
2145
2146  /// Determine whether this is a move assignment operator.
2147  bool isMoveAssignmentOperator() const;
2148
2149  CXXMethodDecl *getCanonicalDecl() override {
2150    return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2151  }
2152  const CXXMethodDecl *getCanonicalDecl() const {
2153    return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2154  }
2155
2156  CXXMethodDecl *getMostRecentDecl() {
2157    return cast<CXXMethodDecl>(
2158            static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2159  }
2160  const CXXMethodDecl *getMostRecentDecl() const {
2161    return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2162  }
2163
2164  void addOverriddenMethod(const CXXMethodDecl *MD);
2165
2166  using method_iterator = const CXXMethodDecl *const *;
2167
2168  method_iterator begin_overridden_methods() const;
2169  method_iterator end_overridden_methods() const;
2170  unsigned size_overridden_methods() const;
2171
2172  using overridden_method_range = llvm::iterator_range<
2173      llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2174
2175  overridden_method_range overridden_methods() const;
2176
2177  /// Return the parent of this method declaration, which
2178  /// is the class in which this method is defined.
2179  const CXXRecordDecl *getParent() const {
2180    return cast<CXXRecordDecl>(FunctionDecl::getParent());
2181  }
2182
2183  /// Return the parent of this method declaration, which
2184  /// is the class in which this method is defined.
2185  CXXRecordDecl *getParent() {
2186    return const_cast<CXXRecordDecl *>(
2187             cast<CXXRecordDecl>(FunctionDecl::getParent()));
2188  }
2189
2190  /// Return the type of the \c this pointer.
2191  ///
2192  /// Should only be called for instance (i.e., non-static) methods. Note
2193  /// that for the call operator of a lambda closure type, this returns the
2194  /// desugared 'this' type (a pointer to the closure type), not the captured
2195  /// 'this' type.
2196  QualType getThisType() const;
2197
2198  /// Return the type of the object pointed by \c this.
2199  ///
2200  /// See getThisType() for usage restriction.
2201
2202  QualType getFunctionObjectParameterReferenceType() const;
2203  QualType getFunctionObjectParameterType() const {
2204    return getFunctionObjectParameterReferenceType().getNonReferenceType();
2205  }
2206
2207  unsigned getNumExplicitParams() const {
2208    return getNumParams() - (isExplicitObjectMemberFunction() ? 1 : 0);
2209  }
2210
2211  static QualType getThisType(const FunctionProtoType *FPT,
2212                              const CXXRecordDecl *Decl);
2213
2214  Qualifiers getMethodQualifiers() const {
2215    return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2216  }
2217
2218  /// Retrieve the ref-qualifier associated with this method.
2219  ///
2220  /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2221  /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2222  /// @code
2223  /// struct X {
2224  ///   void f() &;
2225  ///   void g() &&;
2226  ///   void h();
2227  /// };
2228  /// @endcode
2229  RefQualifierKind getRefQualifier() const {
2230    return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2231  }
2232
2233  bool hasInlineBody() const;
2234
2235  /// Determine whether this is a lambda closure type's static member
2236  /// function that is used for the result of the lambda's conversion to
2237  /// function pointer (for a lambda with no captures).
2238  ///
2239  /// The function itself, if used, will have a placeholder body that will be
2240  /// supplied by IR generation to either forward to the function call operator
2241  /// or clone the function call operator.
2242  bool isLambdaStaticInvoker() const;
2243
2244  /// Find the method in \p RD that corresponds to this one.
2245  ///
2246  /// Find if \p RD or one of the classes it inherits from override this method.
2247  /// If so, return it. \p RD is assumed to be a subclass of the class defining
2248  /// this method (or be the class itself), unless \p MayBeBase is set to true.
2249  CXXMethodDecl *
2250  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2251                                bool MayBeBase = false);
2252
2253  const CXXMethodDecl *
2254  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2255                                bool MayBeBase = false) const {
2256    return const_cast<CXXMethodDecl *>(this)
2257              ->getCorrespondingMethodInClass(RD, MayBeBase);
2258  }
2259
2260  /// Find if \p RD declares a function that overrides this function, and if so,
2261  /// return it. Does not search base classes.
2262  CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2263                                                       bool MayBeBase = false);
2264  const CXXMethodDecl *
2265  getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2266                                        bool MayBeBase = false) const {
2267    return const_cast<CXXMethodDecl *>(this)
2268        ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2269  }
2270
2271  // Implement isa/cast/dyncast/etc.
2272  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2273  static bool classofKind(Kind K) {
2274    return K >= firstCXXMethod && K <= lastCXXMethod;
2275  }
2276};
2277
2278/// Represents a C++ base or member initializer.
2279///
2280/// This is part of a constructor initializer that
2281/// initializes one non-static member variable or one base class. For
2282/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2283/// initializers:
2284///
2285/// \code
2286/// class A { };
2287/// class B : public A {
2288///   float f;
2289/// public:
2290///   B(A& a) : A(a), f(3.14159) { }
2291/// };
2292/// \endcode
2293class CXXCtorInitializer final {
2294  /// Either the base class name/delegating constructor type (stored as
2295  /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2296  /// (IndirectFieldDecl*) being initialized.
2297  llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2298      Initializee;
2299
2300  /// The argument used to initialize the base or member, which may
2301  /// end up constructing an object (when multiple arguments are involved).
2302  Stmt *Init;
2303
2304  /// The source location for the field name or, for a base initializer
2305  /// pack expansion, the location of the ellipsis.
2306  ///
2307  /// In the case of a delegating
2308  /// constructor, it will still include the type's source location as the
2309  /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2310  SourceLocation MemberOrEllipsisLocation;
2311
2312  /// Location of the left paren of the ctor-initializer.
2313  SourceLocation LParenLoc;
2314
2315  /// Location of the right paren of the ctor-initializer.
2316  SourceLocation RParenLoc;
2317
2318  /// If the initializee is a type, whether that type makes this
2319  /// a delegating initialization.
2320  LLVM_PREFERRED_TYPE(bool)
2321  unsigned IsDelegating : 1;
2322
2323  /// If the initializer is a base initializer, this keeps track
2324  /// of whether the base is virtual or not.
2325  LLVM_PREFERRED_TYPE(bool)
2326  unsigned IsVirtual : 1;
2327
2328  /// Whether or not the initializer is explicitly written
2329  /// in the sources.
2330  LLVM_PREFERRED_TYPE(bool)
2331  unsigned IsWritten : 1;
2332
2333  /// If IsWritten is true, then this number keeps track of the textual order
2334  /// of this initializer in the original sources, counting from 0.
2335  unsigned SourceOrder : 13;
2336
2337public:
2338  /// Creates a new base-class initializer.
2339  explicit
2340  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2341                     SourceLocation L, Expr *Init, SourceLocation R,
2342                     SourceLocation EllipsisLoc);
2343
2344  /// Creates a new member initializer.
2345  explicit
2346  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2347                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2348                     SourceLocation R);
2349
2350  /// Creates a new anonymous field initializer.
2351  explicit
2352  CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2353                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2354                     SourceLocation R);
2355
2356  /// Creates a new delegating initializer.
2357  explicit
2358  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2359                     SourceLocation L, Expr *Init, SourceLocation R);
2360
2361  /// \return Unique reproducible object identifier.
2362  int64_t getID(const ASTContext &Context) const;
2363
2364  /// Determine whether this initializer is initializing a base class.
2365  bool isBaseInitializer() const {
2366    return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2367  }
2368
2369  /// Determine whether this initializer is initializing a non-static
2370  /// data member.
2371  bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2372
2373  bool isAnyMemberInitializer() const {
2374    return isMemberInitializer() || isIndirectMemberInitializer();
2375  }
2376
2377  bool isIndirectMemberInitializer() const {
2378    return Initializee.is<IndirectFieldDecl*>();
2379  }
2380
2381  /// Determine whether this initializer is an implicit initializer
2382  /// generated for a field with an initializer defined on the member
2383  /// declaration.
2384  ///
2385  /// In-class member initializers (also known as "non-static data member
2386  /// initializations", NSDMIs) were introduced in C++11.
2387  bool isInClassMemberInitializer() const {
2388    return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2389  }
2390
2391  /// Determine whether this initializer is creating a delegating
2392  /// constructor.
2393  bool isDelegatingInitializer() const {
2394    return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2395  }
2396
2397  /// Determine whether this initializer is a pack expansion.
2398  bool isPackExpansion() const {
2399    return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2400  }
2401
2402  // For a pack expansion, returns the location of the ellipsis.
2403  SourceLocation getEllipsisLoc() const {
2404    if (!isPackExpansion())
2405      return {};
2406    return MemberOrEllipsisLocation;
2407  }
2408
2409  /// If this is a base class initializer, returns the type of the
2410  /// base class with location information. Otherwise, returns an NULL
2411  /// type location.
2412  TypeLoc getBaseClassLoc() const;
2413
2414  /// If this is a base class initializer, returns the type of the base class.
2415  /// Otherwise, returns null.
2416  const Type *getBaseClass() const;
2417
2418  /// Returns whether the base is virtual or not.
2419  bool isBaseVirtual() const {
2420    assert(isBaseInitializer() && "Must call this on base initializer!");
2421
2422    return IsVirtual;
2423  }
2424
2425  /// Returns the declarator information for a base class or delegating
2426  /// initializer.
