1/*
2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#ifndef BR_BEARSSL_SSL_H__
26#define BR_BEARSSL_SSL_H__
27
28#include <stddef.h>
29#include <stdint.h>
30
31#include "bearssl_block.h"
32#include "bearssl_hash.h"
33#include "bearssl_hmac.h"
34#include "bearssl_prf.h"
35#include "bearssl_rand.h"
36#include "bearssl_x509.h"
37
38#ifdef __cplusplus
39extern "C" {
40#endif
41
42/** \file bearssl_ssl.h
43 *
44 * # SSL
45 *
46 * For an overview of the SSL/TLS API, see [the BearSSL Web
47 * site](https://www.bearssl.org/api1.html).
48 *
49 * The `BR_TLS_*` constants correspond to the standard cipher suites and
50 * their values in the [IANA
51 * registry](http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4).
52 *
53 * The `BR_ALERT_*` constants are for standard TLS alert messages. When
54 * a fatal alert message is sent of received, then the SSL engine context
55 * status is set to the sum of that alert value (an integer in the 0..255
56 * range) and a fixed offset (`BR_ERR_SEND_FATAL_ALERT` for a sent alert,
57 * `BR_ERR_RECV_FATAL_ALERT` for a received alert).
58 */
59
60/** \brief Optimal input buffer size. */
61#define BR_SSL_BUFSIZE_INPUT    (16384 + 325)
62
63/** \brief Optimal output buffer size. */
64#define BR_SSL_BUFSIZE_OUTPUT   (16384 + 85)
65
66/** \brief Optimal buffer size for monodirectional engine
67    (shared input/output buffer). */
68#define BR_SSL_BUFSIZE_MONO     BR_SSL_BUFSIZE_INPUT
69
70/** \brief Optimal buffer size for bidirectional engine
71    (single buffer split into two separate input/output buffers). */
72#define BR_SSL_BUFSIZE_BIDI     (BR_SSL_BUFSIZE_INPUT + BR_SSL_BUFSIZE_OUTPUT)
73
74/*
75 * Constants for known SSL/TLS protocol versions (SSL 3.0, TLS 1.0, TLS 1.1
76 * and TLS 1.2). Note that though there is a constant for SSL 3.0, that
77 * protocol version is not actually supported.
78 */
79
80/** \brief Protocol version: SSL 3.0 (unsupported). */
81#define BR_SSL30   0x0300
82/** \brief Protocol version: TLS 1.0. */
83#define BR_TLS10   0x0301
84/** \brief Protocol version: TLS 1.1. */
85#define BR_TLS11   0x0302
86/** \brief Protocol version: TLS 1.2. */
87#define BR_TLS12   0x0303
88
89/*
90 * Error constants. They are used to report the reason why a context has
91 * been marked as failed.
92 *
93 * Implementation note: SSL-level error codes should be in the 1..31
94 * range. The 32..63 range is for certificate decoding and validation
95 * errors. Received fatal alerts imply an error code in the 256..511 range.
96 */
97
98/** \brief SSL status: no error so far (0). */
99#define BR_ERR_OK                      0
100
101/** \brief SSL status: caller-provided parameter is incorrect. */
102#define BR_ERR_BAD_PARAM               1
103
104/** \brief SSL status: operation requested by the caller cannot be applied
105    with the current context state (e.g. reading data while outgoing data
106    is waiting to be sent). */
107#define BR_ERR_BAD_STATE               2
108
109/** \brief SSL status: incoming protocol or record version is unsupported. */
110#define BR_ERR_UNSUPPORTED_VERSION     3
111
112/** \brief SSL status: incoming record version does not match the expected
113    version. */
114#define BR_ERR_BAD_VERSION             4
115
116/** \brief SSL status: incoming record length is invalid. */
117#define BR_ERR_BAD_LENGTH              5
118
119/** \brief SSL status: incoming record is too large to be processed, or
120    buffer is too small for the handshake message to send. */
121#define BR_ERR_TOO_LARGE               6
122
123/** \brief SSL status: decryption found an invalid padding, or the record
124    MAC is not correct. */
125#define BR_ERR_BAD_MAC                 7
126
127/** \brief SSL status: no initial entropy was provided, and none can be
128    obtained from the OS. */
129#define BR_ERR_NO_RANDOM               8
130
131/** \brief SSL status: incoming record type is unknown. */
132#define BR_ERR_UNKNOWN_TYPE            9
133
134/** \brief SSL status: incoming record or message has wrong type with
135    regards to the current engine state. */
136#define BR_ERR_UNEXPECTED             10
137
138/** \brief SSL status: ChangeCipherSpec message from the peer has invalid
139    contents. */
140#define BR_ERR_BAD_CCS                12
141
142/** \brief SSL status: alert message from the peer has invalid contents
143    (odd length). */
144#define BR_ERR_BAD_ALERT              13
145
146/** \brief SSL status: incoming handshake message decoding failed. */
147#define BR_ERR_BAD_HANDSHAKE          14
148
149/** \brief SSL status: ServerHello contains a session ID which is larger
150    than 32 bytes. */
151#define BR_ERR_OVERSIZED_ID           15
152
153/** \brief SSL status: server wants to use a cipher suite that we did
154    not claim to support. This is also reported if we tried to advertise
155    a cipher suite that we do not support. */
156#define BR_ERR_BAD_CIPHER_SUITE       16
157
158/** \brief SSL status: server wants to use a compression that we did not
159    claim to support. */
160#define BR_ERR_BAD_COMPRESSION        17
161
162/** \brief SSL status: server's max fragment length does not match
163    client's. */
164#define BR_ERR_BAD_FRAGLEN            18
165
166/** \brief SSL status: secure renegotiation failed. */
167#define BR_ERR_BAD_SECRENEG           19
168
169/** \brief SSL status: server sent an extension type that we did not
170    announce, or used the same extension type several times in a single
171    ServerHello. */
172#define BR_ERR_EXTRA_EXTENSION        20
173
174/** \brief SSL status: invalid Server Name Indication contents (when
175    used by the server, this extension shall be empty). */
176#define BR_ERR_BAD_SNI                21
177
178/** \brief SSL status: invalid ServerHelloDone from the server (length
179    is not 0). */
180#define BR_ERR_BAD_HELLO_DONE         22
181
182/** \brief SSL status: internal limit exceeded (e.g. server's public key
183    is too large). */
184#define BR_ERR_LIMIT_EXCEEDED         23
185
186/** \brief SSL status: Finished message from peer does not match the
187    expected value. */
188#define BR_ERR_BAD_FINISHED           24
189
190/** \brief SSL status: session resumption attempt with distinct version
191    or cipher suite. */
192#define BR_ERR_RESUME_MISMATCH        25
193
194/** \brief SSL status: unsupported or invalid algorithm (ECDHE curve,
195    signature algorithm, hash function). */
196#define BR_ERR_INVALID_ALGORITHM      26
197
198/** \brief SSL status: invalid signature (on ServerKeyExchange from
199    server, or in CertificateVerify from client). */
200#define BR_ERR_BAD_SIGNATURE          27
201
202/** \brief SSL status: peer's public key does not have the proper type
203    or is not allowed for requested operation. */
204#define BR_ERR_WRONG_KEY_USAGE        28
205
206/** \brief SSL status: client did not send a certificate upon request,
207    or the client certificate could not be validated. */
208#define BR_ERR_NO_CLIENT_AUTH         29
209
210/** \brief SSL status: I/O error or premature close on underlying
211    transport stream. This error code is set only by the simplified
212    I/O API ("br_sslio_*"). */
213#define BR_ERR_IO                     31
214
215/** \brief SSL status: base value for a received fatal alert.
216
217    When a fatal alert is received from the peer, the alert value
218    is added to this constant. */
219#define BR_ERR_RECV_FATAL_ALERT      256
220
221/** \brief SSL status: base value for a sent fatal alert.
222
223    When a fatal alert is sent to the peer, the alert value is added
224    to this constant. */
225#define BR_ERR_SEND_FATAL_ALERT      512
226
227/* ===================================================================== */
228
229/**
230 * \brief Decryption engine for SSL.
231 *
232 * When processing incoming records, the SSL engine will use a decryption
233 * engine that uses a specific context structure, and has a set of
234 * methods (a vtable) that follows this template.
235 *
236 * The decryption engine is responsible for applying decryption, verifying
237 * MAC, and keeping track of the record sequence number.
238 */
239typedef struct br_sslrec_in_class_ br_sslrec_in_class;
240struct br_sslrec_in_class_ {
241	/**
242	 * \brief Context size (in bytes).
243	 */
244	size_t context_size;
245
246	/**
247	 * \brief Test validity of the incoming record length.
248	 *
249	 * This function returns 1 if the announced length for an
250	 * incoming record is valid, 0 otherwise,
251	 *
252	 * \param ctx          decryption engine context.
253	 * \param record_len   incoming record length.
254	 * \return  1 of a valid length, 0 otherwise.
255	 */
256	int (*check_length)(const br_sslrec_in_class *const *ctx,
257		size_t record_len);
258
259	/**
260	 * \brief Decrypt the incoming record.
261	 *
262	 * This function may assume that the record length is valid
263	 * (it has been previously tested with `check_length()`).
264	 * Decryption is done in place; `*len` is updated with the
265	 * cleartext length, and the address of the first plaintext
266	 * byte is returned. If the record is correct but empty, then
267	 * `*len` is set to 0 and a non-`NULL` pointer is returned.
268	 *
269	 * On decryption/MAC error, `NULL` is returned.
270	 *
271	 * \param ctx           decryption engine context.
272	 * \param record_type   record type (23 for application data, etc).
273	 * \param version       record version.
274	 * \param payload       address of encrypted payload.
275	 * \param len           pointer to payload length (updated).
276	 * \return  pointer to plaintext, or `NULL` on error.
277	 */
278	unsigned char *(*decrypt)(const br_sslrec_in_class **ctx,
279		int record_type, unsigned version,
280		void *payload, size_t *len);
281};
282
283/**
284 * \brief Encryption engine for SSL.
285 *
286 * When building outgoing records, the SSL engine will use an encryption
287 * engine that uses a specific context structure, and has a set of
288 * methods (a vtable) that follows this template.
289 *
290 * The encryption engine is responsible for applying encryption and MAC,
291 * and keeping track of the record sequence number.
292 */
293typedef struct br_sslrec_out_class_ br_sslrec_out_class;
294struct br_sslrec_out_class_ {
295	/**
296	 * \brief Context size (in bytes).
297	 */
298	size_t context_size;
299
300	/**
301	 * \brief Compute maximum plaintext sizes and offsets.
302	 *
303	 * When this function is called, the `*start` and `*end`
304	 * values contain offsets designating the free area in the
305	 * outgoing buffer for plaintext data; that free area is
306	 * preceded by a 5-byte space which will receive the record
307	 * header.
308	 *
309	 * The `max_plaintext()` function is responsible for adjusting
310	 * both `*start` and `*end` to make room for any record-specific
311	 * header, MAC, padding, and possible split.
312	 *
313	 * \param ctx     encryption engine context.
314	 * \param start   pointer to start of plaintext offset (updated).
315	 * \param end     pointer to start of plaintext offset (updated).
316	 */
317	void (*max_plaintext)(const br_sslrec_out_class *const *ctx,
318		size_t *start, size_t *end);
319
320	/**
321	 * \brief Perform record encryption.
322	 *
323	 * This function encrypts the record. The plaintext address and
324	 * length are provided. Returned value is the start of the
325	 * encrypted record (or sequence of records, if a split was
326	 * performed), _including_ the 5-byte header, and `*len` is
327	 * adjusted to the total size of the record(s), there again
328	 * including the header(s).
329	 *
330	 * \param ctx           decryption engine context.
331	 * \param record_type   record type (23 for application data, etc).
332	 * \param version       record version.
333	 * \param plaintext     address of plaintext.
334	 * \param len           pointer to plaintext length (updated).
335	 * \return  pointer to start of built record.
336	 */
337	unsigned char *(*encrypt)(const br_sslrec_out_class **ctx,
338		int record_type, unsigned version,
339		void *plaintext, size_t *len);
340};
341
342/**
343 * \brief Context for a no-encryption engine.
344 *
345 * The no-encryption engine processes outgoing records during the initial
346 * handshake, before encryption is applied.
347 */
348typedef struct {
349	/** \brief No-encryption engine vtable. */
350	const br_sslrec_out_class *vtable;
351} br_sslrec_out_clear_context;
352
353/** \brief Static, constant vtable for the no-encryption engine. */
354extern const br_sslrec_out_class br_sslrec_out_clear_vtable;
355
356/* ===================================================================== */
357
358/**
359 * \brief Record decryption engine class, for CBC mode.
360 *
361 * This class type extends the decryption engine class with an
362 * initialisation method that receives the parameters needed
363 * for CBC processing: block cipher implementation, block cipher key,
364 * HMAC parameters (hash function, key, MAC length), and IV. If the
365 * IV is `NULL`, then a per-record IV will be used (TLS 1.1+).
366 */
367typedef struct br_sslrec_in_cbc_class_ br_sslrec_in_cbc_class;
368struct br_sslrec_in_cbc_class_ {
369	/**
370	 * \brief Superclass, as first vtable field.
371	 */
372	br_sslrec_in_class inner;
373
374	/**
375	 * \brief Engine initialisation method.
376	 *
377	 * This method sets the vtable field in the context.
378	 *
379	 * \param ctx           context to initialise.
380	 * \param bc_impl       block cipher implementation (CBC decryption).
381	 * \param bc_key        block cipher key.
382	 * \param bc_key_len    block cipher key length (in bytes).
383	 * \param dig_impl      hash function for HMAC.
384	 * \param mac_key       HMAC key.
385	 * \param mac_key_len   HMAC key length (in bytes).
386	 * \param mac_out_len   HMAC output length (in bytes).
387	 * \param iv            initial IV (or `NULL`).
388	 */
389	void (*init)(const br_sslrec_in_cbc_class **ctx,
390		const br_block_cbcdec_class *bc_impl,
391		const void *bc_key, size_t bc_key_len,
392		const br_hash_class *dig_impl,
393		const void *mac_key, size_t mac_key_len, size_t mac_out_len,
394		const void *iv);
395};
396
397/**
398 * \brief Record encryption engine class, for CBC mode.
399 *
400 * This class type extends the encryption engine class with an
401 * initialisation method that receives the parameters needed
402 * for CBC processing: block cipher implementation, block cipher key,
403 * HMAC parameters (hash function, key, MAC length), and IV. If the
404 * IV is `NULL`, then a per-record IV will be used (TLS 1.1+).
405 */
406typedef struct br_sslrec_out_cbc_class_ br_sslrec_out_cbc_class;
407struct br_sslrec_out_cbc_class_ {
408	/**
409	 * \brief Superclass, as first vtable field.
410	 */
411	br_sslrec_out_class inner;
412
413	/**
414	 * \brief Engine initialisation method.
415	 *
416	 * This method sets the vtable field in the context.
417	 *
418	 * \param ctx           context to initialise.
419	 * \param bc_impl       block cipher implementation (CBC encryption).
420	 * \param bc_key        block cipher key.
421	 * \param bc_key_len    block cipher key length (in bytes).
422	 * \param dig_impl      hash function for HMAC.
423	 * \param mac_key       HMAC key.
424	 * \param mac_key_len   HMAC key length (in bytes).
425	 * \param mac_out_len   HMAC output length (in bytes).
426	 * \param iv            initial IV (or `NULL`).
427	 */
428	void (*init)(const br_sslrec_out_cbc_class **ctx,
429		const br_block_cbcenc_class *bc_impl,
430		const void *bc_key, size_t bc_key_len,
431		const br_hash_class *dig_impl,
432		const void *mac_key, size_t mac_key_len, size_t mac_out_len,
433		const void *iv);
434};
435
436/**
437 * \brief Context structure for decrypting incoming records with
438 * CBC + HMAC.
439 *
440 * The first field points to the vtable. The other fields are opaque
441 * and shall not be accessed directly.
442 */
443typedef struct {
444	/** \brief Pointer to vtable. */
445	const br_sslrec_in_cbc_class *vtable;
446#ifndef BR_DOXYGEN_IGNORE
447	uint64_t seq;
448	union {
449		const br_block_cbcdec_class *vtable;
450		br_aes_gen_cbcdec_keys aes;
451		br_des_gen_cbcdec_keys des;
452	} bc;
453	br_hmac_key_context mac;
454	size_t mac_len;
455	unsigned char iv[16];
456	int explicit_IV;
457#endif
458} br_sslrec_in_cbc_context;
459
460/**
461 * \brief Static, constant vtable for record decryption with CBC.
462 */
463extern const br_sslrec_in_cbc_class br_sslrec_in_cbc_vtable;
464
465/**
466 * \brief Context structure for encrypting outgoing records with
467 * CBC + HMAC.
468 *
469 * The first field points to the vtable. The other fields are opaque
470 * and shall not be accessed directly.
471 */
472typedef struct {
473	/** \brief Pointer to vtable. */
474	const br_sslrec_out_cbc_class *vtable;
475#ifndef BR_DOXYGEN_IGNORE
476	uint64_t seq;
477	union {
478		const br_block_cbcenc_class *vtable;
479		br_aes_gen_cbcenc_keys aes;
480		br_des_gen_cbcenc_keys des;
481	} bc;
482	br_hmac_key_context mac;
483	size_t mac_len;
484	unsigned char iv[16];
485	int explicit_IV;
486#endif
487} br_sslrec_out_cbc_context;
488
489/**
490 * \brief Static, constant vtable for record encryption with CBC.
491 */
492extern const br_sslrec_out_cbc_class br_sslrec_out_cbc_vtable;
493
494/* ===================================================================== */
495
496/**
497 * \brief Record decryption engine class, for GCM mode.
498 *
499 * This class type extends the decryption engine class with an
500 * initialisation method that receives the parameters needed
501 * for GCM processing: block cipher implementation, block cipher key,
502 * GHASH implementation, and 4-byte IV.
503 */
504typedef struct br_sslrec_in_gcm_class_ br_sslrec_in_gcm_class;
505struct br_sslrec_in_gcm_class_ {
506	/**
507	 * \brief Superclass, as first vtable field.
508	 */
509	br_sslrec_in_class inner;
510
511	/**
512	 * \brief Engine initialisation method.
513	 *
514	 * This method sets the vtable field in the context.
515	 *
516	 * \param ctx           context to initialise.
517	 * \param bc_impl       block cipher implementation (CTR).
518	 * \param key           block cipher key.
519	 * \param key_len       block cipher key length (in bytes).
520	 * \param gh_impl       GHASH implementation.
521	 * \param iv            static IV (4 bytes).
522	 */
523	void (*init)(const br_sslrec_in_gcm_class **ctx,
524		const br_block_ctr_class *bc_impl,
525		const void *key, size_t key_len,
526		br_ghash gh_impl,
527		const void *iv);
528};
529
530/**
531 * \brief Record encryption engine class, for GCM mode.
