1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30//
31// Tests for Google Test itself.  This verifies that the basic constructs of
32// Google Test work.
33
34#include "gtest/gtest.h"
35
36// Verifies that the command line flag variables can be accessed in
37// code once "gtest.h" has been #included.
38// Do not move it after other gtest #includes.
39TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40  bool dummy =
41      GTEST_FLAG_GET(also_run_disabled_tests) ||
42      GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
43      GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
44      GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
45      GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
46      GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
47      GTEST_FLAG_GET(repeat) > 0 ||
48      GTEST_FLAG_GET(recreate_environments_when_repeating) ||
49      GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
50      GTEST_FLAG_GET(stack_trace_depth) > 0 ||
51      GTEST_FLAG_GET(stream_result_to) != "unknown" ||
52      GTEST_FLAG_GET(throw_on_failure);
53  EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
54}
55
56#include <limits.h>  // For INT_MAX.
57#include <stdlib.h>
58#include <string.h>
59#include <time.h>
60
61#include <cstdint>
62#include <map>
63#include <memory>
64#include <ostream>
65#include <set>
66#include <stdexcept>
67#include <string>
68#include <type_traits>
69#include <unordered_set>
70#include <utility>
71#include <vector>
72
73#include "gtest/gtest-spi.h"
74#include "src/gtest-internal-inl.h"
75
76struct ConvertibleGlobalType {
77  // The inner enable_if is to ensure invoking is_constructible doesn't fail.
78  // The outer enable_if is to ensure the overload resolution doesn't encounter
79  // an ambiguity.
80  template <
81      class T,
82      std::enable_if_t<
83          false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
84  operator T() const;  // NOLINT(google-explicit-constructor)
85};
86void operator<<(ConvertibleGlobalType&, int);
87static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
88                              << 1)(*)()) > 0,
89              "error in operator<< overload resolution");
90
91namespace testing {
92namespace internal {
93
94#if GTEST_CAN_STREAM_RESULTS_
95
96class StreamingListenerTest : public Test {
97 public:
98  class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
99   public:
100    // Sends a string to the socket.
101    void Send(const std::string& message) override { output_ += message; }
102
103    std::string output_;
104  };
105
106  StreamingListenerTest()
107      : fake_sock_writer_(new FakeSocketWriter),
108        streamer_(fake_sock_writer_),
109        test_info_obj_("FooTest", "Bar", nullptr, nullptr,
110                       CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
111
112 protected:
113  std::string* output() { return &(fake_sock_writer_->output_); }
114
115  FakeSocketWriter* const fake_sock_writer_;
116  StreamingListener streamer_;
117  UnitTest unit_test_;
118  TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
119};
120
121TEST_F(StreamingListenerTest, OnTestProgramEnd) {
122  *output() = "";
123  streamer_.OnTestProgramEnd(unit_test_);
124  EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
125}
126
127TEST_F(StreamingListenerTest, OnTestIterationEnd) {
128  *output() = "";
129  streamer_.OnTestIterationEnd(unit_test_, 42);
130  EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
131}
132
133TEST_F(StreamingListenerTest, OnTestSuiteStart) {
134  *output() = "";
135  streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
136  EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
137}
138
139TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
140  *output() = "";
141  streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
142  EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
143}
144
145TEST_F(StreamingListenerTest, OnTestStart) {
146  *output() = "";
147  streamer_.OnTestStart(test_info_obj_);
148  EXPECT_EQ("event=TestStart&name=Bar\n", *output());
149}
150
151TEST_F(StreamingListenerTest, OnTestEnd) {
152  *output() = "";
153  streamer_.OnTestEnd(test_info_obj_);
154  EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
155}
156
157TEST_F(StreamingListenerTest, OnTestPartResult) {
158  *output() = "";
159  streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
160                                            "foo.cc", 42, "failed=\n&%"));
161
162  // Meta characters in the failure message should be properly escaped.
163  EXPECT_EQ(
164      "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
165      *output());
166}
167
168#endif  // GTEST_CAN_STREAM_RESULTS_
169
170// Provides access to otherwise private parts of the TestEventListeners class
171// that are needed to test it.
172class TestEventListenersAccessor {
173 public:
174  static TestEventListener* GetRepeater(TestEventListeners* listeners) {
175    return listeners->repeater();
176  }
177
178  static void SetDefaultResultPrinter(TestEventListeners* listeners,
179                                      TestEventListener* listener) {
180    listeners->SetDefaultResultPrinter(listener);
181  }
182  static void SetDefaultXmlGenerator(TestEventListeners* listeners,
183                                     TestEventListener* listener) {
184    listeners->SetDefaultXmlGenerator(listener);
185  }
186
187  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
188    return listeners.EventForwardingEnabled();
189  }
190
191  static void SuppressEventForwarding(TestEventListeners* listeners) {
192    listeners->SuppressEventForwarding(true);
193  }
194};
195
196class UnitTestRecordPropertyTestHelper : public Test {
197 protected:
198  UnitTestRecordPropertyTestHelper() {}
199
200  // Forwards to UnitTest::RecordProperty() to bypass access controls.
201  void UnitTestRecordProperty(const char* key, const std::string& value) {
202    unit_test_.RecordProperty(key, value);
203  }
204
205  UnitTest unit_test_;
206};
207
208}  // namespace internal
209}  // namespace testing
210
211using testing::AssertionFailure;
212using testing::AssertionResult;
213using testing::AssertionSuccess;
214using testing::DoubleLE;
215using testing::EmptyTestEventListener;
216using testing::Environment;
217using testing::FloatLE;
218using testing::IsNotSubstring;
219using testing::IsSubstring;
220using testing::kMaxStackTraceDepth;
221using testing::Message;
222using testing::ScopedFakeTestPartResultReporter;
223using testing::StaticAssertTypeEq;
224using testing::Test;
225using testing::TestEventListeners;
226using testing::TestInfo;
227using testing::TestPartResult;
228using testing::TestPartResultArray;
229using testing::TestProperty;
230using testing::TestResult;
231using testing::TimeInMillis;
232using testing::UnitTest;
233using testing::internal::AlwaysFalse;
234using testing::internal::AlwaysTrue;
235using testing::internal::AppendUserMessage;
236using testing::internal::ArrayAwareFind;
237using testing::internal::ArrayEq;
238using testing::internal::CodePointToUtf8;
239using testing::internal::CopyArray;
240using testing::internal::CountIf;
241using testing::internal::EqFailure;
242using testing::internal::FloatingPoint;
243using testing::internal::ForEach;
244using testing::internal::FormatEpochTimeInMillisAsIso8601;
245using testing::internal::FormatTimeInMillisAsSeconds;
246using testing::internal::GetElementOr;
247using testing::internal::GetNextRandomSeed;
248using testing::internal::GetRandomSeedFromFlag;
249using testing::internal::GetTestTypeId;
250using testing::internal::GetTimeInMillis;
251using testing::internal::GetTypeId;
252using testing::internal::GetUnitTestImpl;
253using testing::internal::GTestFlagSaver;
254using testing::internal::HasDebugStringAndShortDebugString;
255using testing::internal::Int32FromEnvOrDie;
256using testing::internal::IsContainer;
257using testing::internal::IsContainerTest;
258using testing::internal::IsNotContainer;
259using testing::internal::kMaxRandomSeed;
260using testing::internal::kTestTypeIdInGoogleTest;
261using testing::internal::NativeArray;
262using testing::internal::ParseFlag;
263using testing::internal::RelationToSourceCopy;
264using testing::internal::RelationToSourceReference;
265using testing::internal::ShouldRunTestOnShard;
266using testing::internal::ShouldShard;
267using testing::internal::ShouldUseColor;
268using testing::internal::Shuffle;
269using testing::internal::ShuffleRange;
270using testing::internal::SkipPrefix;
271using testing::internal::StreamableToString;
272using testing::internal::String;
273using testing::internal::TestEventListenersAccessor;
274using testing::internal::TestResultAccessor;
275using testing::internal::WideStringToUtf8;
276using testing::internal::edit_distance::CalculateOptimalEdits;
277using testing::internal::edit_distance::CreateUnifiedDiff;
278using testing::internal::edit_distance::EditType;
279
280#if GTEST_HAS_STREAM_REDIRECTION
281using testing::internal::CaptureStdout;
282using testing::internal::GetCapturedStdout;
283#endif
284
285#ifdef GTEST_IS_THREADSAFE
286using testing::internal::ThreadWithParam;
287#endif
288
289class TestingVector : public std::vector<int> {};
290
291::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
292  os << "{ ";
293  for (size_t i = 0; i < vector.size(); i++) {
294    os << vector[i] << " ";
295  }
296  os << "}";
297  return os;
298}
299
300// This line tests that we can define tests in an unnamed namespace.
301namespace {
302
303TEST(GetRandomSeedFromFlagTest, HandlesZero) {
304  const int seed = GetRandomSeedFromFlag(0);
305  EXPECT_LE(1, seed);
306  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
307}
308
309TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
310  EXPECT_EQ(1, GetRandomSeedFromFlag(1));
311  EXPECT_EQ(2, GetRandomSeedFromFlag(2));
312  EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
313  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
314            GetRandomSeedFromFlag(kMaxRandomSeed));
315}
316
317TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
318  const int seed1 = GetRandomSeedFromFlag(-1);
319  EXPECT_LE(1, seed1);
320  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
321
322  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
323  EXPECT_LE(1, seed2);
324  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
325}
326
327TEST(GetNextRandomSeedTest, WorksForValidInput) {
328  EXPECT_EQ(2, GetNextRandomSeed(1));
329  EXPECT_EQ(3, GetNextRandomSeed(2));
330  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
331            GetNextRandomSeed(kMaxRandomSeed - 1));
332  EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
333
334  // We deliberately don't test GetNextRandomSeed() with invalid
335  // inputs, as that requires death tests, which are expensive.  This
336  // is fine as GetNextRandomSeed() is internal and has a
337  // straightforward definition.
338}
339
340static void ClearCurrentTestPartResults() {
341  TestResultAccessor::ClearTestPartResults(
342      GetUnitTestImpl()->current_test_result());
343}
344
345// Tests GetTypeId.
346
347TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
348  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
349  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
350}
351
352class SubClassOfTest : public Test {};
353class AnotherSubClassOfTest : public Test {};
354
355TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
356  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
357  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
358  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
359  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
360  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
361  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
362}
363
364// Verifies that GetTestTypeId() returns the same value, no matter it
365// is called from inside Google Test or outside of it.
366TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
367  EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
368}
369
370// Tests CanonicalizeForStdLibVersioning.
371
372using ::testing::internal::CanonicalizeForStdLibVersioning;
373
374TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
375  EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
376  EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
377  EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
378  EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
379  EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
380  EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
381}
382
383TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
384  EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
385  EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
386
387  EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
388  EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
389
390  EXPECT_EQ("std::bind",
391            CanonicalizeForStdLibVersioning("std::__google::bind"));
392  EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
393}
394
395// Tests FormatTimeInMillisAsSeconds().
396
397TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
398  EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
399}
400
401TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
402  EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
403  EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
404  EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
405  EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
406  EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
407  EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
408  EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
409  EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
410  EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
411}
412
413TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
414  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
415  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
416  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
417  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
418  EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
419  EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
420  EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
421  EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
422  EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
423}
424
425// Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
426// for particular dates below was verified in Python using
427// datetime.datetime.fromutctimestamp(<timestamp>/1000).
428
429// FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
430// have to set up a particular timezone to obtain predictable results.
431class FormatEpochTimeInMillisAsIso8601Test : public Test {
432 public:
433  // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
434  // 32 bits, even when 64-bit integer types are available.  We have to
435  // force the constants to have a 64-bit type here.
436  static const TimeInMillis kMillisPerSec = 1000;
437
438 private:
439  void SetUp() override {
440    saved_tz_.reset();
441
442    GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
443    if (const char* tz = getenv("TZ")) {
444      saved_tz_ = std::make_unique<std::string>(tz);
445    }
446    GTEST_DISABLE_MSC_DEPRECATED_POP_()
447
448    // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
449    // cannot use the local time zone because the function's output depends
450    // on the time zone.
451    SetTimeZone("UTC+00");
452  }
453
454  void TearDown() override {
455    SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
456    saved_tz_.reset();
457  }
458
459  static void SetTimeZone(const char* time_zone) {
460    // tzset() distinguishes between the TZ variable being present and empty
461    // and not being present, so we have to consider the case of time_zone
462    // being NULL.
463#if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
464    // ...Unless it's MSVC, whose standard library's _putenv doesn't
465    // distinguish between an empty and a missing variable.
466    const std::string env_var =
467        std::string("TZ=") + (time_zone ? time_zone : "");
468    _putenv(env_var.c_str());
469    GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
470    tzset();
471    GTEST_DISABLE_MSC_WARNINGS_POP_()
472#else
473#if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
474    // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
475    // See https://github.com/android/ndk/issues/1604.
476    setenv("TZ", "UTC", 1);
477    tzset();
478#endif
479    if (time_zone) {
480      setenv(("TZ"), time_zone, 1);
481    } else {
482      unsetenv("TZ");
483    }
484    tzset();
485#endif
486  }
487
488  std::unique_ptr<std::string> saved_tz_;  // Empty and null are different here
489};
490
491const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
492
493TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
494  EXPECT_EQ("2011-10-31T18:52:42.000",
495            FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
496}
497
498TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
499  EXPECT_EQ("2011-10-31T18:52:42.234",
500            FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
501}
502
503TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
504  EXPECT_EQ("2011-09-03T05:07:02.000",
505            FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
506}
507
508TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
509  EXPECT_EQ("2011-09-28T17:08:22.000",
510            FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
511}
512
513TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
514  EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
515}
516
517#ifdef __BORLANDC__
518// Silences warnings: "Condition is always true", "Unreachable code"
519#pragma option push -w-ccc -w-rch
520#endif
521
522// Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
523// when the RHS is a pointer type.
524TEST(NullLiteralTest, LHSAllowsNullLiterals) {
525  EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
526  ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
527  EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
528  ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
529  EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
530  ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
531
532  const int* const p = nullptr;
533  EXPECT_EQ(0, p);     // NOLINT
534  ASSERT_EQ(0, p);     // NOLINT
535  EXPECT_EQ(NULL, p);  // NOLINT
536  ASSERT_EQ(NULL, p);  // NOLINT
537  EXPECT_EQ(nullptr, p);
538  ASSERT_EQ(nullptr, p);
539}
540
541struct ConvertToAll {
542  template <typename T>
543  operator T() const {  // NOLINT
544    return T();
545  }
546};
547
548struct ConvertToPointer {
549  template <class T>
550  operator T*() const {  // NOLINT
551    return nullptr;
552  }
553};
554
555struct ConvertToAllButNoPointers {
556  template <typename T,
557            typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
558  operator T() const {  // NOLINT
559    return T();
560  }
561};
562
563struct MyType {};
564inline bool operator==(MyType const&, MyType const&) { return true; }
565
566TEST(NullLiteralTest, ImplicitConversion) {
567  EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
568#if !defined(__GNUC__) || defined(__clang__)
569  // Disabled due to GCC bug gcc.gnu.org/PR89580
570  EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
571#endif
572  EXPECT_EQ(ConvertToAll{}, MyType{});
573  EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
574}
575
576#ifdef __clang__
577#pragma clang diagnostic push
578#if __has_warning("-Wzero-as-null-pointer-constant")
579#pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
580#endif
581#endif
582
583TEST(NullLiteralTest, NoConversionNoWarning) {
584  // Test that gtests detection and handling of null pointer constants
585  // doesn't trigger a warning when '0' isn't actually used as null.
586  EXPECT_EQ(0, 0);
587  ASSERT_EQ(0, 0);
588}
589
590#ifdef __clang__
591#pragma clang diagnostic pop
592#endif
593
594#ifdef __BORLANDC__
595// Restores warnings after previous "#pragma option push" suppressed them.
596#pragma option pop
597#endif
598
599//
600// Tests CodePointToUtf8().
601
602// Tests that the NUL character L'\0' is encoded correctly.
603TEST(CodePointToUtf8Test, CanEncodeNul) {
604  EXPECT_EQ("", CodePointToUtf8(L'\0'));
605}
606
607// Tests that ASCII characters are encoded correctly.
608TEST(CodePointToUtf8Test, CanEncodeAscii) {
609  EXPECT_EQ("a", CodePointToUtf8(L'a'));
610  EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
611  EXPECT_EQ("&", CodePointToUtf8(L'&'));
612  EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
613}
614
615// Tests that Unicode code-points that have 8 to 11 bits are encoded
616// as 110xxxxx 10xxxxxx.
617TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
618  // 000 1101 0011 => 110-00011 10-010011
619  EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
620
621  // 101 0111 0110 => 110-10101 10-110110
622  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
623  // in wide strings and wide chars. In order to accommodate them, we have to
624  // introduce such character constants as integers.
625  EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
626}
627
628// Tests that Unicode code-points that have 12 to 16 bits are encoded
629// as 1110xxxx 10xxxxxx 10xxxxxx.
630TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
631  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
632  EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
633
634  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
635  EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
636}
637
638#if !GTEST_WIDE_STRING_USES_UTF16_
639// Tests in this group require a wchar_t to hold > 16 bits, and thus
640// are skipped on Windows, and Cygwin, where a wchar_t is
641// 16-bit wide. This code may not compile on those systems.
642
643// Tests that Unicode code-points that have 17 to 21 bits are encoded
644// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
645TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
646  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
647  EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
648
649  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
650  EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
651
652  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
653  EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
654}
655
656// Tests that encoding an invalid code-point generates the expected result.
657TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
658  EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
659}
660
661#endif  // !GTEST_WIDE_STRING_USES_UTF16_
662
663// Tests WideStringToUtf8().
664
665// Tests that the NUL character L'\0' is encoded correctly.
666TEST(WideStringToUtf8Test, CanEncodeNul) {
667  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
668  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
669}
670
671// Tests that ASCII strings are encoded correctly.
672TEST(WideStringToUtf8Test, CanEncodeAscii) {
673  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
674  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
675  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
676  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
677}
678
679// Tests that Unicode code-points that have 8 to 11 bits are encoded
680// as 110xxxxx 10xxxxxx.
681TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
682  // 000 1101 0011 => 110-00011 10-010011
683  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
684  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
685
686  // 101 0111 0110 => 110-10101 10-110110
687  const wchar_t s[] = {0x576, '\0'};
688  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
689  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
690}
691
692// Tests that Unicode code-points that have 12 to 16 bits are encoded
693// as 1110xxxx 10xxxxxx 10xxxxxx.
694TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
695  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
696  const wchar_t s1[] = {0x8D3, '\0'};
697  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
698  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
699
700  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
701  const wchar_t s2[] = {0xC74D, '\0'};
702  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
703  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
704}
705
706// Tests that the conversion stops when the function encounters \0 character.
707TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
708  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
709}
710
711// Tests that the conversion stops when the function reaches the limit
712// specified by the 'length' parameter.
713TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
714  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
715}
716
717#if !GTEST_WIDE_STRING_USES_UTF16_
718// Tests that Unicode code-points that have 17 to 21 bits are encoded
719// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
720// on the systems using UTF-16 encoding.
721TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
722  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
723  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
724  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
725
726  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
727  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
728  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
729}
730
731// Tests that encoding an invalid code-point generates the expected result.
732TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
733  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
734               WideStringToUtf8(L"\xABCDFF", -1).c_str());
735}
736#else   // !GTEST_WIDE_STRING_USES_UTF16_
737// Tests that surrogate pairs are encoded correctly on the systems using
738// UTF-16 encoding in the wide strings.
739TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
740  const wchar_t s[] = {0xD801, 0xDC00, '\0'};
741  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
742}
743
744// Tests that encoding an invalid UTF-16 surrogate pair
745// generates the expected result.
746TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
747  // Leading surrogate is at the end of the string.
748  const wchar_t s1[] = {0xD800, '\0'};
749  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
750  // Leading surrogate is not followed by the trailing surrogate.
751  const wchar_t s2[] = {0xD800, 'M', '\0'};
752  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
753  // Trailing surrogate appearas without a leading surrogate.
754  const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
755  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
756}
757#endif  // !GTEST_WIDE_STRING_USES_UTF16_
758
759// Tests that codepoint concatenation works correctly.
760#if !GTEST_WIDE_STRING_USES_UTF16_
761TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
762  const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
763  EXPECT_STREQ(
764      "\xF4\x88\x98\xB4"
765      "\xEC\x9D\x8D"
766      "\n"
767      "\xD5\xB6"
768      "\xE0\xA3\x93"
769      "\xF4\x88\x98\xB4",
770      WideStringToUtf8(s, -1).c_str());
771}
772#else
773TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
774  const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
775  EXPECT_STREQ(
776      "\xEC\x9D\x8D"
777      "\n"
778      "\xD5\xB6"
779      "\xE0\xA3\x93",
780      WideStringToUtf8(s, -1).c_str());
781}
782#endif  // !GTEST_WIDE_STRING_USES_UTF16_
783
784// Tests the Random class.
785
786TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
787  testing::internal::Random random(42);
788  EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
789                            "Cannot generate a number in the range \\[0, 0\\)");
790  EXPECT_DEATH_IF_SUPPORTED(
791      random.Generate(testing::internal::Random::kMaxRange + 1),
792      "Generation of a number in \\[0, 2147483649\\) was requested, "
793      "but this can only generate numbers in \\[0, 2147483648\\)");
794}
795
796TEST(RandomTest, GeneratesNumbersWithinRange) {
797  constexpr uint32_t kRange = 10000;
798  testing::internal::Random random(12345);
799  for (int i = 0; i < 10; i++) {
800    EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
801  }
802
803  testing::internal::Random random2(testing::internal::Random::kMaxRange);
804  for (int i = 0; i < 10; i++) {
805    EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
806  }
807}
808
809TEST(RandomTest, RepeatsWhenReseeded) {
810  constexpr int kSeed = 123;
811  constexpr int kArraySize = 10;
812  constexpr uint32_t kRange = 10000;
813  uint32_t values[kArraySize];
814
815  testing::internal::Random random(kSeed);
816  for (int i = 0; i < kArraySize; i++) {
817    values[i] = random.Generate(kRange);
818  }
819
820  random.Reseed(kSeed);
821  for (int i = 0; i < kArraySize; i++) {
822    EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
823  }
824}
825
826// Tests STL container utilities.
827
828// Tests CountIf().
829
830static bool IsPositive(int n) { return n > 0; }
831
832TEST(ContainerUtilityTest, CountIf) {
833  std::vector<int> v;
834  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
835
836  v.push_back(-1);
837  v.push_back(0);
838  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
839
840  v.push_back(2);
841  v.push_back(-10);
842  v.push_back(10);
843  EXPECT_EQ(2, CountIf(v, IsPositive));
844}
845
846// Tests ForEach().
847
848static int g_sum = 0;
849static void Accumulate(int n) { g_sum += n; }
850
851TEST(ContainerUtilityTest, ForEach) {
852  std::vector<int> v;
853  g_sum = 0;
854  ForEach(v, Accumulate);
855  EXPECT_EQ(0, g_sum);  // Works for an empty container;
856
857  g_sum = 0;
858  v.push_back(1);
859  ForEach(v, Accumulate);
860  EXPECT_EQ(1, g_sum);  // Works for a container with one element.
861
862  g_sum = 0;
863  v.push_back(20);
864  v.push_back(300);
865  ForEach(v, Accumulate);
866  EXPECT_EQ(321, g_sum);
867}
868
869// Tests GetElementOr().
870TEST(ContainerUtilityTest, GetElementOr) {
871  std::vector<char> a;
872  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
873
874  a.push_back('a');
875  a.push_back('b');
876  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
877  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
878  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
879  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
880}
881
882TEST(ContainerUtilityDeathTest, ShuffleRange) {
883  std::vector<int> a;
884  a.push_back(0);
885  a.push_back(1);
886  a.push_back(2);
887  testing::internal::Random random(1);
888
889  EXPECT_DEATH_IF_SUPPORTED(
890      ShuffleRange(&random, -1, 1, &a),
891      "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
892  EXPECT_DEATH_IF_SUPPORTED(
893      ShuffleRange(&random, 4, 4, &a),
894      "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
895  EXPECT_DEATH_IF_SUPPORTED(
896      ShuffleRange(&random, 3, 2, &a),
897      "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
898  EXPECT_DEATH_IF_SUPPORTED(
899      ShuffleRange(&random, 3, 4, &a),
900      "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
901}
902
903class VectorShuffleTest : public Test {
904 protected:
905  static const size_t kVectorSize = 20;
906
907  VectorShuffleTest() : random_(1) {
908    for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
909      vector_.push_back(i);
910    }
911  }
912
913  static bool VectorIsCorrupt(const TestingVector& vector) {
914    if (kVectorSize != vector.size()) {
915      return true;
916    }
917
918    bool found_in_vector[kVectorSize] = {false};
919    for (size_t i = 0; i < vector.size(); i++) {
920      const int e = vector[i];
921      if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
922        return true;
923      }
924      found_in_vector[e] = true;
925    }
926
927    // Vector size is correct, elements' range is correct, no
928    // duplicate elements.  Therefore no corruption has occurred.
929    return false;
930  }
931
932  static bool VectorIsNotCorrupt(const TestingVector& vector) {
933    return !VectorIsCorrupt(vector);
934  }
935
936  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
937    for (int i = begin; i < end; i++) {
938      if (i != vector[static_cast<size_t>(i)]) {
939        return true;
940      }
941    }
942    return false;
943  }
944
945  static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
946                                int end) {
947    return !RangeIsShuffled(vector, begin, end);
948  }
949
950  static bool VectorIsShuffled(const TestingVector& vector) {
951    return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
952  }
953
954  static bool VectorIsUnshuffled(const TestingVector& vector) {
955    return !VectorIsShuffled(vector);
956  }
957
958  testing::internal::Random random_;
959  TestingVector vector_;
960};  // class VectorShuffleTest
961
962const size_t VectorShuffleTest::kVectorSize;
963
964TEST_F(VectorShuffleTest, HandlesEmptyRange) {
965  // Tests an empty range at the beginning...
966  ShuffleRange(&random_, 0, 0, &vector_);
967  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
968  ASSERT_PRED1(VectorIsUnshuffled, vector_);
969
970  // ...in the middle...
971  ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
972  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
973  ASSERT_PRED1(VectorIsUnshuffled, vector_);
974
975  // ...at the end...
976  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
977  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
978  ASSERT_PRED1(VectorIsUnshuffled, vector_);
979
980  // ...and past the end.
981  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
982  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
983  ASSERT_PRED1(VectorIsUnshuffled, vector_);
984}
985
986TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
987  // Tests a size one range at the beginning...
988  ShuffleRange(&random_, 0, 1, &vector_);
989  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
990  ASSERT_PRED1(VectorIsUnshuffled, vector_);
991
992  // ...in the middle...
993  ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
994  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
995  ASSERT_PRED1(VectorIsUnshuffled, vector_);
996
997  // ...and at the end.
998  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
999  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1000  ASSERT_PRED1(VectorIsUnshuffled, vector_);
1001}
1002
1003// Because we use our own random number generator and a fixed seed,
1004// we can guarantee that the following "random" tests will succeed.
1005
1006TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1007  Shuffle(&random_, &vector_);
1008  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1009  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1010
1011  // Tests the first and last elements in particular to ensure that
1012  // there are no off-by-one problems in our shuffle algorithm.
1013  EXPECT_NE(0, vector_[0]);
1014  EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1015}
1016
1017TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1018  const int kRangeSize = kVectorSize / 2;
1019
1020  ShuffleRange(&random_, 0, kRangeSize, &vector_);
1021
1022  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1023  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1024  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1025               static_cast<int>(kVectorSize));
1026}
1027
1028TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1029  const int kRangeSize = kVectorSize / 2;
1030  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1031
1032  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1033  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1034  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1035               static_cast<int>(kVectorSize));
1036}
1037
1038TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1039  const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1040  ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
1041
1042  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1043  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1044  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
1045  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1046               static_cast<int>(kVectorSize));
1047}
1048
1049TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1050  TestingVector vector2;
1051  for (size_t i = 0; i < kVectorSize; i++) {
1052    vector2.push_back(static_cast<int>(i));
1053  }
1054
1055  random_.Reseed(1234);
1056  Shuffle(&random_, &vector_);
1057  random_.Reseed(1234);
1058  Shuffle(&random_, &vector2);
1059
1060  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1061  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1062
1063  for (size_t i = 0; i < kVectorSize; i++) {
1064    EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1065  }
1066}
1067
1068// Tests the size of the AssertHelper class.