2427  TypeSourceInfo *getTypeSourceInfo() const {
2428    return Initializee.dyn_cast<TypeSourceInfo *>();
2429  }
2430
2431  /// If this is a member initializer, returns the declaration of the
2432  /// non-static data member being initialized. Otherwise, returns null.
2433  FieldDecl *getMember() const {
2434    if (isMemberInitializer())
2435      return Initializee.get<FieldDecl*>();
2436    return nullptr;
2437  }
2438
2439  FieldDecl *getAnyMember() const {
2440    if (isMemberInitializer())
2441      return Initializee.get<FieldDecl*>();
2442    if (isIndirectMemberInitializer())
2443      return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2444    return nullptr;
2445  }
2446
2447  IndirectFieldDecl *getIndirectMember() const {
2448    if (isIndirectMemberInitializer())
2449      return Initializee.get<IndirectFieldDecl*>();
2450    return nullptr;
2451  }
2452
2453  SourceLocation getMemberLocation() const {
2454    return MemberOrEllipsisLocation;
2455  }
2456
2457  /// Determine the source location of the initializer.
2458  SourceLocation getSourceLocation() const;
2459
2460  /// Determine the source range covering the entire initializer.
2461  SourceRange getSourceRange() const LLVM_READONLY;
2462
2463  /// Determine whether this initializer is explicitly written
2464  /// in the source code.
2465  bool isWritten() const { return IsWritten; }
2466
2467  /// Return the source position of the initializer, counting from 0.
2468  /// If the initializer was implicit, -1 is returned.
2469  int getSourceOrder() const {
2470    return IsWritten ? static_cast<int>(SourceOrder) : -1;
2471  }
2472
2473  /// Set the source order of this initializer.
2474  ///
2475  /// This can only be called once for each initializer; it cannot be called
2476  /// on an initializer having a positive number of (implicit) array indices.
2477  ///
2478  /// This assumes that the initializer was written in the source code, and
2479  /// ensures that isWritten() returns true.
2480  void setSourceOrder(int Pos) {
2481    assert(!IsWritten &&
2482           "setSourceOrder() used on implicit initializer");
2483    assert(SourceOrder == 0 &&
2484           "calling twice setSourceOrder() on the same initializer");
2485    assert(Pos >= 0 &&
2486           "setSourceOrder() used to make an initializer implicit");
2487    IsWritten = true;
2488    SourceOrder = static_cast<unsigned>(Pos);
2489  }
2490
2491  SourceLocation getLParenLoc() const { return LParenLoc; }
2492  SourceLocation getRParenLoc() const { return RParenLoc; }
2493
2494  /// Get the initializer.
2495  Expr *getInit() const { return static_cast<Expr *>(Init); }
2496};
2497
2498/// Description of a constructor that was inherited from a base class.
2499class InheritedConstructor {
2500  ConstructorUsingShadowDecl *Shadow = nullptr;
2501  CXXConstructorDecl *BaseCtor = nullptr;
2502
2503public:
2504  InheritedConstructor() = default;
2505  InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2506                       CXXConstructorDecl *BaseCtor)
2507      : Shadow(Shadow), BaseCtor(BaseCtor) {}
2508
2509  explicit operator bool() const { return Shadow; }
2510
2511  ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
2512  CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2513};
2514
2515/// Represents a C++ constructor within a class.
2516///
2517/// For example:
2518///
2519/// \code
2520/// class X {
2521/// public:
2522///   explicit X(int); // represented by a CXXConstructorDecl.
2523/// };
2524/// \endcode
2525class CXXConstructorDecl final
2526    : public CXXMethodDecl,
2527      private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2528                                    ExplicitSpecifier> {
2529  // This class stores some data in DeclContext::CXXConstructorDeclBits
2530  // to save some space. Use the provided accessors to access it.
2531
2532  /// \name Support for base and member initializers.
2533  /// \{
2534  /// The arguments used to initialize the base or member.
2535  LazyCXXCtorInitializersPtr CtorInitializers;
2536
2537  CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2538                     const DeclarationNameInfo &NameInfo, QualType T,
2539                     TypeSourceInfo *TInfo, ExplicitSpecifier ES,
2540                     bool UsesFPIntrin, bool isInline,
2541                     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2542                     InheritedConstructor Inherited,
2543                     Expr *TrailingRequiresClause);
2544
2545  void anchor() override;
2546
2547  size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2548    return CXXConstructorDeclBits.IsInheritingConstructor;
2549  }
2550  size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2551    return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2552  }
2553
2554  ExplicitSpecifier getExplicitSpecifierInternal() const {
2555    if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2556      return *getTrailingObjects<ExplicitSpecifier>();
2557    return ExplicitSpecifier(
2558        nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2559                     ? ExplicitSpecKind::ResolvedTrue
2560                     : ExplicitSpecKind::ResolvedFalse);
2561  }
2562
2563  enum TrailingAllocKind {
2564    TAKInheritsConstructor = 1,
2565    TAKHasTailExplicit = 1 << 1,
2566  };
2567
2568  uint64_t getTrailingAllocKind() const {
2569    return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2570           (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2571  }
2572
2573public:
2574  friend class ASTDeclReader;
2575  friend class ASTDeclWriter;
2576  friend TrailingObjects;
2577
2578  static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2579                                                uint64_t AllocKind);
2580  static CXXConstructorDecl *
2581  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2582         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2583         ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2584         bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2585         InheritedConstructor Inherited = InheritedConstructor(),
2586         Expr *TrailingRequiresClause = nullptr);
2587
2588  void setExplicitSpecifier(ExplicitSpecifier ES) {
2589    assert((!ES.getExpr() ||
2590            CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2591           "cannot set this explicit specifier. no trail-allocated space for "
2592           "explicit");
2593    if (ES.getExpr())
2594      *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2595    else
2596      CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2597  }
2598
2599  ExplicitSpecifier getExplicitSpecifier() {
2600    return getCanonicalDecl()->getExplicitSpecifierInternal();
2601  }
2602  const ExplicitSpecifier getExplicitSpecifier() const {
2603    return getCanonicalDecl()->getExplicitSpecifierInternal();
2604  }
2605
2606  /// Return true if the declaration is already resolved to be explicit.
2607  bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2608
2609  /// Iterates through the member/base initializer list.
2610  using init_iterator = CXXCtorInitializer **;
2611
2612  /// Iterates through the member/base initializer list.
2613  using init_const_iterator = CXXCtorInitializer *const *;
2614
2615  using init_range = llvm::iterator_range<init_iterator>;
2616  using init_const_range = llvm::iterator_range<init_const_iterator>;
2617
2618  init_range inits() { return init_range(init_begin(), init_end()); }
2619  init_const_range inits() const {
2620    return init_const_range(init_begin(), init_end());
2621  }
2622
2623  /// Retrieve an iterator to the first initializer.
2624  init_iterator init_begin() {
2625    const auto *ConstThis = this;
2626    return const_cast<init_iterator>(ConstThis->init_begin());
2627  }
2628
2629  /// Retrieve an iterator to the first initializer.
2630  init_const_iterator init_begin() const;
2631
2632  /// Retrieve an iterator past the last initializer.
2633  init_iterator       init_end()       {
2634    return init_begin() + getNumCtorInitializers();
2635  }
2636
2637  /// Retrieve an iterator past the last initializer.
2638  init_const_iterator init_end() const {
2639    return init_begin() + getNumCtorInitializers();
2640  }
2641
2642  using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2643  using init_const_reverse_iterator =
2644      std::reverse_iterator<init_const_iterator>;
2645
2646  init_reverse_iterator init_rbegin() {
2647    return init_reverse_iterator(init_end());
2648  }
2649  init_const_reverse_iterator init_rbegin() const {
2650    return init_const_reverse_iterator(init_end());
2651  }
2652
2653  init_reverse_iterator init_rend() {
2654    return init_reverse_iterator(init_begin());
2655  }
2656  init_const_reverse_iterator init_rend() const {
2657    return init_const_reverse_iterator(init_begin());
2658  }
2659
2660  /// Determine the number of arguments used to initialize the member
2661  /// or base.
2662  unsigned getNumCtorInitializers() const {
2663      return CXXConstructorDeclBits.NumCtorInitializers;
2664  }
2665
2666  void setNumCtorInitializers(unsigned numCtorInitializers) {
2667    CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2668    // This assert added because NumCtorInitializers is stored
2669    // in CXXConstructorDeclBits as a bitfield and its width has
2670    // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2671    assert(CXXConstructorDeclBits.NumCtorInitializers ==
2672           numCtorInitializers && "NumCtorInitializers overflow!");
2673  }
2674
2675  void setCtorInitializers(CXXCtorInitializer **Initializers) {
2676    CtorInitializers = Initializers;
2677  }
2678
2679  /// Determine whether this constructor is a delegating constructor.
2680  bool isDelegatingConstructor() const {
2681    return (getNumCtorInitializers() == 1) &&
2682           init_begin()[0]->isDelegatingInitializer();
2683  }
2684
2685  /// When this constructor delegates to another, retrieve the target.
2686  CXXConstructorDecl *getTargetConstructor() const;
2687
2688  /// Whether this constructor is a default
2689  /// constructor (C++ [class.ctor]p5), which can be used to
2690  /// default-initialize a class of this type.
2691  bool isDefaultConstructor() const;
2692
2693  /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2694  /// which can be used to copy the class.
