1/*
2 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "inner.h"
26
27#if BR_INT128 || BR_UMUL128
28
29#if BR_UMUL128
30#include <intrin.h>
31#endif
32
33static const unsigned char GEN[] = {
34	0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
35	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
36	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
37	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
38};
39
40static const unsigned char ORDER[] = {
41	0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
42	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
43	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
44	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
45};
46
47static const unsigned char *
48api_generator(int curve, size_t *len)
49{
50	(void)curve;
51	*len = 32;
52	return GEN;
53}
54
55static const unsigned char *
56api_order(int curve, size_t *len)
57{
58	(void)curve;
59	*len = 32;
60	return ORDER;
61}
62
63static size_t
64api_xoff(int curve, size_t *len)
65{
66	(void)curve;
67	*len = 32;
68	return 0;
69}
70
71/*
72 * A field element is encoded as five 64-bit integers, in basis 2^51.
73 * Limbs may be occasionally larger than 2^51, to save on carry
74 * propagation costs.
75 */
76
77#define MASK51   (((uint64_t)1 << 51) - (uint64_t)1)
78
79/*
80 * Swap two field elements, conditionally on a flag.
81 */
82static inline void
83f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
84{
85	uint64_t m, w;
86
87	m = -(uint64_t)ctl;
88	w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
89	w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
90	w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
91	w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
92	w = m & (a[4] ^ b[4]); a[4] ^= w; b[4] ^= w;
93}
94
95/*
96 * Addition with no carry propagation. Limbs double in size.
97 */
98static inline void
99f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
100{
101	d[0] = a[0] + b[0];
102	d[1] = a[1] + b[1];
103	d[2] = a[2] + b[2];
104	d[3] = a[3] + b[3];
105	d[4] = a[4] + b[4];
106}
107
108/*
109 * Subtraction.
110 * On input, limbs must fit on 60 bits each. On output, result is
111 * partially reduced, with max value 2^255+19456; moreover, all
112 * limbs will fit on 51 bits, except the low limb, which may have
113 * value up to 2^51+19455.
114 */
115static inline void
116f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
117{
118	uint64_t cc, w;
119
120	/*
121	 * We compute d = (2^255-19)*1024 + a - b. Since the limbs
122	 * fit on 60 bits, the maximum value of operands are slightly
123	 * more than 2^264, but much less than 2^265-19456. This
124	 * ensures that the result is positive.
125	 */
126
127	/*
128	 * Initial carry is 19456, since we add 2^265-19456. Each
129	 * individual subtraction may yield a carry up to 513.
130	 */
131	w = a[0] - b[0] - 19456;
132	d[0] = w & MASK51;
133	cc = -(w >> 51) & 0x3FF;
134	w = a[1] - b[1] - cc;
135	d[1] = w & MASK51;
136	cc = -(w >> 51) & 0x3FF;
137	w = a[2] - b[2] - cc;
138	d[2] = w & MASK51;
139	cc = -(w >> 51) & 0x3FF;
140	w = a[3] - b[3] - cc;
141	d[3] = w & MASK51;
142	cc = -(w >> 51) & 0x3FF;
143	d[4] = ((uint64_t)1 << 61) + a[4] - b[4] - cc;
144
145	/*
146	 * Partial reduction. The intermediate result may be up to
147	 * slightly above 2^265, but less than 2^265+2^255. When we
148	 * truncate to 255 bits, the upper bits will be at most 1024.
149	 */
150	d[0] += 19 * (d[4] >> 51);
151	d[4] &= MASK51;
152}
153
154/*
155 * UMUL51(hi, lo, x, y) computes:
156 *
157 *   hi = floor((x * y) / (2^51))
158 *   lo = x * y mod 2^51
159 *
160 * Note that lo < 2^51, but "hi" may be larger, if the input operands are
161 * larger.