1069
1070TEST(AssertHelperTest, AssertHelperIsSmall) {
1071  // To avoid breaking clients that use lots of assertions in one
1072  // function, we cannot grow the size of AssertHelper.
1073  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1074}
1075
1076// Tests String::EndsWithCaseInsensitive().
1077TEST(StringTest, EndsWithCaseInsensitive) {
1078  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1079  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1080  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1081  EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1082
1083  EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1084  EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1085  EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1086}
1087
1088// C++Builder's preprocessor is buggy; it fails to expand macros that
1089// appear in macro parameters after wide char literals.  Provide an alias
1090// for NULL as a workaround.
1091static const wchar_t* const kNull = nullptr;
1092
1093// Tests String::CaseInsensitiveWideCStringEquals
1094TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1095  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1096  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1097  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1098  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1099  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1100  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1101  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1102  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1103}
1104
1105#ifdef GTEST_OS_WINDOWS
1106
1107// Tests String::ShowWideCString().
1108TEST(StringTest, ShowWideCString) {
1109  EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
1110  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1111  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1112}
1113
1114#ifdef GTEST_OS_WINDOWS_MOBILE
1115TEST(StringTest, AnsiAndUtf16Null) {
1116  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1117  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1118}
1119
1120TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1121  const char* ansi = String::Utf16ToAnsi(L"str");
1122  EXPECT_STREQ("str", ansi);
1123  delete[] ansi;
1124  const WCHAR* utf16 = String::AnsiToUtf16("str");
1125  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1126  delete[] utf16;
1127}
1128
1129TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1130  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1131  EXPECT_STREQ(".:\\ \"*?", ansi);
1132  delete[] ansi;
1133  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1134  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1135  delete[] utf16;
1136}
1137#endif  // GTEST_OS_WINDOWS_MOBILE
1138
1139#endif  // GTEST_OS_WINDOWS
1140
1141// Tests TestProperty construction.
1142TEST(TestPropertyTest, StringValue) {
1143  TestProperty property("key", "1");
1144  EXPECT_STREQ("key", property.key());
1145  EXPECT_STREQ("1", property.value());
1146}
1147
1148// Tests TestProperty replacing a value.
1149TEST(TestPropertyTest, ReplaceStringValue) {
1150  TestProperty property("key", "1");
1151  EXPECT_STREQ("1", property.value());
1152  property.SetValue("2");
1153  EXPECT_STREQ("2", property.value());
1154}
1155
1156// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1157// functions (i.e. their definitions cannot be inlined at the call
1158// sites), or C++Builder won't compile the code.
1159static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
1160
1161static void AddNonfatalFailure() {
1162  ADD_FAILURE() << "Expected non-fatal failure.";
1163}
1164
1165class ScopedFakeTestPartResultReporterTest : public Test {
1166 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1167  enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
1168  static void AddFailure(FailureMode failure) {
1169    if (failure == FATAL_FAILURE) {
1170      AddFatalFailure();
1171    } else {
1172      AddNonfatalFailure();
1173    }
1174  }
1175};
1176
1177// Tests that ScopedFakeTestPartResultReporter intercepts test
1178// failures.
1179TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1180  TestPartResultArray results;
1181  {
1182    ScopedFakeTestPartResultReporter reporter(
1183        ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1184        &results);
1185    AddFailure(NONFATAL_FAILURE);
1186    AddFailure(FATAL_FAILURE);
1187  }
1188
1189  EXPECT_EQ(2, results.size());
1190  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1191  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1192}
1193
1194TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1195  TestPartResultArray results;
1196  {
1197    // Tests, that the deprecated constructor still works.
1198    ScopedFakeTestPartResultReporter reporter(&results);
1199    AddFailure(NONFATAL_FAILURE);
1200  }
1201  EXPECT_EQ(1, results.size());
1202}
1203
1204#ifdef GTEST_IS_THREADSAFE
1205
1206class ScopedFakeTestPartResultReporterWithThreadsTest
1207    : public ScopedFakeTestPartResultReporterTest {
1208 protected:
1209  static void AddFailureInOtherThread(FailureMode failure) {
1210    ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1211    thread.Join();
1212  }
1213};
1214
1215TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1216       InterceptsTestFailuresInAllThreads) {
1217  TestPartResultArray results;
1218  {
1219    ScopedFakeTestPartResultReporter reporter(
1220        ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1221    AddFailure(NONFATAL_FAILURE);
1222    AddFailure(FATAL_FAILURE);
1223    AddFailureInOtherThread(NONFATAL_FAILURE);
1224    AddFailureInOtherThread(FATAL_FAILURE);
1225  }
1226
1227  EXPECT_EQ(4, results.size());
1228  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1229  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1230  EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1231  EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1232}
1233
1234#endif  // GTEST_IS_THREADSAFE
1235
1236// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1237// work even if the failure is generated in a called function rather than
1238// the current context.
1239
1240typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1241
1242TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1243  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1244}
1245
1246TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1247  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1248                       ::std::string("Expected fatal failure."));
1249}
1250
1251TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1252  // We have another test below to verify that the macro catches fatal
1253  // failures generated on another thread.
1254  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1255                                      "Expected fatal failure.");
1256}
1257
1258#ifdef __BORLANDC__
1259// Silences warnings: "Condition is always true"
1260#pragma option push -w-ccc
1261#endif
1262
1263// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1264// function even when the statement in it contains ASSERT_*.
1265
1266int NonVoidFunction() {
1267  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1268  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1269  return 0;
1270}
1271
1272TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1273  NonVoidFunction();
1274}
1275
1276// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1277// current function even though 'statement' generates a fatal failure.
1278
1279void DoesNotAbortHelper(bool* aborted) {
1280  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1281  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1282
1283  *aborted = false;
1284}
1285
1286#ifdef __BORLANDC__
1287// Restores warnings after previous "#pragma option push" suppressed them.
1288#pragma option pop
1289#endif
1290
1291TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1292  bool aborted = true;
1293  DoesNotAbortHelper(&aborted);
1294  EXPECT_FALSE(aborted);
1295}
1296
1297// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1298// statement that contains a macro which expands to code containing an
1299// unprotected comma.
1300
1301static int global_var = 0;
1302#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1303
1304TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1305#ifndef __BORLANDC__
1306  // ICE's in C++Builder.
1307  EXPECT_FATAL_FAILURE(
1308      {
1309        GTEST_USE_UNPROTECTED_COMMA_;
1310        AddFatalFailure();
1311      },
1312      "");
1313#endif
1314
1315  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
1316      {
1317        GTEST_USE_UNPROTECTED_COMMA_;
1318        AddFatalFailure();
1319      },
1320      "");
1321}
1322
1323// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1324
1325typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1326
1327TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1328  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
1329}
1330
1331TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1332  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1333                          ::std::string("Expected non-fatal failure."));
1334}
1335
1336TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1337  // We have another test below to verify that the macro catches
1338  // non-fatal failures generated on another thread.
1339  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1340                                         "Expected non-fatal failure.");
1341}
1342
1343// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1344// statement that contains a macro which expands to code containing an
1345// unprotected comma.
1346TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1347  EXPECT_NONFATAL_FAILURE(
1348      {
1349        GTEST_USE_UNPROTECTED_COMMA_;
1350        AddNonfatalFailure();
1351      },
1352      "");
1353
1354  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1355      {
1356        GTEST_USE_UNPROTECTED_COMMA_;
1357        AddNonfatalFailure();
1358      },
1359      "");
1360}
1361
1362#ifdef GTEST_IS_THREADSAFE
1363
1364typedef ScopedFakeTestPartResultReporterWithThreadsTest
1365    ExpectFailureWithThreadsTest;
1366
1367TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1368  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1369                                      "Expected fatal failure.");
1370}
1371
1372TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1373  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1374      AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1375}
1376
1377#endif  // GTEST_IS_THREADSAFE
1378
1379// Tests the TestProperty class.
1380
1381TEST(TestPropertyTest, ConstructorWorks) {
1382  const TestProperty property("key", "value");
1383  EXPECT_STREQ("key", property.key());
1384  EXPECT_STREQ("value", property.value());
1385}
1386
1387TEST(TestPropertyTest, SetValue) {
1388  TestProperty property("key", "value_1");
1389  EXPECT_STREQ("key", property.key());
1390  property.SetValue("value_2");
1391  EXPECT_STREQ("key", property.key());
1392  EXPECT_STREQ("value_2", property.value());
1393}
1394
1395// Tests the TestResult class
1396
1397// The test fixture for testing TestResult.
1398class TestResultTest : public Test {
1399 protected:
1400  typedef std::vector<TestPartResult> TPRVector;
1401
1402  // We make use of 2 TestPartResult objects,
1403  TestPartResult *pr1, *pr2;
1404
1405  // ... and 3 TestResult objects.
1406  TestResult *r0, *r1, *r2;
1407
1408  void SetUp() override {
1409    // pr1 is for success.
1410    pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
1411                             "Success!");
1412
1413    // pr2 is for fatal failure.
1414    pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
1415                             -1,  // This line number means "unknown"
1416                             "Failure!");
1417
1418    // Creates the TestResult objects.
1419    r0 = new TestResult();
1420    r1 = new TestResult();
1421    r2 = new TestResult();
1422
1423    // In order to test TestResult, we need to modify its internal
1424    // state, in particular the TestPartResult vector it holds.
1425    // test_part_results() returns a const reference to this vector.
1426    // We cast it to a non-const object s.t. it can be modified
1427    TPRVector* results1 =
1428        const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
1429    TPRVector* results2 =
1430        const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
1431
1432    // r0 is an empty TestResult.
1433
1434    // r1 contains a single SUCCESS TestPartResult.
1435    results1->push_back(*pr1);
1436
1437    // r2 contains a SUCCESS, and a FAILURE.
1438    results2->push_back(*pr1);
1439    results2->push_back(*pr2);
1440  }
1441
1442  void TearDown() override {
1443    delete pr1;
1444    delete pr2;
1445
1446    delete r0;
1447    delete r1;
1448    delete r2;
1449  }
1450
1451  // Helper that compares two TestPartResults.
1452  static void CompareTestPartResult(const TestPartResult& expected,
1453                                    const TestPartResult& actual) {
1454    EXPECT_EQ(expected.type(), actual.type());
1455    EXPECT_STREQ(expected.file_name(), actual.file_name());
1456    EXPECT_EQ(expected.line_number(), actual.line_number());
1457    EXPECT_STREQ(expected.summary(), actual.summary());
1458    EXPECT_STREQ(expected.message(), actual.message());
1459    EXPECT_EQ(expected.passed(), actual.passed());
1460    EXPECT_EQ(expected.failed(), actual.failed());
1461    EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1462    EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1463  }
1464};
1465
1466// Tests TestResult::total_part_count().
1467TEST_F(TestResultTest, total_part_count) {
1468  ASSERT_EQ(0, r0->total_part_count());
1469  ASSERT_EQ(1, r1->total_part_count());
1470  ASSERT_EQ(2, r2->total_part_count());
1471}
1472
1473// Tests TestResult::Passed().
1474TEST_F(TestResultTest, Passed) {
1475  ASSERT_TRUE(r0->Passed());
1476  ASSERT_TRUE(r1->Passed());
1477  ASSERT_FALSE(r2->Passed());
1478}
1479
1480// Tests TestResult::Failed().
1481TEST_F(TestResultTest, Failed) {
1482  ASSERT_FALSE(r0->Failed());
1483  ASSERT_FALSE(r1->Failed());
1484  ASSERT_TRUE(r2->Failed());
1485}
1486
1487// Tests TestResult::GetTestPartResult().
1488
1489typedef TestResultTest TestResultDeathTest;
1490
1491TEST_F(TestResultDeathTest, GetTestPartResult) {
1492  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1493  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1494  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1495  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1496}
1497
1498// Tests TestResult has no properties when none are added.
1499TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1500  TestResult test_result;
1501  ASSERT_EQ(0, test_result.test_property_count());
1502}
1503
1504// Tests TestResult has the expected property when added.
1505TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1506  TestResult test_result;
1507  TestProperty property("key_1", "1");
1508  TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1509  ASSERT_EQ(1, test_result.test_property_count());
1510  const TestProperty& actual_property = test_result.GetTestProperty(0);
1511  EXPECT_STREQ("key_1", actual_property.key());
1512  EXPECT_STREQ("1", actual_property.value());
1513}
1514
1515// Tests TestResult has multiple properties when added.
1516TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1517  TestResult test_result;
1518  TestProperty property_1("key_1", "1");
1519  TestProperty property_2("key_2", "2");
1520  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1521  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1522  ASSERT_EQ(2, test_result.test_property_count());
1523  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1524  EXPECT_STREQ("key_1", actual_property_1.key());
1525  EXPECT_STREQ("1", actual_property_1.value());
1526
1527  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1528  EXPECT_STREQ("key_2", actual_property_2.key());
1529  EXPECT_STREQ("2", actual_property_2.value());
1530}
1531
1532// Tests TestResult::RecordProperty() overrides values for duplicate keys.
1533TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1534  TestResult test_result;
1535  TestProperty property_1_1("key_1", "1");
1536  TestProperty property_2_1("key_2", "2");
1537  TestProperty property_1_2("key_1", "12");
1538  TestProperty property_2_2("key_2", "22");
1539  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1540  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1541  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1542  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1543
1544  ASSERT_EQ(2, test_result.test_property_count());
1545  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1546  EXPECT_STREQ("key_1", actual_property_1.key());
1547  EXPECT_STREQ("12", actual_property_1.value());
1548
1549  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1550  EXPECT_STREQ("key_2", actual_property_2.key());
1551  EXPECT_STREQ("22", actual_property_2.value());
1552}
1553
1554// Tests TestResult::GetTestProperty().
1555TEST(TestResultPropertyTest, GetTestProperty) {
1556  TestResult test_result;
1557  TestProperty property_1("key_1", "1");
1558  TestProperty property_2("key_2", "2");
1559  TestProperty property_3("key_3", "3");
1560  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1561  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1562  TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1563
1564  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1565  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1566  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1567
1568  EXPECT_STREQ("key_1", fetched_property_1.key());
1569  EXPECT_STREQ("1", fetched_property_1.value());
1570
1571  EXPECT_STREQ("key_2", fetched_property_2.key());
1572  EXPECT_STREQ("2", fetched_property_2.value());
1573
1574  EXPECT_STREQ("key_3", fetched_property_3.key());
1575  EXPECT_STREQ("3", fetched_property_3.value());
1576
1577  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1578  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1579}
1580
1581// Tests the Test class.
1582//
1583// It's difficult to test every public method of this class (we are
1584// already stretching the limit of Google Test by using it to test itself!).
1585// Fortunately, we don't have to do that, as we are already testing
1586// the functionalities of the Test class extensively by using Google Test
1587// alone.
1588//
1589// Therefore, this section only contains one test.
1590
1591// Tests that GTestFlagSaver works on Windows and Mac.
1592
1593class GTestFlagSaverTest : public Test {
1594 protected:
1595  // Saves the Google Test flags such that we can restore them later, and
1596  // then sets them to their default values.  This will be called
1597  // before the first test in this test case is run.
1598  static void SetUpTestSuite() {
1599    saver_ = new GTestFlagSaver;
1600
1601    GTEST_FLAG_SET(also_run_disabled_tests, false);
1602    GTEST_FLAG_SET(break_on_failure, false);
1603    GTEST_FLAG_SET(catch_exceptions, false);
1604    GTEST_FLAG_SET(death_test_use_fork, false);
1605    GTEST_FLAG_SET(color, "auto");
1606    GTEST_FLAG_SET(fail_fast, false);
1607    GTEST_FLAG_SET(filter, "");
1608    GTEST_FLAG_SET(list_tests, false);
1609    GTEST_FLAG_SET(output, "");
1610    GTEST_FLAG_SET(brief, false);
1611    GTEST_FLAG_SET(print_time, true);
1612    GTEST_FLAG_SET(random_seed, 0);
1613    GTEST_FLAG_SET(repeat, 1);
1614    GTEST_FLAG_SET(recreate_environments_when_repeating, true);
1615    GTEST_FLAG_SET(shuffle, false);
1616    GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
1617    GTEST_FLAG_SET(stream_result_to, "");
1618    GTEST_FLAG_SET(throw_on_failure, false);
1619  }
1620
1621  // Restores the Google Test flags that the tests have modified.  This will
1622  // be called after the last test in this test case is run.
1623  static void TearDownTestSuite() {
1624    delete saver_;
1625    saver_ = nullptr;
1626  }
1627
1628  // Verifies that the Google Test flags have their default values, and then
1629  // modifies each of them.
1630  void VerifyAndModifyFlags() {
1631    EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
1632    EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
1633    EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
1634    EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
1635    EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
1636    EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
1637    EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
1638    EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
1639    EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
1640    EXPECT_FALSE(GTEST_FLAG_GET(brief));
1641    EXPECT_TRUE(GTEST_FLAG_GET(print_time));
1642    EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
1643    EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
1644    EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
1645    EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
1646    EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
1647    EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
1648    EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
1649
1650    GTEST_FLAG_SET(also_run_disabled_tests, true);
1651    GTEST_FLAG_SET(break_on_failure, true);
1652    GTEST_FLAG_SET(catch_exceptions, true);
1653    GTEST_FLAG_SET(color, "no");
1654    GTEST_FLAG_SET(death_test_use_fork, true);
1655    GTEST_FLAG_SET(fail_fast, true);
1656    GTEST_FLAG_SET(filter, "abc");
1657    GTEST_FLAG_SET(list_tests, true);
1658    GTEST_FLAG_SET(output, "xml:foo.xml");
1659    GTEST_FLAG_SET(brief, true);
1660    GTEST_FLAG_SET(print_time, false);
1661    GTEST_FLAG_SET(random_seed, 1);
1662    GTEST_FLAG_SET(repeat, 100);
1663    GTEST_FLAG_SET(recreate_environments_when_repeating, false);
1664    GTEST_FLAG_SET(shuffle, true);
1665    GTEST_FLAG_SET(stack_trace_depth, 1);
1666    GTEST_FLAG_SET(stream_result_to, "localhost:1234");
1667    GTEST_FLAG_SET(throw_on_failure, true);
1668  }
1669
1670 private:
1671  // For saving Google Test flags during this test case.
1672  static GTestFlagSaver* saver_;
1673};
1674
1675GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1676
1677// Google Test doesn't guarantee the order of tests.  The following two
1678// tests are designed to work regardless of their order.
1679
1680// Modifies the Google Test flags in the test body.
1681TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
1682
1683// Verifies that the Google Test flags in the body of the previous test were
1684// restored to their original values.
1685TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
1686
1687// Sets an environment variable with the given name to the given
1688// value.  If the value argument is "", unsets the environment
1689// variable.  The caller must ensure that both arguments are not NULL.
1690static void SetEnv(const char* name, const char* value) {
1691#ifdef GTEST_OS_WINDOWS_MOBILE
1692  // Environment variables are not supported on Windows CE.
1693  return;
1694#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1695  // C++Builder's putenv only stores a pointer to its parameter; we have to
1696  // ensure that the string remains valid as long as it might be needed.
1697  // We use an std::map to do so.
1698  static std::map<std::string, std::string*> added_env;
1699
1700  // Because putenv stores a pointer to the string buffer, we can't delete the
1701  // previous string (if present) until after it's replaced.
1702  std::string* prev_env = NULL;
1703  if (added_env.find(name) != added_env.end()) {
1704    prev_env = added_env[name];
1705  }
1706  added_env[name] =
1707      new std::string((Message() << name << "=" << value).GetString());
1708
1709  // The standard signature of putenv accepts a 'char*' argument. Other
1710  // implementations, like C++Builder's, accept a 'const char*'.
1711  // We cast away the 'const' since that would work for both variants.
1712  putenv(const_cast<char*>(added_env[name]->c_str()));
1713  delete prev_env;
1714#elif defined(GTEST_OS_WINDOWS)  // If we are on Windows proper.
1715  _putenv((Message() << name << "=" << value).GetString().c_str());
1716#else
1717  if (*value == '\0') {
1718    unsetenv(name);
1719  } else {
1720    setenv(name, value, 1);
1721  }
1722#endif  // GTEST_OS_WINDOWS_MOBILE
1723}
1724
1725#ifndef GTEST_OS_WINDOWS_MOBILE
1726// Environment variables are not supported on Windows CE.
1727
1728using testing::internal::Int32FromGTestEnv;
1729
1730// Tests Int32FromGTestEnv().
1731
1732// Tests that Int32FromGTestEnv() returns the default value when the
1733// environment variable is not set.
1734TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1735  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1736  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1737}
1738
1739#if !defined(GTEST_GET_INT32_FROM_ENV_)
1740
1741// Tests that Int32FromGTestEnv() returns the default value when the
1742// environment variable overflows as an Int32.
1743TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1744  printf("(expecting 2 warnings)\n");
1745
1746  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1747  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1748
1749  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1750  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1751}
1752
1753// Tests that Int32FromGTestEnv() returns the default value when the
1754// environment variable does not represent a valid decimal integer.
1755TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1756  printf("(expecting 2 warnings)\n");
1757
1758  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1759  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1760
1761  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1762  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1763}
1764
1765#endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1766
1767// Tests that Int32FromGTestEnv() parses and returns the value of the
1768// environment variable when it represents a valid decimal integer in
1769// the range of an Int32.
1770TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1771  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1772  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1773
1774  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1775  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1776}
1777#endif  // !GTEST_OS_WINDOWS_MOBILE
1778
1779// Tests ParseFlag().
1780
1781// Tests that ParseInt32Flag() returns false and doesn't change the
1782// output value when the flag has wrong format
1783TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1784  int32_t value = 123;
1785  EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
1786  EXPECT_EQ(123, value);
1787
1788  EXPECT_FALSE(ParseFlag("a=100", "a", &value));
1789  EXPECT_EQ(123, value);
1790}
1791
1792// Tests that ParseFlag() returns false and doesn't change the
1793// output value when the flag overflows as an Int32.
1794TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1795  printf("(expecting 2 warnings)\n");
1796
1797  int32_t value = 123;
1798  EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
1799  EXPECT_EQ(123, value);
1800
1801  EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
1802  EXPECT_EQ(123, value);
1803}
1804
1805// Tests that ParseInt32Flag() returns false and doesn't change the
1806// output value when the flag does not represent a valid decimal
1807// integer.
1808TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1809  printf("(expecting 2 warnings)\n");
1810
1811  int32_t value = 123;
1812  EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
1813  EXPECT_EQ(123, value);
1814
1815  EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
1816  EXPECT_EQ(123, value);
1817}
1818
1819// Tests that ParseInt32Flag() parses the value of the flag and
1820// returns true when the flag represents a valid decimal integer in
1821// the range of an Int32.
1822TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1823  int32_t value = 123;
1824  EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1825  EXPECT_EQ(456, value);
1826
1827  EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
1828  EXPECT_EQ(-789, value);
1829}
1830
1831// Tests that Int32FromEnvOrDie() parses the value of the var or
1832// returns the correct default.
1833// Environment variables are not supported on Windows CE.
1834#ifndef GTEST_OS_WINDOWS_MOBILE
1835TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1836  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1837  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1838  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1839  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1840  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1841}
1842#endif  // !GTEST_OS_WINDOWS_MOBILE
1843
1844// Tests that Int32FromEnvOrDie() aborts with an error message
1845// if the variable is not an int32_t.
1846TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1847  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1848  EXPECT_DEATH_IF_SUPPORTED(
1849      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1850}
1851
1852// Tests that Int32FromEnvOrDie() aborts with an error message
1853// if the variable cannot be represented by an int32_t.
1854TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1855  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1856  EXPECT_DEATH_IF_SUPPORTED(
1857      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
1858}
1859
1860// Tests that ShouldRunTestOnShard() selects all tests
1861// where there is 1 shard.
1862TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1863  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1864  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1865  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1866  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1867  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1868}
1869
1870class ShouldShardTest : public testing::Test {
1871 protected:
1872  void SetUp() override {
1873    index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1874    total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1875  }
1876
1877  void TearDown() override {
1878    SetEnv(index_var_, "");
1879    SetEnv(total_var_, "");
1880  }
1881
1882  const char* index_var_;
1883  const char* total_var_;
1884};
1885
1886// Tests that sharding is disabled if neither of the environment variables
1887// are set.
1888TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1889  SetEnv(index_var_, "");
1890  SetEnv(total_var_, "");
1891
1892  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1893  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1894}
1895
1896// Tests that sharding is not enabled if total_shards  == 1.
1897TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1898  SetEnv(index_var_, "0");
1899  SetEnv(total_var_, "1");
1900  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1901  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1902}
1903
1904// Tests that sharding is enabled if total_shards > 1 and
1905// we are not in a death test subprocess.
1906// Environment variables are not supported on Windows CE.
1907#ifndef GTEST_OS_WINDOWS_MOBILE
1908TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1909  SetEnv(index_var_, "4");
1910  SetEnv(total_var_, "22");
1911  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1912  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1913
1914  SetEnv(index_var_, "8");
1915  SetEnv(total_var_, "9");
1916  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1917  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1918
1919  SetEnv(index_var_, "0");
1920  SetEnv(total_var_, "9");
1921  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1922  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1923}
1924#endif  // !GTEST_OS_WINDOWS_MOBILE
1925
1926// Tests that we exit in error if the sharding values are not valid.
1927
1928typedef ShouldShardTest ShouldShardDeathTest;
1929
1930TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1931  SetEnv(index_var_, "4");
1932  SetEnv(total_var_, "4");
1933  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1934
1935  SetEnv(index_var_, "4");
1936  SetEnv(total_var_, "-2");
1937  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1938
1939  SetEnv(index_var_, "5");
1940  SetEnv(total_var_, "");
1941  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1942
1943  SetEnv(index_var_, "");
1944  SetEnv(total_var_, "5");
1945  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1946}
1947
1948// Tests that ShouldRunTestOnShard is a partition when 5
1949// shards are used.
1950TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1951  // Choose an arbitrary number of tests and shards.
1952  const int num_tests = 17;
1953  const int num_shards = 5;
1954
1955  // Check partitioning: each test should be on exactly 1 shard.
1956  for (int test_id = 0; test_id < num_tests; test_id++) {
1957    int prev_selected_shard_index = -1;
1958    for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1959      if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1960        if (prev_selected_shard_index < 0) {
1961          prev_selected_shard_index = shard_index;
1962        } else {
1963          ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1964                        << shard_index << " are both selected to run test "
1965                        << test_id;
1966        }
1967      }
1968    }
1969  }
1970
1971  // Check balance: This is not required by the sharding protocol, but is a
1972  // desirable property for performance.
1973  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1974    int num_tests_on_shard = 0;
1975    for (int test_id = 0; test_id < num_tests; test_id++) {
1976      num_tests_on_shard +=
1977          ShouldRunTestOnShard(num_shards, shard_index, test_id);
1978    }
1979    EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1980  }
1981}
1982
1983// For the same reason we are not explicitly testing everything in the
1984// Test class, there are no separate tests for the following classes
1985// (except for some trivial cases):
1986//
1987//   TestSuite, UnitTest, UnitTestResultPrinter.
1988//
1989// Similarly, there are no separate tests for the following macros:
1990//
1991//   TEST, TEST_F, RUN_ALL_TESTS
1992
1993TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1994  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1995  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1996}
1997
1998TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1999  EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2000  EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2001}
2002
2003// When a property using a reserved key is supplied to this function, it
2004// tests that a non-fatal failure is added, a fatal failure is not added,
2005// and that the property is not recorded.
2006void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2007    const TestResult& test_result, const char* key) {
2008  EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2009  ASSERT_EQ(0, test_result.test_property_count())
2010      << "Property for key '" << key << "' recorded unexpectedly.";
2011}
2012
2013void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2014    const char* key) {
2015  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2016  ASSERT_TRUE(test_info != nullptr);
2017  ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2018                                                        key);
2019}
2020
2021void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2022    const char* key) {
2023  const testing::TestSuite* test_suite =
2024      UnitTest::GetInstance()->current_test_suite();
2025  ASSERT_TRUE(test_suite != nullptr);
2026  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2027      test_suite->ad_hoc_test_result(), key);
2028}
2029
2030void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2031    const char* key) {
2032  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2033      UnitTest::GetInstance()->ad_hoc_test_result(), key);
2034}
2035
2036// Tests that property recording functions in UnitTest outside of tests
2037// functions correctly.  Creating a separate instance of UnitTest ensures it
2038// is in a state similar to the UnitTest's singleton's between tests.