2695  ///
2696  /// \p TypeQuals will be set to the qualifiers on the
2697  /// argument type. For example, \p TypeQuals would be set to \c
2698  /// Qualifiers::Const for the following copy constructor:
2699  ///
2700  /// \code
2701  /// class X {
2702  /// public:
2703  ///   X(const X&);
2704  /// };
2705  /// \endcode
2706  bool isCopyConstructor(unsigned &TypeQuals) const;
2707
2708  /// Whether this constructor is a copy
2709  /// constructor (C++ [class.copy]p2, which can be used to copy the
2710  /// class.
2711  bool isCopyConstructor() const {
2712    unsigned TypeQuals = 0;
2713    return isCopyConstructor(TypeQuals);
2714  }
2715
2716  /// Determine whether this constructor is a move constructor
2717  /// (C++11 [class.copy]p3), which can be used to move values of the class.
2718  ///
2719  /// \param TypeQuals If this constructor is a move constructor, will be set
2720  /// to the type qualifiers on the referent of the first parameter's type.
2721  bool isMoveConstructor(unsigned &TypeQuals) const;
2722
2723  /// Determine whether this constructor is a move constructor
2724  /// (C++11 [class.copy]p3), which can be used to move values of the class.
2725  bool isMoveConstructor() const {
2726    unsigned TypeQuals = 0;
2727    return isMoveConstructor(TypeQuals);
2728  }
2729
2730  /// Determine whether this is a copy or move constructor.
2731  ///
2732  /// \param TypeQuals Will be set to the type qualifiers on the reference
2733  /// parameter, if in fact this is a copy or move constructor.
2734  bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2735
2736  /// Determine whether this a copy or move constructor.
2737  bool isCopyOrMoveConstructor() const {
2738    unsigned Quals;
2739    return isCopyOrMoveConstructor(Quals);
2740  }
2741
2742  /// Whether this constructor is a
2743  /// converting constructor (C++ [class.conv.ctor]), which can be
2744  /// used for user-defined conversions.
2745  bool isConvertingConstructor(bool AllowExplicit) const;
2746
2747  /// Determine whether this is a member template specialization that
2748  /// would copy the object to itself. Such constructors are never used to copy
2749  /// an object.
2750  bool isSpecializationCopyingObject() const;
2751
2752  /// Determine whether this is an implicit constructor synthesized to
2753  /// model a call to a constructor inherited from a base class.
2754  bool isInheritingConstructor() const {
2755    return CXXConstructorDeclBits.IsInheritingConstructor;
2756  }
2757
2758  /// State that this is an implicit constructor synthesized to
2759  /// model a call to a constructor inherited from a base class.
2760  void setInheritingConstructor(bool isIC = true) {
2761    CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2762  }
2763
2764  /// Get the constructor that this inheriting constructor is based on.
2765  InheritedConstructor getInheritedConstructor() const {
2766    return isInheritingConstructor() ?
2767      *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2768  }
2769
2770  CXXConstructorDecl *getCanonicalDecl() override {
2771    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2772  }
2773  const CXXConstructorDecl *getCanonicalDecl() const {
2774    return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2775  }
2776
2777  // Implement isa/cast/dyncast/etc.
2778  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2779  static bool classofKind(Kind K) { return K == CXXConstructor; }
2780};
2781
2782/// Represents a C++ destructor within a class.
2783///
2784/// For example:
2785///
2786/// \code
2787/// class X {
2788/// public:
2789///   ~X(); // represented by a CXXDestructorDecl.
2790/// };
2791/// \endcode
2792class CXXDestructorDecl : public CXXMethodDecl {
2793  friend class ASTDeclReader;
2794  friend class ASTDeclWriter;
2795
2796  // FIXME: Don't allocate storage for these except in the first declaration
2797  // of a virtual destructor.
2798  FunctionDecl *OperatorDelete = nullptr;
2799  Expr *OperatorDeleteThisArg = nullptr;
2800
2801  CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2802                    const DeclarationNameInfo &NameInfo, QualType T,
2803                    TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2804                    bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2805                    Expr *TrailingRequiresClause = nullptr)
2806      : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2807                      SC_None, UsesFPIntrin, isInline, ConstexprKind,
2808                      SourceLocation(), TrailingRequiresClause) {
2809    setImplicit(isImplicitlyDeclared);
2810  }
2811
2812  void anchor() override;
2813
2814public:
2815  static CXXDestructorDecl *
2816  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2817         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2818         bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2819         ConstexprSpecKind ConstexprKind,
2820         Expr *TrailingRequiresClause = nullptr);
2821  static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2822
2823  void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2824
2825  const FunctionDecl *getOperatorDelete() const {
2826    return getCanonicalDecl()->OperatorDelete;
2827  }
2828
2829  Expr *getOperatorDeleteThisArg() const {
2830    return getCanonicalDecl()->OperatorDeleteThisArg;
2831  }
2832
2833  CXXDestructorDecl *getCanonicalDecl() override {
2834    return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2835  }
2836  const CXXDestructorDecl *getCanonicalDecl() const {
2837    return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2838  }
2839
2840  // Implement isa/cast/dyncast/etc.
2841  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2842  static bool classofKind(Kind K) { return K == CXXDestructor; }
2843};
2844
2845/// Represents a C++ conversion function within a class.
2846///
2847/// For example:
2848///
2849/// \code
2850/// class X {
2851/// public:
2852///   operator bool();
2853/// };
2854/// \endcode
2855class CXXConversionDecl : public CXXMethodDecl {
2856  CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2857                    const DeclarationNameInfo &NameInfo, QualType T,
2858                    TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2859                    ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2860                    SourceLocation EndLocation,
2861                    Expr *TrailingRequiresClause = nullptr)
2862      : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2863                      SC_None, UsesFPIntrin, isInline, ConstexprKind,
2864                      EndLocation, TrailingRequiresClause),
2865        ExplicitSpec(ES) {}
2866  void anchor() override;
2867
2868  ExplicitSpecifier ExplicitSpec;
2869
2870public:
2871  friend class ASTDeclReader;
2872  friend class ASTDeclWriter;
2873
2874  static CXXConversionDecl *
2875  Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2876         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2877         bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2878         ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2879         Expr *TrailingRequiresClause = nullptr);
2880  static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2881
2882  ExplicitSpecifier getExplicitSpecifier() {
2883    return getCanonicalDecl()->ExplicitSpec;
2884  }
2885
2886  const ExplicitSpecifier getExplicitSpecifier() const {
2887    return getCanonicalDecl()->ExplicitSpec;
2888  }
2889
2890  /// Return true if the declaration is already resolved to be explicit.
2891  bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2892  void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2893
2894  /// Returns the type that this conversion function is converting to.
2895  QualType getConversionType() const {
2896    return getType()->castAs<FunctionType>()->getReturnType();
2897  }
2898
2899  /// Determine whether this conversion function is a conversion from
2900  /// a lambda closure type to a block pointer.
2901  bool isLambdaToBlockPointerConversion() const;
2902
2903  CXXConversionDecl *getCanonicalDecl() override {
2904    return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2905  }
2906  const CXXConversionDecl *getCanonicalDecl() const {
2907    return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2908  }
2909
2910  // Implement isa/cast/dyncast/etc.
2911  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2912  static bool classofKind(Kind K) { return K == CXXConversion; }
2913};
2914
2915/// Represents the language in a linkage specification.
2916///
2917/// The values are part of the serialization ABI for
2918/// ASTs and cannot be changed without altering that ABI.
2919enum class LinkageSpecLanguageIDs { C = 1, CXX = 2 };
2920
2921/// Represents a linkage specification.
2922///
2923/// For example:
2924/// \code
2925///   extern "C" void foo();
2926/// \endcode
2927class LinkageSpecDecl : public Decl, public DeclContext {
2928  virtual void anchor();
2929  // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2930  // some space. Use the provided accessors to access it.
2931
2932  /// The source location for the extern keyword.
2933  SourceLocation ExternLoc;
2934
2935  /// The source location for the right brace (if valid).
2936  SourceLocation RBraceLoc;
2937
2938  LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2939                  SourceLocation LangLoc, LinkageSpecLanguageIDs lang,
2940                  bool HasBraces);
2941
2942public:
2943  static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2944                                 SourceLocation ExternLoc,
2945                                 SourceLocation LangLoc,
2946                                 LinkageSpecLanguageIDs Lang, bool HasBraces);
2947  static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2948
2949  /// Return the language specified by this linkage specification.
2950  LinkageSpecLanguageIDs getLanguage() const {
2951    return static_cast<LinkageSpecLanguageIDs>(LinkageSpecDeclBits.Language);
2952  }
2953
2954  /// Set the language specified by this linkage specification.
2955  void setLanguage(LinkageSpecLanguageIDs L) {
2956    LinkageSpecDeclBits.Language = llvm::to_underlying(L);
2957  }
2958
2959  /// Determines whether this linkage specification had braces in
2960  /// its syntactic form.
2961  bool hasBraces() const {
2962    assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2963    return LinkageSpecDeclBits.HasBraces;
2964  }
2965
2966  SourceLocation getExternLoc() const { return ExternLoc; }
2967  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2968  void setExternLoc(SourceLocation L) { ExternLoc = L; }
2969  void setRBraceLoc(SourceLocation L) {
2970    RBraceLoc = L;
2971    LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2972  }
2973
2974  SourceLocation getEndLoc() const LLVM_READONLY {
2975    if (hasBraces())
2976      return getRBraceLoc();
2977    // No braces: get the end location of the (only) declaration in context
2978    // (if present).