532 *
533 * This class type extends the encryption engine class with an
534 * initialisation method that receives the parameters needed
535 * for GCM processing: block cipher implementation, block cipher key,
536 * GHASH implementation, and 4-byte IV.
537 */
538typedef struct br_sslrec_out_gcm_class_ br_sslrec_out_gcm_class;
539struct br_sslrec_out_gcm_class_ {
540	/**
541	 * \brief Superclass, as first vtable field.
542	 */
543	br_sslrec_out_class inner;
544
545	/**
546	 * \brief Engine initialisation method.
547	 *
548	 * This method sets the vtable field in the context.
549	 *
550	 * \param ctx           context to initialise.
551	 * \param bc_impl       block cipher implementation (CTR).
552	 * \param key           block cipher key.
553	 * \param key_len       block cipher key length (in bytes).
554	 * \param gh_impl       GHASH implementation.
555	 * \param iv            static IV (4 bytes).
556	 */
557	void (*init)(const br_sslrec_out_gcm_class **ctx,
558		const br_block_ctr_class *bc_impl,
559		const void *key, size_t key_len,
560		br_ghash gh_impl,
561		const void *iv);
562};
563
564/**
565 * \brief Context structure for processing records with GCM.
566 *
567 * The same context structure is used for encrypting and decrypting.
568 *
569 * The first field points to the vtable. The other fields are opaque
570 * and shall not be accessed directly.
571 */
572typedef struct {
573	/** \brief Pointer to vtable. */
574	union {
575		const void *gen;
576		const br_sslrec_in_gcm_class *in;
577		const br_sslrec_out_gcm_class *out;
578	} vtable;
579#ifndef BR_DOXYGEN_IGNORE
580	uint64_t seq;
581	union {
582		const br_block_ctr_class *vtable;
583		br_aes_gen_ctr_keys aes;
584	} bc;
585	br_ghash gh;
586	unsigned char iv[4];
587	unsigned char h[16];
588#endif
589} br_sslrec_gcm_context;
590
591/**
592 * \brief Static, constant vtable for record decryption with GCM.
593 */
594extern const br_sslrec_in_gcm_class br_sslrec_in_gcm_vtable;
595
596/**
597 * \brief Static, constant vtable for record encryption with GCM.
598 */
599extern const br_sslrec_out_gcm_class br_sslrec_out_gcm_vtable;
600
601/* ===================================================================== */
602
603/**
604 * \brief Record decryption engine class, for ChaCha20+Poly1305.
605 *
606 * This class type extends the decryption engine class with an
607 * initialisation method that receives the parameters needed
608 * for ChaCha20+Poly1305 processing: ChaCha20 implementation,
609 * Poly1305 implementation, key, and 12-byte IV.
610 */
611typedef struct br_sslrec_in_chapol_class_ br_sslrec_in_chapol_class;
612struct br_sslrec_in_chapol_class_ {
613	/**
614	 * \brief Superclass, as first vtable field.
615	 */
616	br_sslrec_in_class inner;
617
618	/**
619	 * \brief Engine initialisation method.
620	 *
621	 * This method sets the vtable field in the context.
622	 *
623	 * \param ctx           context to initialise.
624	 * \param ichacha       ChaCha20 implementation.
625	 * \param ipoly         Poly1305 implementation.
626	 * \param key           secret key (32 bytes).
627	 * \param iv            static IV (12 bytes).
628	 */
629	void (*init)(const br_sslrec_in_chapol_class **ctx,
630		br_chacha20_run ichacha,
631		br_poly1305_run ipoly,
632		const void *key, const void *iv);
633};
634
635/**
636 * \brief Record encryption engine class, for ChaCha20+Poly1305.
637 *
638 * This class type extends the encryption engine class with an
639 * initialisation method that receives the parameters needed
640 * for ChaCha20+Poly1305 processing: ChaCha20 implementation,
641 * Poly1305 implementation, key, and 12-byte IV.
642 */
643typedef struct br_sslrec_out_chapol_class_ br_sslrec_out_chapol_class;
644struct br_sslrec_out_chapol_class_ {
645	/**
646	 * \brief Superclass, as first vtable field.
647	 */
648	br_sslrec_out_class inner;
649
650	/**
651	 * \brief Engine initialisation method.
652	 *
653	 * This method sets the vtable field in the context.
654	 *
655	 * \param ctx           context to initialise.
656	 * \param ichacha       ChaCha20 implementation.
657	 * \param ipoly         Poly1305 implementation.
658	 * \param key           secret key (32 bytes).
659	 * \param iv            static IV (12 bytes).
660	 */
661	void (*init)(const br_sslrec_out_chapol_class **ctx,
662		br_chacha20_run ichacha,
663		br_poly1305_run ipoly,
664		const void *key, const void *iv);
665};
666
667/**
668 * \brief Context structure for processing records with ChaCha20+Poly1305.
669 *
670 * The same context structure is used for encrypting and decrypting.
671 *
672 * The first field points to the vtable. The other fields are opaque
673 * and shall not be accessed directly.
674 */
675typedef struct {
676	/** \brief Pointer to vtable. */
677	union {
678		const void *gen;
679		const br_sslrec_in_chapol_class *in;
680		const br_sslrec_out_chapol_class *out;
681	} vtable;
682#ifndef BR_DOXYGEN_IGNORE
683	uint64_t seq;
684	unsigned char key[32];
685	unsigned char iv[12];
686	br_chacha20_run ichacha;
687	br_poly1305_run ipoly;
688#endif
689} br_sslrec_chapol_context;
690
691/**
692 * \brief Static, constant vtable for record decryption with ChaCha20+Poly1305.
693 */
694extern const br_sslrec_in_chapol_class br_sslrec_in_chapol_vtable;
695
696/**
697 * \brief Static, constant vtable for record encryption with ChaCha20+Poly1305.
698 */
699extern const br_sslrec_out_chapol_class br_sslrec_out_chapol_vtable;
700
701/* ===================================================================== */
702
703/**
704 * \brief Record decryption engine class, for CCM mode.
705 *
706 * This class type extends the decryption engine class with an
707 * initialisation method that receives the parameters needed
708 * for CCM processing: block cipher implementation, block cipher key,
709 * and 4-byte IV.
710 */
711typedef struct br_sslrec_in_ccm_class_ br_sslrec_in_ccm_class;
712struct br_sslrec_in_ccm_class_ {
713	/**
714	 * \brief Superclass, as first vtable field.
715	 */
716	br_sslrec_in_class inner;
717
718	/**
719	 * \brief Engine initialisation method.
720	 *
721	 * This method sets the vtable field in the context.
722	 *
723	 * \param ctx           context to initialise.
724	 * \param bc_impl       block cipher implementation (CTR+CBC).
725	 * \param key           block cipher key.
726	 * \param key_len       block cipher key length (in bytes).
727	 * \param iv            static IV (4 bytes).
728	 * \param tag_len       tag length (in bytes)
729	 */
730	void (*init)(const br_sslrec_in_ccm_class **ctx,
731		const br_block_ctrcbc_class *bc_impl,
732		const void *key, size_t key_len,
733		const void *iv, size_t tag_len);
734};
735
736/**
737 * \brief Record encryption engine class, for CCM mode.
738 *
739 * This class type extends the encryption engine class with an
740 * initialisation method that receives the parameters needed
741 * for CCM processing: block cipher implementation, block cipher key,
742 * and 4-byte IV.
743 */
744typedef struct br_sslrec_out_ccm_class_ br_sslrec_out_ccm_class;
745struct br_sslrec_out_ccm_class_ {
746	/**
747	 * \brief Superclass, as first vtable field.
748	 */
749	br_sslrec_out_class inner;
750
751	/**
752	 * \brief Engine initialisation method.
753	 *
754	 * This method sets the vtable field in the context.
755	 *
756	 * \param ctx           context to initialise.
757	 * \param bc_impl       block cipher implementation (CTR+CBC).
758	 * \param key           block cipher key.
759	 * \param key_len       block cipher key length (in bytes).
760	 * \param iv            static IV (4 bytes).
761	 * \param tag_len       tag length (in bytes)
762	 */
763	void (*init)(const br_sslrec_out_ccm_class **ctx,
764		const br_block_ctrcbc_class *bc_impl,
765		const void *key, size_t key_len,
766		const void *iv, size_t tag_len);
767};
768
769/**
770 * \brief Context structure for processing records with CCM.
771 *
772 * The same context structure is used for encrypting and decrypting.
773 *
774 * The first field points to the vtable. The other fields are opaque
775 * and shall not be accessed directly.
776 */
777typedef struct {
778	/** \brief Pointer to vtable. */
779	union {
780		const void *gen;
781		const br_sslrec_in_ccm_class *in;
782		const br_sslrec_out_ccm_class *out;
783	} vtable;
784#ifndef BR_DOXYGEN_IGNORE
785	uint64_t seq;
786	union {
787		const br_block_ctrcbc_class *vtable;
788		br_aes_gen_ctrcbc_keys aes;
789	} bc;
790	unsigned char iv[4];
791	size_t tag_len;
792#endif
793} br_sslrec_ccm_context;
794
795/**
796 * \brief Static, constant vtable for record decryption with CCM.
797 */
798extern const br_sslrec_in_ccm_class br_sslrec_in_ccm_vtable;
799
800/**
801 * \brief Static, constant vtable for record encryption with CCM.
802 */
803extern const br_sslrec_out_ccm_class br_sslrec_out_ccm_vtable;
804
805/* ===================================================================== */
806
807/**
808 * \brief Type for session parameters, to be saved for session resumption.
809 */
810typedef struct {
811	/** \brief Session ID buffer. */
812	unsigned char session_id[32];
813	/** \brief Session ID length (in bytes, at most 32). */
814	unsigned char session_id_len;
815	/** \brief Protocol version. */
816	uint16_t version;
817	/** \brief Cipher suite. */
818	uint16_t cipher_suite;
819	/** \brief Master secret. */
820	unsigned char master_secret[48];
821} br_ssl_session_parameters;
822
823#ifndef BR_DOXYGEN_IGNORE
824/*
825 * Maximum number of cipher suites supported by a client or server.
826 */
827#define BR_MAX_CIPHER_SUITES   48
828#endif
829
830/**
831 * \brief Context structure for SSL engine.
832 *
833 * This strucuture is common to the client and server; both the client
834 * context (`br_ssl_client_context`) and the server context
835 * (`br_ssl_server_context`) include a `br_ssl_engine_context` as their
836 * first field.
837 *
838 * The engine context manages records, including alerts, closures, and
839 * transitions to new encryption/MAC algorithms. Processing of handshake
840 * records is delegated to externally provided code. This structure
841 * should not be used directly.
842 *
843 * Structure contents are opaque and shall not be accessed directly.
844 */
845typedef struct {
846#ifndef BR_DOXYGEN_IGNORE
847	/*
848	 * The error code. When non-zero, then the state is "failed" and
849	 * no I/O may occur until reset.
850	 */
851	int err;
852
853	/*
854	 * Configured I/O buffers. They are either disjoint, or identical.
855	 */
856	unsigned char *ibuf, *obuf;
857	size_t ibuf_len, obuf_len;
858
859	/*
860	 * Maximum fragment length applies to outgoing records; incoming
861	 * records can be processed as long as they fit in the input
862	 * buffer. It is guaranteed that incoming records at least as big
863	 * as max_frag_len can be processed.
864	 */
865	uint16_t max_frag_len;
866	unsigned char log_max_frag_len;
867	unsigned char peer_log_max_frag_len;
868
869	/*
870	 * Buffering management registers.
871	 */
872	size_t ixa, ixb, ixc;
873	size_t oxa, oxb, oxc;
874	unsigned char iomode;
875	unsigned char incrypt;
876
877	/*
878	 * Shutdown flag: when set to non-zero, incoming record bytes
879	 * will not be accepted anymore. This is used after a close_notify
880	 * has been received: afterwards, the engine no longer claims that
881	 * it could receive bytes from the transport medium.
882	 */
883	unsigned char shutdown_recv;
884
885	/*
886	 * 'record_type_in' is set to the incoming record type when the
887	 * record header has been received.
888	 * 'record_type_out' is used to make the next outgoing record
889	 * header when it is ready to go.
890	 */
891	unsigned char record_type_in, record_type_out;
892
893	/*
894	 * When a record is received, its version is extracted:
895	 * -- if 'version_in' is 0, then it is set to the received version;
896	 * -- otherwise, if the received version is not identical to
897	 *    the 'version_in' contents, then a failure is reported.
898	 *
899	 * This implements the SSL requirement that all records shall
900	 * use the negotiated protocol version, once decided (in the
901	 * ServerHello). It is up to the handshake handler to adjust this
902	 * field when necessary.
903	 */
904	uint16_t version_in;
905
906	/*
907	 * 'version_out' is used when the next outgoing record is ready
908	 * to go.
909	 */
910	uint16_t version_out;
911
912	/*
913	 * Record handler contexts.
914	 */
915	union {
916		const br_sslrec_in_class *vtable;
917		br_sslrec_in_cbc_context cbc;
918		br_sslrec_gcm_context gcm;
919		br_sslrec_chapol_context chapol;
920		br_sslrec_ccm_context ccm;
921	} in;
922	union {
923		const br_sslrec_out_class *vtable;
924		br_sslrec_out_clear_context clear;
925		br_sslrec_out_cbc_context cbc;
926		br_sslrec_gcm_context gcm;
927		br_sslrec_chapol_context chapol;
928		br_sslrec_ccm_context ccm;
929	} out;
930
931	/*
932	 * The "application data" flag. Value:
933	 *   0   handshake is in process, no application data acceptable
934	 *   1   application data can be sent and received
935	 *   2   closing, no application data can be sent, but some
936	 *       can still be received (and discarded)
937	 */
938	unsigned char application_data;
939
940	/*
941	 * Context RNG.
942	 *
943	 *   rng_init_done is initially 0. It is set to 1 when the
944	 *   basic structure of the RNG is set, and 2 when some
945	 *   entropy has been pushed in. The value 2 marks the RNG
946	 *   as "properly seeded".
947	 *
948	 *   rng_os_rand_done is initially 0. It is set to 1 when
949	 *   some seeding from the OS or hardware has been attempted.
950	 */
951	br_hmac_drbg_context rng;
952	int rng_init_done;
953	int rng_os_rand_done;
954
955	/*
956	 * Supported minimum and maximum versions, and cipher suites.
957	 */
958	uint16_t version_min;
959	uint16_t version_max;
960	uint16_t suites_buf[BR_MAX_CIPHER_SUITES];
961	unsigned char suites_num;
962
963	/*
964	 * For clients, the server name to send as a SNI extension. For
965	 * servers, the name received in the SNI extension (if any).
966	 */
967	char server_name[256];
968
969	/*
970	 * "Security parameters". These are filled by the handshake
971	 * handler, and used when switching encryption state.
972	 */
973	unsigned char client_random[32];
974	unsigned char server_random[32];
975	br_ssl_session_parameters session;
976
977	/*
978	 * ECDHE elements: curve and point from the peer. The server also
979	 * uses that buffer for the point to send to the client.
980	 */
981	unsigned char ecdhe_curve;
982	unsigned char ecdhe_point[133];
983	unsigned char ecdhe_point_len;
984
985	/*
986	 * Secure renegotiation (RFC 5746): 'reneg' can be:
987	 *   0   first handshake (server support is not known)
988	 *   1   peer does not support secure renegotiation
989	 *   2   peer supports secure renegotiation
990	 *
991	 * The saved_finished buffer contains the client and the
992	 * server "Finished" values from the last handshake, in
993	 * that order (12 bytes each).
994	 */
995	unsigned char reneg;
996	unsigned char saved_finished[24];
997
998	/*
999	 * Behavioural flags.
1000	 */
1001	uint32_t flags;
1002
1003	/*
1004	 * Context variables for the handshake processor. The 'pad' must
1005	 * be large enough to accommodate an RSA-encrypted pre-master
1006	 * secret, or an RSA signature; since we want to support up to
1007	 * RSA-4096, this means at least 512 bytes. (Other pad usages
1008	 * require its length to be at least 256.)
1009	 */
1010	struct {
1011		uint32_t *dp;
1012		uint32_t *rp;
1013		const unsigned char *ip;
1014	} cpu;
1015	uint32_t dp_stack[32];
1016	uint32_t rp_stack[32];
1017	unsigned char pad[512];
1018	unsigned char *hbuf_in, *hbuf_out, *saved_hbuf_out;
1019	size_t hlen_in, hlen_out;
1020	void (*hsrun)(void *ctx);
1021
1022	/*
1023	 * The 'action' value communicates OOB information between the
1024	 * engine and the handshake processor.
1025	 *
1026	 * From the engine:
1027	 *   0  invocation triggered by I/O
1028	 *   1  invocation triggered by explicit close
1029	 *   2  invocation triggered by explicit renegotiation
1030	 */
1031	unsigned char action;
1032
1033	/*
1034	 * State for alert messages. Value is either 0, or the value of
1035	 * the alert level byte (level is either 1 for warning, or 2 for
1036	 * fatal; we convert all other values to 'fatal').
1037	 */
1038	unsigned char alert;
1039
1040	/*
1041	 * Closure flags. This flag is set when a close_notify has been
1042	 * received from the peer.
1043	 */
1044	unsigned char close_received;
1045
1046	/*
1047	 * Multi-hasher for the handshake messages. The handshake handler
1048	 * is responsible for resetting it when appropriate.
1049	 */
1050	br_multihash_context mhash;
1051
1052	/*
1053	 * Pointer to the X.509 engine. The engine is supposed to be
1054	 * already initialized. It is used to validate the peer's
1055	 * certificate.
1056	 */
1057	const br_x509_class **x509ctx;
1058
1059	/*
1060	 * Certificate chain to send. This is used by both client and
1061	 * server, when they send their respective Certificate messages.
1062	 * If chain_len is 0, then chain may be NULL.
1063	 */
1064	const br_x509_certificate *chain;
1065	size_t chain_len;
1066	const unsigned char *cert_cur;
1067	size_t cert_len;
1068
1069	/*
1070	 * List of supported protocol names (ALPN extension). If unset,
1071	 * (number of names is 0), then:
1072	 *  - the client sends no ALPN extension;
1073	 *  - the server ignores any incoming ALPN extension.
1074	 *
1075	 * Otherwise:
1076	 *  - the client sends an ALPN extension with all the names;
1077	 *  - the server selects the first protocol in its list that
1078	 *    the client also supports, or fails (fatal alert 120)
1079	 *    if the client sends an ALPN extension and there is no
1080	 *    match.
1081	 *
1082	 * The 'selected_protocol' field contains 1+n if the matching
1083	 * name has index n in the list (the value is 0 if no match was
1084	 * performed, e.g. the peer did not send an ALPN extension).
1085	 */
1086	const char **protocol_names;
1087	uint16_t protocol_names_num;
1088	uint16_t selected_protocol;
1089
1090	/*
1091	 * Pointers to implementations; left to NULL for unsupported
1092	 * functions. For the raw hash functions, implementations are
1093	 * referenced from the multihasher (mhash field).