2039class UnitTestRecordPropertyTest
2040    : public testing::internal::UnitTestRecordPropertyTestHelper {
2041 public:
2042  static void SetUpTestSuite() {
2043    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2044        "disabled");
2045    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2046        "errors");
2047    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048        "failures");
2049    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050        "name");
2051    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052        "tests");
2053    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054        "time");
2055
2056    Test::RecordProperty("test_case_key_1", "1");
2057
2058    const testing::TestSuite* test_suite =
2059        UnitTest::GetInstance()->current_test_suite();
2060
2061    ASSERT_TRUE(test_suite != nullptr);
2062
2063    ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2064    EXPECT_STREQ("test_case_key_1",
2065                 test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2066    EXPECT_STREQ("1",
2067                 test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2068  }
2069};
2070
2071// Tests TestResult has the expected property when added.
2072TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2073  UnitTestRecordProperty("key_1", "1");
2074
2075  ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2076
2077  EXPECT_STREQ("key_1",
2078               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2079  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2080}
2081
2082// Tests TestResult has multiple properties when added.
2083TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2084  UnitTestRecordProperty("key_1", "1");
2085  UnitTestRecordProperty("key_2", "2");
2086
2087  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2088
2089  EXPECT_STREQ("key_1",
2090               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2091  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2092
2093  EXPECT_STREQ("key_2",
2094               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2095  EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2096}
2097
2098// Tests TestResult::RecordProperty() overrides values for duplicate keys.
2099TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2100  UnitTestRecordProperty("key_1", "1");
2101  UnitTestRecordProperty("key_2", "2");
2102  UnitTestRecordProperty("key_1", "12");
2103  UnitTestRecordProperty("key_2", "22");
2104
2105  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2106
2107  EXPECT_STREQ("key_1",
2108               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2109  EXPECT_STREQ("12",
2110               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2111
2112  EXPECT_STREQ("key_2",
2113               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2114  EXPECT_STREQ("22",
2115               unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2116}
2117
2118TEST_F(UnitTestRecordPropertyTest,
2119       AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2120  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
2121  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2122      "value_param");
2123  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2124      "type_param");
2125  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
2126  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
2127  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128      "classname");
2129}
2130
2131TEST_F(UnitTestRecordPropertyTest,
2132       AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2133  EXPECT_NONFATAL_FAILURE(
2134      Test::RecordProperty("name", "1"),
2135      "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2136      " 'file', and 'line' are reserved");
2137}
2138
2139class UnitTestRecordPropertyTestEnvironment : public Environment {
2140 public:
2141  void TearDown() override {
2142    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2143        "tests");
2144    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2145        "failures");
2146    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2147        "disabled");
2148    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149        "errors");
2150    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151        "name");
2152    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153        "timestamp");
2154    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155        "time");
2156    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157        "random_seed");
2158  }
2159};
2160
2161// This will test property recording outside of any test or test case.
2162static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
2163    AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2164
2165// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2166// of various arities.  They do not attempt to be exhaustive.  Rather,
2167// view them as smoke tests that can be easily reviewed and verified.
2168// A more complete set of tests for predicate assertions can be found
2169// in gtest_pred_impl_unittest.cc.
2170
2171// First, some predicates and predicate-formatters needed by the tests.
2172
2173// Returns true if and only if the argument is an even number.
2174bool IsEven(int n) { return (n % 2) == 0; }
2175
2176// A functor that returns true if and only if the argument is an even number.
2177struct IsEvenFunctor {
2178  bool operator()(int n) { return IsEven(n); }
2179};
2180
2181// A predicate-formatter function that asserts the argument is an even
2182// number.
2183AssertionResult AssertIsEven(const char* expr, int n) {
2184  if (IsEven(n)) {
2185    return AssertionSuccess();
2186  }
2187
2188  Message msg;
2189  msg << expr << " evaluates to " << n << ", which is not even.";
2190  return AssertionFailure(msg);
2191}
2192
2193// A predicate function that returns AssertionResult for use in
2194// EXPECT/ASSERT_TRUE/FALSE.
2195AssertionResult ResultIsEven(int n) {
2196  if (IsEven(n))
2197    return AssertionSuccess() << n << " is even";
2198  else
2199    return AssertionFailure() << n << " is odd";
2200}
2201
2202// A predicate function that returns AssertionResult but gives no
2203// explanation why it succeeds. Needed for testing that
2204// EXPECT/ASSERT_FALSE handles such functions correctly.
2205AssertionResult ResultIsEvenNoExplanation(int n) {
2206  if (IsEven(n))
2207    return AssertionSuccess();
2208  else
2209    return AssertionFailure() << n << " is odd";
2210}
2211
2212// A predicate-formatter functor that asserts the argument is an even
2213// number.
2214struct AssertIsEvenFunctor {
2215  AssertionResult operator()(const char* expr, int n) {
2216    return AssertIsEven(expr, n);
2217  }
2218};
2219
2220// Returns true if and only if the sum of the arguments is an even number.
2221bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
2222
2223// A functor that returns true if and only if the sum of the arguments is an
2224// even number.
2225struct SumIsEven3Functor {
2226  bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
2227};
2228
2229// A predicate-formatter function that asserts the sum of the
2230// arguments is an even number.
2231AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
2232                                 const char* e4, int n1, int n2, int n3,
2233                                 int n4) {
2234  const int sum = n1 + n2 + n3 + n4;
2235  if (IsEven(sum)) {
2236    return AssertionSuccess();
2237  }
2238
2239  Message msg;
2240  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
2241      << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
2242      << ", which is not even.";
2243  return AssertionFailure(msg);
2244}
2245
2246// A predicate-formatter functor that asserts the sum of the arguments
2247// is an even number.
2248struct AssertSumIsEven5Functor {
2249  AssertionResult operator()(const char* e1, const char* e2, const char* e3,
2250                             const char* e4, const char* e5, int n1, int n2,
2251                             int n3, int n4, int n5) {
2252    const int sum = n1 + n2 + n3 + n4 + n5;
2253    if (IsEven(sum)) {
2254      return AssertionSuccess();
2255    }
2256
2257    Message msg;
2258    msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2259        << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
2260        << n5 << ") evaluates to " << sum << ", which is not even.";
2261    return AssertionFailure(msg);
2262  }
2263};
2264
2265// Tests unary predicate assertions.
2266
2267// Tests unary predicate assertions that don't use a custom formatter.
2268TEST(Pred1Test, WithoutFormat) {
2269  // Success cases.
2270  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2271  ASSERT_PRED1(IsEven, 4);
2272
2273  // Failure cases.
2274  EXPECT_NONFATAL_FAILURE(
2275      {  // NOLINT
2276        EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2277      },
2278      "This failure is expected.");
2279  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
2280}
2281
2282// Tests unary predicate assertions that use a custom formatter.
2283TEST(Pred1Test, WithFormat) {
2284  // Success cases.
2285  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2286  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2287      << "This failure is UNEXPECTED!";
2288
2289  // Failure cases.
2290  const int n = 5;
2291  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2292                          "n evaluates to 5, which is not even.");
2293  EXPECT_FATAL_FAILURE(
2294      {  // NOLINT
2295        ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2296      },
2297      "This failure is expected.");
2298}
2299
2300// Tests that unary predicate assertions evaluates their arguments
2301// exactly once.
2302TEST(Pred1Test, SingleEvaluationOnFailure) {
2303  // A success case.
2304  static int n = 0;
2305  EXPECT_PRED1(IsEven, n++);
2306  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2307
2308  // A failure case.
2309  EXPECT_FATAL_FAILURE(
2310      {  // NOLINT
2311        ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2312            << "This failure is expected.";
2313      },
2314      "This failure is expected.");
2315  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2316}
2317
2318// Tests predicate assertions whose arity is >= 2.
2319
2320// Tests predicate assertions that don't use a custom formatter.
2321TEST(PredTest, WithoutFormat) {
2322  // Success cases.
2323  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2324  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2325
2326  // Failure cases.
2327  const int n1 = 1;
2328  const int n2 = 2;
2329  EXPECT_NONFATAL_FAILURE(
2330      {  // NOLINT
2331        EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2332      },
2333      "This failure is expected.");
2334  EXPECT_FATAL_FAILURE(
2335      {  // NOLINT
2336        ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2337      },
2338      "evaluates to false");
2339}
2340
2341// Tests predicate assertions that use a custom formatter.
2342TEST(PredTest, WithFormat) {
2343  // Success cases.
2344  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
2345      << "This failure is UNEXPECTED!";
2346  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2347
2348  // Failure cases.
2349  const int n1 = 1;
2350  const int n2 = 2;
2351  const int n3 = 4;
2352  const int n4 = 6;
2353  EXPECT_NONFATAL_FAILURE(
2354      {  // NOLINT
2355        EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2356      },
2357      "evaluates to 13, which is not even.");
2358  EXPECT_FATAL_FAILURE(
2359      {  // NOLINT
2360        ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2361            << "This failure is expected.";
2362      },
2363      "This failure is expected.");
2364}
2365
2366// Tests that predicate assertions evaluates their arguments
2367// exactly once.
2368TEST(PredTest, SingleEvaluationOnFailure) {
2369  // A success case.
2370  int n1 = 0;
2371  int n2 = 0;
2372  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2373  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2374  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2375
2376  // Another success case.
2377  n1 = n2 = 0;
2378  int n3 = 0;
2379  int n4 = 0;
2380  int n5 = 0;
2381  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
2382      << "This failure is UNEXPECTED!";
2383  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2384  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2385  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2386  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2387  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2388
2389  // A failure case.
2390  n1 = n2 = n3 = 0;
2391  EXPECT_NONFATAL_FAILURE(
2392      {  // NOLINT
2393        EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2394            << "This failure is expected.";
2395      },
2396      "This failure is expected.");
2397  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2398  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2399  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2400
2401  // Another failure case.
2402  n1 = n2 = n3 = n4 = 0;
2403  EXPECT_NONFATAL_FAILURE(
2404      {  // NOLINT
2405        EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2406      },
2407      "evaluates to 1, which is not even.");
2408  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2409  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2410  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2411  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2412}
2413
2414// Test predicate assertions for sets
2415TEST(PredTest, ExpectPredEvalFailure) {
2416  std::set<int> set_a = {2, 1, 3, 4, 5};
2417  std::set<int> set_b = {0, 4, 8};
2418  const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
2419  EXPECT_NONFATAL_FAILURE(
2420      EXPECT_PRED2(compare_sets, set_a, set_b),
2421      "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2422      "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2423}
2424
2425// Some helper functions for testing using overloaded/template
2426// functions with ASSERT_PREDn and EXPECT_PREDn.
2427
2428bool IsPositive(double x) { return x > 0; }
2429
2430template <typename T>
2431bool IsNegative(T x) {
2432  return x < 0;
2433}
2434
2435template <typename T1, typename T2>
2436bool GreaterThan(T1 x1, T2 x2) {
2437  return x1 > x2;
2438}
2439
2440// Tests that overloaded functions can be used in *_PRED* as long as
2441// their types are explicitly specified.
2442TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2443  // C++Builder requires C-style casts rather than static_cast.
2444  EXPECT_PRED1((bool (*)(int))(IsPositive), 5);       // NOLINT
2445  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2446}
2447
2448// Tests that template functions can be used in *_PRED* as long as
2449// their types are explicitly specified.
2450TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2451  EXPECT_PRED1(IsNegative<int>, -5);
2452  // Makes sure that we can handle templates with more than one
2453  // parameter.
2454  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2455}
2456
2457// Some helper functions for testing using overloaded/template
2458// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2459
2460AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2461  return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2462}
2463
2464AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2465  return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2466}
2467
2468template <typename T>
2469AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2470  return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
2471}
2472
2473template <typename T1, typename T2>
2474AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2475                             const T1& x1, const T2& x2) {
2476  return x1 == x2 ? AssertionSuccess()
2477                  : AssertionFailure(Message() << "Failure");
2478}
2479
2480// Tests that overloaded functions can be used in *_PRED_FORMAT*
2481// without explicitly specifying their types.
2482TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2483  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2484  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2485}
2486
2487// Tests that template functions can be used in *_PRED_FORMAT* without
2488// explicitly specifying their types.
2489TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2490  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2491  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2492}
2493
2494// Tests string assertions.
2495
2496// Tests ASSERT_STREQ with non-NULL arguments.
2497TEST(StringAssertionTest, ASSERT_STREQ) {
2498  const char* const p1 = "good";
2499  ASSERT_STREQ(p1, p1);
2500
2501  // Let p2 have the same content as p1, but be at a different address.
2502  const char p2[] = "good";
2503  ASSERT_STREQ(p1, p2);
2504
2505  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "  \"bad\"\n  \"good\"");
2506}
2507
2508// Tests ASSERT_STREQ with NULL arguments.
2509TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2510  ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2511  EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2512}
2513
2514// Tests ASSERT_STREQ with NULL arguments.
2515TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2516  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2517}
2518
2519// Tests ASSERT_STRNE.
2520TEST(StringAssertionTest, ASSERT_STRNE) {
2521  ASSERT_STRNE("hi", "Hi");
2522  ASSERT_STRNE("Hi", nullptr);
2523  ASSERT_STRNE(nullptr, "Hi");
2524  ASSERT_STRNE("", nullptr);
2525  ASSERT_STRNE(nullptr, "");
2526  ASSERT_STRNE("", "Hi");
2527  ASSERT_STRNE("Hi", "");
2528  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
2529}
2530
2531// Tests ASSERT_STRCASEEQ.
2532TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2533  ASSERT_STRCASEEQ("hi", "Hi");
2534  ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2535
2536  ASSERT_STRCASEEQ("", "");
2537  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
2538}
2539
2540// Tests ASSERT_STRCASENE.
2541TEST(StringAssertionTest, ASSERT_STRCASENE) {
2542  ASSERT_STRCASENE("hi1", "Hi2");
2543  ASSERT_STRCASENE("Hi", nullptr);
2544  ASSERT_STRCASENE(nullptr, "Hi");
2545  ASSERT_STRCASENE("", nullptr);
2546  ASSERT_STRCASENE(nullptr, "");
2547  ASSERT_STRCASENE("", "Hi");
2548  ASSERT_STRCASENE("Hi", "");
2549  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
2550}
2551
2552// Tests *_STREQ on wide strings.
2553TEST(StringAssertionTest, STREQ_Wide) {
2554  // NULL strings.
2555  ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2556
2557  // Empty strings.
2558  ASSERT_STREQ(L"", L"");
2559
2560  // Non-null vs NULL.
2561  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2562
2563  // Equal strings.
2564  EXPECT_STREQ(L"Hi", L"Hi");
2565
2566  // Unequal strings.
2567  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
2568
2569  // Strings containing wide characters.
2570  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
2571
2572  // The streaming variation.
2573  EXPECT_NONFATAL_FAILURE(
2574      {  // NOLINT
2575        EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2576      },
2577      "Expected failure");
2578}
2579
2580// Tests *_STRNE on wide strings.
2581TEST(StringAssertionTest, STRNE_Wide) {
2582  // NULL strings.
2583  EXPECT_NONFATAL_FAILURE(
2584      {  // NOLINT
2585        EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2586      },
2587      "");
2588
2589  // Empty strings.
2590  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
2591
2592  // Non-null vs NULL.
2593  ASSERT_STRNE(L"non-null", nullptr);
2594
2595  // Equal strings.
2596  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
2597
2598  // Unequal strings.
2599  EXPECT_STRNE(L"abc", L"Abc");
2600
2601  // Strings containing wide characters.
2602  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
2603
2604  // The streaming variation.
2605  ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2606}
2607
2608// Tests for ::testing::IsSubstring().
2609
2610// Tests that IsSubstring() returns the correct result when the input
2611// argument type is const char*.
2612TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2613  EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2614  EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2615  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2616
2617  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2618  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2619}
2620
2621// Tests that IsSubstring() returns the correct result when the input
2622// argument type is const wchar_t*.
2623TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2624  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2625  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2626  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2627
2628  EXPECT_TRUE(
2629      IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2630  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2631}
2632
2633// Tests that IsSubstring() generates the correct message when the input
2634// argument type is const char*.
2635TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2636  EXPECT_STREQ(
2637      "Value of: needle_expr\n"
2638      "  Actual: \"needle\"\n"
2639      "Expected: a substring of haystack_expr\n"
2640      "Which is: \"haystack\"",
2641      IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
2642          .failure_message());
2643}
2644
2645// Tests that IsSubstring returns the correct result when the input
2646// argument type is ::std::string.
2647TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2648  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2649  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2650}
2651
2652#if GTEST_HAS_STD_WSTRING
2653// Tests that IsSubstring returns the correct result when the input
2654// argument type is ::std::wstring.
2655TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2656  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2657  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2658}
2659
2660// Tests that IsSubstring() generates the correct message when the input
2661// argument type is ::std::wstring.
2662TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2663  EXPECT_STREQ(
2664      "Value of: needle_expr\n"
2665      "  Actual: L\"needle\"\n"
2666      "Expected: a substring of haystack_expr\n"
2667      "Which is: L\"haystack\"",
2668      IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
2669                  L"haystack")
2670          .failure_message());
2671}
2672
2673#endif  // GTEST_HAS_STD_WSTRING
2674
2675// Tests for ::testing::IsNotSubstring().
2676
2677// Tests that IsNotSubstring() returns the correct result when the input
2678// argument type is const char*.
2679TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2680  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2681  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2682}
2683
2684// Tests that IsNotSubstring() returns the correct result when the input
2685// argument type is const wchar_t*.
2686TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2687  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2688  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2689}
2690
2691// Tests that IsNotSubstring() generates the correct message when the input
2692// argument type is const wchar_t*.
2693TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2694  EXPECT_STREQ(
2695      "Value of: needle_expr\n"
2696      "  Actual: L\"needle\"\n"
2697      "Expected: not a substring of haystack_expr\n"
2698      "Which is: L\"two needles\"",
2699      IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
2700          .failure_message());
2701}
2702
2703// Tests that IsNotSubstring returns the correct result when the input
2704// argument type is ::std::string.
2705TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2706  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2707  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2708}
2709
2710// Tests that IsNotSubstring() generates the correct message when the input
2711// argument type is ::std::string.
2712TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2713  EXPECT_STREQ(
2714      "Value of: needle_expr\n"
2715      "  Actual: \"needle\"\n"
2716      "Expected: not a substring of haystack_expr\n"
2717      "Which is: \"two needles\"",
2718      IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
2719                     "two needles")
2720          .failure_message());
2721}
2722
2723#if GTEST_HAS_STD_WSTRING
2724
2725// Tests that IsNotSubstring returns the correct result when the input
2726// argument type is ::std::wstring.
2727TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2728  EXPECT_FALSE(
2729      IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2730  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2731}
2732
2733#endif  // GTEST_HAS_STD_WSTRING
2734
2735// Tests floating-point assertions.
2736
2737template <typename RawType>
2738class FloatingPointTest : public Test {
2739 protected:
2740  // Pre-calculated numbers to be used by the tests.
2741  struct TestValues {
2742    RawType close_to_positive_zero;
2743    RawType close_to_negative_zero;
2744    RawType further_from_negative_zero;
2745
2746    RawType close_to_one;
2747    RawType further_from_one;
2748
2749    RawType infinity;
2750    RawType close_to_infinity;
2751    RawType further_from_infinity;
2752
2753    RawType nan1;
2754    RawType nan2;
2755  };
2756
2757  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2758  typedef typename Floating::Bits Bits;
2759
2760  void SetUp() override {
2761    const uint32_t max_ulps = Floating::kMaxUlps;
2762
2763    // The bits that represent 0.0.
2764    const Bits zero_bits = Floating(0).bits();
2765
2766    // Makes some numbers close to 0.0.
2767    values_.close_to_positive_zero =
2768        Floating::ReinterpretBits(zero_bits + max_ulps / 2);
2769    values_.close_to_negative_zero =
2770        -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
2771    values_.further_from_negative_zero =
2772        -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
2773
2774    // The bits that represent 1.0.
2775    const Bits one_bits = Floating(1).bits();
2776
2777    // Makes some numbers close to 1.0.
2778    values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2779    values_.further_from_one =
2780        Floating::ReinterpretBits(one_bits + max_ulps + 1);
2781
2782    // +infinity.
2783    values_.infinity = Floating::Infinity();
2784
2785    // The bits that represent +infinity.
2786    const Bits infinity_bits = Floating(values_.infinity).bits();
2787
2788    // Makes some numbers close to infinity.
2789    values_.close_to_infinity =
2790        Floating::ReinterpretBits(infinity_bits - max_ulps);
2791    values_.further_from_infinity =
2792        Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
2793
2794    // Makes some NAN's.  Sets the most significant bit of the fraction so that
2795    // our NaN's are quiet; trying to process a signaling NaN would raise an
2796    // exception if our environment enables floating point exceptions.
2797    values_.nan1 = Floating::ReinterpretBits(
2798        Floating::kExponentBitMask |
2799        (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2800    values_.nan2 = Floating::ReinterpretBits(
2801        Floating::kExponentBitMask |
2802        (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2803  }
2804
2805  void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
2806
2807  static TestValues values_;
2808};
2809
2810template <typename RawType>
2811typename FloatingPointTest<RawType>::TestValues
2812    FloatingPointTest<RawType>::values_;
2813
2814// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2815typedef FloatingPointTest<float> FloatTest;
2816
2817// Tests that the size of Float::Bits matches the size of float.
2818TEST_F(FloatTest, Size) { TestSize(); }
2819
2820// Tests comparing with +0 and -0.
2821TEST_F(FloatTest, Zeros) {
2822  EXPECT_FLOAT_EQ(0.0, -0.0);
2823  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
2824  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
2825}
2826
2827// Tests comparing numbers close to 0.
2828//
2829// This ensures that *_FLOAT_EQ handles the sign correctly and no
2830// overflow occurs when comparing numbers whose absolute value is very
2831// small.
2832TEST_F(FloatTest, AlmostZeros) {
2833  // In C++Builder, names within local classes (such as used by
2834  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2835  // scoping class.  Use a static local alias as a workaround.
2836  // We use the assignment syntax since some compilers, like Sun Studio,
2837  // don't allow initializing references using construction syntax
2838  // (parentheses).
2839  static const FloatTest::TestValues& v = this->values_;
2840
2841  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2842  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2843  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2844
2845  EXPECT_FATAL_FAILURE(
2846      {  // NOLINT
2847        ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
2848      },
2849      "v.further_from_negative_zero");
2850}
2851
2852// Tests comparing numbers close to each other.
2853TEST_F(FloatTest, SmallDiff) {
2854  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2855  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2856                          "values_.further_from_one");
2857}
2858
2859// Tests comparing numbers far apart.
2860TEST_F(FloatTest, LargeDiff) {
2861  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
2862}
2863
2864// Tests comparing with infinity.
2865//
2866// This ensures that no overflow occurs when comparing numbers whose
2867// absolute value is very large.
2868TEST_F(FloatTest, Infinity) {
2869  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2870  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2871  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2872                          "-values_.infinity");
2873
2874  // This is interesting as the representations of infinity and nan1
2875  // are only 1 DLP apart.
2876  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2877                          "values_.nan1");
2878}
2879
2880// Tests that comparing with NAN always returns false.
2881TEST_F(FloatTest, NaN) {
2882  // In C++Builder, names within local classes (such as used by
2883  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2884  // scoping class.  Use a static local alias as a workaround.
2885  // We use the assignment syntax since some compilers, like Sun Studio,
2886  // don't allow initializing references using construction syntax
2887  // (parentheses).
2888  static const FloatTest::TestValues& v = this->values_;
2889
2890  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
2891  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
2892  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
2893
2894  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
2895}
2896
2897// Tests that *_FLOAT_EQ are reflexive.
2898TEST_F(FloatTest, Reflexive) {
2899  EXPECT_FLOAT_EQ(0.0, 0.0);
2900  EXPECT_FLOAT_EQ(1.0, 1.0);
2901  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2902}
2903
2904// Tests that *_FLOAT_EQ are commutative.
2905TEST_F(FloatTest, Commutative) {
2906  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2907  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2908
2909  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2910  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2911                          "1.0");
2912}
2913
2914// Tests EXPECT_NEAR.
2915TEST_F(FloatTest, EXPECT_NEAR) {
2916  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2917  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2918  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2919                          "The difference between 1.0f and 1.5f is 0.5, "
2920                          "which exceeds 0.25f");
2921}
2922
2923// Tests ASSERT_NEAR.
2924TEST_F(FloatTest, ASSERT_NEAR) {
2925  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2926  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2927  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2928                       "The difference between 1.0f and 1.5f is 0.5, "
2929                       "which exceeds 0.25f");
2930}
2931
2932// Tests the cases where FloatLE() should succeed.
2933TEST_F(FloatTest, FloatLESucceeds) {
2934  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2935  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2936
2937  // or when val1 is greater than, but almost equals to, val2.
2938  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2939}
2940
2941// Tests the cases where FloatLE() should fail.
2942TEST_F(FloatTest, FloatLEFails) {
2943  // When val1 is greater than val2 by a large margin,
2944  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2945                          "(2.0f) <= (1.0f)");
2946
2947  // or by a small yet non-negligible margin,
2948  EXPECT_NONFATAL_FAILURE(
2949      {  // NOLINT
2950        EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2951      },
2952      "(values_.further_from_one) <= (1.0f)");
2953
2954  EXPECT_NONFATAL_FAILURE(
2955      {  // NOLINT
2956        EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2957      },
2958      "(values_.nan1) <= (values_.infinity)");
2959  EXPECT_NONFATAL_FAILURE(
2960      {  // NOLINT
2961        EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2962      },
2963      "(-values_.infinity) <= (values_.nan1)");
2964  EXPECT_FATAL_FAILURE(
2965      {  // NOLINT
2966        ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2967      },
2968      "(values_.nan1) <= (values_.nan1)");
2969}
2970
2971// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2972typedef FloatingPointTest<double> DoubleTest;
2973
2974// Tests that the size of Double::Bits matches the size of double.
2975TEST_F(DoubleTest, Size) { TestSize(); }
2976
2977// Tests comparing with +0 and -0.
2978TEST_F(DoubleTest, Zeros) {
2979  EXPECT_DOUBLE_EQ(0.0, -0.0);
2980  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
2981  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
2982}
2983
2984// Tests comparing numbers close to 0.
2985//
2986// This ensures that *_DOUBLE_EQ handles the sign correctly and no
2987// overflow occurs when comparing numbers whose absolute value is very
2988// small.
2989TEST_F(DoubleTest, AlmostZeros) {
2990  // In C++Builder, names within local classes (such as used by
2991  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2992  // scoping class.  Use a static local alias as a workaround.
2993  // We use the assignment syntax since some compilers, like Sun Studio,
2994  // don't allow initializing references using construction syntax
2995  // (parentheses).
2996  static const DoubleTest::TestValues& v = this->values_;
2997
2998  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2999  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3000  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3001
3002  EXPECT_FATAL_FAILURE(
3003      {  // NOLINT
3004        ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3005                         v.further_from_negative_zero);
3006      },
3007      "v.further_from_negative_zero");
3008}
3009
3010// Tests comparing numbers close to each other.
3011TEST_F(DoubleTest, SmallDiff) {
3012  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3013  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3014                          "values_.further_from_one");
3015}
3016
3017// Tests comparing numbers far apart.
3018TEST_F(DoubleTest, LargeDiff) {
3019  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
3020}
3021
3022// Tests comparing with infinity.
3023//
3024// This ensures that no overflow occurs when comparing numbers whose
3025// absolute value is very large.
3026TEST_F(DoubleTest, Infinity) {
3027  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3028  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3029  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3030                          "-values_.infinity");
3031
3032  // This is interesting as the representations of infinity_ and nan1_
3033  // are only 1 DLP apart.
3034  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3035                          "values_.nan1");
3036}
3037
3038// Tests that comparing with NAN always returns false.
3039TEST_F(DoubleTest, NaN) {
3040  static const DoubleTest::TestValues& v = this->values_;
3041
3042  // Nokia's STLport crashes if we try to output infinity or NaN.
3043  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
3044  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3045  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3046  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
3047}
3048
3049// Tests that *_DOUBLE_EQ are reflexive.