2979    return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2980  }
2981
2982  SourceRange getSourceRange() const override LLVM_READONLY {
2983    return SourceRange(ExternLoc, getEndLoc());
2984  }
2985
2986  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2987  static bool classofKind(Kind K) { return K == LinkageSpec; }
2988
2989  static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2990    return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2991  }
2992
2993  static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2994    return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2995  }
2996};
2997
2998/// Represents C++ using-directive.
2999///
3000/// For example:
3001/// \code
3002///    using namespace std;
3003/// \endcode
3004///
3005/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
3006/// artificial names for all using-directives in order to store
3007/// them in DeclContext effectively.
3008class UsingDirectiveDecl : public NamedDecl {
3009  /// The location of the \c using keyword.
3010  SourceLocation UsingLoc;
3011
3012  /// The location of the \c namespace keyword.
3013  SourceLocation NamespaceLoc;
3014
3015  /// The nested-name-specifier that precedes the namespace.
3016  NestedNameSpecifierLoc QualifierLoc;
3017
3018  /// The namespace nominated by this using-directive.
3019  NamedDecl *NominatedNamespace;
3020
3021  /// Enclosing context containing both using-directive and nominated
3022  /// namespace.
3023  DeclContext *CommonAncestor;
3024
3025  UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
3026                     SourceLocation NamespcLoc,
3027                     NestedNameSpecifierLoc QualifierLoc,
3028                     SourceLocation IdentLoc,
3029                     NamedDecl *Nominated,
3030                     DeclContext *CommonAncestor)
3031      : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
3032        NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
3033        NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
3034
3035  /// Returns special DeclarationName used by using-directives.
3036  ///
3037  /// This is only used by DeclContext for storing UsingDirectiveDecls in
3038  /// its lookup structure.
3039  static DeclarationName getName() {
3040    return DeclarationName::getUsingDirectiveName();
3041  }
3042
3043  void anchor() override;
3044
3045public:
3046  friend class ASTDeclReader;
3047
3048  // Friend for getUsingDirectiveName.
3049  friend class DeclContext;
3050
3051  /// Retrieve the nested-name-specifier that qualifies the
3052  /// name of the namespace, with source-location information.
3053  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3054
3055  /// Retrieve the nested-name-specifier that qualifies the
3056  /// name of the namespace.
3057  NestedNameSpecifier *getQualifier() const {
3058    return QualifierLoc.getNestedNameSpecifier();
3059  }
3060
3061  NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
3062  const NamedDecl *getNominatedNamespaceAsWritten() const {
3063    return NominatedNamespace;
3064  }
3065
3066  /// Returns the namespace nominated by this using-directive.
3067  NamespaceDecl *getNominatedNamespace();
3068
3069  const NamespaceDecl *getNominatedNamespace() const {
3070    return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
3071  }
3072
3073  /// Returns the common ancestor context of this using-directive and
3074  /// its nominated namespace.
3075  DeclContext *getCommonAncestor() { return CommonAncestor; }
3076  const DeclContext *getCommonAncestor() const { return CommonAncestor; }
3077
3078  /// Return the location of the \c using keyword.
3079  SourceLocation getUsingLoc() const { return UsingLoc; }
3080
3081  // FIXME: Could omit 'Key' in name.
3082  /// Returns the location of the \c namespace keyword.
3083  SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
3084
3085  /// Returns the location of this using declaration's identifier.
3086  SourceLocation getIdentLocation() const { return getLocation(); }
3087
3088  static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
3089                                    SourceLocation UsingLoc,
3090                                    SourceLocation NamespaceLoc,
3091                                    NestedNameSpecifierLoc QualifierLoc,
3092                                    SourceLocation IdentLoc,
3093                                    NamedDecl *Nominated,
3094                                    DeclContext *CommonAncestor);
3095  static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3096
3097  SourceRange getSourceRange() const override LLVM_READONLY {
3098    return SourceRange(UsingLoc, getLocation());
3099  }
3100
3101  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3102  static bool classofKind(Kind K) { return K == UsingDirective; }
3103};
3104
3105/// Represents a C++ namespace alias.
3106///
3107/// For example:
3108///
3109/// \code
3110/// namespace Foo = Bar;
3111/// \endcode
3112class NamespaceAliasDecl : public NamedDecl,
3113                           public Redeclarable<NamespaceAliasDecl> {
3114  friend class ASTDeclReader;
3115
3116  /// The location of the \c namespace keyword.
3117  SourceLocation NamespaceLoc;
3118
3119  /// The location of the namespace's identifier.
3120  ///
3121  /// This is accessed by TargetNameLoc.
3122  SourceLocation IdentLoc;
3123
3124  /// The nested-name-specifier that precedes the namespace.
3125  NestedNameSpecifierLoc QualifierLoc;
3126
3127  /// The Decl that this alias points to, either a NamespaceDecl or
3128  /// a NamespaceAliasDecl.
3129  NamedDecl *Namespace;
3130
3131  NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3132                     SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3133                     IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3134                     SourceLocation IdentLoc, NamedDecl *Namespace)
3135      : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3136        NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3137        QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3138
3139  void anchor() override;
3140
3141  using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3142
3143  NamespaceAliasDecl *getNextRedeclarationImpl() override;
3144  NamespaceAliasDecl *getPreviousDeclImpl() override;
3145  NamespaceAliasDecl *getMostRecentDeclImpl() override;
3146
3147public:
3148  static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3149                                    SourceLocation NamespaceLoc,
3150                                    SourceLocation AliasLoc,
3151                                    IdentifierInfo *Alias,
3152                                    NestedNameSpecifierLoc QualifierLoc,
3153                                    SourceLocation IdentLoc,
3154                                    NamedDecl *Namespace);
3155
3156  static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3157
3158  using redecl_range = redeclarable_base::redecl_range;
3159  using redecl_iterator = redeclarable_base::redecl_iterator;
3160
3161  using redeclarable_base::redecls_begin;
3162  using redeclarable_base::redecls_end;
3163  using redeclarable_base::redecls;
3164  using redeclarable_base::getPreviousDecl;
3165  using redeclarable_base::getMostRecentDecl;
3166
3167  NamespaceAliasDecl *getCanonicalDecl() override {
3168    return getFirstDecl();
3169  }
3170  const NamespaceAliasDecl *getCanonicalDecl() const {
3171    return getFirstDecl();
3172  }
3173
3174  /// Retrieve the nested-name-specifier that qualifies the
3175  /// name of the namespace, with source-location information.
3176  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3177
3178  /// Retrieve the nested-name-specifier that qualifies the
3179  /// name of the namespace.
3180  NestedNameSpecifier *getQualifier() const {
3181    return QualifierLoc.getNestedNameSpecifier();
3182  }
3183
3184  /// Retrieve the namespace declaration aliased by this directive.
3185  NamespaceDecl *getNamespace() {
3186    if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3187      return AD->getNamespace();
3188
3189    return cast<NamespaceDecl>(Namespace);
3190  }
3191
3192  const NamespaceDecl *getNamespace() const {
3193    return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3194  }
3195
3196  /// Returns the location of the alias name, i.e. 'foo' in
3197  /// "namespace foo = ns::bar;".
3198  SourceLocation getAliasLoc() const { return getLocation(); }
3199
3200  /// Returns the location of the \c namespace keyword.
3201  SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3202
3203  /// Returns the location of the identifier in the named namespace.
3204  SourceLocation getTargetNameLoc() const { return IdentLoc; }
3205
3206  /// Retrieve the namespace that this alias refers to, which
3207  /// may either be a NamespaceDecl or a NamespaceAliasDecl.
3208  NamedDecl *getAliasedNamespace() const { return Namespace; }
3209
3210  SourceRange getSourceRange() const override LLVM_READONLY {
3211    return SourceRange(NamespaceLoc, IdentLoc);
3212  }
3213
3214  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3215  static bool classofKind(Kind K) { return K == NamespaceAlias; }
3216};
3217
3218/// Implicit declaration of a temporary that was materialized by
3219/// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3220class LifetimeExtendedTemporaryDecl final
3221    : public Decl,
3222      public Mergeable<LifetimeExtendedTemporaryDecl> {
3223  friend class MaterializeTemporaryExpr;
3224  friend class ASTDeclReader;
3225
3226  Stmt *ExprWithTemporary = nullptr;
3227
3228  /// The declaration which lifetime-extended this reference, if any.
3229  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3230  ValueDecl *ExtendingDecl = nullptr;
3231  unsigned ManglingNumber;
3232
3233  mutable APValue *Value = nullptr;
3234
3235  virtual void anchor();
3236
3237  LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3238      : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3239             EDecl->getLocation()),
3240        ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3241        ManglingNumber(Mangling) {}
3242
3243  LifetimeExtendedTemporaryDecl(EmptyShell)
3244      : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3245
3246public:
3247  static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3248                                               unsigned Mangling) {
3249    return new (EDec->getASTContext(), EDec->getDeclContext())
3250        LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3251  }
3252  static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3253                                                           unsigned ID) {
3254    return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3255  }
3256
3257  ValueDecl *getExtendingDecl() { return ExtendingDecl; }
3258  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3259
3260  /// Retrieve the storage duration for the materialized temporary.
3261  StorageDuration getStorageDuration() const;
3262
3263  /// Retrieve the expression to which the temporary materialization conversion
3264  /// was applied. This isn't necessarily the initializer of the temporary due
3265  /// to the C++98 delayed materialization rules, but
3266  /// skipRValueSubobjectAdjustments can be used to find said initializer within
3267  /// the subexpression.