1094	 */
1095	br_tls_prf_impl prf10;
1096	br_tls_prf_impl prf_sha256;
1097	br_tls_prf_impl prf_sha384;
1098	const br_block_cbcenc_class *iaes_cbcenc;
1099	const br_block_cbcdec_class *iaes_cbcdec;
1100	const br_block_ctr_class *iaes_ctr;
1101	const br_block_ctrcbc_class *iaes_ctrcbc;
1102	const br_block_cbcenc_class *ides_cbcenc;
1103	const br_block_cbcdec_class *ides_cbcdec;
1104	br_ghash ighash;
1105	br_chacha20_run ichacha;
1106	br_poly1305_run ipoly;
1107	const br_sslrec_in_cbc_class *icbc_in;
1108	const br_sslrec_out_cbc_class *icbc_out;
1109	const br_sslrec_in_gcm_class *igcm_in;
1110	const br_sslrec_out_gcm_class *igcm_out;
1111	const br_sslrec_in_chapol_class *ichapol_in;
1112	const br_sslrec_out_chapol_class *ichapol_out;
1113	const br_sslrec_in_ccm_class *iccm_in;
1114	const br_sslrec_out_ccm_class *iccm_out;
1115	const br_ec_impl *iec;
1116	br_rsa_pkcs1_vrfy irsavrfy;
1117	br_ecdsa_vrfy iecdsa;
1118#endif
1119} br_ssl_engine_context;
1120
1121/**
1122 * \brief Get currently defined engine behavioural flags.
1123 *
1124 * \param cc   SSL engine context.
1125 * \return  the flags.
1126 */
1127static inline uint32_t
1128br_ssl_engine_get_flags(br_ssl_engine_context *cc)
1129{
1130	return cc->flags;
1131}
1132
1133/**
1134 * \brief Set all engine behavioural flags.
1135 *
1136 * \param cc      SSL engine context.
1137 * \param flags   new value for all flags.
1138 */
1139static inline void
1140br_ssl_engine_set_all_flags(br_ssl_engine_context *cc, uint32_t flags)
1141{
1142	cc->flags = flags;
1143}
1144
1145/**
1146 * \brief Set some engine behavioural flags.
1147 *
1148 * The flags set in the `flags` parameter are set in the context; other
1149 * flags are untouched.
1150 *
1151 * \param cc      SSL engine context.
1152 * \param flags   additional set flags.
1153 */
1154static inline void
1155br_ssl_engine_add_flags(br_ssl_engine_context *cc, uint32_t flags)
1156{
1157	cc->flags |= flags;
1158}
1159
1160/**
1161 * \brief Clear some engine behavioural flags.
1162 *
1163 * The flags set in the `flags` parameter are cleared from the context; other
1164 * flags are untouched.
1165 *
1166 * \param cc      SSL engine context.
1167 * \param flags   flags to remove.
1168 */
1169static inline void
1170br_ssl_engine_remove_flags(br_ssl_engine_context *cc, uint32_t flags)
1171{
1172	cc->flags &= ~flags;
1173}
1174
1175/**
1176 * \brief Behavioural flag: enforce server preferences.
1177 *
1178 * If this flag is set, then the server will enforce its own cipher suite
1179 * preference order; otherwise, it follows the client preferences.
1180 */
1181#define BR_OPT_ENFORCE_SERVER_PREFERENCES      ((uint32_t)1 << 0)
1182
1183/**
1184 * \brief Behavioural flag: disable renegotiation.
1185 *
1186 * If this flag is set, then renegotiations are rejected unconditionally:
1187 * they won't be honoured if asked for programmatically, and requests from
1188 * the peer are rejected.
1189 */
1190#define BR_OPT_NO_RENEGOTIATION                ((uint32_t)1 << 1)
1191
1192/**
1193 * \brief Behavioural flag: tolerate lack of client authentication.
1194 *
1195 * If this flag is set in a server and the server requests a client
1196 * certificate, but the authentication fails (the client does not send
1197 * a certificate, or the client's certificate chain cannot be validated),
1198 * then the connection keeps on. Without this flag, a failed client
1199 * authentication terminates the connection.
1200 *
1201 * Notes:
1202 *
1203 *   - If the client's certificate can be validated and its public key is
1204 *     supported, then a wrong signature value terminates the connection
1205 *     regardless of that flag.
1206 *
1207 *   - If using full-static ECDH, then a failure to validate the client's
1208 *     certificate prevents the handshake from succeeding.
1209 */
1210#define BR_OPT_TOLERATE_NO_CLIENT_AUTH         ((uint32_t)1 << 2)
1211
1212/**
1213 * \brief Behavioural flag: fail on application protocol mismatch.
1214 *
1215 * The ALPN extension ([RFC 7301](https://tools.ietf.org/html/rfc7301))
1216 * allows the client to send a list of application protocol names, and
1217 * the server to select one. A mismatch is one of the following occurrences:
1218 *
1219 *   - On the client: the client sends a list of names, the server
1220 *     responds with a protocol name which is _not_ part of the list of
1221 *     names sent by the client.
1222 *
1223 *   - On the server: the client sends a list of names, and the server
1224 *     is also configured with a list of names, but there is no common
1225 *     protocol name between the two lists.
1226 *
1227 * Normal behaviour in case of mismatch is to report no matching name
1228 * (`br_ssl_engine_get_selected_protocol()` returns `NULL`) and carry on.
1229 * If the flag is set, then a mismatch implies a protocol failure (if
1230 * the mismatch is detected by the server, it will send a fatal alert).
1231 *
1232 * Note: even with this flag, `br_ssl_engine_get_selected_protocol()`
1233 * may still return `NULL` if the client or the server does not send an
1234 * ALPN extension at all.
1235 */
1236#define BR_OPT_FAIL_ON_ALPN_MISMATCH           ((uint32_t)1 << 3)
1237
1238/**
1239 * \brief Set the minimum and maximum supported protocol versions.
1240 *
1241 * The two provided versions MUST be supported by the implementation
1242 * (i.e. TLS 1.0, 1.1 and 1.2), and `version_max` MUST NOT be lower
1243 * than `version_min`.
1244 *
1245 * \param cc            SSL engine context.
1246 * \param version_min   minimum supported TLS version.
1247 * \param version_max   maximum supported TLS version.
1248 */
1249static inline void
1250br_ssl_engine_set_versions(br_ssl_engine_context *cc,
1251	unsigned version_min, unsigned version_max)
1252{
1253	cc->version_min = (uint16_t)version_min;
1254	cc->version_max = (uint16_t)version_max;
1255}
1256
1257/**
1258 * \brief Set the list of cipher suites advertised by this context.
1259 *
1260 * The provided array is copied into the context. It is the caller
1261 * responsibility to ensure that all provided suites will be supported
1262 * by the context. The engine context has enough room to receive _all_
1263 * suites supported by the implementation. The provided array MUST NOT
1264 * contain duplicates.
1265 *
1266 * If the engine is for a client, the "signaling" pseudo-cipher suite
1267 * `TLS_FALLBACK_SCSV` can be added at the end of the list, if the
1268 * calling application is performing a voluntary downgrade (voluntary
1269 * downgrades are not recommended, but if such a downgrade is done, then
1270 * adding the fallback pseudo-suite is a good idea).
1271 *
1272 * \param cc           SSL engine context.
1273 * \param suites       cipher suites.
1274 * \param suites_num   number of cipher suites.
1275 */
1276void br_ssl_engine_set_suites(br_ssl_engine_context *cc,
1277	const uint16_t *suites, size_t suites_num);
1278
1279/**
1280 * \brief Set the X.509 engine.
1281 *
1282 * The caller shall ensure that the X.509 engine is properly initialised.
1283 *
1284 * \param cc        SSL engine context.
1285 * \param x509ctx   X.509 certificate validation context.
1286 */
1287static inline void
1288br_ssl_engine_set_x509(br_ssl_engine_context *cc, const br_x509_class **x509ctx)
1289{
1290	cc->x509ctx = x509ctx;
1291}
1292
1293/**
1294 * \brief Set the supported protocol names.
1295 *
1296 * Protocol names are part of the ALPN extension ([RFC
1297 * 7301](https://tools.ietf.org/html/rfc7301)). Each protocol name is a
1298 * character string, containing no more than 255 characters (256 with the
1299 * terminating zero). When names are set, then:
1300 *
1301 *   - The client will send an ALPN extension, containing the names. If
1302 *     the server responds with an ALPN extension, the client will verify
1303 *     that the response contains one of its name, and report that name
1304 *     through `br_ssl_engine_get_selected_protocol()`.
1305 *
1306 *   - The server will parse incoming ALPN extension (from clients), and
1307 *     try to find a common protocol; if none is found, the connection
1308 *     is aborted with a fatal alert. On match, a response ALPN extension
1309 *     is sent, and name is reported through
1310 *     `br_ssl_engine_get_selected_protocol()`.
1311 *
1312 * The provided array is linked in, and must remain valid while the
1313 * connection is live.
1314 *
1315 * Names MUST NOT be empty. Names MUST NOT be longer than 255 characters
1316 * (excluding the terminating 0).
1317 *
1318 * \param ctx     SSL engine context.
1319 * \param names   list of protocol names (zero-terminated).
1320 * \param num     number of protocol names (MUST be 1 or more).
1321 */
1322static inline void
1323br_ssl_engine_set_protocol_names(br_ssl_engine_context *ctx,
1324	const char **names, size_t num)
1325{
1326	ctx->protocol_names = names;
1327	ctx->protocol_names_num = (uint16_t)num;
1328}
1329
1330/**
1331 * \brief Get the selected protocol.
1332 *
1333 * If this context was initialised with a non-empty list of protocol
1334 * names, and both client and server sent ALPN extensions during the
1335 * handshake, and a common name was found, then that name is returned.
1336 * Otherwise, `NULL` is returned.
1337 *
1338 * The returned pointer is one of the pointers provided to the context
1339 * with `br_ssl_engine_set_protocol_names()`.
1340 *
1341 * \return  the selected protocol, or `NULL`.
1342 */
1343static inline const char *
1344br_ssl_engine_get_selected_protocol(br_ssl_engine_context *ctx)
1345{
1346	unsigned k;
1347
1348	k = ctx->selected_protocol;
1349	return (k == 0 || k == 0xFFFF) ? NULL : ctx->protocol_names[k - 1];
1350}
1351
1352/**
1353 * \brief Set a hash function implementation (by ID).
1354 *
1355 * Hash functions set with this call will be used for SSL/TLS specific
1356 * usages, not X.509 certificate validation. Only "standard" hash functions
1357 * may be set (MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512). If `impl`
1358 * is `NULL`, then the hash function support is removed, not added.
1359 *
1360 * \param ctx    SSL engine context.
1361 * \param id     hash function identifier.
1362 * \param impl   hash function implementation (or `NULL`).
1363 */
1364static inline void
1365br_ssl_engine_set_hash(br_ssl_engine_context *ctx,
1366	int id, const br_hash_class *impl)
1367{
1368	br_multihash_setimpl(&ctx->mhash, id, impl);
1369}
1370
1371/**
1372 * \brief Get a hash function implementation (by ID).
1373 *
1374 * This function retrieves a hash function implementation which was
1375 * set with `br_ssl_engine_set_hash()`.
1376 *
1377 * \param ctx   SSL engine context.
1378 * \param id    hash function identifier.
1379 * \return  the hash function implementation (or `NULL`).
1380 */
1381static inline const br_hash_class *
1382br_ssl_engine_get_hash(br_ssl_engine_context *ctx, int id)
1383{
1384	return br_multihash_getimpl(&ctx->mhash, id);
1385}
1386
1387/**
1388 * \brief Set the PRF implementation (for TLS 1.0 and 1.1).
1389 *
1390 * This function sets (or removes, if `impl` is `NULL`) the implementation
1391 * for the PRF used in TLS 1.0 and 1.1.
1392 *
1393 * \param cc     SSL engine context.
1394 * \param impl   PRF implementation (or `NULL`).
1395 */
1396static inline void
1397br_ssl_engine_set_prf10(br_ssl_engine_context *cc, br_tls_prf_impl impl)
1398{
1399	cc->prf10 = impl;
1400}
1401
1402/**
1403 * \brief Set the PRF implementation with SHA-256 (for TLS 1.2).
1404 *
1405 * This function sets (or removes, if `impl` is `NULL`) the implementation
1406 * for the SHA-256 variant of the PRF used in TLS 1.2.
1407 *
1408 * \param cc     SSL engine context.
1409 * \param impl   PRF implementation (or `NULL`).
1410 */
1411static inline void
1412br_ssl_engine_set_prf_sha256(br_ssl_engine_context *cc, br_tls_prf_impl impl)
1413{
1414	cc->prf_sha256 = impl;
1415}
1416
1417/**
1418 * \brief Set the PRF implementation with SHA-384 (for TLS 1.2).
1419 *
1420 * This function sets (or removes, if `impl` is `NULL`) the implementation
1421 * for the SHA-384 variant of the PRF used in TLS 1.2.
1422 *
1423 * \param cc     SSL engine context.
1424 * \param impl   PRF implementation (or `NULL`).
1425 */
1426static inline void
1427br_ssl_engine_set_prf_sha384(br_ssl_engine_context *cc, br_tls_prf_impl impl)
1428{
1429	cc->prf_sha384 = impl;
1430}
1431
1432/**
1433 * \brief Set the AES/CBC implementations.
1434 *
1435 * \param cc         SSL engine context.
1436 * \param impl_enc   AES/CBC encryption implementation (or `NULL`).
1437 * \param impl_dec   AES/CBC decryption implementation (or `NULL`).
1438 */
1439static inline void
1440br_ssl_engine_set_aes_cbc(br_ssl_engine_context *cc,
1441	const br_block_cbcenc_class *impl_enc,
1442	const br_block_cbcdec_class *impl_dec)
1443{
1444	cc->iaes_cbcenc = impl_enc;
1445	cc->iaes_cbcdec = impl_dec;
1446}
1447
1448/**
1449 * \brief Set the "default" AES/CBC implementations.
1450 *
1451 * This function configures in the engine the AES implementations that
1452 * should provide best runtime performance on the local system, while
1453 * still being safe (in particular, constant-time). It also sets the
1454 * handlers for CBC records.
1455 *
1456 * \param cc   SSL engine context.
1457 */
1458void br_ssl_engine_set_default_aes_cbc(br_ssl_engine_context *cc);
1459
1460/**
1461 * \brief Set the AES/CTR implementation.
1462 *
1463 * \param cc     SSL engine context.
1464 * \param impl   AES/CTR encryption/decryption implementation (or `NULL`).
1465 */
1466static inline void
1467br_ssl_engine_set_aes_ctr(br_ssl_engine_context *cc,
1468	const br_block_ctr_class *impl)
1469{
1470	cc->iaes_ctr = impl;
1471}
1472
1473/**
1474 * \brief Set the "default" implementations for AES/GCM (AES/CTR + GHASH).
1475 *
1476 * This function configures in the engine the AES/CTR and GHASH
1477 * implementation that should provide best runtime performance on the local
1478 * system, while still being safe (in particular, constant-time). It also
1479 * sets the handlers for GCM records.
1480 *
1481 * \param cc   SSL engine context.
1482 */
1483void br_ssl_engine_set_default_aes_gcm(br_ssl_engine_context *cc);
1484
1485/**
1486 * \brief Set the DES/CBC implementations.
1487 *
1488 * \param cc         SSL engine context.
1489 * \param impl_enc   DES/CBC encryption implementation (or `NULL`).
1490 * \param impl_dec   DES/CBC decryption implementation (or `NULL`).
1491 */
1492static inline void
1493br_ssl_engine_set_des_cbc(br_ssl_engine_context *cc,
1494	const br_block_cbcenc_class *impl_enc,
1495	const br_block_cbcdec_class *impl_dec)
1496{
1497	cc->ides_cbcenc = impl_enc;
1498	cc->ides_cbcdec = impl_dec;
1499}
1500
1501/**
1502 * \brief Set the "default" DES/CBC implementations.
1503 *
1504 * This function configures in the engine the DES implementations that
1505 * should provide best runtime performance on the local system, while
1506 * still being safe (in particular, constant-time). It also sets the
1507 * handlers for CBC records.
1508 *
1509 * \param cc   SSL engine context.
1510 */
1511void br_ssl_engine_set_default_des_cbc(br_ssl_engine_context *cc);
1512
1513/**
1514 * \brief Set the GHASH implementation (used in GCM mode).
1515 *
1516 * \param cc     SSL engine context.
1517 * \param impl   GHASH implementation (or `NULL`).
1518 */
1519static inline void
1520br_ssl_engine_set_ghash(br_ssl_engine_context *cc, br_ghash impl)
1521{
1522	cc->ighash = impl;
1523}
1524
1525/**
1526 * \brief Set the ChaCha20 implementation.
1527 *
1528 * \param cc        SSL engine context.
1529 * \param ichacha   ChaCha20 implementation (or `NULL`).
1530 */
1531static inline void
1532br_ssl_engine_set_chacha20(br_ssl_engine_context *cc,
1533	br_chacha20_run ichacha)
1534{
1535	cc->ichacha = ichacha;
1536}
1537
1538/**
1539 * \brief Set the Poly1305 implementation.
1540 *
1541 * \param cc      SSL engine context.
1542 * \param ipoly   Poly1305 implementation (or `NULL`).
1543 */
1544static inline void
1545br_ssl_engine_set_poly1305(br_ssl_engine_context *cc,
1546	br_poly1305_run ipoly)
1547{
1548	cc->ipoly = ipoly;
1549}
1550
1551/**
1552 * \brief Set the "default" ChaCha20 and Poly1305 implementations.
1553 *
1554 * This function configures in the engine the ChaCha20 and Poly1305
1555 * implementations that should provide best runtime performance on the
1556 * local system, while still being safe (in particular, constant-time).
1557 * It also sets the handlers for ChaCha20+Poly1305 records.
1558 *
1559 * \param cc   SSL engine context.
1560 */
1561void br_ssl_engine_set_default_chapol(br_ssl_engine_context *cc);
1562
1563/**
1564 * \brief Set the AES/CTR+CBC implementation.
1565 *
1566 * \param cc     SSL engine context.
1567 * \param impl   AES/CTR+CBC encryption/decryption implementation (or `NULL`).
1568 */
1569static inline void
1570br_ssl_engine_set_aes_ctrcbc(br_ssl_engine_context *cc,
1571	const br_block_ctrcbc_class *impl)
1572{
1573	cc->iaes_ctrcbc = impl;
1574}
1575
1576/**
1577 * \brief Set the "default" implementations for AES/CCM.
1578 *
1579 * This function configures in the engine the AES/CTR+CBC
1580 * implementation that should provide best runtime performance on the local
1581 * system, while still being safe (in particular, constant-time). It also
1582 * sets the handlers for CCM records.
1583 *
1584 * \param cc   SSL engine context.
1585 */
1586void br_ssl_engine_set_default_aes_ccm(br_ssl_engine_context *cc);
1587
1588/**
1589 * \brief Set the record encryption and decryption engines for CBC + HMAC.