3050TEST_F(DoubleTest, Reflexive) {
3051  EXPECT_DOUBLE_EQ(0.0, 0.0);
3052  EXPECT_DOUBLE_EQ(1.0, 1.0);
3053  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3054}
3055
3056// Tests that *_DOUBLE_EQ are commutative.
3057TEST_F(DoubleTest, Commutative) {
3058  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3059  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3060
3061  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3062  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3063                          "1.0");
3064}
3065
3066// Tests EXPECT_NEAR.
3067TEST_F(DoubleTest, EXPECT_NEAR) {
3068  EXPECT_NEAR(-1.0, -1.1, 0.2);
3069  EXPECT_NEAR(2.0, 3.0, 1.0);
3070  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3071                          "The difference between 1.0 and 1.5 is 0.5, "
3072                          "which exceeds 0.25");
3073  // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3074  // slightly different failure reporting path.
3075  EXPECT_NONFATAL_FAILURE(
3076      EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3077      "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3078      "minimum distance between doubles for numbers of this magnitude which is "
3079      "512");
3080}
3081
3082// Tests ASSERT_NEAR.
3083TEST_F(DoubleTest, ASSERT_NEAR) {
3084  ASSERT_NEAR(-1.0, -1.1, 0.2);
3085  ASSERT_NEAR(2.0, 3.0, 1.0);
3086  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3087                       "The difference between 1.0 and 1.5 is 0.5, "
3088                       "which exceeds 0.25");
3089}
3090
3091// Tests the cases where DoubleLE() should succeed.
3092TEST_F(DoubleTest, DoubleLESucceeds) {
3093  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3094  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3095
3096  // or when val1 is greater than, but almost equals to, val2.
3097  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3098}
3099
3100// Tests the cases where DoubleLE() should fail.
3101TEST_F(DoubleTest, DoubleLEFails) {
3102  // When val1 is greater than val2 by a large margin,
3103  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3104                          "(2.0) <= (1.0)");
3105
3106  // or by a small yet non-negligible margin,
3107  EXPECT_NONFATAL_FAILURE(
3108      {  // NOLINT
3109        EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3110      },
3111      "(values_.further_from_one) <= (1.0)");
3112
3113  EXPECT_NONFATAL_FAILURE(
3114      {  // NOLINT
3115        EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3116      },
3117      "(values_.nan1) <= (values_.infinity)");
3118  EXPECT_NONFATAL_FAILURE(
3119      {  // NOLINT
3120        EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3121      },
3122      " (-values_.infinity) <= (values_.nan1)");
3123  EXPECT_FATAL_FAILURE(
3124      {  // NOLINT
3125        ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3126      },
3127      "(values_.nan1) <= (values_.nan1)");
3128}
3129
3130// Verifies that a test or test case whose name starts with DISABLED_ is
3131// not run.
3132
3133// A test whose name starts with DISABLED_.
3134// Should not run.
3135TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3136  FAIL() << "Unexpected failure: Disabled test should not be run.";
3137}
3138
3139// A test whose name does not start with DISABLED_.
3140// Should run.
3141TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
3142
3143// A test case whose name starts with DISABLED_.
3144// Should not run.
3145TEST(DISABLED_TestSuite, TestShouldNotRun) {
3146  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3147}
3148
3149// A test case and test whose names start with DISABLED_.
3150// Should not run.
3151TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3152  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3153}
3154
3155// Check that when all tests in a test case are disabled, SetUpTestSuite() and
3156// TearDownTestSuite() are not called.
3157class DisabledTestsTest : public Test {
3158 protected:
3159  static void SetUpTestSuite() {
3160    FAIL() << "Unexpected failure: All tests disabled in test case. "
3161              "SetUpTestSuite() should not be called.";
3162  }
3163
3164  static void TearDownTestSuite() {
3165    FAIL() << "Unexpected failure: All tests disabled in test case. "
3166              "TearDownTestSuite() should not be called.";
3167  }
3168};
3169
3170TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3171  FAIL() << "Unexpected failure: Disabled test should not be run.";
3172}
3173
3174TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3175  FAIL() << "Unexpected failure: Disabled test should not be run.";
3176}
3177
3178// Tests that disabled typed tests aren't run.
3179
3180template <typename T>
3181class TypedTest : public Test {};
3182
3183typedef testing::Types<int, double> NumericTypes;
3184TYPED_TEST_SUITE(TypedTest, NumericTypes);
3185
3186TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3187  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3188}
3189
3190template <typename T>
3191class DISABLED_TypedTest : public Test {};
3192
3193TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3194
3195TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3196  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3197}
3198
3199// Tests that disabled type-parameterized tests aren't run.
3200
3201template <typename T>
3202class TypedTestP : public Test {};
3203
3204TYPED_TEST_SUITE_P(TypedTestP);
3205
3206TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3207  FAIL() << "Unexpected failure: "
3208         << "Disabled type-parameterized test should not run.";
3209}
3210
3211REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3212
3213INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3214
3215template <typename T>
3216class DISABLED_TypedTestP : public Test {};
3217
3218TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3219
3220TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3221  FAIL() << "Unexpected failure: "
3222         << "Disabled type-parameterized test should not run.";
3223}
3224
3225REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3226
3227INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3228
3229// Tests that assertion macros evaluate their arguments exactly once.
3230
3231class SingleEvaluationTest : public Test {
3232 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3233  // This helper function is needed by the FailedASSERT_STREQ test
3234  // below.  It's public to work around C++Builder's bug with scoping local
3235  // classes.
3236  static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
3237
3238  // This helper function is needed by the FailedASSERT_NE test below.  It's
3239  // public to work around C++Builder's bug with scoping local classes.
3240  static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
3241
3242 protected:
3243  SingleEvaluationTest() {
3244    p1_ = s1_;
3245    p2_ = s2_;
3246    a_ = 0;
3247    b_ = 0;
3248  }
3249
3250  static const char* const s1_;
3251  static const char* const s2_;
3252  static const char* p1_;
3253  static const char* p2_;
3254
3255  static int a_;
3256  static int b_;
3257};
3258
3259const char* const SingleEvaluationTest::s1_ = "01234";
3260const char* const SingleEvaluationTest::s2_ = "abcde";
3261const char* SingleEvaluationTest::p1_;
3262const char* SingleEvaluationTest::p2_;
3263int SingleEvaluationTest::a_;
3264int SingleEvaluationTest::b_;
3265
3266// Tests that when ASSERT_STREQ fails, it evaluates its arguments
3267// exactly once.
3268TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3269  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3270                       "p2_++");
3271  EXPECT_EQ(s1_ + 1, p1_);
3272  EXPECT_EQ(s2_ + 1, p2_);
3273}
3274
3275// Tests that string assertion arguments are evaluated exactly once.
3276TEST_F(SingleEvaluationTest, ASSERT_STR) {
3277  // successful EXPECT_STRNE
3278  EXPECT_STRNE(p1_++, p2_++);
3279  EXPECT_EQ(s1_ + 1, p1_);
3280  EXPECT_EQ(s2_ + 1, p2_);
3281
3282  // failed EXPECT_STRCASEEQ
3283  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
3284  EXPECT_EQ(s1_ + 2, p1_);
3285  EXPECT_EQ(s2_ + 2, p2_);
3286}
3287
3288// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3289// once.
3290TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3291  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3292                       "(a_++) != (b_++)");
3293  EXPECT_EQ(1, a_);
3294  EXPECT_EQ(1, b_);
3295}
3296
3297// Tests that assertion arguments are evaluated exactly once.
3298TEST_F(SingleEvaluationTest, OtherCases) {
3299  // successful EXPECT_TRUE
3300  EXPECT_TRUE(0 == a_++);  // NOLINT
3301  EXPECT_EQ(1, a_);
3302
3303  // failed EXPECT_TRUE
3304  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3305  EXPECT_EQ(2, a_);
3306
3307  // successful EXPECT_GT
3308  EXPECT_GT(a_++, b_++);
3309  EXPECT_EQ(3, a_);
3310  EXPECT_EQ(1, b_);
3311
3312  // failed EXPECT_LT
3313  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3314  EXPECT_EQ(4, a_);
3315  EXPECT_EQ(2, b_);
3316
3317  // successful ASSERT_TRUE
3318  ASSERT_TRUE(0 < a_++);  // NOLINT
3319  EXPECT_EQ(5, a_);
3320
3321  // successful ASSERT_GT
3322  ASSERT_GT(a_++, b_++);
3323  EXPECT_EQ(6, a_);
3324  EXPECT_EQ(3, b_);
3325}
3326
3327#if GTEST_HAS_EXCEPTIONS
3328
3329#if GTEST_HAS_RTTI
3330
3331#define ERROR_DESC "std::runtime_error"
3332
3333#else  // GTEST_HAS_RTTI
3334
3335#define ERROR_DESC "an std::exception-derived error"
3336
3337#endif  // GTEST_HAS_RTTI
3338
3339void ThrowAnInteger() { throw 1; }
3340void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
3341
3342// Tests that assertion arguments are evaluated exactly once.
3343TEST_F(SingleEvaluationTest, ExceptionTests) {
3344  // successful EXPECT_THROW
3345  EXPECT_THROW(
3346      {  // NOLINT
3347        a_++;
3348        ThrowAnInteger();
3349      },
3350      int);
3351  EXPECT_EQ(1, a_);
3352
3353  // failed EXPECT_THROW, throws different
3354  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3355                              {  // NOLINT
3356                                a_++;
3357                                ThrowAnInteger();
3358                              },
3359                              bool),
3360                          "throws a different type");
3361  EXPECT_EQ(2, a_);
3362
3363  // failed EXPECT_THROW, throws runtime error
3364  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
3365                              {  // NOLINT
3366                                a_++;
3367                                ThrowRuntimeError("A description");
3368                              },
3369                              bool),
3370                          "throws " ERROR_DESC
3371                          " with description \"A description\"");
3372  EXPECT_EQ(3, a_);
3373
3374  // failed EXPECT_THROW, throws nothing
3375  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3376  EXPECT_EQ(4, a_);
3377
3378  // successful EXPECT_NO_THROW
3379  EXPECT_NO_THROW(a_++);
3380  EXPECT_EQ(5, a_);
3381
3382  // failed EXPECT_NO_THROW
3383  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3384                            a_++;
3385                            ThrowAnInteger();
3386                          }),
3387                          "it throws");
3388  EXPECT_EQ(6, a_);
3389
3390  // successful EXPECT_ANY_THROW
3391  EXPECT_ANY_THROW({  // NOLINT
3392    a_++;
3393    ThrowAnInteger();
3394  });
3395  EXPECT_EQ(7, a_);
3396
3397  // failed EXPECT_ANY_THROW
3398  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3399  EXPECT_EQ(8, a_);
3400}
3401
3402#endif  // GTEST_HAS_EXCEPTIONS
3403
3404// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3405class NoFatalFailureTest : public Test {
3406 protected:
3407  void Succeeds() {}
3408  void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
3409  void Fails() { FAIL() << "some fatal failure"; }
3410
3411  void DoAssertNoFatalFailureOnFails() {
3412    ASSERT_NO_FATAL_FAILURE(Fails());
3413    ADD_FAILURE() << "should not reach here.";
3414  }
3415
3416  void DoExpectNoFatalFailureOnFails() {
3417    EXPECT_NO_FATAL_FAILURE(Fails());
3418    ADD_FAILURE() << "other failure";
3419  }
3420};
3421
3422TEST_F(NoFatalFailureTest, NoFailure) {
3423  EXPECT_NO_FATAL_FAILURE(Succeeds());
3424  ASSERT_NO_FATAL_FAILURE(Succeeds());
3425}
3426
3427TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3428  EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3429                          "some non-fatal failure");
3430  EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3431                          "some non-fatal failure");
3432}
3433
3434TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3435  TestPartResultArray gtest_failures;
3436  {
3437    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3438    DoAssertNoFatalFailureOnFails();
3439  }
3440  ASSERT_EQ(2, gtest_failures.size());
3441  EXPECT_EQ(TestPartResult::kFatalFailure,
3442            gtest_failures.GetTestPartResult(0).type());
3443  EXPECT_EQ(TestPartResult::kFatalFailure,
3444            gtest_failures.GetTestPartResult(1).type());
3445  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3446                      gtest_failures.GetTestPartResult(0).message());
3447  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3448                      gtest_failures.GetTestPartResult(1).message());
3449}
3450
3451TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3452  TestPartResultArray gtest_failures;
3453  {
3454    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3455    DoExpectNoFatalFailureOnFails();
3456  }
3457  ASSERT_EQ(3, gtest_failures.size());
3458  EXPECT_EQ(TestPartResult::kFatalFailure,
3459            gtest_failures.GetTestPartResult(0).type());
3460  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3461            gtest_failures.GetTestPartResult(1).type());
3462  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3463            gtest_failures.GetTestPartResult(2).type());
3464  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3465                      gtest_failures.GetTestPartResult(0).message());
3466  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3467                      gtest_failures.GetTestPartResult(1).message());
3468  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3469                      gtest_failures.GetTestPartResult(2).message());
3470}
3471
3472TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3473  TestPartResultArray gtest_failures;
3474  {
3475    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3476    EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
3477  }
3478  ASSERT_EQ(2, gtest_failures.size());
3479  EXPECT_EQ(TestPartResult::kFatalFailure,
3480            gtest_failures.GetTestPartResult(0).type());
3481  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3482            gtest_failures.GetTestPartResult(1).type());
3483  EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3484                      gtest_failures.GetTestPartResult(0).message());
3485  EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3486                      gtest_failures.GetTestPartResult(1).message());
3487}
3488
3489// Tests non-string assertions.
3490
3491std::string EditsToString(const std::vector<EditType>& edits) {
3492  std::string out;
3493  for (size_t i = 0; i < edits.size(); ++i) {
3494    static const char kEdits[] = " +-/";
3495    out.append(1, kEdits[edits[i]]);
3496  }
3497  return out;
3498}
3499
3500std::vector<size_t> CharsToIndices(const std::string& str) {
3501  std::vector<size_t> out;
3502  for (size_t i = 0; i < str.size(); ++i) {
3503    out.push_back(static_cast<size_t>(str[i]));
3504  }
3505  return out;
3506}
3507
3508std::vector<std::string> CharsToLines(const std::string& str) {
3509  std::vector<std::string> out;
3510  for (size_t i = 0; i < str.size(); ++i) {
3511    out.push_back(str.substr(i, 1));
3512  }
3513  return out;
3514}
3515
3516TEST(EditDistance, TestSuites) {
3517  struct Case {
3518    int line;
3519    const char* left;
3520    const char* right;
3521    const char* expected_edits;
3522    const char* expected_diff;
3523  };
3524  static const Case kCases[] = {
3525      // No change.
3526      {__LINE__, "A", "A", " ", ""},
3527      {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3528      // Simple adds.
3529      {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3530      {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3531      // Simple removes.
3532      {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3533      {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3534      // Simple replaces.
3535      {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3536      {__LINE__, "ABCD", "abcd", "////",
3537       "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3538      // Path finding.
3539      {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3540       "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3541      {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3542       "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3543      {__LINE__, "ABCDE", "BCDCD", "-   +/",
3544       "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3545      {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3546       "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3547       "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3548      {}};
3549  for (const Case* c = kCases; c->left; ++c) {
3550    EXPECT_TRUE(c->expected_edits ==
3551                EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3552                                                    CharsToIndices(c->right))))
3553        << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3554        << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3555                                               CharsToIndices(c->right)))
3556        << ">";
3557    EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3558                                                      CharsToLines(c->right)))
3559        << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3560        << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3561        << ">";
3562  }
3563}
3564
3565// Tests EqFailure(), used for implementing *EQ* assertions.
3566TEST(AssertionTest, EqFailure) {
3567  const std::string foo_val("5"), bar_val("6");
3568  const std::string msg1(
3569      EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
3570  EXPECT_STREQ(
3571      "Expected equality of these values:\n"
3572      "  foo\n"
3573      "    Which is: 5\n"
3574      "  bar\n"
3575      "    Which is: 6",
3576      msg1.c_str());
3577
3578  const std::string msg2(
3579      EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
3580  EXPECT_STREQ(
3581      "Expected equality of these values:\n"
3582      "  foo\n"
3583      "    Which is: 5\n"
3584      "  6",
3585      msg2.c_str());
3586
3587  const std::string msg3(
3588      EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
3589  EXPECT_STREQ(
3590      "Expected equality of these values:\n"
3591      "  5\n"
3592      "  bar\n"
3593      "    Which is: 6",
3594      msg3.c_str());
3595
3596  const std::string msg4(
3597      EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3598  EXPECT_STREQ(
3599      "Expected equality of these values:\n"
3600      "  5\n"
3601      "  6",
3602      msg4.c_str());
3603
3604  const std::string msg5(
3605      EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
3606          .failure_message());
3607  EXPECT_STREQ(
3608      "Expected equality of these values:\n"
3609      "  foo\n"
3610      "    Which is: \"x\"\n"
3611      "  bar\n"
3612      "    Which is: \"y\"\n"
3613      "Ignoring case",
3614      msg5.c_str());
3615}
3616
3617TEST(AssertionTest, EqFailureWithDiff) {
3618  const std::string left(
3619      "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3620  const std::string right(
3621      "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3622  const std::string msg1(
3623      EqFailure("left", "right", left, right, false).failure_message());
3624  EXPECT_STREQ(
3625      "Expected equality of these values:\n"
3626      "  left\n"
3627      "    Which is: "
3628      "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3629      "  right\n"
3630      "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3631      "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3632      "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3633      msg1.c_str());
3634}
3635
3636// Tests AppendUserMessage(), used for implementing the *EQ* macros.
3637TEST(AssertionTest, AppendUserMessage) {
3638  const std::string foo("foo");
3639
3640  Message msg;
3641  EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
3642
3643  msg << "bar";
3644  EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
3645}
3646
3647#ifdef __BORLANDC__
3648// Silences warnings: "Condition is always true", "Unreachable code"
3649#pragma option push -w-ccc -w-rch
3650#endif
3651
3652// Tests ASSERT_TRUE.
3653TEST(AssertionTest, ASSERT_TRUE) {
3654  ASSERT_TRUE(2 > 1);  // NOLINT
3655  EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
3656}
3657
3658// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3659TEST(AssertionTest, AssertTrueWithAssertionResult) {
3660  ASSERT_TRUE(ResultIsEven(2));
3661#ifndef __BORLANDC__
3662  // ICE's in C++Builder.
3663  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3664                       "Value of: ResultIsEven(3)\n"
3665                       "  Actual: false (3 is odd)\n"
3666                       "Expected: true");
3667#endif
3668  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3669  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3670                       "Value of: ResultIsEvenNoExplanation(3)\n"
3671                       "  Actual: false (3 is odd)\n"
3672                       "Expected: true");
3673}
3674
3675// Tests ASSERT_FALSE.
3676TEST(AssertionTest, ASSERT_FALSE) {
3677  ASSERT_FALSE(2 < 1);  // NOLINT
3678  EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3679                       "Value of: 2 > 1\n"
3680                       "  Actual: true\n"
3681                       "Expected: false");
3682}
3683
3684// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3685TEST(AssertionTest, AssertFalseWithAssertionResult) {
3686  ASSERT_FALSE(ResultIsEven(3));
3687#ifndef __BORLANDC__
3688  // ICE's in C++Builder.
3689  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3690                       "Value of: ResultIsEven(2)\n"
3691                       "  Actual: true (2 is even)\n"
3692                       "Expected: false");
3693#endif
3694  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3695  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3696                       "Value of: ResultIsEvenNoExplanation(2)\n"
3697                       "  Actual: true\n"
3698                       "Expected: false");
3699}
3700
3701#ifdef __BORLANDC__
3702// Restores warnings after previous "#pragma option push" suppressed them
3703#pragma option pop
3704#endif
3705
3706// Tests using ASSERT_EQ on double values.  The purpose is to make
3707// sure that the specialization we did for integer and anonymous enums
3708// isn't used for double arguments.
3709TEST(ExpectTest, ASSERT_EQ_Double) {
3710  // A success.
3711  ASSERT_EQ(5.6, 5.6);
3712
3713  // A failure.
3714  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
3715}
3716
3717// Tests ASSERT_EQ.
3718TEST(AssertionTest, ASSERT_EQ) {
3719  ASSERT_EQ(5, 2 + 3);
3720  // clang-format off
3721  EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3722                       "Expected equality of these values:\n"
3723                       "  5\n"
3724                       "  2*3\n"
3725                       "    Which is: 6");
3726  // clang-format on
3727}
3728
3729// Tests ASSERT_EQ(NULL, pointer).
3730TEST(AssertionTest, ASSERT_EQ_NULL) {
3731  // A success.
3732  const char* p = nullptr;
3733  ASSERT_EQ(nullptr, p);
3734
3735  // A failure.
3736  static int n = 0;
3737  EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3738}
3739
3740// Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3741// treated as a null pointer by the compiler, we need to make sure
3742// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3743// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3744TEST(ExpectTest, ASSERT_EQ_0) {
3745  int n = 0;
3746
3747  // A success.
3748  ASSERT_EQ(0, n);
3749
3750  // A failure.
3751  EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "  0\n  5.6");
3752}
3753
3754// Tests ASSERT_NE.
3755TEST(AssertionTest, ASSERT_NE) {
3756  ASSERT_NE(6, 7);
3757  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3758                       "Expected: ('a') != ('a'), "
3759                       "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3760}
3761
3762// Tests ASSERT_LE.
3763TEST(AssertionTest, ASSERT_LE) {
3764  ASSERT_LE(2, 3);
3765  ASSERT_LE(2, 2);
3766  EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
3767}
3768
3769// Tests ASSERT_LT.
3770TEST(AssertionTest, ASSERT_LT) {
3771  ASSERT_LT(2, 3);
3772  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
3773}
3774
3775// Tests ASSERT_GE.
3776TEST(AssertionTest, ASSERT_GE) {
3777  ASSERT_GE(2, 1);
3778  ASSERT_GE(2, 2);
3779  EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
3780}
3781
3782// Tests ASSERT_GT.
3783TEST(AssertionTest, ASSERT_GT) {
3784  ASSERT_GT(2, 1);
3785  EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
3786}
3787
3788#if GTEST_HAS_EXCEPTIONS
3789
3790void ThrowNothing() {}
3791
3792// Tests ASSERT_THROW.
3793TEST(AssertionTest, ASSERT_THROW) {
3794  ASSERT_THROW(ThrowAnInteger(), int);
3795
3796#ifndef __BORLANDC__
3797
3798  // ICE's in C++Builder 2007 and 2009.
3799  EXPECT_FATAL_FAILURE(
3800      ASSERT_THROW(ThrowAnInteger(), bool),
3801      "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3802      "  Actual: it throws a different type.");
3803  EXPECT_FATAL_FAILURE(
3804      ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3805      "Expected: ThrowRuntimeError(\"A description\") "
3806      "throws an exception of type std::logic_error.\n  "
3807      "Actual: it throws " ERROR_DESC
3808      " "
3809      "with description \"A description\".");
3810#endif
3811
3812  EXPECT_FATAL_FAILURE(
3813      ASSERT_THROW(ThrowNothing(), bool),
3814      "Expected: ThrowNothing() throws an exception of type bool.\n"
3815      "  Actual: it throws nothing.");
3816}
3817
3818// Tests ASSERT_NO_THROW.
3819TEST(AssertionTest, ASSERT_NO_THROW) {
3820  ASSERT_NO_THROW(ThrowNothing());
3821  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3822                       "Expected: ThrowAnInteger() doesn't throw an exception."
3823                       "\n  Actual: it throws.");
3824  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3825                       "Expected: ThrowRuntimeError(\"A description\") "
3826                       "doesn't throw an exception.\n  "
3827                       "Actual: it throws " ERROR_DESC
3828                       " "
3829                       "with description \"A description\".");
3830}
3831
3832// Tests ASSERT_ANY_THROW.
3833TEST(AssertionTest, ASSERT_ANY_THROW) {
3834  ASSERT_ANY_THROW(ThrowAnInteger());
3835  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
3836                       "Expected: ThrowNothing() throws an exception.\n"
3837                       "  Actual: it doesn't.");
3838}
3839
3840#endif  // GTEST_HAS_EXCEPTIONS
3841
3842// Makes sure we deal with the precedence of <<.  This test should
3843// compile.
3844TEST(AssertionTest, AssertPrecedence) {
3845  ASSERT_EQ(1 < 2, true);
3846  bool false_value = false;
3847  ASSERT_EQ(true && false_value, false);
3848}
3849
3850// A subroutine used by the following test.
3851void TestEq1(int x) { ASSERT_EQ(1, x); }
3852
3853// Tests calling a test subroutine that's not part of a fixture.
3854TEST(AssertionTest, NonFixtureSubroutine) {
3855  EXPECT_FATAL_FAILURE(TestEq1(2), "  x\n    Which is: 2");
3856}
3857
3858// An uncopyable class.
3859class Uncopyable {
3860 public:
3861  explicit Uncopyable(int a_value) : value_(a_value) {}
3862
3863  int value() const { return value_; }
3864  bool operator==(const Uncopyable& rhs) const {
3865    return value() == rhs.value();
3866  }
3867
3868 private:
3869  // This constructor deliberately has no implementation, as we don't
3870  // want this class to be copyable.
3871  Uncopyable(const Uncopyable&);  // NOLINT
3872
3873  int value_;
3874};
3875
3876::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3877  return os << value.value();
3878}
3879
3880bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
3881
3882// A subroutine used by the following test.
3883void TestAssertNonPositive() {
3884  Uncopyable y(-1);
3885  ASSERT_PRED1(IsPositiveUncopyable, y);
3886}
3887// A subroutine used by the following test.
3888void TestAssertEqualsUncopyable() {
3889  Uncopyable x(5);
3890  Uncopyable y(-1);
3891  ASSERT_EQ(x, y);
3892}
3893
3894// Tests that uncopyable objects can be used in assertions.
3895TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3896  Uncopyable x(5);
3897  ASSERT_PRED1(IsPositiveUncopyable, x);
3898  ASSERT_EQ(x, x);
3899  EXPECT_FATAL_FAILURE(
3900      TestAssertNonPositive(),
3901      "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3902  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3903                       "Expected equality of these values:\n"
3904                       "  x\n    Which is: 5\n  y\n    Which is: -1");
3905}
3906
3907// Tests that uncopyable objects can be used in expects.
3908TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3909  Uncopyable x(5);
3910  EXPECT_PRED1(IsPositiveUncopyable, x);
3911  Uncopyable y(-1);
3912  EXPECT_NONFATAL_FAILURE(
3913      EXPECT_PRED1(IsPositiveUncopyable, y),
3914      "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3915  EXPECT_EQ(x, x);
3916  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3917                          "Expected equality of these values:\n"
3918                          "  x\n    Which is: 5\n  y\n    Which is: -1");
3919}
3920
3921enum NamedEnum { kE1 = 0, kE2 = 1 };
3922
3923TEST(AssertionTest, NamedEnum) {
3924  EXPECT_EQ(kE1, kE1);
3925  EXPECT_LT(kE1, kE2);
3926  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3927  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3928}
3929
3930// Sun Studio and HP aCC2reject this code.
3931#if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3932
3933// Tests using assertions with anonymous enums.
3934enum {
3935  kCaseA = -1,
3936
3937#ifdef GTEST_OS_LINUX
3938
3939  // We want to test the case where the size of the anonymous enum is
3940  // larger than sizeof(int), to make sure our implementation of the
3941  // assertions doesn't truncate the enums.  However, MSVC
3942  // (incorrectly) doesn't allow an enum value to exceed the range of
3943  // an int, so this has to be conditionally compiled.
3944  //
3945  // On Linux, kCaseB and kCaseA have the same value when truncated to
3946  // int size.  We want to test whether this will confuse the
3947  // assertions.