162 */
163#if BR_INT128
164
165#define UMUL51(hi, lo, x, y)   do { \
166		unsigned __int128 umul_tmp; \
167		umul_tmp = (unsigned __int128)(x) * (unsigned __int128)(y); \
168		(hi) = (uint64_t)(umul_tmp >> 51); \
169		(lo) = (uint64_t)umul_tmp & MASK51; \
170	} while (0)
171
172#elif BR_UMUL128
173
174#define UMUL51(hi, lo, x, y)   do { \
175		uint64_t umul_hi, umul_lo; \
176		umul_lo = _umul128((x), (y), &umul_hi); \
177		(hi) = (umul_hi << 13) | (umul_lo >> 51); \
178		(lo) = umul_lo & MASK51; \
179	} while (0)
180
181#endif
182
183/*
184 * Multiplication.
185 * On input, limbs must fit on 54 bits each.
186 * On output, limb 0 is at most 2^51 + 155647, and other limbs fit
187 * on 51 bits each.
188 */
189static inline void
190f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
191{
192	uint64_t t[10], hi, lo, w, cc;
193
194	/*
195	 * Perform cross products, accumulating values without carry
196	 * propagation.
197	 *
198	 * Since input limbs fit on 54 bits each, each individual
199	 * UMUL51 will produce a "hi" of less than 2^57. The maximum
200	 * sum will be at most 5*(2^57-1) + 4*(2^51-1) (for t[5]),
201	 * i.e. less than 324*2^51.
202	 */
203
204	UMUL51(t[1], t[0], a[0], b[0]);
205
206	UMUL51(t[2], lo, a[1], b[0]); t[1] += lo;
207	UMUL51(hi, lo, a[0], b[1]); t[1] += lo; t[2] += hi;
208
209	UMUL51(t[3], lo, a[2], b[0]); t[2] += lo;
210	UMUL51(hi, lo, a[1], b[1]); t[2] += lo; t[3] += hi;
211	UMUL51(hi, lo, a[0], b[2]); t[2] += lo; t[3] += hi;
212
213	UMUL51(t[4], lo, a[3], b[0]); t[3] += lo;
214	UMUL51(hi, lo, a[2], b[1]); t[3] += lo; t[4] += hi;
215	UMUL51(hi, lo, a[1], b[2]); t[3] += lo; t[4] += hi;
216	UMUL51(hi, lo, a[0], b[3]); t[3] += lo; t[4] += hi;
217
218	UMUL51(t[5], lo, a[4], b[0]); t[4] += lo;
219	UMUL51(hi, lo, a[3], b[1]); t[4] += lo; t[5] += hi;
220	UMUL51(hi, lo, a[2], b[2]); t[4] += lo; t[5] += hi;
221	UMUL51(hi, lo, a[1], b[3]); t[4] += lo; t[5] += hi;
222	UMUL51(hi, lo, a[0], b[4]); t[4] += lo; t[5] += hi;
223
224	UMUL51(t[6], lo, a[4], b[1]); t[5] += lo;
225	UMUL51(hi, lo, a[3], b[2]); t[5] += lo; t[6] += hi;
226	UMUL51(hi, lo, a[2], b[3]); t[5] += lo; t[6] += hi;
227	UMUL51(hi, lo, a[1], b[4]); t[5] += lo; t[6] += hi;
228
229	UMUL51(t[7], lo, a[4], b[2]); t[6] += lo;
230	UMUL51(hi, lo, a[3], b[3]); t[6] += lo; t[7] += hi;
231	UMUL51(hi, lo, a[2], b[4]); t[6] += lo; t[7] += hi;
232
233	UMUL51(t[8], lo, a[4], b[3]); t[7] += lo;
234	UMUL51(hi, lo, a[3], b[4]); t[7] += lo; t[8] += hi;
235
236	UMUL51(t[9], lo, a[4], b[4]); t[8] += lo;
237
238	/*
239	 * The upper words t[5]..t[9] are folded back into the lower
240	 * words, using the rule that 2^255 = 19 in the field.
241	 *
242	 * Since each t[i] is less than 324*2^51, the additions below
243	 * will yield less than 6480*2^51 in each limb; this fits in
244	 * 64 bits (6480*2^51 < 8192*2^51 = 2^64), hence there is
245	 * no overflow.