3268  Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
3269  const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3270
3271  unsigned getManglingNumber() const { return ManglingNumber; }
3272
3273  /// Get the storage for the constant value of a materialized temporary
3274  /// of static storage duration.
3275  APValue *getOrCreateValue(bool MayCreate) const;
3276
3277  APValue *getValue() const { return Value; }
3278
3279  // Iterators
3280  Stmt::child_range childrenExpr() {
3281    return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3282  }
3283
3284  Stmt::const_child_range childrenExpr() const {
3285    return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3286  }
3287
3288  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3289  static bool classofKind(Kind K) {
3290    return K == Decl::LifetimeExtendedTemporary;
3291  }
3292};
3293
3294/// Represents a shadow declaration implicitly introduced into a scope by a
3295/// (resolved) using-declaration or using-enum-declaration to achieve
3296/// the desired lookup semantics.
3297///
3298/// For example:
3299/// \code
3300/// namespace A {
3301///   void foo();
3302///   void foo(int);
3303///   struct foo {};
3304///   enum bar { bar1, bar2 };
3305/// }
3306/// namespace B {
3307///   // add a UsingDecl and three UsingShadowDecls (named foo) to B.
3308///   using A::foo;
3309///   // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
3310///   using enum A::bar;
3311/// }
3312/// \endcode
3313class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3314  friend class BaseUsingDecl;
3315
3316  /// The referenced declaration.
3317  NamedDecl *Underlying = nullptr;
3318
3319  /// The using declaration which introduced this decl or the next using
3320  /// shadow declaration contained in the aforementioned using declaration.
3321  NamedDecl *UsingOrNextShadow = nullptr;
3322
3323  void anchor() override;
3324
3325  using redeclarable_base = Redeclarable<UsingShadowDecl>;
3326
3327  UsingShadowDecl *getNextRedeclarationImpl() override {
3328    return getNextRedeclaration();
3329  }
3330
3331  UsingShadowDecl *getPreviousDeclImpl() override {
3332    return getPreviousDecl();
3333  }
3334
3335  UsingShadowDecl *getMostRecentDeclImpl() override {
3336    return getMostRecentDecl();
3337  }
3338
3339protected:
3340  UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3341                  DeclarationName Name, BaseUsingDecl *Introducer,
3342                  NamedDecl *Target);
3343  UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3344
3345public:
3346  friend class ASTDeclReader;
3347  friend class ASTDeclWriter;
3348
3349  static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3350                                 SourceLocation Loc, DeclarationName Name,
3351                                 BaseUsingDecl *Introducer, NamedDecl *Target) {
3352    return new (C, DC)
3353        UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
3354  }
3355
3356  static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3357
3358  using redecl_range = redeclarable_base::redecl_range;
3359  using redecl_iterator = redeclarable_base::redecl_iterator;
3360
3361  using redeclarable_base::redecls_begin;
3362  using redeclarable_base::redecls_end;
3363  using redeclarable_base::redecls;
3364  using redeclarable_base::getPreviousDecl;
3365  using redeclarable_base::getMostRecentDecl;
3366  using redeclarable_base::isFirstDecl;
3367
3368  UsingShadowDecl *getCanonicalDecl() override {
3369    return getFirstDecl();
3370  }
3371  const UsingShadowDecl *getCanonicalDecl() const {
3372    return getFirstDecl();
3373  }
3374
3375  /// Gets the underlying declaration which has been brought into the
3376  /// local scope.
3377  NamedDecl *getTargetDecl() const { return Underlying; }
3378
3379  /// Sets the underlying declaration which has been brought into the
3380  /// local scope.
3381  void setTargetDecl(NamedDecl *ND) {
3382    assert(ND && "Target decl is null!");
3383    Underlying = ND;
3384    // A UsingShadowDecl is never a friend or local extern declaration, even
3385    // if it is a shadow declaration for one.
3386    IdentifierNamespace =
3387        ND->getIdentifierNamespace() &
3388        ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3389  }
3390
3391  /// Gets the (written or instantiated) using declaration that introduced this
3392  /// declaration.
3393  BaseUsingDecl *getIntroducer() const;
3394
3395  /// The next using shadow declaration contained in the shadow decl
3396  /// chain of the using declaration which introduced this decl.
3397  UsingShadowDecl *getNextUsingShadowDecl() const {
3398    return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3399  }
3400
3401  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3402  static bool classofKind(Kind K) {
3403    return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3404  }
3405};
3406
3407/// Represents a C++ declaration that introduces decls from somewhere else. It
3408/// provides a set of the shadow decls so introduced.
3409
3410class BaseUsingDecl : public NamedDecl {
3411  /// The first shadow declaration of the shadow decl chain associated
3412  /// with this using declaration.
3413  ///
3414  /// The bool member of the pair is a bool flag a derived type may use
3415  /// (UsingDecl makes use of it).
3416  llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3417
3418protected:
3419  BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
3420      : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
3421
3422private:
3423  void anchor() override;
3424
3425protected:
3426  /// A bool flag for use by a derived type
3427  bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
3428
3429  /// A bool flag a derived type may set
3430  void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
3431
3432public:
3433  friend class ASTDeclReader;
3434  friend class ASTDeclWriter;
3435
3436  /// Iterates through the using shadow declarations associated with
3437  /// this using declaration.
3438  class shadow_iterator {
3439    /// The current using shadow declaration.
3440    UsingShadowDecl *Current = nullptr;
3441
3442  public:
3443    using value_type = UsingShadowDecl *;
3444    using reference = UsingShadowDecl *;
3445    using pointer = UsingShadowDecl *;
3446    using iterator_category = std::forward_iterator_tag;
3447    using difference_type = std::ptrdiff_t;
3448
3449    shadow_iterator() = default;
3450    explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3451
3452    reference operator*() const { return Current; }
3453    pointer operator->() const { return Current; }
3454
3455    shadow_iterator &operator++() {
3456      Current = Current->getNextUsingShadowDecl();
3457      return *this;
3458    }
3459
3460    shadow_iterator operator++(int) {
3461      shadow_iterator tmp(*this);
3462      ++(*this);
3463      return tmp;
3464    }
3465
3466    friend bool operator==(shadow_iterator x, shadow_iterator y) {
3467      return x.Current == y.Current;
3468    }
3469    friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3470      return x.Current != y.Current;
3471    }
3472  };
3473
3474  using shadow_range = llvm::iterator_range<shadow_iterator>;
3475
3476  shadow_range shadows() const {
3477    return shadow_range(shadow_begin(), shadow_end());
3478  }
3479
3480  shadow_iterator shadow_begin() const {
3481    return shadow_iterator(FirstUsingShadow.getPointer());
3482  }
3483
3484  shadow_iterator shadow_end() const { return shadow_iterator(); }
3485
3486  /// Return the number of shadowed declarations associated with this
3487  /// using declaration.
3488  unsigned shadow_size() const {
3489    return std::distance(shadow_begin(), shadow_end());
3490  }
3491
3492  void addShadowDecl(UsingShadowDecl *S);
3493  void removeShadowDecl(UsingShadowDecl *S);
3494
3495  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3496  static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
3497};
3498
3499/// Represents a C++ using-declaration.
3500///
3501/// For example:
3502/// \code
3503///    using someNameSpace::someIdentifier;
3504/// \endcode
3505class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
3506  /// The source location of the 'using' keyword itself.
3507  SourceLocation UsingLocation;
3508
3509  /// The nested-name-specifier that precedes the name.
3510  NestedNameSpecifierLoc QualifierLoc;
3511
3512  /// Provides source/type location info for the declaration name
3513  /// embedded in the ValueDecl base class.
3514  DeclarationNameLoc DNLoc;
3515
3516  UsingDecl(DeclContext *DC, SourceLocation UL,
3517            NestedNameSpecifierLoc QualifierLoc,
3518            const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3519      : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3520        UsingLocation(UL), QualifierLoc(QualifierLoc),
3521        DNLoc(NameInfo.getInfo()) {
3522    setShadowFlag(HasTypenameKeyword);
3523  }
3524
3525  void anchor() override;
3526
3527public:
3528  friend class ASTDeclReader;
3529  friend class ASTDeclWriter;
3530
3531  /// Return the source location of the 'using' keyword.
3532  SourceLocation getUsingLoc() const { return UsingLocation; }
3533
3534  /// Set the source location of the 'using' keyword.
3535  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3536
3537  /// Retrieve the nested-name-specifier that qualifies the name,
3538  /// with source-location information.
3539  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3540
3541  /// Retrieve the nested-name-specifier that qualifies the name.
3542  NestedNameSpecifier *getQualifier() const {
3543    return QualifierLoc.getNestedNameSpecifier();
3544  }
3545
3546  DeclarationNameInfo getNameInfo() const {
3547    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3548  }
3549
3550  /// Return true if it is a C++03 access declaration (no 'using').
3551  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3552
3553  /// Return true if the using declaration has 'typename'.
3554  bool hasTypename() const { return getShadowFlag(); }
3555
3556  /// Sets whether the using declaration has 'typename'.
3557  void setTypename(bool TN) { setShadowFlag(TN); }
3558
3559  static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3560                           SourceLocation UsingL,
3561                           NestedNameSpecifierLoc QualifierLoc,
3562                           const DeclarationNameInfo &NameInfo,
3563                           bool HasTypenameKeyword);
3564
3565  static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3566
3567  SourceRange getSourceRange() const override LLVM_READONLY;
3568
3569  /// Retrieves the canonical declaration of this declaration.