3948  kCaseB = testing::internal::kMaxBiggestInt,
3949
3950#else
3951
3952  kCaseB = INT_MAX,
3953
3954#endif  // GTEST_OS_LINUX
3955
3956  kCaseC = 42
3957};
3958
3959TEST(AssertionTest, AnonymousEnum) {
3960#ifdef GTEST_OS_LINUX
3961
3962  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3963
3964#endif  // GTEST_OS_LINUX
3965
3966  EXPECT_EQ(kCaseA, kCaseA);
3967  EXPECT_NE(kCaseA, kCaseB);
3968  EXPECT_LT(kCaseA, kCaseB);
3969  EXPECT_LE(kCaseA, kCaseB);
3970  EXPECT_GT(kCaseB, kCaseA);
3971  EXPECT_GE(kCaseA, kCaseA);
3972  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
3973  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
3974
3975  ASSERT_EQ(kCaseA, kCaseA);
3976  ASSERT_NE(kCaseA, kCaseB);
3977  ASSERT_LT(kCaseA, kCaseB);
3978  ASSERT_LE(kCaseA, kCaseB);
3979  ASSERT_GT(kCaseB, kCaseA);
3980  ASSERT_GE(kCaseA, kCaseA);
3981
3982#ifndef __BORLANDC__
3983
3984  // ICE's in C++Builder.
3985  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), "  kCaseB\n    Which is: ");
3986  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: 42");
3987#endif
3988
3989  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n    Which is: -1");
3990}
3991
3992#endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3993
3994#ifdef GTEST_OS_WINDOWS
3995
3996static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
3997
3998static HRESULT OkHRESULTSuccess() { return S_OK; }
3999
4000static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
4001
4002// HRESULT assertion tests test both zero and non-zero
4003// success codes as well as failure message for each.
4004//
4005// Windows CE doesn't support message texts.
4006TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4007  EXPECT_HRESULT_SUCCEEDED(S_OK);
4008  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4009
4010  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4011                          "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4012                          "  Actual: 0x8000FFFF");
4013}
4014
4015TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4016  ASSERT_HRESULT_SUCCEEDED(S_OK);
4017  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4018
4019  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4020                       "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4021                       "  Actual: 0x8000FFFF");
4022}
4023
4024TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4025  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4026
4027  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4028                          "Expected: (OkHRESULTSuccess()) fails.\n"
4029                          "  Actual: 0x0");
4030  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4031                          "Expected: (FalseHRESULTSuccess()) fails.\n"
4032                          "  Actual: 0x1");
4033}
4034
4035TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4036  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4037
4038#ifndef __BORLANDC__
4039
4040  // ICE's in C++Builder 2007 and 2009.
4041  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4042                       "Expected: (OkHRESULTSuccess()) fails.\n"
4043                       "  Actual: 0x0");
4044#endif
4045
4046  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4047                       "Expected: (FalseHRESULTSuccess()) fails.\n"
4048                       "  Actual: 0x1");
4049}
4050
4051// Tests that streaming to the HRESULT macros works.
4052TEST(HRESULTAssertionTest, Streaming) {
4053  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4054  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4055  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4056  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4057
4058  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4059                              << "expected failure",
4060                          "expected failure");
4061
4062#ifndef __BORLANDC__
4063
4064  // ICE's in C++Builder 2007 and 2009.
4065  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
4066                           << "expected failure",
4067                       "expected failure");
4068#endif
4069
4070  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4071                          "expected failure");
4072
4073  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4074                       "expected failure");
4075}
4076
4077#endif  // GTEST_OS_WINDOWS
4078
4079// The following code intentionally tests a suboptimal syntax.
4080#ifdef __GNUC__
4081#pragma GCC diagnostic push
4082#pragma GCC diagnostic ignored "-Wdangling-else"
4083#pragma GCC diagnostic ignored "-Wempty-body"
4084#pragma GCC diagnostic ignored "-Wpragmas"
4085#endif
4086// Tests that the assertion macros behave like single statements.
4087TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4088  if (AlwaysFalse())
4089    ASSERT_TRUE(false) << "This should never be executed; "
4090                          "It's a compilation test only.";
4091
4092  if (AlwaysTrue())
4093    EXPECT_FALSE(false);
4094  else
4095    ;  // NOLINT
4096
4097  if (AlwaysFalse()) ASSERT_LT(1, 3);
4098
4099  if (AlwaysFalse())
4100    ;  // NOLINT
4101  else
4102    EXPECT_GT(3, 2) << "";
4103}
4104#ifdef __GNUC__
4105#pragma GCC diagnostic pop
4106#endif
4107
4108#if GTEST_HAS_EXCEPTIONS
4109// Tests that the compiler will not complain about unreachable code in the
4110// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
4111TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4112  int n = 0;
4113
4114  EXPECT_THROW(throw 1, int);
4115  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4116  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4117  EXPECT_NO_THROW(n++);
4118  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4119  EXPECT_ANY_THROW(throw 1);
4120  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4121}
4122
4123TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4124  EXPECT_THROW(throw std::exception(), std::exception);
4125}
4126
4127// The following code intentionally tests a suboptimal syntax.
4128#ifdef __GNUC__
4129#pragma GCC diagnostic push
4130#pragma GCC diagnostic ignored "-Wdangling-else"
4131#pragma GCC diagnostic ignored "-Wempty-body"
4132#pragma GCC diagnostic ignored "-Wpragmas"
4133#endif
4134TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4135  if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
4136
4137  if (AlwaysTrue())
4138    EXPECT_THROW(ThrowAnInteger(), int);
4139  else
4140    ;  // NOLINT
4141
4142  if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
4143
4144  if (AlwaysTrue())
4145    EXPECT_NO_THROW(ThrowNothing());
4146  else
4147    ;  // NOLINT
4148
4149  if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
4150
4151  if (AlwaysTrue())
4152    EXPECT_ANY_THROW(ThrowAnInteger());
4153  else
4154    ;  // NOLINT
4155}
4156#ifdef __GNUC__
4157#pragma GCC diagnostic pop
4158#endif
4159
4160#endif  // GTEST_HAS_EXCEPTIONS
4161
4162// The following code intentionally tests a suboptimal syntax.
4163#ifdef __GNUC__
4164#pragma GCC diagnostic push
4165#pragma GCC diagnostic ignored "-Wdangling-else"
4166#pragma GCC diagnostic ignored "-Wempty-body"
4167#pragma GCC diagnostic ignored "-Wpragmas"
4168#endif
4169TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4170  if (AlwaysFalse())
4171    EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4172                                    << "It's a compilation test only.";
4173  else
4174    ;  // NOLINT
4175
4176  if (AlwaysFalse())
4177    ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4178  else
4179    ;  // NOLINT
4180
4181  if (AlwaysTrue())
4182    EXPECT_NO_FATAL_FAILURE(SUCCEED());
4183  else
4184    ;  // NOLINT
4185
4186  if (AlwaysFalse())
4187    ;  // NOLINT
4188  else
4189    ASSERT_NO_FATAL_FAILURE(SUCCEED());
4190}
4191#ifdef __GNUC__
4192#pragma GCC diagnostic pop
4193#endif
4194
4195// Tests that the assertion macros work well with switch statements.
4196TEST(AssertionSyntaxTest, WorksWithSwitch) {
4197  switch (0) {
4198    case 1:
4199      break;
4200    default:
4201      ASSERT_TRUE(true);
4202  }
4203
4204  switch (0)
4205  case 0:
4206    EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4207
4208  // Binary assertions are implemented using a different code path
4209  // than the Boolean assertions.  Hence we test them separately.
4210  switch (0) {
4211    case 1:
4212    default:
4213      ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4214  }
4215
4216  switch (0)
4217  case 0:
4218    EXPECT_NE(1, 2);
4219}
4220
4221#if GTEST_HAS_EXCEPTIONS
4222
4223void ThrowAString() { throw "std::string"; }
4224
4225// Test that the exception assertion macros compile and work with const
4226// type qualifier.
4227TEST(AssertionSyntaxTest, WorksWithConst) {
4228  ASSERT_THROW(ThrowAString(), const char*);
4229
4230  EXPECT_THROW(ThrowAString(), const char*);
4231}
4232
4233#endif  // GTEST_HAS_EXCEPTIONS
4234
4235}  // namespace
4236
4237namespace testing {
4238
4239// Tests that Google Test tracks SUCCEED*.
4240TEST(SuccessfulAssertionTest, SUCCEED) {
4241  SUCCEED();
4242  SUCCEED() << "OK";
4243  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4244}
4245
4246// Tests that Google Test doesn't track successful EXPECT_*.
4247TEST(SuccessfulAssertionTest, EXPECT) {
4248  EXPECT_TRUE(true);
4249  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4250}
4251
4252// Tests that Google Test doesn't track successful EXPECT_STR*.
4253TEST(SuccessfulAssertionTest, EXPECT_STR) {
4254  EXPECT_STREQ("", "");
4255  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4256}
4257
4258// Tests that Google Test doesn't track successful ASSERT_*.
4259TEST(SuccessfulAssertionTest, ASSERT) {
4260  ASSERT_TRUE(true);
4261  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4262}
4263
4264// Tests that Google Test doesn't track successful ASSERT_STR*.
4265TEST(SuccessfulAssertionTest, ASSERT_STR) {
4266  ASSERT_STREQ("", "");
4267  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4268}
4269
4270}  // namespace testing
4271
4272namespace {
4273
4274// Tests the message streaming variation of assertions.
4275
4276TEST(AssertionWithMessageTest, EXPECT) {
4277  EXPECT_EQ(1, 1) << "This should succeed.";
4278  EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4279                          "Expected failure #1");
4280  EXPECT_LE(1, 2) << "This should succeed.";
4281  EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4282                          "Expected failure #2.");
4283  EXPECT_GE(1, 0) << "This should succeed.";
4284  EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4285                          "Expected failure #3.");
4286
4287  EXPECT_STREQ("1", "1") << "This should succeed.";
4288  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4289                          "Expected failure #4.");
4290  EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4291  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4292                          "Expected failure #5.");
4293
4294  EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4295  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4296                          "Expected failure #6.");
4297  EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4298}
4299
4300TEST(AssertionWithMessageTest, ASSERT) {
4301  ASSERT_EQ(1, 1) << "This should succeed.";
4302  ASSERT_NE(1, 2) << "This should succeed.";
4303  ASSERT_LE(1, 2) << "This should succeed.";
4304  ASSERT_LT(1, 2) << "This should succeed.";
4305  ASSERT_GE(1, 0) << "This should succeed.";
4306  EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4307                       "Expected failure.");
4308}
4309
4310TEST(AssertionWithMessageTest, ASSERT_STR) {
4311  ASSERT_STREQ("1", "1") << "This should succeed.";
4312  ASSERT_STRNE("1", "2") << "This should succeed.";
4313  ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4314  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4315                       "Expected failure.");
4316}
4317
4318TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4319  ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4320  ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4321  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4322                       "Expect failure.");
4323}
4324
4325// Tests using ASSERT_FALSE with a streamed message.
4326TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4327  ASSERT_FALSE(false) << "This shouldn't fail.";
4328  EXPECT_FATAL_FAILURE(
4329      {  // NOLINT
4330        ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4331                           << " evaluates to " << true;
4332      },
4333      "Expected failure");
4334}
4335
4336// Tests using FAIL with a streamed message.
4337TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
4338
4339// Tests using SUCCEED with a streamed message.
4340TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
4341
4342// Tests using ASSERT_TRUE with a streamed message.
4343TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4344  ASSERT_TRUE(true) << "This should succeed.";
4345  ASSERT_TRUE(true) << true;
4346  EXPECT_FATAL_FAILURE(
4347      {  // NOLINT
4348        ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4349                           << static_cast<char*>(nullptr);
4350      },
4351      "(null)(null)");
4352}
4353
4354#ifdef GTEST_OS_WINDOWS
4355// Tests using wide strings in assertion messages.
4356TEST(AssertionWithMessageTest, WideStringMessage) {
4357  EXPECT_NONFATAL_FAILURE(
4358      {  // NOLINT
4359        EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4360      },
4361      "This failure is expected.");
4362  EXPECT_FATAL_FAILURE(
4363      {  // NOLINT
4364        ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
4365      },
4366      "This failure is expected too.");
4367}
4368#endif  // GTEST_OS_WINDOWS
4369
4370// Tests EXPECT_TRUE.
4371TEST(ExpectTest, EXPECT_TRUE) {
4372  EXPECT_TRUE(true) << "Intentional success";
4373  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4374                          "Intentional failure #1.");
4375  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4376                          "Intentional failure #2.");
4377  EXPECT_TRUE(2 > 1);  // NOLINT
4378  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4379                          "Value of: 2 < 1\n"
4380                          "  Actual: false\n"
4381                          "Expected: true");
4382  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
4383}
4384
4385// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4386TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4387  EXPECT_TRUE(ResultIsEven(2));
4388  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4389                          "Value of: ResultIsEven(3)\n"
4390                          "  Actual: false (3 is odd)\n"
4391                          "Expected: true");
4392  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4393  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4394                          "Value of: ResultIsEvenNoExplanation(3)\n"
4395                          "  Actual: false (3 is odd)\n"
4396                          "Expected: true");
4397}
4398
4399// Tests EXPECT_FALSE with a streamed message.
4400TEST(ExpectTest, EXPECT_FALSE) {
4401  EXPECT_FALSE(2 < 1);  // NOLINT
4402  EXPECT_FALSE(false) << "Intentional success";
4403  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4404                          "Intentional failure #1.");
4405  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4406                          "Intentional failure #2.");
4407  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4408                          "Value of: 2 > 1\n"
4409                          "  Actual: true\n"
4410                          "Expected: false");
4411  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
4412}
4413
4414// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4415TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4416  EXPECT_FALSE(ResultIsEven(3));
4417  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4418                          "Value of: ResultIsEven(2)\n"
4419                          "  Actual: true (2 is even)\n"
4420                          "Expected: false");
4421  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4422  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4423                          "Value of: ResultIsEvenNoExplanation(2)\n"
4424                          "  Actual: true\n"
4425                          "Expected: false");
4426}
4427
4428#ifdef __BORLANDC__
4429// Restores warnings after previous "#pragma option push" suppressed them
4430#pragma option pop
4431#endif
4432
4433// Tests EXPECT_EQ.
4434TEST(ExpectTest, EXPECT_EQ) {
4435  EXPECT_EQ(5, 2 + 3);
4436  // clang-format off
4437  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4438                          "Expected equality of these values:\n"
4439                          "  5\n"
4440                          "  2*3\n"
4441                          "    Which is: 6");
4442  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
4443  // clang-format on
4444}
4445
4446// Tests using EXPECT_EQ on double values.  The purpose is to make
4447// sure that the specialization we did for integer and anonymous enums
4448// isn't used for double arguments.
4449TEST(ExpectTest, EXPECT_EQ_Double) {
4450  // A success.
4451  EXPECT_EQ(5.6, 5.6);
4452
4453  // A failure.
4454  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
4455}
4456
4457// Tests EXPECT_EQ(NULL, pointer).
4458TEST(ExpectTest, EXPECT_EQ_NULL) {
4459  // A success.
4460  const char* p = nullptr;
4461  EXPECT_EQ(nullptr, p);
4462
4463  // A failure.
4464  int n = 0;
4465  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4466}
4467
4468// Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4469// treated as a null pointer by the compiler, we need to make sure
4470// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4471// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4472TEST(ExpectTest, EXPECT_EQ_0) {
4473  int n = 0;
4474
4475  // A success.
4476  EXPECT_EQ(0, n);
4477
4478  // A failure.
4479  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "  0\n  5.6");
4480}
4481
4482// Tests EXPECT_NE.
4483TEST(ExpectTest, EXPECT_NE) {
4484  EXPECT_NE(6, 7);
4485
4486  EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4487                          "Expected: ('a') != ('a'), "
4488                          "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4489  EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
4490  char* const p0 = nullptr;
4491  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
4492  // Only way to get the Nokia compiler to compile the cast
4493  // is to have a separate void* variable first. Putting
4494  // the two casts on the same line doesn't work, neither does
4495  // a direct C-style to char*.
4496  void* pv1 = (void*)0x1234;  // NOLINT
4497  char* const p1 = reinterpret_cast<char*>(pv1);
4498  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
4499}
4500
4501// Tests EXPECT_LE.
4502TEST(ExpectTest, EXPECT_LE) {
4503  EXPECT_LE(2, 3);
4504  EXPECT_LE(2, 2);
4505  EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4506                          "Expected: (2) <= (0), actual: 2 vs 0");
4507  EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
4508}
4509
4510// Tests EXPECT_LT.
4511TEST(ExpectTest, EXPECT_LT) {
4512  EXPECT_LT(2, 3);
4513  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4514                          "Expected: (2) < (2), actual: 2 vs 2");
4515  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
4516}
4517
4518// Tests EXPECT_GE.
4519TEST(ExpectTest, EXPECT_GE) {
4520  EXPECT_GE(2, 1);
4521  EXPECT_GE(2, 2);
4522  EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4523                          "Expected: (2) >= (3), actual: 2 vs 3");
4524  EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
4525}
4526
4527// Tests EXPECT_GT.
4528TEST(ExpectTest, EXPECT_GT) {
4529  EXPECT_GT(2, 1);
4530  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4531                          "Expected: (2) > (2), actual: 2 vs 2");
4532  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
4533}
4534
4535#if GTEST_HAS_EXCEPTIONS
4536
4537// Tests EXPECT_THROW.
4538TEST(ExpectTest, EXPECT_THROW) {
4539  EXPECT_THROW(ThrowAnInteger(), int);
4540  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4541                          "Expected: ThrowAnInteger() throws an exception of "
4542                          "type bool.\n  Actual: it throws a different type.");
4543  EXPECT_NONFATAL_FAILURE(
4544      EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
4545      "Expected: ThrowRuntimeError(\"A description\") "
4546      "throws an exception of type std::logic_error.\n  "
4547      "Actual: it throws " ERROR_DESC
4548      " "
4549      "with description \"A description\".");
4550  EXPECT_NONFATAL_FAILURE(
4551      EXPECT_THROW(ThrowNothing(), bool),
4552      "Expected: ThrowNothing() throws an exception of type bool.\n"
4553      "  Actual: it throws nothing.");
4554}
4555
4556// Tests EXPECT_NO_THROW.
4557TEST(ExpectTest, EXPECT_NO_THROW) {
4558  EXPECT_NO_THROW(ThrowNothing());
4559  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4560                          "Expected: ThrowAnInteger() doesn't throw an "
4561                          "exception.\n  Actual: it throws.");
4562  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4563                          "Expected: ThrowRuntimeError(\"A description\") "
4564                          "doesn't throw an exception.\n  "
4565                          "Actual: it throws " ERROR_DESC
4566                          " "
4567                          "with description \"A description\".");
4568}
4569
4570// Tests EXPECT_ANY_THROW.
4571TEST(ExpectTest, EXPECT_ANY_THROW) {
4572  EXPECT_ANY_THROW(ThrowAnInteger());
4573  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
4574                          "Expected: ThrowNothing() throws an exception.\n"
4575                          "  Actual: it doesn't.");
4576}
4577
4578#endif  // GTEST_HAS_EXCEPTIONS
4579
4580// Make sure we deal with the precedence of <<.
4581TEST(ExpectTest, ExpectPrecedence) {
4582  EXPECT_EQ(1 < 2, true);
4583  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4584                          "  true && false\n    Which is: false");
4585}
4586
4587// Tests the StreamableToString() function.
4588
4589// Tests using StreamableToString() on a scalar.
4590TEST(StreamableToStringTest, Scalar) {
4591  EXPECT_STREQ("5", StreamableToString(5).c_str());
4592}
4593
4594// Tests using StreamableToString() on a non-char pointer.
4595TEST(StreamableToStringTest, Pointer) {
4596  int n = 0;
4597  int* p = &n;
4598  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4599}
4600
4601// Tests using StreamableToString() on a NULL non-char pointer.
4602TEST(StreamableToStringTest, NullPointer) {
4603  int* p = nullptr;
4604  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4605}
4606
4607// Tests using StreamableToString() on a C string.
4608TEST(StreamableToStringTest, CString) {
4609  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4610}
4611
4612// Tests using StreamableToString() on a NULL C string.
4613TEST(StreamableToStringTest, NullCString) {
4614  char* p = nullptr;
4615  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4616}
4617
4618// Tests using streamable values as assertion messages.
4619
4620// Tests using std::string as an assertion message.
4621TEST(StreamableTest, string) {
4622  static const std::string str(
4623      "This failure message is a std::string, and is expected.");
4624  EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
4625}
4626
4627// Tests that we can output strings containing embedded NULs.
4628// Limited to Linux because we can only do this with std::string's.
4629TEST(StreamableTest, stringWithEmbeddedNUL) {
4630  static const char char_array_with_nul[] =
4631      "Here's a NUL\0 and some more string";
4632  static const std::string string_with_nul(
4633      char_array_with_nul,
4634      sizeof(char_array_with_nul) - 1);  // drops the trailing NUL
4635  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4636                       "Here's a NUL\\0 and some more string");
4637}
4638
4639// Tests that we can output a NUL char.
4640TEST(StreamableTest, NULChar) {
4641  EXPECT_FATAL_FAILURE(
4642      {  // NOLINT
4643        FAIL() << "A NUL" << '\0' << " and some more string";
4644      },
4645      "A NUL\\0 and some more string");
4646}
4647
4648// Tests using int as an assertion message.
4649TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
4650
4651// Tests using NULL char pointer as an assertion message.
4652//
4653// In MSVC, streaming a NULL char * causes access violation.  Google Test
4654// implemented a workaround (substituting "(null)" for NULL).  This
4655// tests whether the workaround works.
4656TEST(StreamableTest, NullCharPtr) {
4657  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4658}
4659
4660// Tests that basic IO manipulators (endl, ends, and flush) can be
4661// streamed to testing::Message.
4662TEST(StreamableTest, BasicIoManip) {
4663  EXPECT_FATAL_FAILURE(
4664      {  // NOLINT
4665        FAIL() << "Line 1." << std::endl
4666               << "A NUL char " << std::ends << std::flush << " in line 2.";
4667      },
4668      "Line 1.\nA NUL char \\0 in line 2.");
4669}
4670
4671// Tests the macros that haven't been covered so far.
4672
4673void AddFailureHelper(bool* aborted) {
4674  *aborted = true;
4675  ADD_FAILURE() << "Intentional failure.";
4676  *aborted = false;
4677}
4678
4679// Tests ADD_FAILURE.
4680TEST(MacroTest, ADD_FAILURE) {
4681  bool aborted = true;
4682  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
4683  EXPECT_FALSE(aborted);
4684}
4685
4686// Tests ADD_FAILURE_AT.
4687TEST(MacroTest, ADD_FAILURE_AT) {
4688  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4689  // the failure message contains the user-streamed part.
4690  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4691
4692  // Verifies that the user-streamed part is optional.
4693  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4694
4695  // Unfortunately, we cannot verify that the failure message contains
4696  // the right file path and line number the same way, as
4697  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4698  // line number.  Instead, we do that in googletest-output-test_.cc.
4699}
4700
4701// Tests FAIL.
4702TEST(MacroTest, FAIL) {
4703  EXPECT_FATAL_FAILURE(FAIL(), "Failed");
4704  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4705                       "Intentional failure.");
4706}
4707
4708// Tests GTEST_FAIL_AT.
4709TEST(MacroTest, GTEST_FAIL_AT) {
4710  // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4711  // the failure message contains the user-streamed part.
4712  EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4713
4714  // Verifies that the user-streamed part is optional.
4715  EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4716
4717  // See the ADD_FAIL_AT test above to see how we test that the failure message
4718  // contains the right filename and line number -- the same applies here.
4719}
4720
4721// Tests SUCCEED
4722TEST(MacroTest, SUCCEED) {
4723  SUCCEED();
4724  SUCCEED() << "Explicit success.";
4725}
4726
4727// Tests for EXPECT_EQ() and ASSERT_EQ().
4728//
4729// These tests fail *intentionally*, s.t. the failure messages can be
4730// generated and tested.
4731//
4732// We have different tests for different argument types.
4733
4734// Tests using bool values in {EXPECT|ASSERT}_EQ.
4735TEST(EqAssertionTest, Bool) {
4736  EXPECT_EQ(true, true);
4737  EXPECT_FATAL_FAILURE(
4738      {
4739        bool false_value = false;
4740        ASSERT_EQ(false_value, true);
4741      },
4742      "  false_value\n    Which is: false\n  true");
4743}
4744
4745// Tests using int values in {EXPECT|ASSERT}_EQ.
4746TEST(EqAssertionTest, Int) {
4747  ASSERT_EQ(32, 32);
4748  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "  32\n  33");
4749}
4750
4751// Tests using time_t values in {EXPECT|ASSERT}_EQ.
4752TEST(EqAssertionTest, Time_T) {
4753  EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
4754  EXPECT_FATAL_FAILURE(
4755      ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
4756}
4757
4758// Tests using char values in {EXPECT|ASSERT}_EQ.
4759TEST(EqAssertionTest, Char) {
4760  ASSERT_EQ('z', 'z');
4761  const char ch = 'b';
4762  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "  ch\n    Which is: 'b'");
4763  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "  ch\n    Which is: 'b'");
4764}
4765
4766// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4767TEST(EqAssertionTest, WideChar) {
4768  EXPECT_EQ(L'b', L'b');
4769
4770  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4771                          "Expected equality of these values:\n"
4772                          "  L'\0'\n"
4773                          "    Which is: L'\0' (0, 0x0)\n"
4774                          "  L'x'\n"
4775                          "    Which is: L'x' (120, 0x78)");
4776
4777  static wchar_t wchar;
4778  wchar = L'b';
4779  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
4780  wchar = 0x8119;
4781  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4782                       "  wchar\n    Which is: L'");
4783}
4784
4785// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4786TEST(EqAssertionTest, StdString) {
4787  // Compares a const char* to an std::string that has identical
4788  // content.
4789  ASSERT_EQ("Test", ::std::string("Test"));
4790
4791  // Compares two identical std::strings.
4792  static const ::std::string str1("A * in the middle");
4793  static const ::std::string str2(str1);
4794  EXPECT_EQ(str1, str2);
4795
4796  // Compares a const char* to an std::string that has different
4797  // content
4798  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
4799
4800  // Compares an std::string to a char* that has different content.
4801  char* const p1 = const_cast<char*>("foo");
4802  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
4803
4804  // Compares two std::strings that have different contents, one of
4805  // which having a NUL character in the middle.  This should fail.
4806  static ::std::string str3(str1);
4807  str3.at(2) = '\0';
4808  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4809                       "  str3\n    Which is: \"A \\0 in the middle\"");
4810}
4811
4812#if GTEST_HAS_STD_WSTRING
4813
4814// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4815TEST(EqAssertionTest, StdWideString) {
4816  // Compares two identical std::wstrings.
4817  const ::std::wstring wstr1(L"A * in the middle");
4818  const ::std::wstring wstr2(wstr1);
4819  ASSERT_EQ(wstr1, wstr2);
4820
4821  // Compares an std::wstring to a const wchar_t* that has identical
4822  // content.
4823  const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
4824  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4825
4826  // Compares an std::wstring to a const wchar_t* that has different
4827  // content.
4828  const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
4829  EXPECT_NONFATAL_FAILURE(
4830      {  // NOLINT
4831        EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4832      },
4833      "kTestX8120");
4834
4835  // Compares two std::wstrings that have different contents, one of
4836  // which having a NUL character in the middle.
4837  ::std::wstring wstr3(wstr1);
4838  wstr3.at(2) = L'\0';
4839  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
4840
4841  // Compares a wchar_t* to an std::wstring that has different
4842  // content.
4843  EXPECT_FATAL_FAILURE(
4844      {  // NOLINT
4845        ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4846      },
4847      "");
4848}
4849
4850#endif  // GTEST_HAS_STD_WSTRING
4851
4852// Tests using char pointers in {EXPECT|ASSERT}_EQ.
4853TEST(EqAssertionTest, CharPointer) {
4854  char* const p0 = nullptr;
4855  // Only way to get the Nokia compiler to compile the cast
4856  // is to have a separate void* variable first. Putting
4857  // the two casts on the same line doesn't work, neither does
4858  // a direct C-style to char*.
4859  void* pv1 = (void*)0x1234;  // NOLINT
4860  void* pv2 = (void*)0xABC0;  // NOLINT
4861  char* const p1 = reinterpret_cast<char*>(pv1);
4862  char* const p2 = reinterpret_cast<char*>(pv2);
4863  ASSERT_EQ(p1, p1);
4864
4865  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4866  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4867  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4868                                 reinterpret_cast<char*>(0xABC0)),
4869                       "ABC0");
4870}
4871
4872// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4873TEST(EqAssertionTest, WideCharPointer) {
4874  wchar_t* const p0 = nullptr;
4875  // Only way to get the Nokia compiler to compile the cast
4876  // is to have a separate void* variable first. Putting
4877  // the two casts on the same line doesn't work, neither does
4878  // a direct C-style to char*.