246	 */
247	t[0] += 19 * t[5];
248	t[1] += 19 * t[6];
249	t[2] += 19 * t[7];
250	t[3] += 19 * t[8];
251	t[4] += 19 * t[9];
252
253	/*
254	 * Propagate carries.
255	 */
256	w = t[0];
257	d[0] = w & MASK51;
258	cc = w >> 51;
259	w = t[1] + cc;
260	d[1] = w & MASK51;
261	cc = w >> 51;
262	w = t[2] + cc;
263	d[2] = w & MASK51;
264	cc = w >> 51;
265	w = t[3] + cc;
266	d[3] = w & MASK51;
267	cc = w >> 51;
268	w = t[4] + cc;
269	d[4] = w & MASK51;
270	cc = w >> 51;
271
272	/*
273	 * Since the limbs were 64-bit values, the top carry is at
274	 * most 8192 (in practice, that cannot be reached). We simply
275	 * performed a partial reduction.
276	 */
277	d[0] += 19 * cc;
278}
279
280/*
281 * Multiplication by A24 = 121665.
282 * Input must have limbs of 60 bits at most.
283 */
284static inline void
285f255_mul_a24(uint64_t *d, const uint64_t *a)
286{
287	uint64_t t[5], cc, w;
288
289	/*
290	 * 121665 = 15 * 8111. We first multiply by 15, with carry
291	 * propagation and partial reduction.
292	 */
293	w = a[0] * 15;
294	t[0] = w & MASK51;
295	cc = w >> 51;
296	w = a[1] * 15 + cc;
297	t[1] = w & MASK51;
298	cc = w >> 51;
299	w = a[2] * 15 + cc;
300	t[2] = w & MASK51;
301	cc = w >> 51;
302	w = a[3] * 15 + cc;
303	t[3] = w & MASK51;
304	cc = w >> 51;
305	w = a[4] * 15 + cc;
306	t[4] = w & MASK51;
307	t[0] += 19 * (w >> 51);
308
309	/*
310	 * Then multiplication by 8111. At that point, we known that
311	 * t[0] is less than 2^51 + 19*8192, and other limbs are less
312	 * than 2^51; thus, there will be no overflow.
313	 */
314	w = t[0] * 8111;
315	d[0] = w & MASK51;
316	cc = w >> 51;
317	w = t[1] * 8111 + cc;
318	d[1] = w & MASK51;
319	cc = w >> 51;
320	w = t[2] * 8111 + cc;
321	d[2] = w & MASK51;
322	cc = w >> 51;
323	w = t[3] * 8111 + cc;
324	d[3] = w & MASK51;
325	cc = w >> 51;
326	w = t[4] * 8111 + cc;
327	d[4] = w & MASK51;
328	d[0] += 19 * (w >> 51);
329}
330
331/*
332 * Finalize reduction.
333 * On input, limbs must fit on 51 bits, except possibly the low limb,
334 * which may be slightly above 2^51.
335 */
336static inline void
337f255_final_reduce(uint64_t *a)
338{
339	uint64_t t[5], cc, w;
340
341	/*
342	 * We add 19. If the result (in t[]) is below 2^255, then a[]
343	 * is already less than 2^255-19, thus already reduced.
344	 * Otherwise, we subtract 2^255 from t[], in which case we
345	 * have t = a - (2^255-19), and that's our result.
346	 */
347	w = a[0] + 19;
348	t[0] = w & MASK51;
349	cc = w >> 51;
350	w = a[1] + cc;
351	t[1] = w & MASK51;
352	cc = w >> 51;
353	w = a[2] + cc;
354	t[2] = w & MASK51;
355	cc = w >> 51;
356	w = a[3] + cc;
357	t[3] = w & MASK51;
358	cc = w >> 51;
359	w = a[4] + cc;
360	t[4] = w & MASK51;
361	cc = w >> 51;
362
363	/*
364	 * The bit 255 of t is in cc. If that bit is 0, when a[] must
365	 * be unchanged; otherwise, it must be replaced with t[].