3570  UsingDecl *getCanonicalDecl() override {
3571    return cast<UsingDecl>(getFirstDecl());
3572  }
3573  const UsingDecl *getCanonicalDecl() const {
3574    return cast<UsingDecl>(getFirstDecl());
3575  }
3576
3577  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3578  static bool classofKind(Kind K) { return K == Using; }
3579};
3580
3581/// Represents a shadow constructor declaration introduced into a
3582/// class by a C++11 using-declaration that names a constructor.
3583///
3584/// For example:
3585/// \code
3586/// struct Base { Base(int); };
3587/// struct Derived {
3588///    using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3589/// };
3590/// \endcode
3591class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3592  /// If this constructor using declaration inherted the constructor
3593  /// from an indirect base class, this is the ConstructorUsingShadowDecl
3594  /// in the named direct base class from which the declaration was inherited.
3595  ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3596
3597  /// If this constructor using declaration inherted the constructor
3598  /// from an indirect base class, this is the ConstructorUsingShadowDecl
3599  /// that will be used to construct the unique direct or virtual base class
3600  /// that receives the constructor arguments.
3601  ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3602
3603  /// \c true if the constructor ultimately named by this using shadow
3604  /// declaration is within a virtual base class subobject of the class that
3605  /// contains this declaration.
3606  LLVM_PREFERRED_TYPE(bool)
3607  unsigned IsVirtual : 1;
3608
3609  ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3610                             UsingDecl *Using, NamedDecl *Target,
3611                             bool TargetInVirtualBase)
3612      : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
3613                        Using->getDeclName(), Using,
3614                        Target->getUnderlyingDecl()),
3615        NominatedBaseClassShadowDecl(
3616            dyn_cast<ConstructorUsingShadowDecl>(Target)),
3617        ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3618        IsVirtual(TargetInVirtualBase) {
3619    // If we found a constructor that chains to a constructor for a virtual
3620    // base, we should directly call that virtual base constructor instead.
3621    // FIXME: This logic belongs in Sema.
3622    if (NominatedBaseClassShadowDecl &&
3623        NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3624      ConstructedBaseClassShadowDecl =
3625          NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3626      IsVirtual = true;
3627    }
3628  }
3629
3630  ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3631      : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3632
3633  void anchor() override;
3634
3635public:
3636  friend class ASTDeclReader;
3637  friend class ASTDeclWriter;
3638
3639  static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3640                                            SourceLocation Loc,
3641                                            UsingDecl *Using, NamedDecl *Target,
3642                                            bool IsVirtual);
3643  static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3644                                                        unsigned ID);
3645
3646  /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
3647  /// introduced this.
3648  UsingDecl *getIntroducer() const {
3649    return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
3650  }
3651
3652  /// Returns the parent of this using shadow declaration, which
3653  /// is the class in which this is declared.
3654  //@{
3655  const CXXRecordDecl *getParent() const {
3656    return cast<CXXRecordDecl>(getDeclContext());
3657  }
3658  CXXRecordDecl *getParent() {
3659    return cast<CXXRecordDecl>(getDeclContext());
3660  }
3661  //@}
3662
3663  /// Get the inheriting constructor declaration for the direct base
3664  /// class from which this using shadow declaration was inherited, if there is
3665  /// one. This can be different for each redeclaration of the same shadow decl.
3666  ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3667    return NominatedBaseClassShadowDecl;
3668  }
3669
3670  /// Get the inheriting constructor declaration for the base class
3671  /// for which we don't have an explicit initializer, if there is one.
3672  ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3673    return ConstructedBaseClassShadowDecl;
3674  }
3675
3676  /// Get the base class that was named in the using declaration. This
3677  /// can be different for each redeclaration of this same shadow decl.
3678  CXXRecordDecl *getNominatedBaseClass() const;
3679
3680  /// Get the base class whose constructor or constructor shadow
3681  /// declaration is passed the constructor arguments.
3682  CXXRecordDecl *getConstructedBaseClass() const {
3683    return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3684                                    ? ConstructedBaseClassShadowDecl
3685                                    : getTargetDecl())
3686                                   ->getDeclContext());
3687  }
3688
3689  /// Returns \c true if the constructed base class is a virtual base
3690  /// class subobject of this declaration's class.
3691  bool constructsVirtualBase() const {
3692    return IsVirtual;
3693  }
3694
3695  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3696  static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3697};
3698
3699/// Represents a C++ using-enum-declaration.
3700///
3701/// For example:
3702/// \code
3703///    using enum SomeEnumTag ;
3704/// \endcode
3705
3706class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
3707  /// The source location of the 'using' keyword itself.
3708  SourceLocation UsingLocation;
3709  /// The source location of the 'enum' keyword.
3710  SourceLocation EnumLocation;
3711  /// 'qual::SomeEnum' as an EnumType, possibly with Elaborated/Typedef sugar.
3712  TypeSourceInfo *EnumType;
3713
3714  UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
3715                SourceLocation EL, SourceLocation NL, TypeSourceInfo *EnumType)
3716      : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL), EnumLocation(EL),
3717        EnumType(EnumType){}
3718
3719  void anchor() override;
3720
3721public:
3722  friend class ASTDeclReader;
3723  friend class ASTDeclWriter;
3724
3725  /// The source location of the 'using' keyword.
3726  SourceLocation getUsingLoc() const { return UsingLocation; }
3727  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3728
3729  /// The source location of the 'enum' keyword.
3730  SourceLocation getEnumLoc() const { return EnumLocation; }
3731  void setEnumLoc(SourceLocation L) { EnumLocation = L; }
3732  NestedNameSpecifier *getQualifier() const {
3733    return getQualifierLoc().getNestedNameSpecifier();
3734  }
3735  NestedNameSpecifierLoc getQualifierLoc() const {
3736    if (auto ETL = EnumType->getTypeLoc().getAs<ElaboratedTypeLoc>())
3737      return ETL.getQualifierLoc();
3738    return NestedNameSpecifierLoc();
3739  }
3740  // Returns the "qualifier::Name" part as a TypeLoc.
3741  TypeLoc getEnumTypeLoc() const {
3742    return EnumType->getTypeLoc();
3743  }
3744  TypeSourceInfo *getEnumType() const {
3745    return EnumType;
3746  }
3747  void setEnumType(TypeSourceInfo *TSI) { EnumType = TSI; }
3748
3749public:
3750  EnumDecl *getEnumDecl() const { return cast<EnumDecl>(EnumType->getType()->getAsTagDecl()); }
3751
3752  static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
3753                               SourceLocation UsingL, SourceLocation EnumL,
3754                               SourceLocation NameL, TypeSourceInfo *EnumType);
3755
3756  static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3757
3758  SourceRange getSourceRange() const override LLVM_READONLY;
3759
3760  /// Retrieves the canonical declaration of this declaration.
3761  UsingEnumDecl *getCanonicalDecl() override {
3762    return cast<UsingEnumDecl>(getFirstDecl());
3763  }
3764  const UsingEnumDecl *getCanonicalDecl() const {
3765    return cast<UsingEnumDecl>(getFirstDecl());
3766  }
3767
3768  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3769  static bool classofKind(Kind K) { return K == UsingEnum; }
3770};
3771
3772/// Represents a pack of using declarations that a single
3773/// using-declarator pack-expanded into.
3774///
3775/// \code
3776/// template<typename ...T> struct X : T... {
3777///   using T::operator()...;
3778///   using T::operator T...;
3779/// };
3780/// \endcode
3781///
3782/// In the second case above, the UsingPackDecl will have the name
3783/// 'operator T' (which contains an unexpanded pack), but the individual
3784/// UsingDecls and UsingShadowDecls will have more reasonable names.
3785class UsingPackDecl final
3786    : public NamedDecl, public Mergeable<UsingPackDecl>,
3787      private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3788  /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3789  /// which this waas instantiated.
3790  NamedDecl *InstantiatedFrom;
3791
3792  /// The number of using-declarations created by this pack expansion.
3793  unsigned NumExpansions;
3794
3795  UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3796                ArrayRef<NamedDecl *> UsingDecls)
3797      : NamedDecl(UsingPack, DC,
3798                  InstantiatedFrom ? InstantiatedFrom->getLocation()
3799                                   : SourceLocation(),
3800                  InstantiatedFrom ? InstantiatedFrom->getDeclName()
3801                                   : DeclarationName()),
3802        InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3803    std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3804                            getTrailingObjects<NamedDecl *>());
3805  }
3806
3807  void anchor() override;
3808
3809public:
3810  friend class ASTDeclReader;
3811  friend class ASTDeclWriter;
3812  friend TrailingObjects;
3813
3814  /// Get the using declaration from which this was instantiated. This will
3815  /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3816  /// that is a pack expansion.
3817  NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3818
3819  /// Get the set of using declarations that this pack expanded into. Note that
3820  /// some of these may still be unresolved.
3821  ArrayRef<NamedDecl *> expansions() const {
3822    return llvm::ArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3823  }
3824
3825  static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3826                               NamedDecl *InstantiatedFrom,
3827                               ArrayRef<NamedDecl *> UsingDecls);
3828
3829  static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3830                                           unsigned NumExpansions);
3831
3832  SourceRange getSourceRange() const override LLVM_READONLY {
3833    return InstantiatedFrom->getSourceRange();
3834  }
3835
3836  UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
3837  const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3838
3839  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3840  static bool classofKind(Kind K) { return K == UsingPack; }
3841};
3842
3843/// Represents a dependent using declaration which was not marked with
3844/// \c typename.