4879  void* pv1 = (void*)0x1234;  // NOLINT
4880  void* pv2 = (void*)0xABC0;  // NOLINT
4881  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4882  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4883  EXPECT_EQ(p0, p0);
4884
4885  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "  p2\n    Which is:");
4886  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "  p2\n    Which is:");
4887  void* pv3 = (void*)0x1234;  // NOLINT
4888  void* pv4 = (void*)0xABC0;  // NOLINT
4889  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4890  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4891  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
4892}
4893
4894// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4895TEST(EqAssertionTest, OtherPointer) {
4896  ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4897  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4898                                 reinterpret_cast<const int*>(0x1234)),
4899                       "0x1234");
4900}
4901
4902// A class that supports binary comparison operators but not streaming.
4903class UnprintableChar {
4904 public:
4905  explicit UnprintableChar(char ch) : char_(ch) {}
4906
4907  bool operator==(const UnprintableChar& rhs) const {
4908    return char_ == rhs.char_;
4909  }
4910  bool operator!=(const UnprintableChar& rhs) const {
4911    return char_ != rhs.char_;
4912  }
4913  bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
4914  bool operator<=(const UnprintableChar& rhs) const {
4915    return char_ <= rhs.char_;
4916  }
4917  bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
4918  bool operator>=(const UnprintableChar& rhs) const {
4919    return char_ >= rhs.char_;
4920  }
4921
4922 private:
4923  char char_;
4924};
4925
4926// Tests that ASSERT_EQ() and friends don't require the arguments to
4927// be printable.
4928TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4929  const UnprintableChar x('x'), y('y');
4930  ASSERT_EQ(x, x);
4931  EXPECT_NE(x, y);
4932  ASSERT_LT(x, y);
4933  EXPECT_LE(x, y);
4934  ASSERT_GT(y, x);
4935  EXPECT_GE(x, x);
4936
4937  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4938  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4939  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4940  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4941  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4942
4943  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4944  // variables, so we have to write UnprintableChar('x') instead of x.
4945#ifndef __BORLANDC__
4946  // ICE's in C++Builder.
4947  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4948                       "1-byte object <78>");
4949  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4950                       "1-byte object <78>");
4951#endif
4952  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4953                       "1-byte object <79>");
4954  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4955                       "1-byte object <78>");
4956  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4957                       "1-byte object <79>");
4958}
4959
4960// Tests the FRIEND_TEST macro.
4961
4962// This class has a private member we want to test.  We will test it
4963// both in a TEST and in a TEST_F.
4964class Foo {
4965 public:
4966  Foo() = default;
4967
4968 private:
4969  int Bar() const { return 1; }
4970
4971  // Declares the friend tests that can access the private member
4972  // Bar().
4973  FRIEND_TEST(FRIEND_TEST_Test, TEST);
4974  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4975};
4976
4977// Tests that the FRIEND_TEST declaration allows a TEST to access a
4978// class's private members.  This should compile.
4979TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
4980
4981// The fixture needed to test using FRIEND_TEST with TEST_F.
4982class FRIEND_TEST_Test2 : public Test {
4983 protected:
4984  Foo foo;
4985};
4986
4987// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4988// class's private members.  This should compile.
4989TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
4990
4991// Tests the life cycle of Test objects.
4992
4993// The test fixture for testing the life cycle of Test objects.
4994//
4995// This class counts the number of live test objects that uses this
4996// fixture.
4997class TestLifeCycleTest : public Test {
4998 protected:
4999  // Constructor.  Increments the number of test objects that uses
5000  // this fixture.
5001  TestLifeCycleTest() { count_++; }
5002
5003  // Destructor.  Decrements the number of test objects that uses this
5004  // fixture.
5005  ~TestLifeCycleTest() override { count_--; }
5006
5007  // Returns the number of live test objects that uses this fixture.
5008  int count() const { return count_; }
5009
5010 private:
5011  static int count_;
5012};
5013
5014int TestLifeCycleTest::count_ = 0;
5015
5016// Tests the life cycle of test objects.
5017TEST_F(TestLifeCycleTest, Test1) {
5018  // There should be only one test object in this test case that's
5019  // currently alive.
5020  ASSERT_EQ(1, count());
5021}
5022
5023// Tests the life cycle of test objects.
5024TEST_F(TestLifeCycleTest, Test2) {
5025  // After Test1 is done and Test2 is started, there should still be
5026  // only one live test object, as the object for Test1 should've been
5027  // deleted.
5028  ASSERT_EQ(1, count());
5029}
5030
5031}  // namespace
5032
5033// Tests that the copy constructor works when it is NOT optimized away by
5034// the compiler.
5035TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5036  // Checks that the copy constructor doesn't try to dereference NULL pointers
5037  // in the source object.
5038  AssertionResult r1 = AssertionSuccess();
5039  AssertionResult r2 = r1;
5040  // The following line is added to prevent the compiler from optimizing
5041  // away the constructor call.
5042  r1 << "abc";
5043
5044  AssertionResult r3 = r1;
5045  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5046  EXPECT_STREQ("abc", r1.message());
5047}
5048
5049// Tests that AssertionSuccess and AssertionFailure construct
5050// AssertionResult objects as expected.
5051TEST(AssertionResultTest, ConstructionWorks) {
5052  AssertionResult r1 = AssertionSuccess();
5053  EXPECT_TRUE(r1);
5054  EXPECT_STREQ("", r1.message());
5055
5056  AssertionResult r2 = AssertionSuccess() << "abc";
5057  EXPECT_TRUE(r2);
5058  EXPECT_STREQ("abc", r2.message());
5059
5060  AssertionResult r3 = AssertionFailure();
5061  EXPECT_FALSE(r3);
5062  EXPECT_STREQ("", r3.message());
5063
5064  AssertionResult r4 = AssertionFailure() << "def";
5065  EXPECT_FALSE(r4);
5066  EXPECT_STREQ("def", r4.message());
5067
5068  AssertionResult r5 = AssertionFailure(Message() << "ghi");
5069  EXPECT_FALSE(r5);
5070  EXPECT_STREQ("ghi", r5.message());
5071}
5072
5073// Tests that the negation flips the predicate result but keeps the message.
5074TEST(AssertionResultTest, NegationWorks) {
5075  AssertionResult r1 = AssertionSuccess() << "abc";
5076  EXPECT_FALSE(!r1);
5077  EXPECT_STREQ("abc", (!r1).message());
5078
5079  AssertionResult r2 = AssertionFailure() << "def";
5080  EXPECT_TRUE(!r2);
5081  EXPECT_STREQ("def", (!r2).message());
5082}
5083
5084TEST(AssertionResultTest, StreamingWorks) {
5085  AssertionResult r = AssertionSuccess();
5086  r << "abc" << 'd' << 0 << true;
5087  EXPECT_STREQ("abcd0true", r.message());
5088}
5089
5090TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5091  AssertionResult r = AssertionSuccess();
5092  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5093  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5094}
5095
5096// The next test uses explicit conversion operators
5097
5098TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5099  struct ExplicitlyConvertibleToBool {
5100    explicit operator bool() const { return value; }
5101    bool value;
5102  };
5103  ExplicitlyConvertibleToBool v1 = {false};
5104  ExplicitlyConvertibleToBool v2 = {true};
5105  EXPECT_FALSE(v1);
5106  EXPECT_TRUE(v2);
5107}
5108
5109struct ConvertibleToAssertionResult {
5110  operator AssertionResult() const { return AssertionResult(true); }
5111};
5112
5113TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5114  ConvertibleToAssertionResult obj;
5115  EXPECT_TRUE(obj);
5116}
5117
5118// Tests streaming a user type whose definition and operator << are
5119// both in the global namespace.
5120class Base {
5121 public:
5122  explicit Base(int an_x) : x_(an_x) {}
5123  int x() const { return x_; }
5124
5125 private:
5126  int x_;
5127};
5128std::ostream& operator<<(std::ostream& os, const Base& val) {
5129  return os << val.x();
5130}
5131std::ostream& operator<<(std::ostream& os, const Base* pointer) {
5132  return os << "(" << pointer->x() << ")";
5133}
5134
5135TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5136  Message msg;
5137  Base a(1);
5138
5139  msg << a << &a;  // Uses ::operator<<.
5140  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5141}
5142
5143// Tests streaming a user type whose definition and operator<< are
5144// both in an unnamed namespace.
5145namespace {
5146class MyTypeInUnnamedNameSpace : public Base {
5147 public:
5148  explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
5149};
5150std::ostream& operator<<(std::ostream& os,
5151                         const MyTypeInUnnamedNameSpace& val) {
5152  return os << val.x();
5153}
5154std::ostream& operator<<(std::ostream& os,
5155                         const MyTypeInUnnamedNameSpace* pointer) {
5156  return os << "(" << pointer->x() << ")";
5157}
5158}  // namespace
5159
5160TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5161  Message msg;
5162  MyTypeInUnnamedNameSpace a(1);
5163
5164  msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5165  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5166}
5167
5168// Tests streaming a user type whose definition and operator<< are
5169// both in a user namespace.
5170namespace namespace1 {
5171class MyTypeInNameSpace1 : public Base {
5172 public:
5173  explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
5174};
5175std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
5176  return os << val.x();
5177}
5178std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
5179  return os << "(" << pointer->x() << ")";
5180}
5181}  // namespace namespace1
5182
5183TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5184  Message msg;
5185  namespace1::MyTypeInNameSpace1 a(1);
5186
5187  msg << a << &a;  // Uses namespace1::operator<<.
5188  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5189}
5190
5191// Tests streaming a user type whose definition is in a user namespace
5192// but whose operator<< is in the global namespace.
5193namespace namespace2 {
5194class MyTypeInNameSpace2 : public ::Base {
5195 public:
5196  explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
5197};
5198}  // namespace namespace2
5199std::ostream& operator<<(std::ostream& os,
5200                         const namespace2::MyTypeInNameSpace2& val) {
5201  return os << val.x();
5202}
5203std::ostream& operator<<(std::ostream& os,
5204                         const namespace2::MyTypeInNameSpace2* pointer) {
5205  return os << "(" << pointer->x() << ")";
5206}
5207
5208TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5209  Message msg;
5210  namespace2::MyTypeInNameSpace2 a(1);
5211
5212  msg << a << &a;  // Uses ::operator<<.
5213  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5214}
5215
5216// Tests streaming NULL pointers to testing::Message.
5217TEST(MessageTest, NullPointers) {
5218  Message msg;
5219  char* const p1 = nullptr;
5220  unsigned char* const p2 = nullptr;
5221  int* p3 = nullptr;
5222  double* p4 = nullptr;
5223  bool* p5 = nullptr;
5224  Message* p6 = nullptr;
5225
5226  msg << p1 << p2 << p3 << p4 << p5 << p6;
5227  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
5228}
5229
5230// Tests streaming wide strings to testing::Message.
5231TEST(MessageTest, WideStrings) {
5232  // Streams a NULL of type const wchar_t*.
5233  const wchar_t* const_wstr = nullptr;
5234  EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
5235
5236  // Streams a NULL of type wchar_t*.
5237  wchar_t* wstr = nullptr;
5238  EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
5239
5240  // Streams a non-NULL of type const wchar_t*.
5241  const_wstr = L"abc\x8119";
5242  EXPECT_STREQ("abc\xe8\x84\x99",
5243               (Message() << const_wstr).GetString().c_str());
5244
5245  // Streams a non-NULL of type wchar_t*.
5246  wstr = const_cast<wchar_t*>(const_wstr);
5247  EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
5248}
5249
5250// This line tests that we can define tests in the testing namespace.
5251namespace testing {
5252
5253// Tests the TestInfo class.
5254
5255class TestInfoTest : public Test {
5256 protected:
5257  static const TestInfo* GetTestInfo(const char* test_name) {
5258    const TestSuite* const test_suite =
5259        GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5260
5261    for (int i = 0; i < test_suite->total_test_count(); ++i) {
5262      const TestInfo* const test_info = test_suite->GetTestInfo(i);
5263      if (strcmp(test_name, test_info->name()) == 0) return test_info;
5264    }
5265    return nullptr;
5266  }
5267
5268  static const TestResult* GetTestResult(const TestInfo* test_info) {
5269    return test_info->result();
5270  }
5271};
5272
5273// Tests TestInfo::test_case_name() and TestInfo::name().
5274TEST_F(TestInfoTest, Names) {
5275  const TestInfo* const test_info = GetTestInfo("Names");
5276
5277  ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5278  ASSERT_STREQ("Names", test_info->name());
5279}
5280
5281// Tests TestInfo::result().
5282TEST_F(TestInfoTest, result) {
5283  const TestInfo* const test_info = GetTestInfo("result");
5284
5285  // Initially, there is no TestPartResult for this test.
5286  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5287
5288  // After the previous assertion, there is still none.
5289  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5290}
5291
5292#define VERIFY_CODE_LOCATION                                                \
5293  const int expected_line = __LINE__ - 1;                                   \
5294  const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5295  ASSERT_TRUE(test_info);                                                   \
5296  EXPECT_STREQ(__FILE__, test_info->file());                                \
5297  EXPECT_EQ(expected_line, test_info->line())
5298
5299// clang-format off
5300TEST(CodeLocationForTEST, Verify) {
5301  VERIFY_CODE_LOCATION;
5302}
5303
5304class CodeLocationForTESTF : public Test {};
5305
5306TEST_F(CodeLocationForTESTF, Verify) {
5307  VERIFY_CODE_LOCATION;
5308}
5309
5310class CodeLocationForTESTP : public TestWithParam<int> {};
5311
5312TEST_P(CodeLocationForTESTP, Verify) {
5313  VERIFY_CODE_LOCATION;
5314}
5315
5316INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5317
5318template <typename T>
5319class CodeLocationForTYPEDTEST : public Test {};
5320
5321TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5322
5323TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5324  VERIFY_CODE_LOCATION;
5325}
5326
5327template <typename T>
5328class CodeLocationForTYPEDTESTP : public Test {};
5329
5330TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5331
5332TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5333  VERIFY_CODE_LOCATION;
5334}
5335
5336REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5337
5338INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5339
5340#undef VERIFY_CODE_LOCATION
5341// clang-format on
5342
5343// Tests setting up and tearing down a test case.
5344// Legacy API is deprecated but still available
5345#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5346class SetUpTestCaseTest : public Test {
5347 protected:
5348  // This will be called once before the first test in this test case
5349  // is run.
5350  static void SetUpTestCase() {
5351    printf("Setting up the test case . . .\n");
5352
5353    // Initializes some shared resource.  In this simple example, we
5354    // just create a C string.  More complex stuff can be done if
5355    // desired.
5356    shared_resource_ = "123";
5357
5358    // Increments the number of test cases that have been set up.
5359    counter_++;
5360
5361    // SetUpTestCase() should be called only once.
5362    EXPECT_EQ(1, counter_);
5363  }
5364
5365  // This will be called once after the last test in this test case is
5366  // run.
5367  static void TearDownTestCase() {
5368    printf("Tearing down the test case . . .\n");
5369
5370    // Decrements the number of test cases that have been set up.
5371    counter_--;
5372
5373    // TearDownTestCase() should be called only once.
5374    EXPECT_EQ(0, counter_);
5375
5376    // Cleans up the shared resource.
5377    shared_resource_ = nullptr;
5378  }
5379
5380  // This will be called before each test in this test case.
5381  void SetUp() override {
5382    // SetUpTestCase() should be called only once, so counter_ should
5383    // always be 1.
5384    EXPECT_EQ(1, counter_);
5385  }
5386
5387  // Number of test cases that have been set up.
5388  static int counter_;
5389
5390  // Some resource to be shared by all tests in this test case.
5391  static const char* shared_resource_;
5392};
5393
5394int SetUpTestCaseTest::counter_ = 0;
5395const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5396
5397// A test that uses the shared resource.
5398TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5399
5400// Another test that uses the shared resource.
5401TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
5402#endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5403
5404// Tests SetupTestSuite/TearDown TestSuite
5405class SetUpTestSuiteTest : public Test {
5406 protected:
5407  // This will be called once before the first test in this test case
5408  // is run.
5409  static void SetUpTestSuite() {
5410    printf("Setting up the test suite . . .\n");
5411
5412    // Initializes some shared resource.  In this simple example, we
5413    // just create a C string.  More complex stuff can be done if
5414    // desired.
5415    shared_resource_ = "123";
5416
5417    // Increments the number of test cases that have been set up.
5418    counter_++;
5419
5420    // SetUpTestSuite() should be called only once.
5421    EXPECT_EQ(1, counter_);
5422  }
5423
5424  // This will be called once after the last test in this test case is
5425  // run.
5426  static void TearDownTestSuite() {
5427    printf("Tearing down the test suite . . .\n");
5428
5429    // Decrements the number of test suites that have been set up.
5430    counter_--;
5431
5432    // TearDownTestSuite() should be called only once.
5433    EXPECT_EQ(0, counter_);
5434
5435    // Cleans up the shared resource.
5436    shared_resource_ = nullptr;
5437  }
5438
5439  // This will be called before each test in this test case.
5440  void SetUp() override {
5441    // SetUpTestSuite() should be called only once, so counter_ should
5442    // always be 1.
5443    EXPECT_EQ(1, counter_);
5444  }
5445
5446  // Number of test suites that have been set up.
5447  static int counter_;
5448
5449  // Some resource to be shared by all tests in this test case.
5450  static const char* shared_resource_;
5451};
5452
5453int SetUpTestSuiteTest::counter_ = 0;
5454const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5455
5456// A test that uses the shared resource.
5457TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5458  EXPECT_STRNE(nullptr, shared_resource_);
5459}
5460
5461// Another test that uses the shared resource.
5462TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5463  EXPECT_STREQ("123", shared_resource_);
5464}
5465
5466// The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5467
5468// The Flags struct stores a copy of all Google Test flags.
5469struct Flags {
5470  // Constructs a Flags struct where each flag has its default value.
5471  Flags()
5472      : also_run_disabled_tests(false),
5473        break_on_failure(false),
5474        catch_exceptions(false),
5475        death_test_use_fork(false),
5476        fail_fast(false),
5477        filter(""),
5478        list_tests(false),
5479        output(""),
5480        brief(false),
5481        print_time(true),
5482        random_seed(0),
5483        repeat(1),
5484        recreate_environments_when_repeating(true),
5485        shuffle(false),
5486        stack_trace_depth(kMaxStackTraceDepth),
5487        stream_result_to(""),
5488        throw_on_failure(false) {}
5489
5490  // Factory methods.
5491
5492  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5493  // the given value.
5494  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5495    Flags flags;
5496    flags.also_run_disabled_tests = also_run_disabled_tests;
5497    return flags;
5498  }
5499
5500  // Creates a Flags struct where the gtest_break_on_failure flag has
5501  // the given value.
5502  static Flags BreakOnFailure(bool break_on_failure) {
5503    Flags flags;
5504    flags.break_on_failure = break_on_failure;
5505    return flags;
5506  }
5507
5508  // Creates a Flags struct where the gtest_catch_exceptions flag has
5509  // the given value.
5510  static Flags CatchExceptions(bool catch_exceptions) {
5511    Flags flags;
5512    flags.catch_exceptions = catch_exceptions;
5513    return flags;
5514  }
5515
5516  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5517  // the given value.
5518  static Flags DeathTestUseFork(bool death_test_use_fork) {
5519    Flags flags;
5520    flags.death_test_use_fork = death_test_use_fork;
5521    return flags;
5522  }
5523
5524  // Creates a Flags struct where the gtest_fail_fast flag has
5525  // the given value.
5526  static Flags FailFast(bool fail_fast) {
5527    Flags flags;
5528    flags.fail_fast = fail_fast;
5529    return flags;
5530  }
5531
5532  // Creates a Flags struct where the gtest_filter flag has the given
5533  // value.
5534  static Flags Filter(const char* filter) {
5535    Flags flags;
5536    flags.filter = filter;
5537    return flags;
5538  }
5539
5540  // Creates a Flags struct where the gtest_list_tests flag has the
5541  // given value.
5542  static Flags ListTests(bool list_tests) {
5543    Flags flags;
5544    flags.list_tests = list_tests;
5545    return flags;
5546  }
5547
5548  // Creates a Flags struct where the gtest_output flag has the given
5549  // value.
5550  static Flags Output(const char* output) {
5551    Flags flags;
5552    flags.output = output;
5553    return flags;
5554  }
5555
5556  // Creates a Flags struct where the gtest_brief flag has the given
5557  // value.
5558  static Flags Brief(bool brief) {
5559    Flags flags;
5560    flags.brief = brief;
5561    return flags;
5562  }
5563
5564  // Creates a Flags struct where the gtest_print_time flag has the given
5565  // value.
5566  static Flags PrintTime(bool print_time) {
5567    Flags flags;
5568    flags.print_time = print_time;
5569    return flags;
5570  }
5571
5572  // Creates a Flags struct where the gtest_random_seed flag has the given
5573  // value.
5574  static Flags RandomSeed(int32_t random_seed) {
5575    Flags flags;
5576    flags.random_seed = random_seed;
5577    return flags;
5578  }
5579
5580  // Creates a Flags struct where the gtest_repeat flag has the given
5581  // value.
5582  static Flags Repeat(int32_t repeat) {
5583    Flags flags;
5584    flags.repeat = repeat;
5585    return flags;
5586  }
5587
5588  // Creates a Flags struct where the gtest_recreate_environments_when_repeating
5589  // flag has the given value.
5590  static Flags RecreateEnvironmentsWhenRepeating(
5591      bool recreate_environments_when_repeating) {
5592    Flags flags;
5593    flags.recreate_environments_when_repeating =
5594        recreate_environments_when_repeating;
5595    return flags;
5596  }
5597
5598  // Creates a Flags struct where the gtest_shuffle flag has the given
5599  // value.
5600  static Flags Shuffle(bool shuffle) {
5601    Flags flags;
5602    flags.shuffle = shuffle;
5603    return flags;
5604  }
5605
5606  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5607  // the given value.
5608  static Flags StackTraceDepth(int32_t stack_trace_depth) {
5609    Flags flags;
5610    flags.stack_trace_depth = stack_trace_depth;
5611    return flags;
5612  }
5613
5614  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5615  // the given value.
5616  static Flags StreamResultTo(const char* stream_result_to) {
5617    Flags flags;
5618    flags.stream_result_to = stream_result_to;
5619    return flags;
5620  }
5621
5622  // Creates a Flags struct where the gtest_throw_on_failure flag has
5623  // the given value.
5624  static Flags ThrowOnFailure(bool throw_on_failure) {
5625    Flags flags;
5626    flags.throw_on_failure = throw_on_failure;
5627    return flags;
5628  }
5629
5630  // These fields store the flag values.
5631  bool also_run_disabled_tests;
5632  bool break_on_failure;
5633  bool catch_exceptions;
5634  bool death_test_use_fork;
5635  bool fail_fast;
5636  const char* filter;
5637  bool list_tests;
5638  const char* output;
5639  bool brief;
5640  bool print_time;
5641  int32_t random_seed;
5642  int32_t repeat;
5643  bool recreate_environments_when_repeating;
5644  bool shuffle;
5645  int32_t stack_trace_depth;
5646  const char* stream_result_to;
5647  bool throw_on_failure;
5648};
5649
5650// Fixture for testing ParseGoogleTestFlagsOnly().
5651class ParseFlagsTest : public Test {
5652 protected:
5653  // Clears the flags before each test.
5654  void SetUp() override {
5655    GTEST_FLAG_SET(also_run_disabled_tests, false);
5656    GTEST_FLAG_SET(break_on_failure, false);
5657    GTEST_FLAG_SET(catch_exceptions, false);
5658    GTEST_FLAG_SET(death_test_use_fork, false);
5659    GTEST_FLAG_SET(fail_fast, false);
5660    GTEST_FLAG_SET(filter, "");
5661    GTEST_FLAG_SET(list_tests, false);
5662    GTEST_FLAG_SET(output, "");
5663    GTEST_FLAG_SET(brief, false);
5664    GTEST_FLAG_SET(print_time, true);
5665    GTEST_FLAG_SET(random_seed, 0);
5666    GTEST_FLAG_SET(repeat, 1);
5667    GTEST_FLAG_SET(recreate_environments_when_repeating, true);
5668    GTEST_FLAG_SET(shuffle, false);
5669    GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
5670    GTEST_FLAG_SET(stream_result_to, "");
5671    GTEST_FLAG_SET(throw_on_failure, false);
5672  }
5673
5674  // Asserts that two narrow or wide string arrays are equal.
5675  template <typename CharType>
5676  static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5677                                  CharType** array2) {
5678    ASSERT_EQ(size1, size2) << " Array sizes different.";
5679
5680    for (int i = 0; i != size1; i++) {
5681      ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5682    }
5683  }
5684
5685  // Verifies that the flag values match the expected values.
5686  static void CheckFlags(const Flags& expected) {
5687    EXPECT_EQ(expected.also_run_disabled_tests,
5688              GTEST_FLAG_GET(also_run_disabled_tests));
5689    EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
5690    EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
5691    EXPECT_EQ(expected.death_test_use_fork,
5692              GTEST_FLAG_GET(death_test_use_fork));
5693    EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
5694    EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
5695    EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
5696    EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
5697    EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
5698    EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
5699    EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
5700    EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
5701    EXPECT_EQ(expected.recreate_environments_when_repeating,
5702              GTEST_FLAG_GET(recreate_environments_when_repeating));
5703    EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
5704    EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
5705    EXPECT_STREQ(expected.stream_result_to,
5706                 GTEST_FLAG_GET(stream_result_to).c_str());
5707    EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
5708  }
5709
5710  // Parses a command line (specified by argc1 and argv1), then
5711  // verifies that the flag values are expected and that the
5712  // recognized flags are removed from the command line.
5713  template <typename CharType>
5714  static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
5715                               const CharType** argv2, const Flags& expected,
5716                               bool should_print_help) {
5717    const bool saved_help_flag = ::testing::internal::g_help_flag;
5718    ::testing::internal::g_help_flag = false;
5719
5720#if GTEST_HAS_STREAM_REDIRECTION
5721    CaptureStdout();
5722#endif
5723
5724    // Parses the command line.
5725    internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5726
5727#if GTEST_HAS_STREAM_REDIRECTION
5728    const std::string captured_stdout = GetCapturedStdout();
5729#endif
5730
5731    // Verifies the flag values.
5732    CheckFlags(expected);
5733
5734    // Verifies that the recognized flags are removed from the command
5735    // line.
5736    AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5737
5738    // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5739    // help message for the flags it recognizes.
5740    EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5741
5742#if GTEST_HAS_STREAM_REDIRECTION
5743    const char* const expected_help_fragment =
5744        "This program contains tests written using";
5745    if (should_print_help) {
5746      EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5747    } else {
5748      EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
5749                          captured_stdout);
5750    }
5751#endif  // GTEST_HAS_STREAM_REDIRECTION
5752
5753    ::testing::internal::g_help_flag = saved_help_flag;
5754  }
5755
5756  // This macro wraps TestParsingFlags s.t. the user doesn't need
5757  // to specify the array sizes.
5758
5759#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5760  TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1,                \
5761                   sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected,      \
5762                   should_print_help)
5763};
5764
5765// Tests parsing an empty command line.
5766TEST_F(ParseFlagsTest, Empty) {
5767  const char* argv[] = {nullptr};
5768
5769  const char* argv2[] = {nullptr};
5770
5771  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5772}
5773
5774// Tests parsing a command line that has no flag.
5775TEST_F(ParseFlagsTest, NoFlag) {
5776  const char* argv[] = {"foo.exe", nullptr};
5777
5778  const char* argv2[] = {"foo.exe", nullptr};
5779
5780  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5781}
5782
5783// Tests parsing --gtest_fail_fast.
5784TEST_F(ParseFlagsTest, FailFast) {
5785  const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5786
5787  const char* argv2[] = {"foo.exe", nullptr};
5788
5789  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5790}
5791
5792// Tests parsing an empty --gtest_filter flag.
5793TEST_F(ParseFlagsTest, FilterEmpty) {
5794  const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5795
5796  const char* argv2[] = {"foo.exe", nullptr};
5797
5798  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5799}
5800
5801// Tests parsing a non-empty --gtest_filter flag.