1590 *
1591 * \param cc         SSL engine context.
1592 * \param impl_in    record CBC decryption implementation (or `NULL`).
1593 * \param impl_out   record CBC encryption implementation (or `NULL`).
1594 */
1595static inline void
1596br_ssl_engine_set_cbc(br_ssl_engine_context *cc,
1597	const br_sslrec_in_cbc_class *impl_in,
1598	const br_sslrec_out_cbc_class *impl_out)
1599{
1600	cc->icbc_in = impl_in;
1601	cc->icbc_out = impl_out;
1602}
1603
1604/**
1605 * \brief Set the record encryption and decryption engines for GCM.
1606 *
1607 * \param cc         SSL engine context.
1608 * \param impl_in    record GCM decryption implementation (or `NULL`).
1609 * \param impl_out   record GCM encryption implementation (or `NULL`).
1610 */
1611static inline void
1612br_ssl_engine_set_gcm(br_ssl_engine_context *cc,
1613	const br_sslrec_in_gcm_class *impl_in,
1614	const br_sslrec_out_gcm_class *impl_out)
1615{
1616	cc->igcm_in = impl_in;
1617	cc->igcm_out = impl_out;
1618}
1619
1620/**
1621 * \brief Set the record encryption and decryption engines for CCM.
1622 *
1623 * \param cc         SSL engine context.
1624 * \param impl_in    record CCM decryption implementation (or `NULL`).
1625 * \param impl_out   record CCM encryption implementation (or `NULL`).
1626 */
1627static inline void
1628br_ssl_engine_set_ccm(br_ssl_engine_context *cc,
1629	const br_sslrec_in_ccm_class *impl_in,
1630	const br_sslrec_out_ccm_class *impl_out)
1631{
1632	cc->iccm_in = impl_in;
1633	cc->iccm_out = impl_out;
1634}
1635
1636/**
1637 * \brief Set the record encryption and decryption engines for
1638 * ChaCha20+Poly1305.
1639 *
1640 * \param cc         SSL engine context.
1641 * \param impl_in    record ChaCha20 decryption implementation (or `NULL`).
1642 * \param impl_out   record ChaCha20 encryption implementation (or `NULL`).
1643 */
1644static inline void
1645br_ssl_engine_set_chapol(br_ssl_engine_context *cc,
1646	const br_sslrec_in_chapol_class *impl_in,
1647	const br_sslrec_out_chapol_class *impl_out)
1648{
1649	cc->ichapol_in = impl_in;
1650	cc->ichapol_out = impl_out;
1651}
1652
1653/**
1654 * \brief Set the EC implementation.
1655 *
1656 * The elliptic curve implementation will be used for ECDH and ECDHE
1657 * cipher suites, and for ECDSA support.
1658 *
1659 * \param cc    SSL engine context.
1660 * \param iec   EC implementation (or `NULL`).
1661 */
1662static inline void
1663br_ssl_engine_set_ec(br_ssl_engine_context *cc, const br_ec_impl *iec)
1664{
1665	cc->iec = iec;
1666}
1667
1668/**
1669 * \brief Set the "default" EC implementation.
1670 *
1671 * This function sets the elliptic curve implementation for ECDH and
1672 * ECDHE cipher suites, and for ECDSA support. It selects the fastest
1673 * implementation on the current system.
1674 *
1675 * \param cc   SSL engine context.
1676 */
1677void br_ssl_engine_set_default_ec(br_ssl_engine_context *cc);
1678
1679/**
1680 * \brief Get the EC implementation configured in the provided engine.
1681 *
1682 * \param cc   SSL engine context.
1683 * \return  the EC implementation.
1684 */
1685static inline const br_ec_impl *
1686br_ssl_engine_get_ec(br_ssl_engine_context *cc)
1687{
1688	return cc->iec;
1689}
1690
1691/**
1692 * \brief Set the RSA signature verification implementation.
1693 *
1694 * On the client, this is used to verify the server's signature on its
1695 * ServerKeyExchange message (for ECDHE_RSA cipher suites). On the server,
1696 * this is used to verify the client's CertificateVerify message (if a
1697 * client certificate is requested, and that certificate contains a RSA key).
1698 *
1699 * \param cc         SSL engine context.
1700 * \param irsavrfy   RSA signature verification implementation.
1701 */
1702static inline void
1703br_ssl_engine_set_rsavrfy(br_ssl_engine_context *cc, br_rsa_pkcs1_vrfy irsavrfy)
1704{
1705	cc->irsavrfy = irsavrfy;
1706}
1707
1708/**
1709 * \brief Set the "default" RSA implementation (signature verification).
1710 *
1711 * This function sets the RSA implementation (signature verification)
1712 * to the fastest implementation available on the current platform.
1713 *
1714 * \param cc   SSL engine context.
1715 */
1716void br_ssl_engine_set_default_rsavrfy(br_ssl_engine_context *cc);
1717
1718/**
1719 * \brief Get the RSA implementation (signature verification) configured
1720 * in the provided engine.
1721 *
1722 * \param cc   SSL engine context.
1723 * \return  the RSA signature verification implementation.
1724 */
1725static inline br_rsa_pkcs1_vrfy
1726br_ssl_engine_get_rsavrfy(br_ssl_engine_context *cc)
1727{
1728	return cc->irsavrfy;
1729}
1730
1731/*
1732 * \brief Set the ECDSA implementation (signature verification).
1733 *
1734 * On the client, this is used to verify the server's signature on its
1735 * ServerKeyExchange message (for ECDHE_ECDSA cipher suites). On the server,
1736 * this is used to verify the client's CertificateVerify message (if a
1737 * client certificate is requested, that certificate contains an EC key,
1738 * and full-static ECDH is not used).
1739 *
1740 * The ECDSA implementation will use the EC core implementation configured
1741 * in the engine context.
1742 *
1743 * \param cc       client context.
1744 * \param iecdsa   ECDSA verification implementation.
1745 */
1746static inline void
1747br_ssl_engine_set_ecdsa(br_ssl_engine_context *cc, br_ecdsa_vrfy iecdsa)
1748{
1749	cc->iecdsa = iecdsa;
1750}
1751
1752/**
1753 * \brief Set the "default" ECDSA implementation (signature verification).
1754 *
1755 * This function sets the ECDSA implementation (signature verification)
1756 * to the fastest implementation available on the current platform. This
1757 * call also sets the elliptic curve implementation itself, there again
1758 * to the fastest EC implementation available.
1759 *
1760 * \param cc   SSL engine context.
1761 */
1762void br_ssl_engine_set_default_ecdsa(br_ssl_engine_context *cc);
1763
1764/**
1765 * \brief Get the ECDSA implementation (signature verification) configured
1766 * in the provided engine.
1767 *
1768 * \param cc   SSL engine context.
1769 * \return  the ECDSA signature verification implementation.
1770 */
1771static inline br_ecdsa_vrfy
1772br_ssl_engine_get_ecdsa(br_ssl_engine_context *cc)
1773{
1774	return cc->iecdsa;
1775}
1776
1777/**
1778 * \brief Set the I/O buffer for the SSL engine.
1779 *
1780 * Once this call has been made, `br_ssl_client_reset()` or
1781 * `br_ssl_server_reset()` MUST be called before using the context.
1782 *
1783 * The provided buffer will be used as long as the engine context is
1784 * used. The caller is responsible for keeping it available.
1785 *
1786 * If `bidi` is 0, then the engine will operate in half-duplex mode
1787 * (it won't be able to send data while there is unprocessed incoming
1788 * data in the buffer, and it won't be able to receive data while there
1789 * is unsent data in the buffer). The optimal buffer size in half-duplex
1790 * mode is `BR_SSL_BUFSIZE_MONO`; if the buffer is larger, then extra
1791 * bytes are ignored. If the buffer is smaller, then this limits the
1792 * capacity of the engine to support all allowed record sizes.
1793 *
1794 * If `bidi` is 1, then the engine will split the buffer into two
1795 * parts, for separate handling of outgoing and incoming data. This
1796 * enables full-duplex processing, but requires more RAM. The optimal
1797 * buffer size in full-duplex mode is `BR_SSL_BUFSIZE_BIDI`; if the
1798 * buffer is larger, then extra bytes are ignored. If the buffer is
1799 * smaller, then the split will favour the incoming part, so that
1800 * interoperability is maximised.
1801 *
1802 * \param cc          SSL engine context
1803 * \param iobuf       I/O buffer.
1804 * \param iobuf_len   I/O buffer length (in bytes).
1805 * \param bidi        non-zero for full-duplex mode.
1806 */
1807void br_ssl_engine_set_buffer(br_ssl_engine_context *cc,
1808	void *iobuf, size_t iobuf_len, int bidi);
1809
1810/**
1811 * \brief Set the I/O buffers for the SSL engine.
1812 *
1813 * Once this call has been made, `br_ssl_client_reset()` or
1814 * `br_ssl_server_reset()` MUST be called before using the context.
1815 *
1816 * This function is similar to `br_ssl_engine_set_buffer()`, except
1817 * that it enforces full-duplex mode, and the two I/O buffers are
1818 * provided as separate chunks.
1819 *
1820 * The macros `BR_SSL_BUFSIZE_INPUT` and `BR_SSL_BUFSIZE_OUTPUT`
1821 * evaluate to the optimal (maximum) sizes for the input and output
1822 * buffer, respectively.
1823 *
1824 * \param cc         SSL engine context
1825 * \param ibuf       input buffer.
1826 * \param ibuf_len   input buffer length (in bytes).
1827 * \param obuf       output buffer.
1828 * \param obuf_len   output buffer length (in bytes).
1829 */
1830void br_ssl_engine_set_buffers_bidi(br_ssl_engine_context *cc,
1831	void *ibuf, size_t ibuf_len, void *obuf, size_t obuf_len);
1832
1833/**
1834 * \brief Inject some "initial entropy" in the context.
1835 *
1836 * This entropy will be added to what can be obtained from the
1837 * underlying operating system, if that OS is supported.
1838 *
1839 * This function may be called several times; all injected entropy chunks
1840 * are cumulatively mixed.
1841 *
1842 * If entropy gathering from the OS is supported and compiled in, then this
1843 * step is optional. Otherwise, it is mandatory to inject randomness, and
1844 * the caller MUST take care to push (as one or several successive calls)
1845 * enough entropy to achieve cryptographic resistance (at least 80 bits,
1846 * preferably 128 or more). The engine will report an error if no entropy
1847 * was provided and none can be obtained from the OS.
1848 *
1849 * Take care that this function cannot assess the cryptographic quality of
1850 * the provided bytes.
1851 *
1852 * In all generality, "entropy" must here be considered to mean "that
1853 * which the attacker cannot predict". If your OS/architecture does not
1854 * have a suitable source of randomness, then you can make do with the
1855 * combination of a large enough secret value (possibly a copy of an
1856 * asymmetric private key that you also store on the system) AND a
1857 * non-repeating value (e.g. current time, provided that the local clock
1858 * cannot be reset or altered by the attacker).
1859 *
1860 * \param cc     SSL engine context.
1861 * \param data   extra entropy to inject.
1862 * \param len    length of the extra data (in bytes).
1863 */
1864void br_ssl_engine_inject_entropy(br_ssl_engine_context *cc,
1865	const void *data, size_t len);
1866
1867/**
1868 * \brief Get the "server name" in this engine.
1869 *
1870 * For clients, this is the name provided with `br_ssl_client_reset()`;
1871 * for servers, this is the name received from the client as part of the
1872 * ClientHello message. If there is no such name (e.g. the client did
1873 * not send an SNI extension) then the returned string is empty
1874 * (returned pointer points to a byte of value 0).
1875 *
1876 * The returned pointer refers to a buffer inside the context, which may
1877 * be overwritten as part of normal SSL activity (even within the same
1878 * connection, if a renegotiation occurs).
1879 *
1880 * \param cc   SSL engine context.
1881 * \return  the server name (possibly empty).
1882 */
1883static inline const char *
1884br_ssl_engine_get_server_name(const br_ssl_engine_context *cc)
1885{
1886	return cc->server_name;
1887}
1888
1889/**
1890 * \brief Get the protocol version.
1891 *
1892 * This function returns the protocol version that is used by the
1893 * engine. That value is set after sending (for a server) or receiving
1894 * (for a client) the ServerHello message.
1895 *
1896 * \param cc   SSL engine context.
1897 * \return  the protocol version.
1898 */
1899static inline unsigned
1900br_ssl_engine_get_version(const br_ssl_engine_context *cc)
1901{
1902	return cc->session.version;
1903}
1904
1905/**
1906 * \brief Get a copy of the session parameters.
1907 *
1908 * The session parameters are filled during the handshake, so this
1909 * function shall not be called before completion of the handshake.
1910 * The initial handshake is completed when the context first allows
1911 * application data to be injected.
1912 *
1913 * This function copies the current session parameters into the provided
1914 * structure. Beware that the session parameters include the master
1915 * secret, which is sensitive data, to handle with great care.
1916 *
1917 * \param cc   SSL engine context.
1918 * \param pp   destination structure for the session parameters.
1919 */
1920static inline void
1921br_ssl_engine_get_session_parameters(const br_ssl_engine_context *cc,
1922	br_ssl_session_parameters *pp)
1923{
1924	memcpy(pp, &cc->session, sizeof *pp);
1925}
1926
1927/**
1928 * \brief Set the session parameters to the provided values.
1929 *
1930 * This function is meant to be used in the client, before doing a new
1931 * handshake; a session resumption will be attempted with these
1932 * parameters. In the server, this function has no effect.
1933 *
1934 * \param cc   SSL engine context.
1935 * \param pp   source structure for the session parameters.
1936 */
1937static inline void
1938br_ssl_engine_set_session_parameters(br_ssl_engine_context *cc,
1939	const br_ssl_session_parameters *pp)
1940{
1941	memcpy(&cc->session, pp, sizeof *pp);
1942}
1943
1944/**
1945 * \brief Get identifier for the curve used for key exchange.
1946 *
1947 * If the cipher suite uses ECDHE, then this function returns the
1948 * identifier for the curve used for transient parameters. This is
1949 * defined during the course of the handshake, when the ServerKeyExchange
1950 * is sent (on the server) or received (on the client). If the
1951 * cipher suite does not use ECDHE (e.g. static ECDH, or RSA key
1952 * exchange), then this value is indeterminate.
1953 *
1954 * @param cc   SSL engine context.
1955 * @return  the ECDHE curve identifier.
1956 */
1957static inline int
1958br_ssl_engine_get_ecdhe_curve(br_ssl_engine_context *cc)
1959{
1960	return cc->ecdhe_curve;
1961}
1962
1963/**
1964 * \brief Get the current engine state.
1965 *
1966 * An SSL engine (client or server) has, at any time, a state which is
1967 * the combination of zero, one or more of these flags:
1968 *
1969 *   - `BR_SSL_CLOSED`
1970 *
1971 *     Engine is finished, no more I/O (until next reset).
1972 *
1973 *   - `BR_SSL_SENDREC`
1974 *
1975 *     Engine has some bytes to send to the peer.
1976 *
1977 *   - `BR_SSL_RECVREC`
1978 *
1979 *     Engine expects some bytes from the peer.
1980 *
1981 *   - `BR_SSL_SENDAPP`
1982 *
1983 *     Engine may receive application data to send (or flush).
1984 *
1985 *   - `BR_SSL_RECVAPP`
1986 *
1987 *     Engine has obtained some application data from the peer,
1988 *     that should be read by the caller.
1989 *
1990 * If no flag at all is set (state value is 0), then the engine is not
1991 * fully initialised yet.
1992 *
1993 * The `BR_SSL_CLOSED` flag is exclusive; when it is set, no other flag
1994 * is set. To distinguish between a normal closure and an error, use
1995 * `br_ssl_engine_last_error()`.
1996 *
1997 * Generally speaking, `BR_SSL_SENDREC` and `BR_SSL_SENDAPP` are mutually
1998 * exclusive: the input buffer, at any point, either accumulates
1999 * plaintext data, or contains an assembled record that is being sent.
2000 * Similarly, `BR_SSL_RECVREC` and `BR_SSL_RECVAPP` are mutually exclusive.
2001 * This may change in a future library version.
2002 *
2003 * \param cc   SSL engine context.
2004 * \return  the current engine state.
2005 */
2006unsigned br_ssl_engine_current_state(const br_ssl_engine_context *cc);
2007
2008/** \brief SSL engine state: closed or failed. */
2009#define BR_SSL_CLOSED    0x0001
2010/** \brief SSL engine state: record data is ready to be sent to the peer. */
2011#define BR_SSL_SENDREC   0x0002
2012/** \brief SSL engine state: engine may receive records from the peer. */
2013#define BR_SSL_RECVREC   0x0004
2014/** \brief SSL engine state: engine may accept application data to send. */
2015#define BR_SSL_SENDAPP   0x0008
2016/** \brief SSL engine state: engine has received application data. */
2017#define BR_SSL_RECVAPP   0x0010
2018
2019/**
2020 * \brief Get the engine error indicator.
2021 *
2022 * The error indicator is `BR_ERR_OK` (0) if no error was encountered
2023 * since the last call to `br_ssl_client_reset()` or
2024 * `br_ssl_server_reset()`. Other status values are "sticky": they
2025 * remain set, and prevent all I/O activity, until cleared. Only the
2026 * reset calls clear the error indicator.
2027 *
2028 * \param cc   SSL engine context.
2029 * \return  0, or a non-zero error code.
2030 */
2031static inline int
2032br_ssl_engine_last_error(const br_ssl_engine_context *cc)
2033{
2034	return cc->err;
2035}
2036
2037/*
2038 * There are four I/O operations, each identified by a symbolic name:
2039 *
2040 *   sendapp   inject application data in the engine
2041 *   recvapp   retrieving application data from the engine
2042 *   sendrec   sending records on the transport medium
2043 *   recvrec   receiving records from the transport medium
2044 *
2045 * Terminology works thus: in a layered model where the SSL engine sits
2046 * between the application and the network, "send" designates operations
2047 * where bytes flow from application to network, and "recv" for the
2048 * reverse operation. Application data (the plaintext that is to be
2049 * conveyed through SSL) is "app", while encrypted records are "rec".
2050 * Note that from the SSL engine point of view, "sendapp" and "recvrec"
2051 * designate bytes that enter the engine ("inject" operation), while
2052 * "recvapp" and "sendrec" designate bytes that exit the engine
2053 * ("extract" operation).
2054 *
2055 * For the operation 'xxx', two functions are defined:
2056 *
2057 *   br_ssl_engine_xxx_buf
2058 *      Returns a pointer and length to the buffer to use for that
2059 *      operation. '*len' is set to the number of bytes that may be read
2060 *      from the buffer (extract operation) or written to the buffer
2061 *      (inject operation). If no byte may be exchanged for that operation
2062 *      at that point, then '*len' is set to zero, and NULL is returned.
2063 *      The engine state is unmodified by this call.