3845///
3846/// Unlike non-dependent using declarations, these *only* bring through
3847/// non-types; otherwise they would break two-phase lookup.
3848///
3849/// \code
3850/// template \<class T> class A : public Base<T> {
3851///   using Base<T>::foo;
3852/// };
3853/// \endcode
3854class UnresolvedUsingValueDecl : public ValueDecl,
3855                                 public Mergeable<UnresolvedUsingValueDecl> {
3856  /// The source location of the 'using' keyword
3857  SourceLocation UsingLocation;
3858
3859  /// If this is a pack expansion, the location of the '...'.
3860  SourceLocation EllipsisLoc;
3861
3862  /// The nested-name-specifier that precedes the name.
3863  NestedNameSpecifierLoc QualifierLoc;
3864
3865  /// Provides source/type location info for the declaration name
3866  /// embedded in the ValueDecl base class.
3867  DeclarationNameLoc DNLoc;
3868
3869  UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3870                           SourceLocation UsingLoc,
3871                           NestedNameSpecifierLoc QualifierLoc,
3872                           const DeclarationNameInfo &NameInfo,
3873                           SourceLocation EllipsisLoc)
3874      : ValueDecl(UnresolvedUsingValue, DC,
3875                  NameInfo.getLoc(), NameInfo.getName(), Ty),
3876        UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3877        QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3878
3879  void anchor() override;
3880
3881public:
3882  friend class ASTDeclReader;
3883  friend class ASTDeclWriter;
3884
3885  /// Returns the source location of the 'using' keyword.
3886  SourceLocation getUsingLoc() const { return UsingLocation; }
3887
3888  /// Set the source location of the 'using' keyword.
3889  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3890
3891  /// Return true if it is a C++03 access declaration (no 'using').
3892  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3893
3894  /// Retrieve the nested-name-specifier that qualifies the name,
3895  /// with source-location information.
3896  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3897
3898  /// Retrieve the nested-name-specifier that qualifies the name.
3899  NestedNameSpecifier *getQualifier() const {
3900    return QualifierLoc.getNestedNameSpecifier();
3901  }
3902
3903  DeclarationNameInfo getNameInfo() const {
3904    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3905  }
3906
3907  /// Determine whether this is a pack expansion.
3908  bool isPackExpansion() const {
3909    return EllipsisLoc.isValid();
3910  }
3911
3912  /// Get the location of the ellipsis if this is a pack expansion.
3913  SourceLocation getEllipsisLoc() const {
3914    return EllipsisLoc;
3915  }
3916
3917  static UnresolvedUsingValueDecl *
3918    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3919           NestedNameSpecifierLoc QualifierLoc,
3920           const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3921
3922  static UnresolvedUsingValueDecl *
3923  CreateDeserialized(ASTContext &C, unsigned ID);
3924
3925  SourceRange getSourceRange() const override LLVM_READONLY;
3926
3927  /// Retrieves the canonical declaration of this declaration.
3928  UnresolvedUsingValueDecl *getCanonicalDecl() override {
3929    return getFirstDecl();
3930  }
3931  const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3932    return getFirstDecl();
3933  }
3934
3935  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3936  static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3937};
3938
3939/// Represents a dependent using declaration which was marked with
3940/// \c typename.
3941///
3942/// \code
3943/// template \<class T> class A : public Base<T> {
3944///   using typename Base<T>::foo;
3945/// };
3946/// \endcode
3947///
3948/// The type associated with an unresolved using typename decl is
3949/// currently always a typename type.
3950class UnresolvedUsingTypenameDecl
3951    : public TypeDecl,
3952      public Mergeable<UnresolvedUsingTypenameDecl> {
3953  friend class ASTDeclReader;
3954
3955  /// The source location of the 'typename' keyword
3956  SourceLocation TypenameLocation;
3957
3958  /// If this is a pack expansion, the location of the '...'.
3959  SourceLocation EllipsisLoc;
3960
3961  /// The nested-name-specifier that precedes the name.
3962  NestedNameSpecifierLoc QualifierLoc;
3963
3964  UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3965                              SourceLocation TypenameLoc,
3966                              NestedNameSpecifierLoc QualifierLoc,
3967                              SourceLocation TargetNameLoc,
3968                              IdentifierInfo *TargetName,
3969                              SourceLocation EllipsisLoc)
3970    : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3971               UsingLoc),
3972      TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3973      QualifierLoc(QualifierLoc) {}
3974
3975  void anchor() override;
3976
3977public:
3978  /// Returns the source location of the 'using' keyword.
3979  SourceLocation getUsingLoc() const { return getBeginLoc(); }
3980
3981  /// Returns the source location of the 'typename' keyword.
3982  SourceLocation getTypenameLoc() const { return TypenameLocation; }
3983
3984  /// Retrieve the nested-name-specifier that qualifies the name,
3985  /// with source-location information.
3986  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3987
3988  /// Retrieve the nested-name-specifier that qualifies the name.
3989  NestedNameSpecifier *getQualifier() const {
3990    return QualifierLoc.getNestedNameSpecifier();
3991  }
3992
3993  DeclarationNameInfo getNameInfo() const {
3994    return DeclarationNameInfo(getDeclName(), getLocation());
3995  }
3996
3997  /// Determine whether this is a pack expansion.
3998  bool isPackExpansion() const {
3999    return EllipsisLoc.isValid();
4000  }
4001
4002  /// Get the location of the ellipsis if this is a pack expansion.
4003  SourceLocation getEllipsisLoc() const {
4004    return EllipsisLoc;
4005  }
4006
4007  static UnresolvedUsingTypenameDecl *
4008    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
4009           SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
4010           SourceLocation TargetNameLoc, DeclarationName TargetName,
4011           SourceLocation EllipsisLoc);
4012
4013  static UnresolvedUsingTypenameDecl *
4014  CreateDeserialized(ASTContext &C, unsigned ID);
4015
4016  /// Retrieves the canonical declaration of this declaration.
4017  UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
4018    return getFirstDecl();
4019  }
4020  const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
4021    return getFirstDecl();
4022  }
4023
4024  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4025  static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
4026};
4027
4028/// This node is generated when a using-declaration that was annotated with
4029/// __attribute__((using_if_exists)) failed to resolve to a known declaration.
4030/// In that case, Sema builds a UsingShadowDecl whose target is an instance of
4031/// this declaration, adding it to the current scope. Referring to this
4032/// declaration in any way is an error.
4033class UnresolvedUsingIfExistsDecl final : public NamedDecl {
4034  UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
4035                              DeclarationName Name);
4036
4037  void anchor() override;
4038
4039public:
4040  static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
4041                                             SourceLocation Loc,
4042                                             DeclarationName Name);
4043  static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
4044                                                         unsigned ID);
4045
4046  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4047  static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
4048};
4049
4050/// Represents a C++11 static_assert declaration.
4051class StaticAssertDecl : public Decl {
4052  llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
4053  Expr *Message;
4054  SourceLocation RParenLoc;
4055
4056  StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
4057                   Expr *AssertExpr, Expr *Message, SourceLocation RParenLoc,
4058                   bool Failed)
4059      : Decl(StaticAssert, DC, StaticAssertLoc),
4060        AssertExprAndFailed(AssertExpr, Failed), Message(Message),
4061        RParenLoc(RParenLoc) {}
4062
4063  virtual void anchor();
4064
4065public:
4066  friend class ASTDeclReader;
4067
4068  static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
4069                                  SourceLocation StaticAssertLoc,
4070                                  Expr *AssertExpr, Expr *Message,
4071                                  SourceLocation RParenLoc, bool Failed);
4072  static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4073
4074  Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
4075  const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
4076
4077  Expr *getMessage() { return Message; }
4078  const Expr *getMessage() const { return Message; }
4079
4080  bool isFailed() const { return AssertExprAndFailed.getInt(); }
4081
4082  SourceLocation getRParenLoc() const { return RParenLoc; }
4083
4084  SourceRange getSourceRange() const override LLVM_READONLY {
4085    return SourceRange(getLocation(), getRParenLoc());
4086  }
4087
4088  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4089  static bool classofKind(Kind K) { return K == StaticAssert; }
4090};
4091
4092/// A binding in a decomposition declaration. For instance, given:
4093///
4094///   int n[3];
4095///   auto &[a, b, c] = n;
4096///
4097/// a, b, and c are BindingDecls, whose bindings are the expressions
4098/// x[0], x[1], and x[2] respectively, where x is the implicit
4099/// DecompositionDecl of type 'int (&)[3]'.
4100class BindingDecl : public ValueDecl {
4101  /// The declaration that this binding binds to part of.
4102  ValueDecl *Decomp;
4103  /// The binding represented by this declaration. References to this
4104  /// declaration are effectively equivalent to this expression (except
4105  /// that it is only evaluated once at the point of declaration of the
4106  /// binding).
4107  Expr *Binding = nullptr;
4108
4109  BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
4110      : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
4111
4112  void anchor() override;
4113
4114public:
4115  friend class ASTDeclReader;
4116
4117  static BindingDecl *Create(ASTContext &C, DeclContext *DC,
4118                             SourceLocation IdLoc, IdentifierInfo *Id);
4119  static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4120
4121  /// Get the expression to which this declaration is bound. This may be null
4122  /// in two different cases: while parsing the initializer for the
4123  /// decomposition declaration, and when the initializer is type-dependent.