5802TEST_F(ParseFlagsTest, FilterNonEmpty) {
5803  const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5804
5805  const char* argv2[] = {"foo.exe", nullptr};
5806
5807  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5808}
5809
5810// Tests parsing --gtest_break_on_failure.
5811TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5812  const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5813
5814  const char* argv2[] = {"foo.exe", nullptr};
5815
5816  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5817}
5818
5819// Tests parsing --gtest_break_on_failure=0.
5820TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5821  const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5822
5823  const char* argv2[] = {"foo.exe", nullptr};
5824
5825  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5826}
5827
5828// Tests parsing --gtest_break_on_failure=f.
5829TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5830  const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5831
5832  const char* argv2[] = {"foo.exe", nullptr};
5833
5834  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5835}
5836
5837// Tests parsing --gtest_break_on_failure=F.
5838TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5839  const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5840
5841  const char* argv2[] = {"foo.exe", nullptr};
5842
5843  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5844}
5845
5846// Tests parsing a --gtest_break_on_failure flag that has a "true"
5847// definition.
5848TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5849  const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5850
5851  const char* argv2[] = {"foo.exe", nullptr};
5852
5853  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5854}
5855
5856// Tests parsing --gtest_catch_exceptions.
5857TEST_F(ParseFlagsTest, CatchExceptions) {
5858  const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5859
5860  const char* argv2[] = {"foo.exe", nullptr};
5861
5862  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5863}
5864
5865// Tests parsing --gtest_death_test_use_fork.
5866TEST_F(ParseFlagsTest, DeathTestUseFork) {
5867  const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5868
5869  const char* argv2[] = {"foo.exe", nullptr};
5870
5871  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5872}
5873
5874// Tests having the same flag twice with different values.  The
5875// expected behavior is that the one coming last takes precedence.
5876TEST_F(ParseFlagsTest, DuplicatedFlags) {
5877  const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5878                        nullptr};
5879
5880  const char* argv2[] = {"foo.exe", nullptr};
5881
5882  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5883}
5884
5885// Tests having an unrecognized flag on the command line.
5886TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5887  const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5888                        "bar",  // Unrecognized by Google Test.
5889                        "--gtest_filter=b", nullptr};
5890
5891  const char* argv2[] = {"foo.exe", "bar", nullptr};
5892
5893  Flags flags;
5894  flags.break_on_failure = true;
5895  flags.filter = "b";
5896  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5897}
5898
5899// Tests having a --gtest_list_tests flag
5900TEST_F(ParseFlagsTest, ListTestsFlag) {
5901  const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
5902
5903  const char* argv2[] = {"foo.exe", nullptr};
5904
5905  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5906}
5907
5908// Tests having a --gtest_list_tests flag with a "true" value
5909TEST_F(ParseFlagsTest, ListTestsTrue) {
5910  const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
5911
5912  const char* argv2[] = {"foo.exe", nullptr};
5913
5914  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5915}
5916
5917// Tests having a --gtest_list_tests flag with a "false" value
5918TEST_F(ParseFlagsTest, ListTestsFalse) {
5919  const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
5920
5921  const char* argv2[] = {"foo.exe", nullptr};
5922
5923  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5924}
5925
5926// Tests parsing --gtest_list_tests=f.
5927TEST_F(ParseFlagsTest, ListTestsFalse_f) {
5928  const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
5929
5930  const char* argv2[] = {"foo.exe", nullptr};
5931
5932  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5933}
5934
5935// Tests parsing --gtest_list_tests=F.
5936TEST_F(ParseFlagsTest, ListTestsFalse_F) {
5937  const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
5938
5939  const char* argv2[] = {"foo.exe", nullptr};
5940
5941  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5942}
5943
5944// Tests parsing --gtest_output=xml
5945TEST_F(ParseFlagsTest, OutputXml) {
5946  const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
5947
5948  const char* argv2[] = {"foo.exe", nullptr};
5949
5950  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5951}
5952
5953// Tests parsing --gtest_output=xml:file
5954TEST_F(ParseFlagsTest, OutputXmlFile) {
5955  const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
5956
5957  const char* argv2[] = {"foo.exe", nullptr};
5958
5959  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5960}
5961
5962// Tests parsing --gtest_output=xml:directory/path/
5963TEST_F(ParseFlagsTest, OutputXmlDirectory) {
5964  const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
5965                        nullptr};
5966
5967  const char* argv2[] = {"foo.exe", nullptr};
5968
5969  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
5970                            false);
5971}
5972
5973// Tests having a --gtest_brief flag
5974TEST_F(ParseFlagsTest, BriefFlag) {
5975  const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
5976
5977  const char* argv2[] = {"foo.exe", nullptr};
5978
5979  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5980}
5981
5982// Tests having a --gtest_brief flag with a "true" value
5983TEST_F(ParseFlagsTest, BriefFlagTrue) {
5984  const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
5985
5986  const char* argv2[] = {"foo.exe", nullptr};
5987
5988  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
5989}
5990
5991// Tests having a --gtest_brief flag with a "false" value
5992TEST_F(ParseFlagsTest, BriefFlagFalse) {
5993  const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
5994
5995  const char* argv2[] = {"foo.exe", nullptr};
5996
5997  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
5998}
5999
6000// Tests having a --gtest_print_time flag
6001TEST_F(ParseFlagsTest, PrintTimeFlag) {
6002  const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6003
6004  const char* argv2[] = {"foo.exe", nullptr};
6005
6006  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6007}
6008
6009// Tests having a --gtest_print_time flag with a "true" value
6010TEST_F(ParseFlagsTest, PrintTimeTrue) {
6011  const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6012
6013  const char* argv2[] = {"foo.exe", nullptr};
6014
6015  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6016}
6017
6018// Tests having a --gtest_print_time flag with a "false" value
6019TEST_F(ParseFlagsTest, PrintTimeFalse) {
6020  const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6021
6022  const char* argv2[] = {"foo.exe", nullptr};
6023
6024  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6025}
6026
6027// Tests parsing --gtest_print_time=f.
6028TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6029  const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6030
6031  const char* argv2[] = {"foo.exe", nullptr};
6032
6033  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6034}
6035
6036// Tests parsing --gtest_print_time=F.
6037TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6038  const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6039
6040  const char* argv2[] = {"foo.exe", nullptr};
6041
6042  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6043}
6044
6045// Tests parsing --gtest_random_seed=number
6046TEST_F(ParseFlagsTest, RandomSeed) {
6047  const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6048
6049  const char* argv2[] = {"foo.exe", nullptr};
6050
6051  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6052}
6053
6054// Tests parsing --gtest_repeat=number
6055TEST_F(ParseFlagsTest, Repeat) {
6056  const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6057
6058  const char* argv2[] = {"foo.exe", nullptr};
6059
6060  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6061}
6062
6063// Tests parsing --gtest_recreate_environments_when_repeating
6064TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
6065  const char* argv[] = {
6066      "foo.exe",
6067      "--gtest_recreate_environments_when_repeating=0",
6068      nullptr,
6069  };
6070
6071  const char* argv2[] = {"foo.exe", nullptr};
6072
6073  GTEST_TEST_PARSING_FLAGS_(
6074      argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
6075}
6076
6077// Tests having a --gtest_also_run_disabled_tests flag
6078TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6079  const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6080
6081  const char* argv2[] = {"foo.exe", nullptr};
6082
6083  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6084                            false);
6085}
6086
6087// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6088TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6089  const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6090                        nullptr};
6091
6092  const char* argv2[] = {"foo.exe", nullptr};
6093
6094  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6095                            false);
6096}
6097
6098// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6099TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6100  const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6101                        nullptr};
6102
6103  const char* argv2[] = {"foo.exe", nullptr};
6104
6105  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6106                            false);
6107}
6108
6109// Tests parsing --gtest_shuffle.
6110TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6111  const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6112
6113  const char* argv2[] = {"foo.exe", nullptr};
6114
6115  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6116}
6117
6118// Tests parsing --gtest_shuffle=0.
6119TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6120  const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6121
6122  const char* argv2[] = {"foo.exe", nullptr};
6123
6124  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6125}
6126
6127// Tests parsing a --gtest_shuffle flag that has a "true" definition.
6128TEST_F(ParseFlagsTest, ShuffleTrue) {
6129  const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6130
6131  const char* argv2[] = {"foo.exe", nullptr};
6132
6133  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6134}
6135
6136// Tests parsing --gtest_stack_trace_depth=number.
6137TEST_F(ParseFlagsTest, StackTraceDepth) {
6138  const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6139
6140  const char* argv2[] = {"foo.exe", nullptr};
6141
6142  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6143}
6144
6145TEST_F(ParseFlagsTest, StreamResultTo) {
6146  const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6147                        nullptr};
6148
6149  const char* argv2[] = {"foo.exe", nullptr};
6150
6151  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6152                            Flags::StreamResultTo("localhost:1234"), false);
6153}
6154
6155// Tests parsing --gtest_throw_on_failure.
6156TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6157  const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6158
6159  const char* argv2[] = {"foo.exe", nullptr};
6160
6161  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6162}
6163
6164// Tests parsing --gtest_throw_on_failure=0.
6165TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6166  const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6167
6168  const char* argv2[] = {"foo.exe", nullptr};
6169
6170  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6171}
6172
6173// Tests parsing a --gtest_throw_on_failure flag that has a "true"
6174// definition.
6175TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6176  const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6177
6178  const char* argv2[] = {"foo.exe", nullptr};
6179
6180  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6181}
6182
6183// Tests parsing a bad --gtest_filter flag.
6184TEST_F(ParseFlagsTest, FilterBad) {
6185  const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
6186
6187  const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
6188
6189#if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6190  // Invalid flag arguments are a fatal error when using the Abseil Flags.
6191  EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
6192              testing::ExitedWithCode(1),
6193              "ERROR: Missing the value for the flag 'gtest_filter'");
6194#elif !defined(GTEST_HAS_ABSL)
6195  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
6196#else
6197  static_cast<void>(argv);
6198  static_cast<void>(argv2);
6199#endif
6200}
6201
6202// Tests parsing --gtest_output (invalid).
6203TEST_F(ParseFlagsTest, OutputEmpty) {
6204  const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6205
6206  const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6207
6208#if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
6209  // Invalid flag arguments are a fatal error when using the Abseil Flags.
6210  EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
6211              testing::ExitedWithCode(1),
6212              "ERROR: Missing the value for the flag 'gtest_output'");
6213#elif !defined(GTEST_HAS_ABSL)
6214  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6215#else
6216  static_cast<void>(argv);
6217  static_cast<void>(argv2);
6218#endif
6219}
6220
6221#ifdef GTEST_HAS_ABSL
6222TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
6223  const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
6224                        "--other_flag", nullptr};
6225
6226  // When using Abseil flags, it should be possible to pass flags not recognized
6227  // using "--" to delimit positional arguments. These flags should be returned
6228  // though argv.
6229  const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6230
6231  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6232}
6233#endif
6234
6235TEST_F(ParseFlagsTest, UnrecognizedFlags) {
6236  const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
6237                        nullptr};
6238
6239  const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
6240
6241  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
6242}
6243
6244#ifdef GTEST_OS_WINDOWS
6245// Tests parsing wide strings.
6246TEST_F(ParseFlagsTest, WideStrings) {
6247  const wchar_t* argv[] = {L"foo.exe",
6248                           L"--gtest_filter=Foo*",
6249                           L"--gtest_list_tests=1",
6250                           L"--gtest_break_on_failure",
6251                           L"--non_gtest_flag",
6252                           NULL};
6253
6254  const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
6255
6256  Flags expected_flags;
6257  expected_flags.break_on_failure = true;
6258  expected_flags.filter = "Foo*";
6259  expected_flags.list_tests = true;
6260
6261  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6262}
6263#endif  // GTEST_OS_WINDOWS
6264
6265#if GTEST_USE_OWN_FLAGFILE_FLAG_
6266class FlagfileTest : public ParseFlagsTest {
6267 public:
6268  void SetUp() override {
6269    ParseFlagsTest::SetUp();
6270
6271    testdata_path_.Set(internal::FilePath(
6272        testing::TempDir() + internal::GetCurrentExecutableName().string() +
6273        "_flagfile_test"));
6274    testing::internal::posix::RmDir(testdata_path_.c_str());
6275    EXPECT_TRUE(testdata_path_.CreateFolder());
6276  }
6277
6278  void TearDown() override {
6279    testing::internal::posix::RmDir(testdata_path_.c_str());
6280    ParseFlagsTest::TearDown();
6281  }
6282
6283  internal::FilePath CreateFlagfile(const char* contents) {
6284    internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6285        testdata_path_, internal::FilePath("unique"), "txt"));
6286    FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6287    fprintf(f, "%s", contents);
6288    fclose(f);
6289    return file_path;
6290  }
6291
6292 private:
6293  internal::FilePath testdata_path_;
6294};
6295
6296// Tests an empty flagfile.
6297TEST_F(FlagfileTest, Empty) {
6298  internal::FilePath flagfile_path(CreateFlagfile(""));
6299  std::string flagfile_flag =
6300      std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6301
6302  const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6303
6304  const char* argv2[] = {"foo.exe", nullptr};
6305
6306  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6307}
6308
6309// Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
6310TEST_F(FlagfileTest, FilterNonEmpty) {
6311  internal::FilePath flagfile_path(
6312      CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
6313  std::string flagfile_flag =
6314      std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6315
6316  const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6317
6318  const char* argv2[] = {"foo.exe", nullptr};
6319
6320  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6321}
6322
6323// Tests passing several flags via --gtest_flagfile.
6324TEST_F(FlagfileTest, SeveralFlags) {
6325  internal::FilePath flagfile_path(
6326      CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
6327                     "--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
6328                     "--" GTEST_FLAG_PREFIX_ "list_tests"));
6329  std::string flagfile_flag =
6330      std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6331
6332  const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6333
6334  const char* argv2[] = {"foo.exe", nullptr};
6335
6336  Flags expected_flags;
6337  expected_flags.break_on_failure = true;
6338  expected_flags.filter = "abc";
6339  expected_flags.list_tests = true;
6340
6341  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6342}
6343#endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6344
6345// Tests current_test_info() in UnitTest.
6346class CurrentTestInfoTest : public Test {
6347 protected:
6348  // Tests that current_test_info() returns NULL before the first test in
6349  // the test case is run.
6350  static void SetUpTestSuite() {
6351    // There should be no tests running at this point.
6352    const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6353    EXPECT_TRUE(test_info == nullptr)
6354        << "There should be no tests running at this point.";
6355  }
6356
6357  // Tests that current_test_info() returns NULL after the last test in
6358  // the test case has run.
6359  static void TearDownTestSuite() {
6360    const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6361    EXPECT_TRUE(test_info == nullptr)
6362        << "There should be no tests running at this point.";
6363  }
6364};
6365
6366// Tests that current_test_info() returns TestInfo for currently running
6367// test by checking the expected test name against the actual one.
6368TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6369  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6370  ASSERT_TRUE(nullptr != test_info)
6371      << "There is a test running so we should have a valid TestInfo.";
6372  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6373      << "Expected the name of the currently running test suite.";
6374  EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6375      << "Expected the name of the currently running test.";
6376}
6377
6378// Tests that current_test_info() returns TestInfo for currently running
6379// test by checking the expected test name against the actual one.  We
6380// use this test to see that the TestInfo object actually changed from
6381// the previous invocation.
6382TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6383  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
6384  ASSERT_TRUE(nullptr != test_info)
6385      << "There is a test running so we should have a valid TestInfo.";
6386  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6387      << "Expected the name of the currently running test suite.";
6388  EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6389      << "Expected the name of the currently running test.";
6390}
6391
6392}  // namespace testing
6393
6394// These two lines test that we can define tests in a namespace that
6395// has the name "testing" and is nested in another namespace.
6396namespace my_namespace {
6397namespace testing {
6398
6399// Makes sure that TEST knows to use ::testing::Test instead of
6400// ::my_namespace::testing::Test.
6401class Test {};
6402
6403// Makes sure that an assertion knows to use ::testing::Message instead of
6404// ::my_namespace::testing::Message.
6405class Message {};
6406
6407// Makes sure that an assertion knows to use
6408// ::testing::AssertionResult instead of
6409// ::my_namespace::testing::AssertionResult.
6410class AssertionResult {};
6411
6412// Tests that an assertion that should succeed works as expected.
6413TEST(NestedTestingNamespaceTest, Success) {
6414  EXPECT_EQ(1, 1) << "This shouldn't fail.";
6415}
6416
6417// Tests that an assertion that should fail works as expected.
6418TEST(NestedTestingNamespaceTest, Failure) {
6419  EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6420                       "This failure is expected.");
6421}
6422
6423}  // namespace testing
6424}  // namespace my_namespace
6425
6426// Tests that one can call superclass SetUp and TearDown methods--
6427// that is, that they are not private.
6428// No tests are based on this fixture; the test "passes" if it compiles
6429// successfully.
6430class ProtectedFixtureMethodsTest : public Test {
6431 protected:
6432  void SetUp() override { Test::SetUp(); }
6433  void TearDown() override { Test::TearDown(); }
6434};
6435
6436// StreamingAssertionsTest tests the streaming versions of a representative
6437// sample of assertions.
6438TEST(StreamingAssertionsTest, Unconditional) {
6439  SUCCEED() << "expected success";
6440  EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6441                          "expected failure");
6442  EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
6443}
6444
6445#ifdef __BORLANDC__
6446// Silences warnings: "Condition is always true", "Unreachable code"
6447#pragma option push -w-ccc -w-rch
6448#endif
6449
6450TEST(StreamingAssertionsTest, Truth) {
6451  EXPECT_TRUE(true) << "unexpected failure";
6452  ASSERT_TRUE(true) << "unexpected failure";
6453  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6454                          "expected failure");
6455  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6456                       "expected failure");
6457}
6458
6459TEST(StreamingAssertionsTest, Truth2) {
6460  EXPECT_FALSE(false) << "unexpected failure";
6461  ASSERT_FALSE(false) << "unexpected failure";
6462  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6463                          "expected failure");
6464  EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6465                       "expected failure");
6466}
6467
6468#ifdef __BORLANDC__
6469// Restores warnings after previous "#pragma option push" suppressed them
6470#pragma option pop
6471#endif
6472
6473TEST(StreamingAssertionsTest, IntegerEquals) {
6474  EXPECT_EQ(1, 1) << "unexpected failure";
6475  ASSERT_EQ(1, 1) << "unexpected failure";
6476  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6477                          "expected failure");
6478  EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6479                       "expected failure");
6480}
6481
6482TEST(StreamingAssertionsTest, IntegerLessThan) {
6483  EXPECT_LT(1, 2) << "unexpected failure";
6484  ASSERT_LT(1, 2) << "unexpected failure";
6485  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6486                          "expected failure");
6487  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6488                       "expected failure");
6489}
6490
6491TEST(StreamingAssertionsTest, StringsEqual) {
6492  EXPECT_STREQ("foo", "foo") << "unexpected failure";
6493  ASSERT_STREQ("foo", "foo") << "unexpected failure";
6494  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6495                          "expected failure");
6496  EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6497                       "expected failure");
6498}
6499
6500TEST(StreamingAssertionsTest, StringsNotEqual) {
6501  EXPECT_STRNE("foo", "bar") << "unexpected failure";
6502  ASSERT_STRNE("foo", "bar") << "unexpected failure";
6503  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6504                          "expected failure");
6505  EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6506                       "expected failure");
6507}
6508
6509TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6510  EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6511  ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6512  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6513                          "expected failure");
6514  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6515                       "expected failure");
6516}
6517
6518TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6519  EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6520  ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6521  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6522                          "expected failure");
6523  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6524                       "expected failure");
6525}
6526
6527TEST(StreamingAssertionsTest, FloatingPointEquals) {
6528  EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6529  ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6530  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6531                          "expected failure");
6532  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6533                       "expected failure");
6534}
6535
6536#if GTEST_HAS_EXCEPTIONS
6537
6538TEST(StreamingAssertionsTest, Throw) {
6539  EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6540  ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6541  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
6542                              << "expected failure",
6543                          "expected failure");
6544  EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
6545                           << "expected failure",
6546                       "expected failure");
6547}
6548
6549TEST(StreamingAssertionsTest, NoThrow) {
6550  EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6551  ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6552  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
6553                              << "expected failure",
6554                          "expected failure");
6555  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
6556                       "expected failure");
6557}
6558
6559TEST(StreamingAssertionsTest, AnyThrow) {
6560  EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6561  ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6562  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
6563                              << "expected failure",
6564                          "expected failure");
6565  EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
6566                       "expected failure");
6567}
6568
6569#endif  // GTEST_HAS_EXCEPTIONS
6570
6571// Tests that Google Test correctly decides whether to use colors in the output.
6572
6573TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6574  GTEST_FLAG_SET(color, "yes");
6575
6576  SetEnv("TERM", "xterm");             // TERM supports colors.
6577  EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6578  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6579
6580  SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6581  EXPECT_TRUE(ShouldUseColor(true));   // Stdout is a TTY.
6582  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6583}
6584
6585TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6586  SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6587
6588  GTEST_FLAG_SET(color, "True");
6589  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6590
6591  GTEST_FLAG_SET(color, "t");
6592  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6593
6594  GTEST_FLAG_SET(color, "1");
6595  EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6596}
6597
6598TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6599  GTEST_FLAG_SET(color, "no");
6600
6601  SetEnv("TERM", "xterm");              // TERM supports colors.
6602  EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6603  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6604
6605  SetEnv("TERM", "dumb");               // TERM doesn't support colors.
6606  EXPECT_FALSE(ShouldUseColor(true));   // Stdout is a TTY.
6607  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6608}
6609
6610TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6611  SetEnv("TERM", "xterm");  // TERM supports colors.
6612
6613  GTEST_FLAG_SET(color, "F");
6614  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6615
6616  GTEST_FLAG_SET(color, "0");
6617  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6618
6619  GTEST_FLAG_SET(color, "unknown");
6620  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6621}
6622
6623TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6624  GTEST_FLAG_SET(color, "auto");
6625
6626  SetEnv("TERM", "xterm");              // TERM supports colors.
6627  EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6628  EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6629}
6630
6631TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6632  GTEST_FLAG_SET(color, "auto");
6633
6634#if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
6635  // On Windows, we ignore the TERM variable as it's usually not set.
6636
6637  SetEnv("TERM", "dumb");
6638  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6639
6640  SetEnv("TERM", "");
6641  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6642
6643  SetEnv("TERM", "xterm");
6644  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6645#else
6646  // On non-Windows platforms, we rely on TERM to determine if the
6647  // terminal supports colors.
6648
6649  SetEnv("TERM", "dumb");              // TERM doesn't support colors.
6650  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6651
6652  SetEnv("TERM", "emacs");             // TERM doesn't support colors.
6653  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6654
6655  SetEnv("TERM", "vt100");             // TERM doesn't support colors.
6656  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6657
6658  SetEnv("TERM", "xterm-mono");        // TERM doesn't support colors.
6659  EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6660
6661  SetEnv("TERM", "xterm");            // TERM supports colors.
6662  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6663
6664  SetEnv("TERM", "xterm-color");      // TERM supports colors.
6665  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6666
6667  SetEnv("TERM", "xterm-kitty");      // TERM supports colors.
6668  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6669
6670  SetEnv("TERM", "xterm-256color");   // TERM supports colors.
6671  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6672
6673  SetEnv("TERM", "screen");           // TERM supports colors.
6674  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6675
6676  SetEnv("TERM", "screen-256color");  // TERM supports colors.
6677  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6678
6679  SetEnv("TERM", "tmux");             // TERM supports colors.
6680  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6681
6682  SetEnv("TERM", "tmux-256color");    // TERM supports colors.
6683  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6684
6685  SetEnv("TERM", "rxvt-unicode");     // TERM supports colors.
6686  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6687
6688  SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6689  EXPECT_TRUE(ShouldUseColor(true));        // Stdout is a TTY.
6690
6691  SetEnv("TERM", "linux");            // TERM supports colors.
6692  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6693
6694  SetEnv("TERM", "cygwin");  // TERM supports colors.
6695  EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6696#endif  // GTEST_OS_WINDOWS
6697}
6698
6699// Verifies that StaticAssertTypeEq works in a namespace scope.
6700
6701static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6702static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6703    StaticAssertTypeEq<const int, const int>();
6704
6705// Verifies that StaticAssertTypeEq works in a class.
6706
6707template <typename T>
6708class StaticAssertTypeEqTestHelper {
6709 public:
6710  StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6711};
6712
6713TEST(StaticAssertTypeEqTest, WorksInClass) {
6714  StaticAssertTypeEqTestHelper<bool>();
6715}
6716
6717// Verifies that StaticAssertTypeEq works inside a function.
6718
6719typedef int IntAlias;
6720
6721TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6722  StaticAssertTypeEq<int, IntAlias>();
6723  StaticAssertTypeEq<int*, IntAlias*>();
6724}
6725
6726TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6727  EXPECT_FALSE(HasNonfatalFailure());
6728}
6729
6730static void FailFatally() { FAIL(); }
6731
6732TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6733  FailFatally();
6734  const bool has_nonfatal_failure = HasNonfatalFailure();
6735  ClearCurrentTestPartResults();
6736  EXPECT_FALSE(has_nonfatal_failure);
6737}
6738
6739TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6740  ADD_FAILURE();
6741  const bool has_nonfatal_failure = HasNonfatalFailure();
6742  ClearCurrentTestPartResults();
6743  EXPECT_TRUE(has_nonfatal_failure);
6744}
6745
6746TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6747  FailFatally();
6748  ADD_FAILURE();
6749  const bool has_nonfatal_failure = HasNonfatalFailure();
6750  ClearCurrentTestPartResults();
6751  EXPECT_TRUE(has_nonfatal_failure);
6752}
6753
6754// A wrapper for calling HasNonfatalFailure outside of a test body.
6755static bool HasNonfatalFailureHelper() {
6756  return testing::Test::HasNonfatalFailure();
6757}
6758
6759TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6760  EXPECT_FALSE(HasNonfatalFailureHelper());
6761}
6762
6763TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6764  ADD_FAILURE();
6765  const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6766  ClearCurrentTestPartResults();
6767  EXPECT_TRUE(has_nonfatal_failure);
6768}
6769
6770TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6771  EXPECT_FALSE(HasFailure());
6772}
6773
6774TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6775  FailFatally();
6776  const bool has_failure = HasFailure();
6777  ClearCurrentTestPartResults();
6778  EXPECT_TRUE(has_failure);
6779}
6780
6781TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6782  ADD_FAILURE();
6783  const bool has_failure = HasFailure();
6784  ClearCurrentTestPartResults();
6785  EXPECT_TRUE(has_failure);
6786}
6787
6788TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6789  FailFatally();
6790  ADD_FAILURE();
6791  const bool has_failure = HasFailure();
6792  ClearCurrentTestPartResults();
6793  EXPECT_TRUE(has_failure);
6794}
6795
6796// A wrapper for calling HasFailure outside of a test body.
6797static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6798
6799TEST(HasFailureTest, WorksOutsideOfTestBody) {
6800  EXPECT_FALSE(HasFailureHelper());
6801}
6802
6803TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6804  ADD_FAILURE();
6805  const bool has_failure = HasFailureHelper();
6806  ClearCurrentTestPartResults();
6807  EXPECT_TRUE(has_failure);
6808}
6809
6810class TestListener : public EmptyTestEventListener {
6811 public:
6812  TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
6813  TestListener(int* on_start_counter, bool* is_destroyed)
6814      : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
6815
6816  ~TestListener() override {
6817    if (is_destroyed_) *is_destroyed_ = true;
6818  }
6819
6820 protected:
6821  void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6822    if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6823  }
6824
6825 private:
6826  int* on_start_counter_;
6827  bool* is_destroyed_;
6828};
6829
6830// Tests the constructor.
6831TEST(TestEventListenersTest, ConstructionWorks) {
6832  TestEventListeners listeners;
6833
6834  EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6835  EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6836  EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6837}
6838
6839// Tests that the TestEventListeners destructor deletes all the listeners it
6840// owns.