2064 *
2065 *   br_ssl_engine_xxx_ack
2066 *      Informs the engine that 'len' bytes have been read from the buffer
2067 *      (extract operation) or written to the buffer (inject operation).
2068 *      The 'len' value MUST NOT be zero. The 'len' value MUST NOT exceed
2069 *      that which was obtained from a preceding br_ssl_engine_xxx_buf()
2070 *      call.
2071 */
2072
2073/**
2074 * \brief Get buffer for application data to send.
2075 *
2076 * If the engine is ready to accept application data to send to the
2077 * peer, then this call returns a pointer to the buffer where such
2078 * data shall be written, and its length is written in `*len`.
2079 * Otherwise, `*len` is set to 0 and `NULL` is returned.
2080 *
2081 * \param cc    SSL engine context.
2082 * \param len   receives the application data output buffer length, or 0.
2083 * \return  the application data output buffer, or `NULL`.
2084 */
2085unsigned char *br_ssl_engine_sendapp_buf(
2086	const br_ssl_engine_context *cc, size_t *len);
2087
2088/**
2089 * \brief Inform the engine of some new application data.
2090 *
2091 * After writing `len` bytes in the buffer returned by
2092 * `br_ssl_engine_sendapp_buf()`, the application shall call this
2093 * function to trigger any relevant processing. The `len` parameter
2094 * MUST NOT be 0, and MUST NOT exceed the value obtained in the
2095 * `br_ssl_engine_sendapp_buf()` call.
2096 *
2097 * \param cc    SSL engine context.
2098 * \param len   number of bytes pushed (not zero).
2099 */
2100void br_ssl_engine_sendapp_ack(br_ssl_engine_context *cc, size_t len);
2101
2102/**
2103 * \brief Get buffer for received application data.
2104 *
2105 * If the engine has received application data from the peer, then this
2106 * call returns a pointer to the buffer from where such data shall be
2107 * read, and its length is written in `*len`. Otherwise, `*len` is set
2108 * to 0 and `NULL` is returned.
2109 *
2110 * \param cc    SSL engine context.
2111 * \param len   receives the application data input buffer length, or 0.
2112 * \return  the application data input buffer, or `NULL`.
2113 */
2114unsigned char *br_ssl_engine_recvapp_buf(
2115	const br_ssl_engine_context *cc, size_t *len);
2116
2117/**
2118 * \brief Acknowledge some received application data.
2119 *
2120 * After reading `len` bytes from the buffer returned by
2121 * `br_ssl_engine_recvapp_buf()`, the application shall call this
2122 * function to trigger any relevant processing. The `len` parameter
2123 * MUST NOT be 0, and MUST NOT exceed the value obtained in the
2124 * `br_ssl_engine_recvapp_buf()` call.
2125 *
2126 * \param cc    SSL engine context.
2127 * \param len   number of bytes read (not zero).
2128 */
2129void br_ssl_engine_recvapp_ack(br_ssl_engine_context *cc, size_t len);
2130
2131/**
2132 * \brief Get buffer for record data to send.
2133 *
2134 * If the engine has prepared some records to send to the peer, then this
2135 * call returns a pointer to the buffer from where such data shall be
2136 * read, and its length is written in `*len`. Otherwise, `*len` is set
2137 * to 0 and `NULL` is returned.
2138 *
2139 * \param cc    SSL engine context.
2140 * \param len   receives the record data output buffer length, or 0.
2141 * \return  the record data output buffer, or `NULL`.
2142 */
2143unsigned char *br_ssl_engine_sendrec_buf(
2144	const br_ssl_engine_context *cc, size_t *len);
2145
2146/**
2147 * \brief Acknowledge some sent record data.
2148 *
2149 * After reading `len` bytes from the buffer returned by
2150 * `br_ssl_engine_sendrec_buf()`, the application shall call this
2151 * function to trigger any relevant processing. The `len` parameter
2152 * MUST NOT be 0, and MUST NOT exceed the value obtained in the
2153 * `br_ssl_engine_sendrec_buf()` call.
2154 *
2155 * \param cc    SSL engine context.
2156 * \param len   number of bytes read (not zero).
2157 */
2158void br_ssl_engine_sendrec_ack(br_ssl_engine_context *cc, size_t len);
2159
2160/**
2161 * \brief Get buffer for incoming records.
2162 *
2163 * If the engine is ready to accept records from the peer, then this
2164 * call returns a pointer to the buffer where such data shall be
2165 * written, and its length is written in `*len`. Otherwise, `*len` is
2166 * set to 0 and `NULL` is returned.
2167 *
2168 * \param cc    SSL engine context.
2169 * \param len   receives the record data input buffer length, or 0.
2170 * \return  the record data input buffer, or `NULL`.
2171 */
2172unsigned char *br_ssl_engine_recvrec_buf(
2173	const br_ssl_engine_context *cc, size_t *len);
2174
2175/**
2176 * \brief Inform the engine of some new record data.
2177 *
2178 * After writing `len` bytes in the buffer returned by
2179 * `br_ssl_engine_recvrec_buf()`, the application shall call this
2180 * function to trigger any relevant processing. The `len` parameter
2181 * MUST NOT be 0, and MUST NOT exceed the value obtained in the
2182 * `br_ssl_engine_recvrec_buf()` call.
2183 *
2184 * \param cc    SSL engine context.
2185 * \param len   number of bytes pushed (not zero).
2186 */
2187void br_ssl_engine_recvrec_ack(br_ssl_engine_context *cc, size_t len);
2188
2189/**
2190 * \brief Flush buffered application data.
2191 *
2192 * If some application data has been buffered in the engine, then wrap
2193 * it into a record and mark it for sending. If no application data has
2194 * been buffered but the engine would be ready to accept some, AND the
2195 * `force` parameter is non-zero, then an empty record is assembled and
2196 * marked for sending. In all other cases, this function does nothing.
2197 *
2198 * Empty records are technically legal, but not all existing SSL/TLS
2199 * implementations support them. Empty records can be useful as a
2200 * transparent "keep-alive" mechanism to maintain some low-level
2201 * network activity.
2202 *
2203 * \param cc      SSL engine context.
2204 * \param force   non-zero to force sending an empty record.
2205 */
2206void br_ssl_engine_flush(br_ssl_engine_context *cc, int force);
2207
2208/**
2209 * \brief Initiate a closure.
2210 *
2211 * If, at that point, the context is open and in ready state, then a
2212 * `close_notify` alert is assembled and marked for sending; this
2213 * triggers the closure protocol. Otherwise, no such alert is assembled.
2214 *
2215 * \param cc   SSL engine context.
2216 */
2217void br_ssl_engine_close(br_ssl_engine_context *cc);
2218
2219/**
2220 * \brief Initiate a renegotiation.
2221 *
2222 * If the engine is failed or closed, or if the peer is known not to
2223 * support secure renegotiation (RFC 5746), or if renegotiations have
2224 * been disabled with the `BR_OPT_NO_RENEGOTIATION` flag, or if there
2225 * is buffered incoming application data, then this function returns 0
2226 * and nothing else happens.
2227 *
2228 * Otherwise, this function returns 1, and a renegotiation attempt is
2229 * triggered (if a handshake is already ongoing at that point, then
2230 * no new handshake is triggered).
2231 *
2232 * \param cc   SSL engine context.
2233 * \return  1 on success, 0 on error.
2234 */
2235int br_ssl_engine_renegotiate(br_ssl_engine_context *cc);
2236
2237/**
2238 * \brief Export key material from a connected SSL engine (RFC 5705).
2239 *
2240 * This calls compute a secret key of arbitrary length from the master
2241 * secret of a connected SSL engine. If the provided context is not
2242 * currently in "application data" state (initial handshake is not
2243 * finished, another handshake is ongoing, or the connection failed or
2244 * was closed), then this function returns 0. Otherwise, a secret key of
2245 * length `len` bytes is computed and written in the buffer pointed to
2246 * by `dst`, and 1 is returned.
2247 *
2248 * The computed key follows the specification described in RFC 5705.
2249 * That RFC includes two key computations, with and without a "context
2250 * value". If `context` is `NULL`, then the variant without context is
2251 * used; otherwise, the `context_len` bytes located at the address
2252 * pointed to by `context` are used in the computation. Note that it
2253 * is possible to have a "with context" key with a context length of
2254 * zero bytes, by setting `context` to a non-`NULL` value but
2255 * `context_len` to 0.
2256 *
2257 * When context bytes are used, the context length MUST NOT exceed
2258 * 65535 bytes.
2259 *
2260 * \param cc            SSL engine context.
2261 * \param dst           destination buffer for exported key.
2262 * \param len           exported key length (in bytes).
2263 * \param label         disambiguation label.
2264 * \param context       context value (or `NULL`).
2265 * \param context_len   context length (in bytes).
2266 * \return  1 on success, 0 on error.
2267 */
2268int br_ssl_key_export(br_ssl_engine_context *cc,
2269	void *dst, size_t len, const char *label,
2270	const void *context, size_t context_len);
2271
2272/*
2273 * Pre-declaration for the SSL client context.
2274 */
2275typedef struct br_ssl_client_context_ br_ssl_client_context;
2276
2277/**
2278 * \brief Type for the client certificate, if requested by the server.
2279 */
2280typedef struct {
2281	/**
2282	 * \brief Authentication type.
2283	 *
2284	 * This is either `BR_AUTH_RSA` (RSA signature), `BR_AUTH_ECDSA`
2285	 * (ECDSA signature), or `BR_AUTH_ECDH` (static ECDH key exchange).
2286	 */
2287	int auth_type;
2288
2289	/**
2290	 * \brief Hash function for computing the CertificateVerify.
2291	 *
2292	 * This is the symbolic identifier for the hash function that
2293	 * will be used to produce the hash of handshake messages, to
2294	 * be signed into the CertificateVerify. For full static ECDH
2295	 * (client and server certificates are both EC in the same
2296	 * curve, and static ECDH is used), this value is set to -1.
2297	 *
2298	 * Take care that with TLS 1.0 and 1.1, that value MUST match
2299	 * the protocol requirements: value must be 0 (MD5+SHA-1) for
2300	 * a RSA signature, or 2 (SHA-1) for an ECDSA signature. Only
2301	 * TLS 1.2 allows for other hash functions.
2302	 */
2303	int hash_id;
2304
2305	/**
2306	 * \brief Certificate chain to send to the server.
2307	 *
2308	 * This is an array of `br_x509_certificate` objects, each
2309	 * normally containing a DER-encoded certificate. The client
2310	 * code does not try to decode these elements. If there is no
2311	 * chain to send to the server, then this pointer shall be
2312	 * set to `NULL`.
2313	 */
2314	const br_x509_certificate *chain;
2315
2316	/**
2317	 * \brief Certificate chain length (number of certificates).
2318	 *
2319	 * If there is no chain to send to the server, then this value
2320	 * shall be set to 0.
2321	 */
2322	size_t chain_len;
2323
2324} br_ssl_client_certificate;
2325
2326/*
2327 * Note: the constants below for signatures match the TLS constants.
2328 */
2329
2330/** \brief Client authentication type: static ECDH. */
2331#define BR_AUTH_ECDH    0
2332/** \brief Client authentication type: RSA signature. */
2333#define BR_AUTH_RSA     1
2334/** \brief Client authentication type: ECDSA signature. */
2335#define BR_AUTH_ECDSA   3
2336
2337/**
2338 * \brief Class type for a certificate handler (client side).
2339 *
2340 * A certificate handler selects a client certificate chain to send to
2341 * the server, upon explicit request from that server. It receives
2342 * the list of trust anchor DN from the server, and supported types
2343 * of certificates and signatures, and returns the chain to use. It
2344 * is also invoked to perform the corresponding private key operation
2345 * (a signature, or an ECDH computation).
2346 *
2347 * The SSL client engine will first push the trust anchor DN with
2348 * `start_name_list()`, `start_name()`, `append_name()`, `end_name()`
2349 * and `end_name_list()`. Then it will call `choose()`, to select the
2350 * actual chain (and signature/hash algorithms). Finally, it will call
2351 * either `do_sign()` or `do_keyx()`, depending on the algorithm choices.
2352 */
2353typedef struct br_ssl_client_certificate_class_ br_ssl_client_certificate_class;
2354struct br_ssl_client_certificate_class_ {
2355	/**
2356	 * \brief Context size (in bytes).
2357	 */
2358	size_t context_size;
2359
2360	/**
2361	 * \brief Begin reception of a list of trust anchor names. This
2362	 * is called while parsing the incoming CertificateRequest.
2363	 *
2364	 * \param pctx   certificate handler context.
2365	 */
2366	void (*start_name_list)(const br_ssl_client_certificate_class **pctx);
2367
2368	/**
2369	 * \brief Begin reception of a new trust anchor name.
2370	 *
2371	 * The total encoded name length is provided; it is less than
2372	 * 65535 bytes.
2373	 *
2374	 * \param pctx   certificate handler context.
2375	 * \param len    encoded name length (in bytes).
2376	 */
2377	void (*start_name)(const br_ssl_client_certificate_class **pctx,
2378		size_t len);
2379
2380	/**
2381	 * \brief Receive some more bytes for the current trust anchor name.
2382	 *
2383	 * The provided reference (`data`) points to a transient buffer
2384	 * they may be reused as soon as this function returns. The chunk
2385	 * length (`len`) is never zero.
2386	 *
2387	 * \param pctx   certificate handler context.
2388	 * \param data   anchor name chunk.
2389	 * \param len    anchor name chunk length (in bytes).
2390	 */
2391	void (*append_name)(const br_ssl_client_certificate_class **pctx,
2392		const unsigned char *data, size_t len);
2393
2394	/**
2395	 * \brief End current trust anchor name.
2396	 *
2397	 * This function is called when all the encoded anchor name data
2398	 * has been provided.
2399	 *
2400	 * \param pctx   certificate handler context.
2401	 */
2402	void (*end_name)(const br_ssl_client_certificate_class **pctx);
2403
2404	/**
2405	 * \brief End list of trust anchor names.
2406	 *
2407	 * This function is called when all the anchor names in the
2408	 * CertificateRequest message have been obtained.
2409	 *
2410	 * \param pctx   certificate handler context.
2411	 */
2412	void (*end_name_list)(const br_ssl_client_certificate_class **pctx);
2413
2414	/**
2415	 * \brief Select client certificate and algorithms.
2416	 *
2417	 * This callback function shall fill the provided `choices`
2418	 * structure with the selected algorithms and certificate chain.
2419	 * The `hash_id`, `chain` and `chain_len` fields must be set. If
2420	 * the client cannot or does not wish to send a certificate,
2421	 * then it shall set `chain` to `NULL` and `chain_len` to 0.
2422	 *
2423	 * The `auth_types` parameter describes the authentication types,
2424	 * signature algorithms and hash functions that are supported by
2425	 * both the client context and the server, and compatible with
2426	 * the current protocol version. This is a bit field with the
2427	 * following contents:
2428	 *
2429	 *   - If RSA signatures with hash function x are supported, then
2430	 *     bit x is set.
2431	 *
2432	 *   - If ECDSA signatures with hash function x are supported,
2433	 *     then bit 8+x is set.
2434	 *
2435	 *   - If static ECDH is supported, with a RSA-signed certificate,
2436	 *     then bit 16 is set.
2437	 *
2438	 *   - If static ECDH is supported, with an ECDSA-signed certificate,
2439	 *     then bit 17 is set.
2440	 *
2441	 * Notes:
2442	 *
2443	 *   - When using TLS 1.0 or 1.1, the hash function for RSA
2444	 *     signatures is always the special MD5+SHA-1 (id 0), and the
2445	 *     hash function for ECDSA signatures is always SHA-1 (id 2).
2446	 *
2447	 *   - When using TLS 1.2, the list of hash functions is trimmed
2448	 *     down to include only hash functions that the client context
2449	 *     can support. The actual server list can be obtained with
2450	 *     `br_ssl_client_get_server_hashes()`; that list may be used
2451	 *     to select the certificate chain to send to the server.
2452	 *
2453	 * \param pctx         certificate handler context.
2454	 * \param cc           SSL client context.
2455	 * \param auth_types   supported authentication types and algorithms.
2456	 * \param choices      destination structure for the policy choices.
2457	 */
2458	void (*choose)(const br_ssl_client_certificate_class **pctx,
2459		const br_ssl_client_context *cc, uint32_t auth_types,
2460		br_ssl_client_certificate *choices);
2461
2462	/**
2463	 * \brief Perform key exchange (client part).
2464	 *
2465	 * This callback is invoked in case of a full static ECDH key
2466	 * exchange:
2467	 *
2468	 *   - the cipher suite uses `ECDH_RSA` or `ECDH_ECDSA`;
2469	 *
2470	 *   - the server requests a client certificate;
2471	 *
2472	 *   - the client has, and sends, a client certificate that
2473	 *     uses an EC key in the same curve as the server's key,
2474	 *     and chooses static ECDH (the `hash_id` field in the choice
2475	 *     structure was set to -1).
2476	 *
2477	 * In that situation, this callback is invoked to compute the
2478	 * client-side ECDH: the provided `data` (of length `*len` bytes)
2479	 * is the server's public key point (as decoded from its
2480	 * certificate), and the client shall multiply that point with
2481	 * its own private key, and write back the X coordinate of the
2482	 * resulting point in the same buffer, starting at offset 0.
2483	 * The `*len` value shall be modified to designate the actual
2484	 * length of the X coordinate.
2485	 *
2486	 * The callback must uphold the following:
2487	 *
2488	 *   - If the input array does not have the proper length for
2489	 *     an encoded curve point, then an error (0) shall be reported.
2490	 *
2491	 *   - If the input array has the proper length, then processing
2492	 *     MUST be constant-time, even if the data is not a valid
2493	 *     encoded point.
2494	 *
2495	 *   - This callback MUST check that the input point is valid.
2496	 *
2497	 * Returned value is 1 on success, 0 on error.
2498	 *
2499	 * \param pctx   certificate handler context.
2500	 * \param data   server public key point.
2501	 * \param len    public key point length / X coordinate length.
2502	 * \return  1 on success, 0 on error.
2503	 */
2504	uint32_t (*do_keyx)(const br_ssl_client_certificate_class **pctx,
2505		unsigned char *data, size_t *len);
2506
2507	/**
2508	 * \brief Perform a signature (client authentication).
2509	 *
2510	 * This callback is invoked when a client certificate was sent,
2511	 * and static ECDH is not used. It shall compute a signature,
2512	 * using the client's private key, over the provided hash value
2513	 * (which is the hash of all previous handshake messages).
2514	 *
2515	 * On input, the hash value to sign is in `data`, of size
2516	 * `hv_len`; the involved hash function is identified by
2517	 * `hash_id`. The signature shall be computed and written
2518	 * back into `data`; the total size of that buffer is `len`
2519	 * bytes.
2520	 *
2521	 * This callback shall verify that the signature length does not
2522	 * exceed `len` bytes, and abstain from writing the signature if
2523	 * it does not fit.