366	 */
367	cc = -cc;
368	a[0] ^= cc & (a[0] ^ t[0]);
369	a[1] ^= cc & (a[1] ^ t[1]);
370	a[2] ^= cc & (a[2] ^ t[2]);
371	a[3] ^= cc & (a[3] ^ t[3]);
372	a[4] ^= cc & (a[4] ^ t[4]);
373}
374
375static uint32_t
376api_mul(unsigned char *G, size_t Glen,
377	const unsigned char *kb, size_t kblen, int curve)
378{
379	unsigned char k[32];
380	uint64_t x1[5], x2[5], z2[5], x3[5], z3[5];
381	uint32_t swap;
382	int i;
383
384	(void)curve;
385
386	/*
387	 * Points are encoded over exactly 32 bytes. Multipliers must fit
388	 * in 32 bytes as well.
389	 */
390	if (Glen != 32 || kblen > 32) {
391		return 0;
392	}
393
394	/*
395	 * RFC 7748 mandates that the high bit of the last point byte must
396	 * be ignored/cleared; the "& MASK51" in the initialization for
397	 * x1[4] clears that bit.
398	 */
399	x1[0] = br_dec64le(&G[0]) & MASK51;
400	x1[1] = (br_dec64le(&G[6]) >> 3) & MASK51;
401	x1[2] = (br_dec64le(&G[12]) >> 6) & MASK51;
402	x1[3] = (br_dec64le(&G[19]) >> 1) & MASK51;
403	x1[4] = (br_dec64le(&G[24]) >> 12) & MASK51;
404
405	/*
406	 * We can use memset() to clear values, because exact-width types
407	 * like uint64_t are guaranteed to have no padding bits or
408	 * trap representations.
409	 */
410	memset(x2, 0, sizeof x2);
411	x2[0] = 1;
412	memset(z2, 0, sizeof z2);
413	memcpy(x3, x1, sizeof x1);
414	memcpy(z3, x2, sizeof x2);
415
416	/*
417	 * The multiplier is provided in big-endian notation, and
418	 * possibly shorter than 32 bytes.
419	 */
420	memset(k, 0, (sizeof k) - kblen);
421	memcpy(k + (sizeof k) - kblen, kb, kblen);
422	k[31] &= 0xF8;
423	k[0] &= 0x7F;
424	k[0] |= 0x40;
425
426	swap = 0;
427
428	for (i = 254; i >= 0; i --) {
429		uint64_t a[5], aa[5], b[5], bb[5], e[5];
430		uint64_t c[5], d[5], da[5], cb[5];
431		uint32_t kt;
432
433		kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
434		swap ^= kt;
435		f255_cswap(x2, x3, swap);
436		f255_cswap(z2, z3, swap);
437		swap = kt;
438
439		/*
440		 * At that point, limbs of x_2 and z_2 are assumed to fit
441		 * on at most 52 bits each.
442		 *
443		 * Each f255_add() adds one bit to the maximum range of
444		 * the values, but f255_sub() and f255_mul() bring back
445		 * the limbs into 52 bits. All f255_add() outputs are
446		 * used only as inputs for f255_mul(), which ensures
447		 * that limbs remain in the proper range.