4124  Expr *getBinding() const { return Binding; }
4125
4126  /// Get the decomposition declaration that this binding represents a
4127  /// decomposition of.
4128  ValueDecl *getDecomposedDecl() const { return Decomp; }
4129
4130  /// Get the variable (if any) that holds the value of evaluating the binding.
4131  /// Only present for user-defined bindings for tuple-like types.
4132  VarDecl *getHoldingVar() const;
4133
4134  /// Set the binding for this BindingDecl, along with its declared type (which
4135  /// should be a possibly-cv-qualified form of the type of the binding, or a
4136  /// reference to such a type).
4137  void setBinding(QualType DeclaredType, Expr *Binding) {
4138    setType(DeclaredType);
4139    this->Binding = Binding;
4140  }
4141
4142  /// Set the decomposed variable for this BindingDecl.
4143  void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
4144
4145  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4146  static bool classofKind(Kind K) { return K == Decl::Binding; }
4147};
4148
4149/// A decomposition declaration. For instance, given:
4150///
4151///   int n[3];
4152///   auto &[a, b, c] = n;
4153///
4154/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
4155/// three BindingDecls (named a, b, and c). An instance of this class is always
4156/// unnamed, but behaves in almost all other respects like a VarDecl.
4157class DecompositionDecl final
4158    : public VarDecl,
4159      private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
4160  /// The number of BindingDecl*s following this object.
4161  unsigned NumBindings;
4162
4163  DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4164                    SourceLocation LSquareLoc, QualType T,
4165                    TypeSourceInfo *TInfo, StorageClass SC,
4166                    ArrayRef<BindingDecl *> Bindings)
4167      : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
4168                SC),
4169        NumBindings(Bindings.size()) {
4170    std::uninitialized_copy(Bindings.begin(), Bindings.end(),
4171                            getTrailingObjects<BindingDecl *>());
4172    for (auto *B : Bindings)
4173      B->setDecomposedDecl(this);
4174  }
4175
4176  void anchor() override;
4177
4178public:
4179  friend class ASTDeclReader;
4180  friend TrailingObjects;
4181
4182  static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
4183                                   SourceLocation StartLoc,
4184                                   SourceLocation LSquareLoc,
4185                                   QualType T, TypeSourceInfo *TInfo,
4186                                   StorageClass S,
4187                                   ArrayRef<BindingDecl *> Bindings);
4188  static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4189                                               unsigned NumBindings);
4190
4191  ArrayRef<BindingDecl *> bindings() const {
4192    return llvm::ArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
4193  }
4194
4195  void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
4196
4197  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4198  static bool classofKind(Kind K) { return K == Decomposition; }
4199};
4200
4201/// An instance of this class represents the declaration of a property
4202/// member.  This is a Microsoft extension to C++, first introduced in
4203/// Visual Studio .NET 2003 as a parallel to similar features in C#
4204/// and Managed C++.
4205///
4206/// A property must always be a non-static class member.
4207///
4208/// A property member superficially resembles a non-static data
4209/// member, except preceded by a property attribute:
4210///   __declspec(property(get=GetX, put=PutX)) int x;
4211/// Either (but not both) of the 'get' and 'put' names may be omitted.
4212///
4213/// A reference to a property is always an lvalue.  If the lvalue
4214/// undergoes lvalue-to-rvalue conversion, then a getter name is
4215/// required, and that member is called with no arguments.
4216/// If the lvalue is assigned into, then a setter name is required,
4217/// and that member is called with one argument, the value assigned.
4218/// Both operations are potentially overloaded.  Compound assignments
4219/// are permitted, as are the increment and decrement operators.
4220///
4221/// The getter and putter methods are permitted to be overloaded,
4222/// although their return and parameter types are subject to certain
4223/// restrictions according to the type of the property.
4224///
4225/// A property declared using an incomplete array type may
4226/// additionally be subscripted, adding extra parameters to the getter
4227/// and putter methods.
4228class MSPropertyDecl : public DeclaratorDecl {
4229  IdentifierInfo *GetterId, *SetterId;
4230
4231  MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
4232                 QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
4233                 IdentifierInfo *Getter, IdentifierInfo *Setter)
4234      : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
4235        GetterId(Getter), SetterId(Setter) {}
4236
4237  void anchor() override;
4238public:
4239  friend class ASTDeclReader;
4240
4241  static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
4242                                SourceLocation L, DeclarationName N, QualType T,
4243                                TypeSourceInfo *TInfo, SourceLocation StartL,
4244                                IdentifierInfo *Getter, IdentifierInfo *Setter);
4245  static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4246
4247  static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
4248
4249  bool hasGetter() const { return GetterId != nullptr; }
4250  IdentifierInfo* getGetterId() const { return GetterId; }
4251  bool hasSetter() const { return SetterId != nullptr; }
4252  IdentifierInfo* getSetterId() const { return SetterId; }
4253};
4254
4255/// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
4256/// dependencies on DeclCXX.h.
4257struct MSGuidDeclParts {
4258  /// {01234567-...
4259  uint32_t Part1;
4260  /// ...-89ab-...
4261  uint16_t Part2;
4262  /// ...-cdef-...
4263  uint16_t Part3;
4264  /// ...-0123-456789abcdef}
4265  uint8_t Part4And5[8];
4266
4267  uint64_t getPart4And5AsUint64() const {
4268    uint64_t Val;
4269    memcpy(&Val, &Part4And5, sizeof(Part4And5));
4270    return Val;
4271  }
4272};
4273
4274/// A global _GUID constant. These are implicitly created by UuidAttrs.
4275///
4276///   struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
4277///
4278/// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
4279/// MSGuidDecl for the specified UUID.
4280class MSGuidDecl : public ValueDecl,
4281                   public Mergeable<MSGuidDecl>,
4282                   public llvm::FoldingSetNode {
4283public:
4284  using Parts = MSGuidDeclParts;
4285
4286private:
4287  /// The decomposed form of the UUID.
4288  Parts PartVal;
4289
4290  /// The resolved value of the UUID as an APValue. Computed on demand and
4291  /// cached.
4292  mutable APValue APVal;
4293
4294  void anchor() override;
4295
4296  MSGuidDecl(DeclContext *DC, QualType T, Parts P);
4297
4298  static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
4299  static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4300
4301  // Only ASTContext::getMSGuidDecl and deserialization create these.
4302  friend class ASTContext;
4303  friend class ASTReader;
4304  friend class ASTDeclReader;
4305
4306public:
4307  /// Print this UUID in a human-readable format.
4308  void printName(llvm::raw_ostream &OS,
4309                 const PrintingPolicy &Policy) const override;
4310
4311  /// Get the decomposed parts of this declaration.
4312  Parts getParts() const { return PartVal; }
4313
4314  /// Get the value of this MSGuidDecl as an APValue. This may fail and return
4315  /// an absent APValue if the type of the declaration is not of the expected
4316  /// shape.
4317  APValue &getAsAPValue() const;
4318
4319  static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
4320    ID.AddInteger(P.Part1);
4321    ID.AddInteger(P.Part2);
4322    ID.AddInteger(P.Part3);
4323    ID.AddInteger(P.getPart4And5AsUint64());
4324  }
4325  void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
4326
4327  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4328  static bool classofKind(Kind K) { return K == Decl::MSGuid; }
4329};
4330
4331/// An artificial decl, representing a global anonymous constant value which is
4332/// uniquified by value within a translation unit.
4333///
4334/// These is currently only used to back the LValue returned by
4335/// __builtin_source_location, but could potentially be used for other similar
4336/// situations in the future.
4337class UnnamedGlobalConstantDecl : public ValueDecl,
4338                                  public Mergeable<UnnamedGlobalConstantDecl>,
4339                                  public llvm::FoldingSetNode {
4340
4341  // The constant value of this global.
4342  APValue Value;
4343
4344  void anchor() override;
4345
4346  UnnamedGlobalConstantDecl(const ASTContext &C, DeclContext *DC, QualType T,
4347                            const APValue &Val);
4348
4349  static UnnamedGlobalConstantDecl *Create(const ASTContext &C, QualType T,
4350                                           const APValue &APVal);
4351  static UnnamedGlobalConstantDecl *CreateDeserialized(ASTContext &C,
4352                                                       unsigned ID);
4353
4354  // Only ASTContext::getUnnamedGlobalConstantDecl and deserialization create
4355  // these.
4356  friend class ASTContext;
4357  friend class ASTReader;
4358  friend class ASTDeclReader;
4359
4360public:
4361  /// Print this in a human-readable format.
4362  void printName(llvm::raw_ostream &OS,
4363                 const PrintingPolicy &Policy) const override;
4364
4365  const APValue &getValue() const { return Value; }
4366
4367  static void Profile(llvm::FoldingSetNodeID &ID, QualType Ty,
4368                      const APValue &APVal) {
4369    Ty.Profile(ID);
4370    APVal.Profile(ID);
4371  }
4372  void Profile(llvm::FoldingSetNodeID &ID) {
4373    Profile(ID, getType(), getValue());
4374  }
4375
4376  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4377  static bool classofKind(Kind K) { return K == Decl::UnnamedGlobalConstant; }
4378};
4379
4380/// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
4381/// into a diagnostic with <<.
4382const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
4383                                      AccessSpecifier AS);
4384
4385} // namespace clang
4386
4387#endif // LLVM_CLANG_AST_DECLCXX_H
4388