2524	 *
2525	 * For RSA signatures, the `hash_id` may be 0, in which case
2526	 * this is the special header-less signature specified in TLS 1.0
2527	 * and 1.1, with a 36-byte hash value. Otherwise, normal PKCS#1
2528	 * v1.5 signatures shall be computed.
2529	 *
2530	 * For ECDSA signatures, the signature value shall use the ASN.1
2531	 * based encoding.
2532	 *
2533	 * Returned value is the signature length (in bytes), or 0 on error.
2534	 *
2535	 * \param pctx      certificate handler context.
2536	 * \param hash_id   hash function identifier.
2537	 * \param hv_len    hash value length (in bytes).
2538	 * \param data      input/output buffer (hash value, then signature).
2539	 * \param len       total buffer length (in bytes).
2540	 * \return  signature length (in bytes) on success, or 0 on error.
2541	 */
2542	size_t (*do_sign)(const br_ssl_client_certificate_class **pctx,
2543		int hash_id, size_t hv_len, unsigned char *data, size_t len);
2544};
2545
2546/**
2547 * \brief A single-chain RSA client certificate handler.
2548 *
2549 * This handler uses a single certificate chain, with a RSA
2550 * signature. The list of trust anchor DN is ignored.
2551 *
2552 * Apart from the first field (vtable pointer), its contents are
2553 * opaque and shall not be accessed directly.
2554 */
2555typedef struct {
2556	/** \brief Pointer to vtable. */
2557	const br_ssl_client_certificate_class *vtable;
2558#ifndef BR_DOXYGEN_IGNORE
2559	const br_x509_certificate *chain;
2560	size_t chain_len;
2561	const br_rsa_private_key *sk;
2562	br_rsa_pkcs1_sign irsasign;
2563#endif
2564} br_ssl_client_certificate_rsa_context;
2565
2566/**
2567 * \brief A single-chain EC client certificate handler.
2568 *
2569 * This handler uses a single certificate chain, with a RSA
2570 * signature. The list of trust anchor DN is ignored.
2571 *
2572 * This handler may support both static ECDH, and ECDSA signatures
2573 * (either usage may be selectively disabled).
2574 *
2575 * Apart from the first field (vtable pointer), its contents are
2576 * opaque and shall not be accessed directly.
2577 */
2578typedef struct {
2579	/** \brief Pointer to vtable. */
2580	const br_ssl_client_certificate_class *vtable;
2581#ifndef BR_DOXYGEN_IGNORE
2582	const br_x509_certificate *chain;
2583	size_t chain_len;
2584	const br_ec_private_key *sk;
2585	unsigned allowed_usages;
2586	unsigned issuer_key_type;
2587	const br_multihash_context *mhash;
2588	const br_ec_impl *iec;
2589	br_ecdsa_sign iecdsa;
2590#endif
2591} br_ssl_client_certificate_ec_context;
2592
2593/**
2594 * \brief Context structure for a SSL client.
2595 *
2596 * The first field (called `eng`) is the SSL engine; all functions that
2597 * work on a `br_ssl_engine_context` structure shall take as parameter
2598 * a pointer to that field. The other structure fields are opaque and
2599 * must not be accessed directly.
2600 */
2601struct br_ssl_client_context_ {
2602	/**
2603	 * \brief The encapsulated engine context.
2604	 */
2605	br_ssl_engine_context eng;
2606
2607#ifndef BR_DOXYGEN_IGNORE
2608	/*
2609	 * Minimum ClientHello length; padding with an extension (RFC
2610	 * 7685) is added if necessary to match at least that length.
2611	 * Such padding is nominally unnecessary, but it has been used
2612	 * to work around some server implementation bugs.
2613	 */
2614	uint16_t min_clienthello_len;
2615
2616	/*
2617	 * Bit field for algoithms (hash + signature) supported by the
2618	 * server when requesting a client certificate.
2619	 */
2620	uint32_t hashes;
2621
2622	/*
2623	 * Server's public key curve.
2624	 */
2625	int server_curve;
2626
2627	/*
2628	 * Context for certificate handler.
2629	 */
2630	const br_ssl_client_certificate_class **client_auth_vtable;
2631
2632	/*
2633	 * Client authentication type.
2634	 */
2635	unsigned char auth_type;
2636
2637	/*
2638	 * Hash function to use for the client signature. This is 0xFF
2639	 * if static ECDH is used.
2640	 */
2641	unsigned char hash_id;
2642
2643	/*
2644	 * For the core certificate handlers, thus avoiding (in most
2645	 * cases) the need for an externally provided policy context.
2646	 */
2647	union {
2648		const br_ssl_client_certificate_class *vtable;
2649		br_ssl_client_certificate_rsa_context single_rsa;
2650		br_ssl_client_certificate_ec_context single_ec;
2651	} client_auth;
2652
2653	/*
2654	 * Implementations.
2655	 */
2656	br_rsa_public irsapub;
2657#endif
2658};
2659
2660/**
2661 * \brief Get the hash functions and signature algorithms supported by
2662 * the server.
2663 *
2664 * This value is a bit field:
2665 *
2666 *   - If RSA (PKCS#1 v1.5) is supported with hash function of ID `x`,
2667 *     then bit `x` is set (hash function ID is 0 for the special MD5+SHA-1,
2668 *     or 2 to 6 for the SHA family).
2669 *
2670 *   - If ECDSA is supported with hash function of ID `x`, then bit `8+x`
2671 *     is set.
2672 *
2673 *   - Newer algorithms are symbolic 16-bit identifiers that do not
2674 *     represent signature algorithm and hash function separately. If
2675 *     the TLS-level identifier is `0x0800+x` for a `x` in the 0..15
2676 *     range, then bit `16+x` is set.
2677 *
2678 * "New algorithms" are currently defined only in draft documents, so
2679 * this support is subject to possible change. Right now (early 2017),
2680 * this maps ed25519 (EdDSA on Curve25519) to bit 23, and ed448 (EdDSA
2681 * on Curve448) to bit 24. If the identifiers on the wire change in
2682 * future document, then the decoding mechanism in BearSSL will be
2683 * amended to keep mapping ed25519 and ed448 on bits 23 and 24,
2684 * respectively. Mapping of other new algorithms (e.g. RSA/PSS) is not
2685 * guaranteed yet.
2686 *
2687 * \param cc   client context.
2688 * \return  the server-supported hash functions and signature algorithms.
2689 */
2690static inline uint32_t
2691br_ssl_client_get_server_hashes(const br_ssl_client_context *cc)
2692{
2693	return cc->hashes;
2694}
2695
2696/**
2697 * \brief Get the server key curve.
2698 *
2699 * This function returns the ID for the curve used by the server's public
2700 * key. This is set when the server's certificate chain is processed;
2701 * this value is 0 if the server's key is not an EC key.
2702 *
2703 * \return  the server's public key curve ID, or 0.
2704 */
2705static inline int
2706br_ssl_client_get_server_curve(const br_ssl_client_context *cc)
2707{
2708	return cc->server_curve;
2709}
2710
2711/*
2712 * Each br_ssl_client_init_xxx() function sets the list of supported
2713 * cipher suites and used implementations, as specified by the profile
2714 * name 'xxx'. Defined profile names are:
2715 *
2716 *    full    all supported versions and suites; constant-time implementations
2717 *    TODO: add other profiles
2718 */
2719
2720/**
2721 * \brief SSL client profile: full.
2722 *
2723 * This function initialises the provided SSL client context with
2724 * all supported algorithms and cipher suites. It also initialises
2725 * a companion X.509 validation engine with all supported algorithms,
2726 * and the provided trust anchors; the X.509 engine will be used by
2727 * the client context to validate the server's certificate.
2728 *
2729 * \param cc                  client context to initialise.
2730 * \param xc                  X.509 validation context to initialise.
2731 * \param trust_anchors       trust anchors to use.
2732 * \param trust_anchors_num   number of trust anchors.
2733 */
2734void br_ssl_client_init_full(br_ssl_client_context *cc,
2735	br_x509_minimal_context *xc,
2736	const br_x509_trust_anchor *trust_anchors, size_t trust_anchors_num);
2737
2738/**
2739 * \brief Clear the complete contents of a SSL client context.
2740 *
2741 * Everything is cleared, including the reference to the configured buffer,
2742 * implementations, cipher suites and state. This is a preparatory step
2743 * to assembling a custom profile.
2744 *
2745 * \param cc   client context to clear.
2746 */
2747void br_ssl_client_zero(br_ssl_client_context *cc);
2748
2749/**
2750 * \brief Set an externally provided client certificate handler context.
2751 *
2752 * The handler's methods are invoked when the server requests a client
2753 * certificate.
2754 *
2755 * \param cc     client context.
2756 * \param pctx   certificate handler context (pointer to its vtable field).
2757 */
2758static inline void
2759br_ssl_client_set_client_certificate(br_ssl_client_context *cc,
2760	const br_ssl_client_certificate_class **pctx)
2761{
2762	cc->client_auth_vtable = pctx;
2763}
2764
2765/**
2766 * \brief Set the RSA public-key operations implementation.
2767 *
2768 * This will be used to encrypt the pre-master secret with the server's
2769 * RSA public key (RSA-encryption cipher suites only).
2770 *
2771 * \param cc        client context.
2772 * \param irsapub   RSA public-key encryption implementation.
2773 */
2774static inline void
2775br_ssl_client_set_rsapub(br_ssl_client_context *cc, br_rsa_public irsapub)
2776{
2777	cc->irsapub = irsapub;
2778}
2779
2780/**
2781 * \brief Set the "default" RSA implementation for public-key operations.
2782 *
2783 * This sets the RSA implementation in the client context (for encrypting
2784 * the pre-master secret, in `TLS_RSA_*` cipher suites) to the fastest
2785 * available on the current platform.
2786 *
2787 * \param cc   client context.
2788 */
2789void br_ssl_client_set_default_rsapub(br_ssl_client_context *cc);
2790
2791/**
2792 * \brief Set the minimum ClientHello length (RFC 7685 padding).
2793 *
2794 * If this value is set and the ClientHello would be shorter, then
2795 * the Pad ClientHello extension will be added with enough padding bytes
2796 * to reach the target size. Because of the extension header, the resulting
2797 * size will sometimes be slightly more than `len` bytes if the target
2798 * size cannot be exactly met.
2799 *
2800 * The target length relates to the _contents_ of the ClientHello, not
2801 * counting its 4-byte header. For instance, if `len` is set to 512,
2802 * then the padding will bring the ClientHello size to 516 bytes with its
2803 * header, and 521 bytes when counting the 5-byte record header.
2804 *
2805 * \param cc    client context.
2806 * \param len   minimum ClientHello length (in bytes).
2807 */
2808static inline void
2809br_ssl_client_set_min_clienthello_len(br_ssl_client_context *cc, uint16_t len)
2810{
2811	cc->min_clienthello_len = len;
2812}
2813
2814/**
2815 * \brief Prepare or reset a client context for a new connection.
2816 *
2817 * The `server_name` parameter is used to fill the SNI extension; the
2818 * X.509 "minimal" engine will also match that name against the server
2819 * names included in the server's certificate. If the parameter is
2820 * `NULL` then no SNI extension will be sent, and the X.509 "minimal"
2821 * engine (if used for server certificate validation) will not check
2822 * presence of any specific name in the received certificate.
2823 *
2824 * Therefore, setting the `server_name` to `NULL` shall be reserved
2825 * to cases where alternate or additional methods are used to ascertain
2826 * that the right server public key is used (e.g. a "known key" model).
2827 *
2828 * If `resume_session` is non-zero and the context was previously used
2829 * then the session parameters may be reused (depending on whether the
2830 * server previously sent a non-empty session ID, and accepts the session
2831 * resumption). The session parameters for session resumption can also
2832 * be set explicitly with `br_ssl_engine_set_session_parameters()`.
2833 *
2834 * On failure, the context is marked as failed, and this function
2835 * returns 0. A possible failure condition is when no initial entropy
2836 * was injected, and none could be obtained from the OS (either OS
2837 * randomness gathering is not supported, or it failed).
2838 *
2839 * \param cc               client context.
2840 * \param server_name      target server name, or `NULL`.
2841 * \param resume_session   non-zero to try session resumption.
2842 * \return  0 on failure, 1 on success.
2843 */
2844int br_ssl_client_reset(br_ssl_client_context *cc,
2845	const char *server_name, int resume_session);
2846
2847/**
2848 * \brief Forget any session in the context.
2849 *
2850 * This means that the next handshake that uses this context will
2851 * necessarily be a full handshake (this applies both to new connections
2852 * and to renegotiations).
2853 *
2854 * \param cc   client context.
2855 */
2856static inline void
2857br_ssl_client_forget_session(br_ssl_client_context *cc)
2858{
2859	cc->eng.session.session_id_len = 0;
2860}
2861
2862/**
2863 * \brief Set client certificate chain and key (single RSA case).
2864 *
2865 * This function sets a client certificate chain, that the client will
2866 * send to the server whenever a client certificate is requested. This
2867 * certificate uses an RSA public key; the corresponding private key is
2868 * invoked for authentication. Trust anchor names sent by the server are
2869 * ignored.
2870 *
2871 * The provided chain and private key are linked in the client context;
2872 * they must remain valid as long as they may be used, i.e. normally
2873 * for the duration of the connection, since they might be invoked
2874 * again upon renegotiations.
2875 *
2876 * \param cc          SSL client context.
2877 * \param chain       client certificate chain (SSL order: EE comes first).
2878 * \param chain_len   client chain length (number of certificates).
2879 * \param sk          client private key.
2880 * \param irsasign    RSA signature implementation (PKCS#1 v1.5).
2881 */
2882void br_ssl_client_set_single_rsa(br_ssl_client_context *cc,
2883	const br_x509_certificate *chain, size_t chain_len,
2884	const br_rsa_private_key *sk, br_rsa_pkcs1_sign irsasign);
2885
2886/*
2887 * \brief Set the client certificate chain and key (single EC case).
2888 *
2889 * This function sets a client certificate chain, that the client will
2890 * send to the server whenever a client certificate is requested. This
2891 * certificate uses an EC public key; the corresponding private key is
2892 * invoked for authentication. Trust anchor names sent by the server are
2893 * ignored.
2894 *
2895 * The provided chain and private key are linked in the client context;
2896 * they must remain valid as long as they may be used, i.e. normally
2897 * for the duration of the connection, since they might be invoked
2898 * again upon renegotiations.
2899 *
2900 * The `allowed_usages` is a combination of usages, namely
2901 * `BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`. The `BR_KEYTYPE_KEYX`
2902 * value allows full static ECDH, while the `BR_KEYTYPE_SIGN` value
2903 * allows ECDSA signatures. If ECDSA signatures are used, then an ECDSA
2904 * signature implementation must be provided; otherwise, the `iecdsa`
2905 * parameter may be 0.
2906 *
2907 * The `cert_issuer_key_type` value is either `BR_KEYTYPE_RSA` or
2908 * `BR_KEYTYPE_EC`; it is the type of the public key used the the CA
2909 * that issued (signed) the client certificate. That value is used with
2910 * full static ECDH: support of the certificate by the server depends
2911 * on how the certificate was signed. (Note: when using TLS 1.2, this
2912 * parameter is ignored; but its value matters for TLS 1.0 and 1.1.)
2913 *
2914 * \param cc                     server context.
2915 * \param chain                  server certificate chain to send.
2916 * \param chain_len              chain length (number of certificates).
2917 * \param sk                     server private key (EC).
2918 * \param allowed_usages         allowed private key usages.
2919 * \param cert_issuer_key_type   issuing CA's key type.
2920 * \param iec                    EC core implementation.
2921 * \param iecdsa                 ECDSA signature implementation ("asn1" format).
2922 */
2923void br_ssl_client_set_single_ec(br_ssl_client_context *cc,
2924	const br_x509_certificate *chain, size_t chain_len,
2925	const br_ec_private_key *sk, unsigned allowed_usages,
2926	unsigned cert_issuer_key_type,
2927	const br_ec_impl *iec, br_ecdsa_sign iecdsa);
2928
2929/**
2930 * \brief Type for a "translated cipher suite", as an array of two
2931 * 16-bit integers.
2932 *
2933 * The first element is the cipher suite identifier (as used on the wire).
2934 * The second element is the concatenation of four 4-bit elements which
2935 * characterise the cipher suite contents. In most to least significant
2936 * order, these 4-bit elements are:
2937 *
2938 *   - Bits 12 to 15: key exchange + server key type
2939 *
2940 *     | val | symbolic constant        | suite type  | details                                          |
2941 *     | :-- | :----------------------- | :---------- | :----------------------------------------------- |
2942 *     |  0  | `BR_SSLKEYX_RSA`         | RSA         | RSA key exchange, key is RSA (encryption)        |
2943 *     |  1  | `BR_SSLKEYX_ECDHE_RSA`   | ECDHE_RSA   | ECDHE key exchange, key is RSA (signature)       |
2944 *     |  2  | `BR_SSLKEYX_ECDHE_ECDSA` | ECDHE_ECDSA | ECDHE key exchange, key is EC (signature)        |
2945 *     |  3  | `BR_SSLKEYX_ECDH_RSA`    | ECDH_RSA    | Key is EC (key exchange), cert signed with RSA   |
2946 *     |  4  | `BR_SSLKEYX_ECDH_ECDSA`  | ECDH_ECDSA  | Key is EC (key exchange), cert signed with ECDSA |
2947 *
2948 *   - Bits 8 to 11: symmetric encryption algorithm
2949 *
2950 *     | val | symbolic constant      | symmetric encryption | key strength (bits) |
2951 *     | :-- | :--------------------- | :------------------- | :------------------ |
2952 *     |  0  | `BR_SSLENC_3DES_CBC`   | 3DES/CBC             | 168                 |
2953 *     |  1  | `BR_SSLENC_AES128_CBC` | AES-128/CBC          | 128                 |
2954 *     |  2  | `BR_SSLENC_AES256_CBC` | AES-256/CBC          | 256                 |
2955 *     |  3  | `BR_SSLENC_AES128_GCM` | AES-128/GCM          | 128                 |
2956 *     |  4  | `BR_SSLENC_AES256_GCM` | AES-256/GCM          | 256                 |
2957 *     |  5  | `BR_SSLENC_CHACHA20`   | ChaCha20/Poly1305    | 256                 |
2958 *
2959 *   - Bits 4 to 7: MAC algorithm
2960 *
2961 *     | val | symbolic constant  | MAC type     | details                               |
2962 *     | :-- | :----------------- | :----------- | :------------------------------------ |
2963 *     |  0  | `BR_SSLMAC_AEAD`   | AEAD         | No dedicated MAC (encryption is AEAD) |
2964 *     |  2  | `BR_SSLMAC_SHA1`   | HMAC/SHA-1   | Value matches `br_sha1_ID`            |
2965 *     |  4  | `BR_SSLMAC_SHA256` | HMAC/SHA-256 | Value matches `br_sha256_ID`          |
2966 *     |  5  | `BR_SSLMAC_SHA384` | HMAC/SHA-384 | Value matches `br_sha384_ID`          |
2967 *
2968 *   - Bits 0 to 3: hash function for PRF when used with TLS-1.2
2969 *
2970 *     | val | symbolic constant  | hash function | details                              |
2971 *     | :-- | :----------------- | :------------ | :----------------------------------- |
2972 *     |  4  | `BR_SSLPRF_SHA256` | SHA-256       | Value matches `br_sha256_ID`         |
2973 *     |  5  | `BR_SSLPRF_SHA384` | SHA-384       | Value matches `br_sha384_ID`         |
2974 *
2975 * For instance, cipher suite `TLS_RSA_WITH_AES_128_GCM_SHA256` has
2976 * standard identifier 0x009C, and is translated to 0x0304, for, in
2977 * that order: RSA key exchange (0), AES-128/GCM (3), AEAD integrity (0),
2978 * SHA-256 in the TLS PRF (4).