448		 */
449
450		/* A = x_2 + z_2   -- limbs fit on 53 bits each */
451		f255_add(a, x2, z2);
452
453		/* AA = A^2 */
454		f255_mul(aa, a, a);
455
456		/* B = x_2 - z_2 */
457		f255_sub(b, x2, z2);
458
459		/* BB = B^2 */
460		f255_mul(bb, b, b);
461
462		/* E = AA - BB */
463		f255_sub(e, aa, bb);
464
465		/* C = x_3 + z_3   -- limbs fit on 53 bits each */
466		f255_add(c, x3, z3);
467
468		/* D = x_3 - z_3 */
469		f255_sub(d, x3, z3);
470
471		/* DA = D * A */
472		f255_mul(da, d, a);
473
474		/* CB = C * B */
475		f255_mul(cb, c, b);
476
477		/* x_3 = (DA + CB)^2 */
478		f255_add(x3, da, cb);
479		f255_mul(x3, x3, x3);
480
481		/* z_3 = x_1 * (DA - CB)^2 */
482		f255_sub(z3, da, cb);
483		f255_mul(z3, z3, z3);
484		f255_mul(z3, x1, z3);
485
486		/* x_2 = AA * BB */
487		f255_mul(x2, aa, bb);
488
489		/* z_2 = E * (AA + a24 * E) */
490		f255_mul_a24(z2, e);
491		f255_add(z2, aa, z2);
492		f255_mul(z2, e, z2);
493	}
494
495	f255_cswap(x2, x3, swap);
496	f255_cswap(z2, z3, swap);
497
498	/*
499	 * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
500	 * most non-squarings. We use x1 and x3, now useless, as temporaries.
501	 */
502	memcpy(x1, z2, sizeof z2);
503	for (i = 0; i < 15; i ++) {
504		f255_mul(x1, x1, x1);
505		f255_mul(x1, x1, z2);
506	}
507	memcpy(x3, x1, sizeof x1);
508	for (i = 0; i < 14; i ++) {
509		int j;
510
511		for (j = 0; j < 16; j ++) {
512			f255_mul(x3, x3, x3);
513		}
514		f255_mul(x3, x3, x1);
515	}
516	for (i = 14; i >= 0; i --) {
517		f255_mul(x3, x3, x3);
518		if ((0xFFEB >> i) & 1) {
519			f255_mul(x3, z2, x3);
520		}
521	}
522
523	/*
524	 * Compute x2/z2. We have 1/z2 in x3.
525	 */
526	f255_mul(x2, x2, x3);
527	f255_final_reduce(x2);
528
529	/*
530	 * Encode the final x2 value in little-endian. We first assemble
531	 * the limbs into 64-bit values.
532	 */
533	x2[0] |= x2[1] << 51;
534	x2[1] = (x2[1] >> 13) | (x2[2] << 38);
535	x2[2] = (x2[2] >> 26) | (x2[3] << 25);
536	x2[3] = (x2[3] >> 39) | (x2[4] << 12);
537	br_enc64le(G, x2[0]);
538	br_enc64le(G + 8, x2[1]);
539	br_enc64le(G + 16, x2[2]);
540	br_enc64le(G + 24, x2[3]);
541	return 1;
542}
543
544static size_t
545api_mulgen(unsigned char *R,
546	const unsigned char *x, size_t xlen, int curve)
547{
548	const unsigned char *G;
549	size_t Glen;
550
551	G = api_generator(curve, &Glen);
552	memcpy(R, G, Glen);
553	api_mul(R, Glen, x, xlen, curve);
554	return Glen;
555}
556
557static uint32_t
558api_muladd(unsigned char *A, const unsigned char *B, size_t len,
559	const unsigned char *x, size_t xlen,
560	const unsigned char *y, size_t ylen, int curve)
561{
562	/*
563	 * We don't implement this method, since it is used for ECDSA
564	 * only, and there is no ECDSA over Curve25519 (which instead
565	 * uses EdDSA).
566	 */
567	(void)A;
568	(void)B;
569	(void)len;
570	(void)x;
571	(void)xlen;
572	(void)y;
573	(void)ylen;
574	(void)curve;
575	return 0;
576}
577
578/* see bearssl_ec.h */
579const br_ec_impl br_ec_c25519_m62 = {
580	(uint32_t)0x20000000,
581	&api_generator,
582	&api_order,
583	&api_xoff,
584	&api_mul,
585	&api_mulgen,
586	&api_muladd
587};
588
589/* see bearssl_ec.h */
590const br_ec_impl *
591br_ec_c25519_m62_get(void)
592{
593	return &br_ec_c25519_m62;
594}
595
596#else
597
598/* see bearssl_ec.h */
599const br_ec_impl *
600br_ec_c25519_m62_get(void)
601{
602	return 0;
603}
604
605#endif
606