6841TEST(TestEventListenersTest, DestructionWorks) {
6842  bool default_result_printer_is_destroyed = false;
6843  bool default_xml_printer_is_destroyed = false;
6844  bool extra_listener_is_destroyed = false;
6845  TestListener* default_result_printer =
6846      new TestListener(nullptr, &default_result_printer_is_destroyed);
6847  TestListener* default_xml_printer =
6848      new TestListener(nullptr, &default_xml_printer_is_destroyed);
6849  TestListener* extra_listener =
6850      new TestListener(nullptr, &extra_listener_is_destroyed);
6851
6852  {
6853    TestEventListeners listeners;
6854    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6855                                                        default_result_printer);
6856    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6857                                                       default_xml_printer);
6858    listeners.Append(extra_listener);
6859  }
6860  EXPECT_TRUE(default_result_printer_is_destroyed);
6861  EXPECT_TRUE(default_xml_printer_is_destroyed);
6862  EXPECT_TRUE(extra_listener_is_destroyed);
6863}
6864
6865// Tests that a listener Append'ed to a TestEventListeners list starts
6866// receiving events.
6867TEST(TestEventListenersTest, Append) {
6868  int on_start_counter = 0;
6869  bool is_destroyed = false;
6870  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6871  {
6872    TestEventListeners listeners;
6873    listeners.Append(listener);
6874    TestEventListenersAccessor::GetRepeater(&listeners)
6875        ->OnTestProgramStart(*UnitTest::GetInstance());
6876    EXPECT_EQ(1, on_start_counter);
6877  }
6878  EXPECT_TRUE(is_destroyed);
6879}
6880
6881// Tests that listeners receive events in the order they were appended to
6882// the list, except for *End requests, which must be received in the reverse
6883// order.
6884class SequenceTestingListener : public EmptyTestEventListener {
6885 public:
6886  SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6887      : vector_(vector), id_(id) {}
6888
6889 protected:
6890  void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6891    vector_->push_back(GetEventDescription("OnTestProgramStart"));
6892  }
6893
6894  void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6895    vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6896  }
6897
6898  void OnTestIterationStart(const UnitTest& /*unit_test*/,
6899                            int /*iteration*/) override {
6900    vector_->push_back(GetEventDescription("OnTestIterationStart"));
6901  }
6902
6903  void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6904                          int /*iteration*/) override {
6905    vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6906  }
6907
6908 private:
6909  std::string GetEventDescription(const char* method) {
6910    Message message;
6911    message << id_ << "." << method;
6912    return message.GetString();
6913  }
6914
6915  std::vector<std::string>* vector_;
6916  const char* const id_;
6917
6918  SequenceTestingListener(const SequenceTestingListener&) = delete;
6919  SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
6920};
6921
6922TEST(EventListenerTest, AppendKeepsOrder) {
6923  std::vector<std::string> vec;
6924  TestEventListeners listeners;
6925  listeners.Append(new SequenceTestingListener(&vec, "1st"));
6926  listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6927  listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6928
6929  TestEventListenersAccessor::GetRepeater(&listeners)
6930      ->OnTestProgramStart(*UnitTest::GetInstance());
6931  ASSERT_EQ(3U, vec.size());
6932  EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6933  EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6934  EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6935
6936  vec.clear();
6937  TestEventListenersAccessor::GetRepeater(&listeners)
6938      ->OnTestProgramEnd(*UnitTest::GetInstance());
6939  ASSERT_EQ(3U, vec.size());
6940  EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6941  EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6942  EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6943
6944  vec.clear();
6945  TestEventListenersAccessor::GetRepeater(&listeners)
6946      ->OnTestIterationStart(*UnitTest::GetInstance(), 0);
6947  ASSERT_EQ(3U, vec.size());
6948  EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6949  EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6950  EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6951
6952  vec.clear();
6953  TestEventListenersAccessor::GetRepeater(&listeners)
6954      ->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
6955  ASSERT_EQ(3U, vec.size());
6956  EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6957  EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6958  EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6959}
6960
6961// Tests that a listener removed from a TestEventListeners list stops receiving
6962// events and is not deleted when the list is destroyed.
6963TEST(TestEventListenersTest, Release) {
6964  int on_start_counter = 0;
6965  bool is_destroyed = false;
6966  // Although Append passes the ownership of this object to the list,
6967  // the following calls release it, and we need to delete it before the
6968  // test ends.
6969  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6970  {
6971    TestEventListeners listeners;
6972    listeners.Append(listener);
6973    EXPECT_EQ(listener, listeners.Release(listener));
6974    TestEventListenersAccessor::GetRepeater(&listeners)
6975        ->OnTestProgramStart(*UnitTest::GetInstance());
6976    EXPECT_TRUE(listeners.Release(listener) == nullptr);
6977  }
6978  EXPECT_EQ(0, on_start_counter);
6979  EXPECT_FALSE(is_destroyed);
6980  delete listener;
6981}
6982
6983// Tests that no events are forwarded when event forwarding is disabled.
6984TEST(EventListenerTest, SuppressEventForwarding) {
6985  int on_start_counter = 0;
6986  TestListener* listener = new TestListener(&on_start_counter, nullptr);
6987
6988  TestEventListeners listeners;
6989  listeners.Append(listener);
6990  ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6991  TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6992  ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6993  TestEventListenersAccessor::GetRepeater(&listeners)
6994      ->OnTestProgramStart(*UnitTest::GetInstance());
6995  EXPECT_EQ(0, on_start_counter);
6996}
6997
6998// Tests that events generated by Google Test are not forwarded in
6999// death test subprocesses.
7000TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
7001  EXPECT_DEATH_IF_SUPPORTED(
7002      {
7003        GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7004            *GetUnitTestImpl()->listeners()))
7005            << "expected failure";
7006      },
7007      "expected failure");
7008}
7009
7010// Tests that a listener installed via SetDefaultResultPrinter() starts
7011// receiving events and is returned via default_result_printer() and that
7012// the previous default_result_printer is removed from the list and deleted.
7013TEST(EventListenerTest, default_result_printer) {
7014  int on_start_counter = 0;
7015  bool is_destroyed = false;
7016  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7017
7018  TestEventListeners listeners;
7019  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7020
7021  EXPECT_EQ(listener, listeners.default_result_printer());
7022
7023  TestEventListenersAccessor::GetRepeater(&listeners)
7024      ->OnTestProgramStart(*UnitTest::GetInstance());
7025
7026  EXPECT_EQ(1, on_start_counter);
7027
7028  // Replacing default_result_printer with something else should remove it
7029  // from the list and destroy it.
7030  TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7031
7032  EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7033  EXPECT_TRUE(is_destroyed);
7034
7035  // After broadcasting an event the counter is still the same, indicating
7036  // the listener is not in the list anymore.
7037  TestEventListenersAccessor::GetRepeater(&listeners)
7038      ->OnTestProgramStart(*UnitTest::GetInstance());
7039  EXPECT_EQ(1, on_start_counter);
7040}
7041
7042// Tests that the default_result_printer listener stops receiving events
7043// when removed via Release and that is not owned by the list anymore.
7044TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7045  int on_start_counter = 0;
7046  bool is_destroyed = false;
7047  // Although Append passes the ownership of this object to the list,
7048  // the following calls release it, and we need to delete it before the
7049  // test ends.
7050  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7051  {
7052    TestEventListeners listeners;
7053    TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7054
7055    EXPECT_EQ(listener, listeners.Release(listener));
7056    EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7057    EXPECT_FALSE(is_destroyed);
7058
7059    // Broadcasting events now should not affect default_result_printer.
7060    TestEventListenersAccessor::GetRepeater(&listeners)
7061        ->OnTestProgramStart(*UnitTest::GetInstance());
7062    EXPECT_EQ(0, on_start_counter);
7063  }
7064  // Destroying the list should not affect the listener now, too.
7065  EXPECT_FALSE(is_destroyed);
7066  delete listener;
7067}
7068
7069// Tests that a listener installed via SetDefaultXmlGenerator() starts
7070// receiving events and is returned via default_xml_generator() and that
7071// the previous default_xml_generator is removed from the list and deleted.
7072TEST(EventListenerTest, default_xml_generator) {
7073  int on_start_counter = 0;
7074  bool is_destroyed = false;
7075  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7076
7077  TestEventListeners listeners;
7078  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7079
7080  EXPECT_EQ(listener, listeners.default_xml_generator());
7081
7082  TestEventListenersAccessor::GetRepeater(&listeners)
7083      ->OnTestProgramStart(*UnitTest::GetInstance());
7084
7085  EXPECT_EQ(1, on_start_counter);
7086
7087  // Replacing default_xml_generator with something else should remove it
7088  // from the list and destroy it.
7089  TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7090
7091  EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7092  EXPECT_TRUE(is_destroyed);
7093
7094  // After broadcasting an event the counter is still the same, indicating
7095  // the listener is not in the list anymore.
7096  TestEventListenersAccessor::GetRepeater(&listeners)
7097      ->OnTestProgramStart(*UnitTest::GetInstance());
7098  EXPECT_EQ(1, on_start_counter);
7099}
7100
7101// Tests that the default_xml_generator listener stops receiving events
7102// when removed via Release and that is not owned by the list anymore.
7103TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7104  int on_start_counter = 0;
7105  bool is_destroyed = false;
7106  // Although Append passes the ownership of this object to the list,
7107  // the following calls release it, and we need to delete it before the
7108  // test ends.
7109  TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7110  {
7111    TestEventListeners listeners;
7112    TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7113
7114    EXPECT_EQ(listener, listeners.Release(listener));
7115    EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7116    EXPECT_FALSE(is_destroyed);
7117
7118    // Broadcasting events now should not affect default_xml_generator.
7119    TestEventListenersAccessor::GetRepeater(&listeners)
7120        ->OnTestProgramStart(*UnitTest::GetInstance());
7121    EXPECT_EQ(0, on_start_counter);
7122  }
7123  // Destroying the list should not affect the listener now, too.
7124  EXPECT_FALSE(is_destroyed);
7125  delete listener;
7126}
7127
7128// Tests to ensure that the alternative, verbose spellings of
7129// some of the macros work.  We don't test them thoroughly as that
7130// would be quite involved.  Since their implementations are
7131// straightforward, and they are rarely used, we'll just rely on the
7132// users to tell us when they are broken.
7133GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7134  GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7135
7136  // GTEST_FAIL is the same as FAIL.
7137  EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7138                       "An expected failure");
7139
7140  // GTEST_ASSERT_XY is the same as ASSERT_XY.
7141
7142  GTEST_ASSERT_EQ(0, 0);
7143  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7144                       "An expected failure");
7145  EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7146                       "An expected failure");
7147
7148  GTEST_ASSERT_NE(0, 1);
7149  GTEST_ASSERT_NE(1, 0);
7150  EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7151                       "An expected failure");
7152
7153  GTEST_ASSERT_LE(0, 0);
7154  GTEST_ASSERT_LE(0, 1);
7155  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7156                       "An expected failure");
7157
7158  GTEST_ASSERT_LT(0, 1);
7159  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7160                       "An expected failure");
7161  EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7162                       "An expected failure");
7163
7164  GTEST_ASSERT_GE(0, 0);
7165  GTEST_ASSERT_GE(1, 0);
7166  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7167                       "An expected failure");
7168
7169  GTEST_ASSERT_GT(1, 0);
7170  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7171                       "An expected failure");
7172  EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7173                       "An expected failure");
7174}
7175
7176// Tests for internal utilities necessary for implementation of the universal
7177// printing.
7178
7179class ConversionHelperBase {};
7180class ConversionHelperDerived : public ConversionHelperBase {};
7181
7182struct HasDebugStringMethods {
7183  std::string DebugString() const { return ""; }
7184  std::string ShortDebugString() const { return ""; }
7185};
7186
7187struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7188
7189struct WrongTypeDebugStringMethod {
7190  std::string DebugString() const { return ""; }
7191  int ShortDebugString() const { return 1; }
7192};
7193
7194struct NotConstDebugStringMethod {
7195  std::string DebugString() { return ""; }
7196  std::string ShortDebugString() const { return ""; }
7197};
7198
7199struct MissingDebugStringMethod {
7200  std::string DebugString() { return ""; }
7201};
7202
7203struct IncompleteType;
7204
7205// Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7206// constant.
7207TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7208  static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7209                "const_true");
7210  static_assert(
7211      HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7212      "const_true");
7213  static_assert(HasDebugStringAndShortDebugString<
7214                    const InheritsDebugStringMethods>::value,
7215                "const_true");
7216  static_assert(
7217      !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7218      "const_false");
7219  static_assert(
7220      !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7221      "const_false");
7222  static_assert(
7223      !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7224      "const_false");
7225  static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
7226                "const_false");
7227  static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
7228}
7229
7230// Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7231// needed methods.
7232TEST(HasDebugStringAndShortDebugStringTest,
7233     ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7234  EXPECT_TRUE(
7235      HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7236}
7237
7238// Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7239// doesn't have needed methods.
7240TEST(HasDebugStringAndShortDebugStringTest,
7241     ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7242  EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7243  EXPECT_FALSE(
7244      HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7245}
7246
7247// Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7248
7249template <typename T1, typename T2>
7250void TestGTestRemoveReferenceAndConst() {
7251  static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7252                "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7253}
7254
7255TEST(RemoveReferenceToConstTest, Works) {
7256  TestGTestRemoveReferenceAndConst<int, int>();
7257  TestGTestRemoveReferenceAndConst<double, double&>();
7258  TestGTestRemoveReferenceAndConst<char, const char>();
7259  TestGTestRemoveReferenceAndConst<char, const char&>();
7260  TestGTestRemoveReferenceAndConst<const char*, const char*>();
7261}
7262
7263// Tests GTEST_REFERENCE_TO_CONST_.
7264
7265template <typename T1, typename T2>
7266void TestGTestReferenceToConst() {
7267  static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7268                "GTEST_REFERENCE_TO_CONST_ failed.");
7269}
7270
7271TEST(GTestReferenceToConstTest, Works) {
7272  TestGTestReferenceToConst<const char&, char>();
7273  TestGTestReferenceToConst<const int&, const int>();
7274  TestGTestReferenceToConst<const double&, double>();
7275  TestGTestReferenceToConst<const std::string&, const std::string&>();
7276}
7277
7278// Tests IsContainerTest.
7279
7280class NonContainer {};
7281
7282TEST(IsContainerTestTest, WorksForNonContainer) {
7283  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7284  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7285  EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7286}
7287
7288TEST(IsContainerTestTest, WorksForContainer) {
7289  EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
7290  EXPECT_EQ(sizeof(IsContainer),
7291            sizeof(IsContainerTest<std::map<int, double>>(0)));
7292}
7293
7294struct ConstOnlyContainerWithPointerIterator {
7295  using const_iterator = int*;
7296  const_iterator begin() const;
7297  const_iterator end() const;
7298};
7299
7300struct ConstOnlyContainerWithClassIterator {
7301  struct const_iterator {
7302    const int& operator*() const;
7303    const_iterator& operator++(/* pre-increment */);
7304  };
7305  const_iterator begin() const;
7306  const_iterator end() const;
7307};
7308
7309TEST(IsContainerTestTest, ConstOnlyContainer) {
7310  EXPECT_EQ(sizeof(IsContainer),
7311            sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7312  EXPECT_EQ(sizeof(IsContainer),
7313            sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7314}
7315
7316// Tests IsHashTable.
7317struct AHashTable {
7318  typedef void hasher;
7319};
7320struct NotReallyAHashTable {
7321  typedef void hasher;
7322  typedef void reverse_iterator;
7323};
7324TEST(IsHashTable, Basic) {
7325  EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7326  EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7327  EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7328  EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7329}
7330
7331// Tests ArrayEq().
7332
7333TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7334  EXPECT_TRUE(ArrayEq(5, 5L));
7335  EXPECT_FALSE(ArrayEq('a', 0));
7336}
7337
7338TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7339  // Note that a and b are distinct but compatible types.
7340  const int a[] = {0, 1};
7341  long b[] = {0, 1};
7342  EXPECT_TRUE(ArrayEq(a, b));
7343  EXPECT_TRUE(ArrayEq(a, 2, b));
7344
7345  b[0] = 2;
7346  EXPECT_FALSE(ArrayEq(a, b));
7347  EXPECT_FALSE(ArrayEq(a, 1, b));
7348}
7349
7350TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7351  const char a[][3] = {"hi", "lo"};
7352  const char b[][3] = {"hi", "lo"};
7353  const char c[][3] = {"hi", "li"};
7354
7355  EXPECT_TRUE(ArrayEq(a, b));
7356  EXPECT_TRUE(ArrayEq(a, 2, b));
7357
7358  EXPECT_FALSE(ArrayEq(a, c));
7359  EXPECT_FALSE(ArrayEq(a, 2, c));
7360}
7361
7362// Tests ArrayAwareFind().
7363
7364TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7365  const char a[] = "hello";
7366  EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7367  EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7368}
7369
7370TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7371  int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
7372  const int b[2] = {2, 3};
7373  EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7374
7375  const int c[2] = {6, 7};
7376  EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7377}
7378
7379// Tests CopyArray().
7380
7381TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7382  int n = 0;
7383  CopyArray('a', &n);
7384  EXPECT_EQ('a', n);
7385}
7386
7387TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7388  const char a[3] = "hi";
7389  int b[3];
7390#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7391  CopyArray(a, &b);
7392  EXPECT_TRUE(ArrayEq(a, b));
7393#endif
7394
7395  int c[3];
7396  CopyArray(a, 3, c);
7397  EXPECT_TRUE(ArrayEq(a, c));
7398}
7399
7400TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7401  const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
7402  int b[2][3];
7403#ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7404  CopyArray(a, &b);
7405  EXPECT_TRUE(ArrayEq(a, b));
7406#endif
7407
7408  int c[2][3];
7409  CopyArray(a, 2, c);
7410  EXPECT_TRUE(ArrayEq(a, c));
7411}
7412
7413// Tests NativeArray.
7414
7415TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7416  const int a[3] = {0, 1, 2};
7417  NativeArray<int> na(a, 3, RelationToSourceReference());
7418  EXPECT_EQ(3U, na.size());
7419  EXPECT_EQ(a, na.begin());
7420}
7421
7422TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7423  typedef int Array[2];
7424  Array* a = new Array[1];
7425  (*a)[0] = 0;
7426  (*a)[1] = 1;
7427  NativeArray<int> na(*a, 2, RelationToSourceCopy());
7428  EXPECT_NE(*a, na.begin());
7429  delete[] a;
7430  EXPECT_EQ(0, na.begin()[0]);
7431  EXPECT_EQ(1, na.begin()[1]);
7432
7433  // We rely on the heap checker to verify that na deletes the copy of
7434  // array.
7435}
7436
7437TEST(NativeArrayTest, TypeMembersAreCorrect) {
7438  StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7439  StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7440
7441  StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7442  StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7443}
7444
7445TEST(NativeArrayTest, MethodsWork) {
7446  const int a[3] = {0, 1, 2};
7447  NativeArray<int> na(a, 3, RelationToSourceCopy());
7448  ASSERT_EQ(3U, na.size());
7449  EXPECT_EQ(3, na.end() - na.begin());
7450
7451  NativeArray<int>::const_iterator it = na.begin();
7452  EXPECT_EQ(0, *it);
7453  ++it;
7454  EXPECT_EQ(1, *it);
7455  it++;
7456  EXPECT_EQ(2, *it);
7457  ++it;
7458  EXPECT_EQ(na.end(), it);
7459
7460  EXPECT_TRUE(na == na);
7461
7462  NativeArray<int> na2(a, 3, RelationToSourceReference());
7463  EXPECT_TRUE(na == na2);
7464
7465  const int b1[3] = {0, 1, 1};
7466  const int b2[4] = {0, 1, 2, 3};
7467  EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7468  EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7469}
7470
7471TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7472  const char a[2][3] = {"hi", "lo"};
7473  NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7474  ASSERT_EQ(2U, na.size());
7475  EXPECT_EQ(a, na.begin());
7476}
7477
7478// IndexSequence
7479TEST(IndexSequence, MakeIndexSequence) {
7480  using testing::internal::IndexSequence;
7481  using testing::internal::MakeIndexSequence;
7482  EXPECT_TRUE(
7483      (std::is_same<IndexSequence<>, MakeIndexSequence<0>::type>::value));
7484  EXPECT_TRUE(
7485      (std::is_same<IndexSequence<0>, MakeIndexSequence<1>::type>::value));
7486  EXPECT_TRUE(
7487      (std::is_same<IndexSequence<0, 1>, MakeIndexSequence<2>::type>::value));
7488  EXPECT_TRUE((
7489      std::is_same<IndexSequence<0, 1, 2>, MakeIndexSequence<3>::type>::value));
7490  EXPECT_TRUE(
7491      (std::is_base_of<IndexSequence<0, 1, 2>, MakeIndexSequence<3>>::value));
7492}
7493
7494// ElemFromList
7495TEST(ElemFromList, Basic) {
7496  using testing::internal::ElemFromList;
7497  EXPECT_TRUE(
7498      (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7499  EXPECT_TRUE(
7500      (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7501  EXPECT_TRUE(
7502      (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7503  EXPECT_TRUE((
7504      std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7505                                      char, int, int, int, int>::type>::value));
7506}
7507
7508// FlatTuple
7509TEST(FlatTuple, Basic) {
7510  using testing::internal::FlatTuple;
7511
7512  FlatTuple<int, double, const char*> tuple = {};
7513  EXPECT_EQ(0, tuple.Get<0>());
7514  EXPECT_EQ(0.0, tuple.Get<1>());
7515  EXPECT_EQ(nullptr, tuple.Get<2>());
7516
7517  tuple = FlatTuple<int, double, const char*>(
7518      testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7519  EXPECT_EQ(7, tuple.Get<0>());
7520  EXPECT_EQ(3.2, tuple.Get<1>());
7521  EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7522
7523  tuple.Get<1>() = 5.1;
7524  EXPECT_EQ(5.1, tuple.Get<1>());
7525}
7526
7527namespace {
7528std::string AddIntToString(int i, const std::string& s) {
7529  return s + std::to_string(i);
7530}
7531}  // namespace
7532
7533TEST(FlatTuple, Apply) {
7534  using testing::internal::FlatTuple;
7535
7536  FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7537                                    5, "Hello"};
7538
7539  // Lambda.
7540  EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7541    return i == static_cast<int>(s.size());
7542  }));
7543
7544  // Function.
7545  EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7546
7547  // Mutating operations.
7548  tuple.Apply([](int& i, std::string& s) {
7549    ++i;
7550    s += s;
7551  });
7552  EXPECT_EQ(tuple.Get<0>(), 6);
7553  EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7554}
7555
7556struct ConstructionCounting {
7557  ConstructionCounting() { ++default_ctor_calls; }
7558  ~ConstructionCounting() { ++dtor_calls; }
7559  ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
7560  ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
7561  ConstructionCounting& operator=(const ConstructionCounting&) {
7562    ++copy_assignment_calls;
7563    return *this;
7564  }
7565  ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7566    ++move_assignment_calls;
7567    return *this;
7568  }
7569
7570  static void Reset() {
7571    default_ctor_calls = 0;
7572    dtor_calls = 0;
7573    copy_ctor_calls = 0;
7574    move_ctor_calls = 0;
7575    copy_assignment_calls = 0;
7576    move_assignment_calls = 0;
7577  }
7578
7579  static int default_ctor_calls;
7580  static int dtor_calls;
7581  static int copy_ctor_calls;
7582  static int move_ctor_calls;
7583  static int copy_assignment_calls;
7584  static int move_assignment_calls;
7585};
7586
7587int ConstructionCounting::default_ctor_calls = 0;
7588int ConstructionCounting::dtor_calls = 0;
7589int ConstructionCounting::copy_ctor_calls = 0;
7590int ConstructionCounting::move_ctor_calls = 0;
7591int ConstructionCounting::copy_assignment_calls = 0;
7592int ConstructionCounting::move_assignment_calls = 0;
7593
7594TEST(FlatTuple, ConstructorCalls) {
7595  using testing::internal::FlatTuple;
7596
7597  // Default construction.
7598  ConstructionCounting::Reset();
7599  { FlatTuple<ConstructionCounting> tuple; }
7600  EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7601  EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7602  EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7603  EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7604  EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7605  EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7606
7607  // Copy construction.
7608  ConstructionCounting::Reset();
7609  {
7610    ConstructionCounting elem;
7611    FlatTuple<ConstructionCounting> tuple{
7612        testing::internal::FlatTupleConstructTag{}, elem};
7613  }
7614  EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7615  EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7616  EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7617  EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7618  EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7619  EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7620
7621  // Move construction.
7622  ConstructionCounting::Reset();
7623  {
7624    FlatTuple<ConstructionCounting> tuple{
7625        testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7626  }
7627  EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7628  EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7629  EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7630  EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7631  EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7632  EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7633
7634  // Copy assignment.
7635  // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7636  // elements
7637  ConstructionCounting::Reset();
7638  {
7639    FlatTuple<ConstructionCounting> tuple;
7640    ConstructionCounting elem;
7641    tuple.Get<0>() = elem;
7642  }
7643  EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7644  EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7645  EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7646  EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7647  EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7648  EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7649
7650  // Move assignment.
7651  // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7652  // elements
7653  ConstructionCounting::Reset();
7654  {
7655    FlatTuple<ConstructionCounting> tuple;
7656    tuple.Get<0>() = ConstructionCounting{};
7657  }
7658  EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7659  EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7660  EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7661  EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7662  EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7663  EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7664
7665  ConstructionCounting::Reset();
7666}
7667
7668TEST(FlatTuple, ManyTypes) {
7669  using testing::internal::FlatTuple;
7670
7671  // Instantiate FlatTuple with 257 ints.
7672  // Tests show that we can do it with thousands of elements, but very long
7673  // compile times makes it unusuitable for this test.
7674#define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7675#define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7676#define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7677#define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7678#define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7679#define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7680
7681  // Let's make sure that we can have a very long list of types without blowing
7682  // up the template instantiation depth.
7683  FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7684
7685  tuple.Get<0>() = 7;
7686  tuple.Get<99>() = 17;
7687  tuple.Get<256>() = 1000;
7688  EXPECT_EQ(7, tuple.Get<0>());
7689  EXPECT_EQ(17, tuple.Get<99>());
7690  EXPECT_EQ(1000, tuple.Get<256>());
7691}
7692
7693// Tests SkipPrefix().
7694
7695TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7696  const char* const str = "hello";
7697
7698  const char* p = str;
7699  EXPECT_TRUE(SkipPrefix("", &p));
7700  EXPECT_EQ(str, p);
7701
7702  p = str;
7703  EXPECT_TRUE(SkipPrefix("hell", &p));
7704  EXPECT_EQ(str + 4, p);
7705}
7706
7707TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7708  const char* const str = "world";
7709
7710  const char* p = str;
7711  EXPECT_FALSE(SkipPrefix("W", &p));
7712  EXPECT_EQ(str, p);
7713
7714  p = str;
7715  EXPECT_FALSE(SkipPrefix("world!", &p));
7716  EXPECT_EQ(str, p);
7717}
7718
7719// Tests ad_hoc_test_result().
7720TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7721  const testing::TestResult& test_result =
7722      testing::UnitTest::GetInstance()->ad_hoc_test_result();
7723  EXPECT_FALSE(test_result.Failed());
7724}
7725
7726class DynamicUnitTestFixture : public testing::Test {};
7727
7728class DynamicTest : public DynamicUnitTestFixture {
7729  void TestBody() override { EXPECT_TRUE(true); }
7730};
7731
7732auto* dynamic_test = testing::RegisterTest(
7733    "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
7734    __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7735
7736TEST(RegisterTest, WasRegistered) {
7737  const auto& unittest = testing::UnitTest::GetInstance();
7738  for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7739    auto* tests = unittest->GetTestSuite(i);
7740    if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7741    for (int j = 0; j < tests->total_test_count(); ++j) {
7742      if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7743      // Found it.
7744      EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7745      EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7746      return;
7747    }
7748  }
7749
7750  FAIL() << "Didn't find the test!";
7751}
7752
7753// Test that the pattern globbing algorithm is linear. If not, this test should
7754// time out.
7755TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
7756  std::string name(100, 'a');  // Construct the string (a^100)b
7757  name.push_back('b');
7758
7759  std::string pattern;  // Construct the string ((a*)^100)b
7760  for (int i = 0; i < 100; ++i) {
7761    pattern.append("a*");
7762  }
7763  pattern.push_back('b');
7764
7765  EXPECT_TRUE(
7766      testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
7767}
7768
7769TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
7770  const std::string name = "aaaa";
7771  EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
7772  EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
7773  EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
7774  EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
7775  EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
7776}
7777
7778TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
7779  EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
7780  EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
7781  EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
7782  EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
7783}
7784