2979 */
2980typedef uint16_t br_suite_translated[2];
2981
2982#ifndef BR_DOXYGEN_IGNORE
2983/*
2984 * Constants are already documented in the br_suite_translated type.
2985 */
2986
2987#define BR_SSLKEYX_RSA           0
2988#define BR_SSLKEYX_ECDHE_RSA     1
2989#define BR_SSLKEYX_ECDHE_ECDSA   2
2990#define BR_SSLKEYX_ECDH_RSA      3
2991#define BR_SSLKEYX_ECDH_ECDSA    4
2992
2993#define BR_SSLENC_3DES_CBC       0
2994#define BR_SSLENC_AES128_CBC     1
2995#define BR_SSLENC_AES256_CBC     2
2996#define BR_SSLENC_AES128_GCM     3
2997#define BR_SSLENC_AES256_GCM     4
2998#define BR_SSLENC_CHACHA20       5
2999
3000#define BR_SSLMAC_AEAD           0
3001#define BR_SSLMAC_SHA1           br_sha1_ID
3002#define BR_SSLMAC_SHA256         br_sha256_ID
3003#define BR_SSLMAC_SHA384         br_sha384_ID
3004
3005#define BR_SSLPRF_SHA256         br_sha256_ID
3006#define BR_SSLPRF_SHA384         br_sha384_ID
3007
3008#endif
3009
3010/*
3011 * Pre-declaration for the SSL server context.
3012 */
3013typedef struct br_ssl_server_context_ br_ssl_server_context;
3014
3015/**
3016 * \brief Type for the server policy choices, taken after analysis of
3017 * the client message (ClientHello).
3018 */
3019typedef struct {
3020	/**
3021	 * \brief Cipher suite to use with that client.
3022	 */
3023	uint16_t cipher_suite;
3024
3025	/**
3026	 * \brief Hash function or algorithm for signing the ServerKeyExchange.
3027	 *
3028	 * This parameter is ignored for `TLS_RSA_*` and `TLS_ECDH_*`
3029	 * cipher suites; it is used only for `TLS_ECDHE_*` suites, in
3030	 * which the server _signs_ the ephemeral EC Diffie-Hellman
3031	 * parameters sent to the client.
3032	 *
3033	 * This identifier must be one of the following values:
3034	 *
3035	 *   - `0xFF00 + id`, where `id` is a hash function identifier
3036	 *     (0 for MD5+SHA-1, or 2 to 6 for one of the SHA functions);
3037	 *
3038	 *   - a full 16-bit identifier, lower than `0xFF00`.
3039	 *
3040	 * If the first option is used, then the SSL engine will
3041	 * compute the hash of the data that is to be signed, with the
3042	 * designated hash function. The `do_sign()` method will be
3043	 * invoked with that hash value provided in the the `data`
3044	 * buffer.
3045	 *
3046	 * If the second option is used, then the SSL engine will NOT
3047	 * compute a hash on the data; instead, it will provide the
3048	 * to-be-signed data itself in `data`, i.e. the concatenation of
3049	 * the client random, server random, and encoded ECDH
3050	 * parameters. Furthermore, with TLS-1.2 and later, the 16-bit
3051	 * identifier will be used "as is" in the protocol, in the
3052	 * SignatureAndHashAlgorithm; for instance, `0x0401` stands for
3053	 * RSA PKCS#1 v1.5 signature (the `01`) with SHA-256 as hash
3054	 * function (the `04`).
3055	 *
3056	 * Take care that with TLS 1.0 and 1.1, the hash function is
3057	 * constrainted by the protocol: RSA signature must use
3058	 * MD5+SHA-1 (so use `0xFF00`), while ECDSA must use SHA-1
3059	 * (`0xFF02`). Since TLS 1.0 and 1.1 don't include a
3060	 * SignatureAndHashAlgorithm field in their ServerKeyExchange
3061	 * messages, any value below `0xFF00` will be usable to send the
3062	 * raw ServerKeyExchange data to the `do_sign()` callback, but
3063	 * that callback must still follow the protocol requirements
3064	 * when generating the signature.
3065	 */
3066	unsigned algo_id;
3067
3068	/**
3069	 * \brief Certificate chain to send to the client.
3070	 *
3071	 * This is an array of `br_x509_certificate` objects, each
3072	 * normally containing a DER-encoded certificate. The server
3073	 * code does not try to decode these elements.
3074	 */
3075	const br_x509_certificate *chain;
3076
3077	/**
3078	 * \brief Certificate chain length (number of certificates).
3079	 */
3080	size_t chain_len;
3081
3082} br_ssl_server_choices;
3083
3084/**
3085 * \brief Class type for a policy handler (server side).
3086 *
3087 * A policy handler selects the policy parameters for a connection
3088 * (cipher suite and other algorithms, and certificate chain to send to
3089 * the client); it also performs the server-side computations involving
3090 * its permanent private key.
3091 *
3092 * The SSL server engine will invoke first `choose()`, once the
3093 * ClientHello message has been received, then either `do_keyx()`
3094 * `do_sign()`, depending on the cipher suite.
3095 */
3096typedef struct br_ssl_server_policy_class_ br_ssl_server_policy_class;
3097struct br_ssl_server_policy_class_ {
3098	/**
3099	 * \brief Context size (in bytes).
3100	 */
3101	size_t context_size;
3102
3103	/**
3104	 * \brief Select algorithms and certificates for this connection.
3105	 *
3106	 * This callback function shall fill the provided `choices`
3107	 * structure with the policy choices for this connection. This
3108	 * entails selecting the cipher suite, hash function for signing
3109	 * the ServerKeyExchange (applicable only to ECDHE cipher suites),
3110	 * and certificate chain to send.
3111	 *
3112	 * The callback receives a pointer to the server context that
3113	 * contains the relevant data. In particular, the functions
3114	 * `br_ssl_server_get_client_suites()`,
3115	 * `br_ssl_server_get_client_hashes()` and
3116	 * `br_ssl_server_get_client_curves()` can be used to obtain
3117	 * the cipher suites, hash functions and elliptic curves
3118	 * supported by both the client and server, respectively. The
3119	 * `br_ssl_engine_get_version()` and `br_ssl_engine_get_server_name()`
3120	 * functions yield the protocol version and requested server name
3121	 * (SNI), respectively.
3122	 *
3123	 * This function may modify its context structure (`pctx`) in
3124	 * arbitrary ways to keep track of its own choices.
3125	 *
3126	 * This function shall return 1 if appropriate policy choices
3127	 * could be made, or 0 if this connection cannot be pursued.
3128	 *
3129	 * \param pctx      policy context.
3130	 * \param cc        SSL server context.
3131	 * \param choices   destination structure for the policy choices.
3132	 * \return  1 on success, 0 on error.
3133	 */
3134	int (*choose)(const br_ssl_server_policy_class **pctx,
3135		const br_ssl_server_context *cc,
3136		br_ssl_server_choices *choices);
3137
3138	/**
3139	 * \brief Perform key exchange (server part).
3140	 *
3141	 * This callback is invoked to perform the server-side cryptographic
3142	 * operation for a key exchange that is not ECDHE. This callback
3143	 * uses the private key.
3144	 *
3145	 * **For RSA key exchange**, the provided `data` (of length `*len`
3146	 * bytes) shall be decrypted with the server's private key, and
3147	 * the 48-byte premaster secret copied back to the first 48 bytes
3148	 * of `data`.
3149	 *
3150	 *   - The caller makes sure that `*len` is at least 59 bytes.
3151	 *
3152	 *   - This callback MUST check that the provided length matches
3153	 *     that of the key modulus; it shall report an error otherwise.
3154	 *
3155	 *   - If the length matches that of the RSA key modulus, then
3156	 *     processing MUST be constant-time, even if decryption fails,
3157	 *     or the padding is incorrect, or the plaintext message length
3158	 *     is not exactly 48 bytes.
3159	 *
3160	 *   - This callback needs not check the two first bytes of the
3161	 *     obtained pre-master secret (the caller will do that).
3162	 *
3163	 *   - If an error is reported (0), then what the callback put
3164	 *     in the first 48 bytes of `data` is unimportant (the caller
3165	 *     will use random bytes instead).
3166	 *
3167	 * **For ECDH key exchange**, the provided `data` (of length `*len`
3168	 * bytes) is the elliptic curve point from the client. The
3169	 * callback shall multiply it with its private key, and store
3170	 * the resulting X coordinate in `data`, starting at offset 0,
3171	 * and set `*len` to the length of the X coordinate.
3172	 *
3173	 *   - If the input array does not have the proper length for
3174	 *     an encoded curve point, then an error (0) shall be reported.
3175	 *
3176	 *   - If the input array has the proper length, then processing
3177	 *     MUST be constant-time, even if the data is not a valid
3178	 *     encoded point.
3179	 *
3180	 *   - This callback MUST check that the input point is valid.
3181	 *
3182	 * Returned value is 1 on success, 0 on error.
3183	 *
3184	 * \param pctx   policy context.
3185	 * \param data   key exchange data from the client.
3186	 * \param len    key exchange data length (in bytes).
3187	 * \return  1 on success, 0 on error.
3188	 */
3189	uint32_t (*do_keyx)(const br_ssl_server_policy_class **pctx,
3190		unsigned char *data, size_t *len);
3191
3192	/**
3193	 * \brief Perform a signature (for a ServerKeyExchange message).
3194	 *
3195	 * This callback function is invoked for ECDHE cipher suites. On
3196	 * input, the hash value or message to sign is in `data`, of
3197	 * size `hv_len`; the involved hash function or algorithm is
3198	 * identified by `algo_id`. The signature shall be computed and
3199	 * written back into `data`; the total size of that buffer is
3200	 * `len` bytes.
3201	 *
3202	 * This callback shall verify that the signature length does not
3203	 * exceed `len` bytes, and abstain from writing the signature if
3204	 * it does not fit.
3205	 *
3206	 * The `algo_id` value matches that which was written in the
3207	 * `choices` structures by the `choose()` callback. This will be
3208	 * one of the following:
3209	 *
3210	 *   - `0xFF00 + id` for a hash function identifier `id`. In
3211	 *     that case, the `data` buffer contains a hash value
3212	 *     already computed over the data that is to be signed,
3213	 *     of length `hv_len`. The `id` may be 0 to designate the
3214	 *     special MD5+SHA-1 concatenation (old-style RSA signing).
3215	 *
3216	 *   - Another value, lower than `0xFF00`. The `data` buffer
3217	 *     then contains the raw, non-hashed data to be signed
3218	 *     (concatenation of the client and server randoms and
3219	 *     ECDH parameters). The callback is responsible to apply
3220	 *     any relevant hashing as part of the signing process.
3221	 *
3222	 * Returned value is the signature length (in bytes), or 0 on error.
3223	 *
3224	 * \param pctx      policy context.
3225	 * \param algo_id   hash function / algorithm identifier.
3226	 * \param data      input/output buffer (message/hash, then signature).
3227	 * \param hv_len    hash value or message length (in bytes).
3228	 * \param len       total buffer length (in bytes).
3229	 * \return  signature length (in bytes) on success, or 0 on error.
3230	 */
3231	size_t (*do_sign)(const br_ssl_server_policy_class **pctx,
3232		unsigned algo_id,
3233		unsigned char *data, size_t hv_len, size_t len);
3234};
3235
3236/**
3237 * \brief A single-chain RSA policy handler.
3238 *
3239 * This policy context uses a single certificate chain, and a RSA
3240 * private key. The context can be restricted to only signatures or
3241 * only key exchange.
3242 *
3243 * Apart from the first field (vtable pointer), its contents are
3244 * opaque and shall not be accessed directly.
3245 */
3246typedef struct {
3247	/** \brief Pointer to vtable. */
3248	const br_ssl_server_policy_class *vtable;
3249#ifndef BR_DOXYGEN_IGNORE
3250	const br_x509_certificate *chain;
3251	size_t chain_len;
3252	const br_rsa_private_key *sk;
3253	unsigned allowed_usages;
3254	br_rsa_private irsacore;
3255	br_rsa_pkcs1_sign irsasign;
3256#endif
3257} br_ssl_server_policy_rsa_context;
3258
3259/**
3260 * \brief A single-chain EC policy handler.
3261 *
3262 * This policy context uses a single certificate chain, and an EC
3263 * private key. The context can be restricted to only signatures or
3264 * only key exchange.
3265 *
3266 * Due to how TLS is defined, this context must be made aware whether
3267 * the server certificate was itself signed with RSA or ECDSA. The code
3268 * does not try to decode the certificate to obtain that information.
3269 *
3270 * Apart from the first field (vtable pointer), its contents are
3271 * opaque and shall not be accessed directly.
3272 */
3273typedef struct {
3274	/** \brief Pointer to vtable. */
3275	const br_ssl_server_policy_class *vtable;
3276#ifndef BR_DOXYGEN_IGNORE
3277	const br_x509_certificate *chain;
3278	size_t chain_len;
3279	const br_ec_private_key *sk;
3280	unsigned allowed_usages;
3281	unsigned cert_issuer_key_type;
3282	const br_multihash_context *mhash;
3283	const br_ec_impl *iec;
3284	br_ecdsa_sign iecdsa;
3285#endif
3286} br_ssl_server_policy_ec_context;
3287
3288/**
3289 * \brief Class type for a session parameter cache.
3290 *
3291 * Session parameters are saved in the cache with `save()`, and
3292 * retrieved with `load()`. The cache implementation can apply any
3293 * storage and eviction strategy that it sees fit. The SSL server
3294 * context that performs the request is provided, so that its
3295 * functionalities may be used by the implementation (e.g. hash
3296 * functions or random number generation).
3297 */
3298typedef struct br_ssl_session_cache_class_ br_ssl_session_cache_class;
3299struct br_ssl_session_cache_class_ {
3300	/**
3301	 * \brief Context size (in bytes).
3302	 */
3303	size_t context_size;
3304
3305	/**
3306	 * \brief Record a session.
3307	 *
3308	 * This callback should record the provided session parameters.
3309	 * The `params` structure is transient, so its contents shall
3310	 * be copied into the cache. The session ID has been randomly
3311	 * generated and always has length exactly 32 bytes.
3312	 *
3313	 * \param ctx          session cache context.
3314	 * \param server_ctx   SSL server context.
3315	 * \param params       session parameters to save.
3316	 */
3317	void (*save)(const br_ssl_session_cache_class **ctx,
3318		br_ssl_server_context *server_ctx,
3319		const br_ssl_session_parameters *params);
3320
3321	/**
3322	 * \brief Lookup a session in the cache.
3323	 *
3324	 * The session ID to lookup is in `params` and always has length
3325	 * exactly 32 bytes. If the session parameters are found in the
3326	 * cache, then the parameters shall be copied into the `params`
3327	 * structure. Returned value is 1 on successful lookup, 0
3328	 * otherwise.
3329	 *
3330	 * \param ctx          session cache context.
3331	 * \param server_ctx   SSL server context.
3332	 * \param params       destination for session parameters.
3333	 * \return  1 if found, 0 otherwise.
3334	 */
3335	int (*load)(const br_ssl_session_cache_class **ctx,
3336		br_ssl_server_context *server_ctx,
3337		br_ssl_session_parameters *params);
3338};
3339
3340/**
3341 * \brief Context for a basic cache system.
3342 *
3343 * The system stores session parameters in a buffer provided at
3344 * initialisation time. Each entry uses exactly 100 bytes, and
3345 * buffer sizes up to 4294967295 bytes are supported.
3346 *
3347 * Entries are evicted with a LRU (Least Recently Used) policy. A
3348 * search tree is maintained to keep lookups fast even with large
3349 * caches.
3350 *
3351 * Apart from the first field (vtable pointer), the structure
3352 * contents are opaque and shall not be accessed directly.
3353 */
3354typedef struct {
3355	/** \brief Pointer to vtable. */
3356	const br_ssl_session_cache_class *vtable;
3357#ifndef BR_DOXYGEN_IGNORE
3358	unsigned char *store;
3359	size_t store_len, store_ptr;
3360	unsigned char index_key[32];
3361	const br_hash_class *hash;
3362	int init_done;
3363	uint32_t head, tail, root;
3364#endif
3365} br_ssl_session_cache_lru;
3366
3367/**
3368 * \brief Initialise a LRU session cache with the provided storage space.
3369 *
3370 * The provided storage space must remain valid as long as the cache
3371 * is used. Arbitrary lengths are supported, up to 4294967295 bytes;
3372 * each entry uses up exactly 100 bytes.
3373 *
3374 * \param cc          session cache context.
3375 * \param store       storage space for cached entries.
3376 * \param store_len   storage space length (in bytes).
3377 */
3378void br_ssl_session_cache_lru_init(br_ssl_session_cache_lru *cc,
3379	unsigned char *store, size_t store_len);
3380
3381/**
3382 * \brief Forget an entry in an LRU session cache.
3383 *
3384 * The session cache context must have been initialised. The entry
3385 * with the provided session ID (of exactly 32 bytes) is looked for
3386 * in the cache; if located, it is disabled.
3387 *
3388 * \param cc   session cache context.
3389 * \param id   session ID to forget.
3390 */
3391void br_ssl_session_cache_lru_forget(
3392	br_ssl_session_cache_lru *cc, const unsigned char *id);
3393
3394/**
3395 * \brief Context structure for a SSL server.
3396 *
3397 * The first field (called `eng`) is the SSL engine; all functions that
3398 * work on a `br_ssl_engine_context` structure shall take as parameter
3399 * a pointer to that field. The other structure fields are opaque and
3400 * must not be accessed directly.
3401 */
3402struct br_ssl_server_context_ {
3403	/**
3404	 * \brief The encapsulated engine context.
3405	 */
3406	br_ssl_engine_context eng;
3407
3408#ifndef BR_DOXYGEN_IGNORE
3409	/*
3410	 * Maximum version from the client.
3411	 */
3412	uint16_t client_max_version;
3413
3414	/*
3415	 * Session cache.
3416	 */
3417	const br_ssl_session_cache_class **cache_vtable;
3418
3419	/*
3420	 * Translated cipher suites supported by the client. The list
3421	 * is trimmed to include only the cipher suites that the
3422	 * server also supports; they are in the same order as in the
3423	 * client message.
3424	 */
3425	br_suite_translated client_suites[BR_MAX_CIPHER_SUITES];
3426	unsigned char client_suites_num;
3427
3428	/*
3429	 * Hash functions supported by the client, with ECDSA and RSA
3430	 * (bit mask). For hash function with id 'x', set bit index is
3431	 * x for RSA, x+8 for ECDSA. For newer algorithms, with ID
3432	 * 0x08**, bit 16+k is set for algorithm 0x0800+k.
3433	 */
3434	uint32_t hashes;
3435
3436	/*
3437	 * Curves supported by the client (bit mask, for named curves).
3438	 */
3439	uint32_t curves;
3440
3441	/*
3442	 * Context for chain handler.
3443	 */
3444	const br_ssl_server_policy_class **policy_vtable;
3445	uint16_t sign_hash_id;
3446
3447	/*
3448	 * For the core handlers, thus avoiding (in most cases) the
3449	 * need for an externally provided policy context.
3450	 */
3451	union {
3452		const br_ssl_server_policy_class *vtable;
3453		br_ssl_server_policy_rsa_context single_rsa;
3454		br_ssl_server_policy_ec_context single_ec;
3455	} chain_handler;
3456
3457	/*
3458	 * Buffer for the ECDHE private key.
3459	 */
3460	unsigned char ecdhe_key[70];
3461	size_t ecdhe_key_len;
3462
3463	/*
3464	 * Trust anchor names for client authentication. "ta_names" and
3465	 * "tas" cannot be both non-NULL.
3466	 */
3467	const br_x500_name *ta_names;
3468	const br_x509_trust_anchor *tas;
3469	size_t num_tas;
3470	size_t cur_dn_index;
3471	const unsigned char *cur_dn;
3472	size_t cur_dn_len;
3473
3474	/*
3475	 * Buffer for the hash value computed over all handshake messages
3476	 * prior to CertificateVerify, and identifier for the hash function.
3477	 */
3478	unsigned char hash_CV[64];
3479	size_t hash_CV_len;
3480	int hash_CV_id;
3481
3482	/*
3483	 * Server-specific implementations.
3484	 * (none for now)
3485	 */
3486#endif
3487};
3488
3489/*
3490 * Each br_ssl_server_init_xxx() function sets the list of supported
3491 * cipher suites and used implementations, as specified by the profile
3492 * name 'xxx'. Defined profile names are:
3493 *
3494 *    full_rsa    all supported algorithm, server key type is RSA
3495 *    full_ec     all supported algorithm, server key type is EC
3496 *    TODO: add other profiles
3497 *
3498 * Naming scheme for "minimal" profiles: min123
3499 *
3500 * -- character 1: key exchange
3501 *      r = RSA
3502 *      e = ECDHE_RSA
3503 *      f = ECDHE_ECDSA
3504 *      u = ECDH_RSA
3505 *      v = ECDH_ECDSA
3506 * -- character 2: version / PRF
3507 *      0 = TLS 1.0 / 1.1 with MD5+SHA-1
3508 *      2 = TLS 1.2 with SHA-256
3509 *      3 = TLS 1.2 with SHA-384
3510 * -- character 3: encryption
3511 *      a = AES/CBC
3512 *      d = 3DES/CBC
3513 *      g = AES/GCM
3514 *      c = ChaCha20+Poly1305
3515 */
3516
3517/**
3518 * \brief SSL server profile: full_rsa.
3519 *
3520 * This function initialises the provided SSL server context with
3521 * all supported algorithms and cipher suites that rely on a RSA
3522 * key pair.
3523 *
3524 * \param cc          server context to initialise.
3525 * \param chain       server certificate chain.
3526 * \param chain_len   certificate chain length (number of certificate).
3527 * \param sk          RSA private key.
3528 */
3529void br_ssl_server_init_full_rsa(br_ssl_server_context *cc,
3530	const br_x509_certificate *chain, size_t chain_len,
3531	const br_rsa_private_key *sk);
3532
3533/**
3534 * \brief SSL server profile: full_ec.
3535 *
3536 * This function initialises the provided SSL server context with
3537 * all supported algorithms and cipher suites that rely on an EC
3538 * key pair.
3539 *
3540 * The key type of the CA that issued the server's certificate must
3541 * be provided, since it matters for ECDH cipher suites (ECDH_RSA
3542 * suites require a RSA-powered CA). The key type is either
3543 * `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`.
3544 *
3545 * \param cc                     server context to initialise.
3546 * \param chain                  server certificate chain.
3547 * \param chain_len              chain length (number of certificates).
3548 * \param cert_issuer_key_type   certificate issuer's key type.
3549 * \param sk                     EC private key.
3550 */
3551void br_ssl_server_init_full_ec(br_ssl_server_context *cc,
3552	const br_x509_certificate *chain, size_t chain_len,
3553	unsigned cert_issuer_key_type, const br_ec_private_key *sk);
3554
3555/**
3556 * \brief SSL server profile: minr2g.
3557 *
3558 * This profile uses only TLS_RSA_WITH_AES_128_GCM_SHA256. Server key is
3559 * RSA, and RSA key exchange is used (not forward secure, but uses little
3560 * CPU in the client).
3561 *
3562 * \param cc          server context to initialise.
3563 * \param chain       server certificate chain.
3564 * \param chain_len   certificate chain length (number of certificate).
3565 * \param sk          RSA private key.
3566 */
3567void br_ssl_server_init_minr2g(br_ssl_server_context *cc,
3568	const br_x509_certificate *chain, size_t chain_len,
3569	const br_rsa_private_key *sk);
3570
3571/**
3572 * \brief SSL server profile: mine2g.
3573 *
3574 * This profile uses only TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. Server key
3575 * is RSA, and ECDHE key exchange is used. This suite provides forward
3576 * security, with a higher CPU expense on the client, and a somewhat
3577 * larger code footprint (compared to "minr2g").
3578 *
3579 * \param cc          server context to initialise.
3580 * \param chain       server certificate chain.
3581 * \param chain_len   certificate chain length (number of certificate).
3582 * \param sk          RSA private key.
3583 */
3584void br_ssl_server_init_mine2g(br_ssl_server_context *cc,
3585	const br_x509_certificate *chain, size_t chain_len,
3586	const br_rsa_private_key *sk);
3587
3588/**
3589 * \brief SSL server profile: minf2g.
3590 *
3591 * This profile uses only TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.
3592 * Server key is EC, and ECDHE key exchange is used. This suite provides
3593 * forward security, with a higher CPU expense on the client and server
3594 * (by a factor of about 3 to 4), and a somewhat larger code footprint
3595 * (compared to "minu2g" and "minv2g").
3596 *
3597 * \param cc          server context to initialise.
3598 * \param chain       server certificate chain.
3599 * \param chain_len   certificate chain length (number of certificate).
3600 * \param sk          EC private key.
3601 */
3602void br_ssl_server_init_minf2g(br_ssl_server_context *cc,
3603	const br_x509_certificate *chain, size_t chain_len,
3604	const br_ec_private_key *sk);
3605
3606/**
3607 * \brief SSL server profile: minu2g.
3608 *
3609 * This profile uses only TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256.
3610 * Server key is EC, and ECDH key exchange is used; the issuing CA used
3611 * a RSA key.
3612 *
3613 * The "minu2g" and "minv2g" profiles do not provide forward secrecy,
3614 * but are the lightest on the server (for CPU usage), and are rather
3615 * inexpensive on the client as well.
3616 *
3617 * \param cc          server context to initialise.
3618 * \param chain       server certificate chain.
3619 * \param chain_len   certificate chain length (number of certificate).
3620 * \param sk          EC private key.
3621 */
3622void br_ssl_server_init_minu2g(br_ssl_server_context *cc,
3623	const br_x509_certificate *chain, size_t chain_len,
3624	const br_ec_private_key *sk);
3625
3626/**
3627 * \brief SSL server profile: minv2g.
3628 *
3629 * This profile uses only TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256.
3630 * Server key is EC, and ECDH key exchange is used; the issuing CA used
3631 * an EC key.
3632 *
3633 * The "minu2g" and "minv2g" profiles do not provide forward secrecy,
3634 * but are the lightest on the server (for CPU usage), and are rather
3635 * inexpensive on the client as well.
3636 *
3637 * \param cc          server context to initialise.
3638 * \param chain       server certificate chain.
3639 * \param chain_len   certificate chain length (number of certificate).
3640 * \param sk          EC private key.
3641 */
3642void br_ssl_server_init_minv2g(br_ssl_server_context *cc,
3643	const br_x509_certificate *chain, size_t chain_len,
3644	const br_ec_private_key *sk);
3645
3646/**
3647 * \brief SSL server profile: mine2c.
3648 *
3649 * This profile uses only TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256.
3650 * Server key is RSA, and ECDHE key exchange is used. This suite
3651 * provides forward security.
3652 *
3653 * \param cc          server context to initialise.
3654 * \param chain       server certificate chain.
3655 * \param chain_len   certificate chain length (number of certificate).
3656 * \param sk          RSA private key.
3657 */
3658void br_ssl_server_init_mine2c(br_ssl_server_context *cc,
3659	const br_x509_certificate *chain, size_t chain_len,
3660	const br_rsa_private_key *sk);
3661
3662/**
3663 * \brief SSL server profile: minf2c.
3664 *
3665 * This profile uses only TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256.
3666 * Server key is EC, and ECDHE key exchange is used. This suite provides
3667 * forward security.
3668 *
3669 * \param cc          server context to initialise.
3670 * \param chain       server certificate chain.
3671 * \param chain_len   certificate chain length (number of certificate).
3672 * \param sk          EC private key.
3673 */
3674void br_ssl_server_init_minf2c(br_ssl_server_context *cc,
3675	const br_x509_certificate *chain, size_t chain_len,
3676	const br_ec_private_key *sk);
3677
3678/**
3679 * \brief Get the supported client suites.
3680 *
3681 * This function shall be called only after the ClientHello has been
3682 * processed, typically from the policy engine. The returned array
3683 * contains the cipher suites that are supported by both the client
3684 * and the server; these suites are in client preference order, unless
3685 * the `BR_OPT_ENFORCE_SERVER_PREFERENCES` flag was set, in which case
3686 * they are in server preference order.
3687 *
3688 * The suites are _translated_, which means that each suite is given
3689 * as two 16-bit integers: the standard suite identifier, and its
3690 * translated version, broken down into its individual components,
3691 * as explained with the `br_suite_translated` type.
3692 *
3693 * The returned array is allocated in the context and will be rewritten
3694 * by each handshake.
3695 *
3696 * \param cc    server context.
3697 * \param num   receives the array size (number of suites).
3698 * \return  the translated common cipher suites, in preference order.
3699 */
3700static inline const br_suite_translated *
3701br_ssl_server_get_client_suites(const br_ssl_server_context *cc, size_t *num)
3702{
3703	*num = cc->client_suites_num;
3704	return cc->client_suites;
3705}
3706
3707/**
3708 * \brief Get the hash functions and signature algorithms supported by
3709 * the client.
3710 *
3711 * This value is a bit field:
3712 *
3713 *   - If RSA (PKCS#1 v1.5) is supported with hash function of ID `x`,
3714 *     then bit `x` is set (hash function ID is 0 for the special MD5+SHA-1,
3715 *     or 2 to 6 for the SHA family).
3716 *
3717 *   - If ECDSA is supported with hash function of ID `x`, then bit `8+x`
3718 *     is set.
3719 *
3720 *   - Newer algorithms are symbolic 16-bit identifiers that do not
3721 *     represent signature algorithm and hash function separately. If
3722 *     the TLS-level identifier is `0x0800+x` for a `x` in the 0..15
3723 *     range, then bit `16+x` is set.
3724 *
3725 * "New algorithms" are currently defined only in draft documents, so
3726 * this support is subject to possible change. Right now (early 2017),
3727 * this maps ed25519 (EdDSA on Curve25519) to bit 23, and ed448 (EdDSA
3728 * on Curve448) to bit 24. If the identifiers on the wire change in
3729 * future document, then the decoding mechanism in BearSSL will be
3730 * amended to keep mapping ed25519 and ed448 on bits 23 and 24,
3731 * respectively. Mapping of other new algorithms (e.g. RSA/PSS) is not
3732 * guaranteed yet.
3733 *
3734 * \param cc   server context.
3735 * \return  the client-supported hash functions and signature algorithms.
3736 */
3737static inline uint32_t
3738br_ssl_server_get_client_hashes(const br_ssl_server_context *cc)
3739{
3740	return cc->hashes;
3741}
3742
3743/**
3744 * \brief Get the elliptic curves supported by the client.
3745 *
3746 * This is a bit field (bit x is set if curve of ID x is supported).
3747 *
3748 * \param cc   server context.
3749 * \return  the client-supported elliptic curves.
3750 */
3751static inline uint32_t
3752br_ssl_server_get_client_curves(const br_ssl_server_context *cc)
3753{
3754	return cc->curves;
3755}
3756
3757/**
3758 * \brief Clear the complete contents of a SSL server context.
3759 *
3760 * Everything is cleared, including the reference to the configured buffer,
3761 * implementations, cipher suites and state. This is a preparatory step
3762 * to assembling a custom profile.
3763 *
3764 * \param cc   server context to clear.
3765 */
3766void br_ssl_server_zero(br_ssl_server_context *cc);
3767
3768/**
3769 * \brief Set an externally provided policy context.
3770 *
3771 * The policy context's methods are invoked to decide the cipher suite
3772 * and certificate chain, and to perform operations involving the server's
3773 * private key.
3774 *
3775 * \param cc     server context.
3776 * \param pctx   policy context (pointer to its vtable field).
3777 */
3778static inline void
3779br_ssl_server_set_policy(br_ssl_server_context *cc,
3780	const br_ssl_server_policy_class **pctx)
3781{
3782	cc->policy_vtable = pctx;
3783}
3784
3785/**
3786 * \brief Set the server certificate chain and key (single RSA case).
3787 *
3788 * This function uses a policy context included in the server context.
3789 * It configures use of a single server certificate chain with a RSA
3790 * private key. The `allowed_usages` is a combination of usages, namely
3791 * `BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`; this enables or disables
3792 * the corresponding cipher suites (i.e. `TLS_RSA_*` use the RSA key for
3793 * key exchange, while `TLS_ECDHE_RSA_*` use the RSA key for signatures).
3794 *
3795 * \param cc               server context.
3796 * \param chain            server certificate chain to send to the client.
3797 * \param chain_len        chain length (number of certificates).
3798 * \param sk               server private key (RSA).
3799 * \param allowed_usages   allowed private key usages.
3800 * \param irsacore         RSA core implementation.
3801 * \param irsasign         RSA signature implementation (PKCS#1 v1.5).
3802 */
3803void br_ssl_server_set_single_rsa(br_ssl_server_context *cc,
3804	const br_x509_certificate *chain, size_t chain_len,
3805	const br_rsa_private_key *sk, unsigned allowed_usages,
3806	br_rsa_private irsacore, br_rsa_pkcs1_sign irsasign);
3807
3808/**
3809 * \brief Set the server certificate chain and key (single EC case).
3810 *
3811 * This function uses a policy context included in the server context.
3812 * It configures use of a single server certificate chain with an EC
3813 * private key. The `allowed_usages` is a combination of usages, namely
3814 * `BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`; this enables or disables
3815 * the corresponding cipher suites (i.e. `TLS_ECDH_*` use the EC key for
3816 * key exchange, while `TLS_ECDHE_ECDSA_*` use the EC key for signatures).
3817 *
3818 * In order to support `TLS_ECDH_*` cipher suites (non-ephemeral ECDH),
3819 * the algorithm type of the key used by the issuing CA to sign the
3820 * server's certificate must be provided, as `cert_issuer_key_type`
3821 * parameter (this value is either `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`).
3822 *
3823 * \param cc                     server context.
3824 * \param chain                  server certificate chain to send.
3825 * \param chain_len              chain length (number of certificates).
3826 * \param sk                     server private key (EC).
3827 * \param allowed_usages         allowed private key usages.
3828 * \param cert_issuer_key_type   issuing CA's key type.
3829 * \param iec                    EC core implementation.
3830 * \param iecdsa                 ECDSA signature implementation ("asn1" format).
3831 */
3832void br_ssl_server_set_single_ec(br_ssl_server_context *cc,
3833	const br_x509_certificate *chain, size_t chain_len,
3834	const br_ec_private_key *sk, unsigned allowed_usages,
3835	unsigned cert_issuer_key_type,
3836	const br_ec_impl *iec, br_ecdsa_sign iecdsa);
3837
3838/**
3839 * \brief Activate client certificate authentication.
3840 *
3841 * The trust anchor encoded X.500 names (DN) to send to the client are
3842 * provided. A client certificate will be requested and validated through
3843 * the X.509 validator configured in the SSL engine. If `num` is 0, then
3844 * client certificate authentication is disabled.
3845 *
3846 * If the client does not send a certificate, or on validation failure,
3847 * the handshake aborts. Unauthenticated clients can be tolerated by
3848 * setting the `BR_OPT_TOLERATE_NO_CLIENT_AUTH` flag.
3849 *
3850 * The provided array is linked in, not copied, so that pointer must
3851 * remain valid as long as anchor names may be used.
3852 *
3853 * \param cc         server context.
3854 * \param ta_names   encoded trust anchor names.
3855 * \param num        number of encoded trust anchor names.
3856 */
3857static inline void
3858br_ssl_server_set_trust_anchor_names(br_ssl_server_context *cc,
3859	const br_x500_name *ta_names, size_t num)
3860{
3861	cc->ta_names = ta_names;
3862	cc->tas = NULL;
3863	cc->num_tas = num;
3864}
3865
3866/**
3867 * \brief Activate client certificate authentication.
3868 *
3869 * This is a variant for `br_ssl_server_set_trust_anchor_names()`: the
3870 * trust anchor names are provided not as an array of stand-alone names
3871 * (`br_x500_name` structures), but as an array of trust anchors
3872 * (`br_x509_trust_anchor` structures). The server engine itself will
3873 * only use the `dn` field of each trust anchor. This is meant to allow
3874 * defining a single array of trust anchors, to be used here and in the
3875 * X.509 validation engine itself.
3876 *
3877 * The provided array is linked in, not copied, so that pointer must
3878 * remain valid as long as anchor names may be used.
3879 *
3880 * \param cc    server context.
3881 * \param tas   trust anchors (only names are used).
3882 * \param num   number of trust anchors.
3883 */
3884static inline void
3885br_ssl_server_set_trust_anchor_names_alt(br_ssl_server_context *cc,
3886	const br_x509_trust_anchor *tas, size_t num)
3887{
3888	cc->ta_names = NULL;
3889	cc->tas = tas;
3890	cc->num_tas = num;
3891}
3892
3893/**
3894 * \brief Configure the cache for session parameters.
3895 *
3896 * The cache context is provided as a pointer to its first field (vtable
3897 * pointer).
3898 *
3899 * \param cc       server context.
3900 * \param vtable   session cache context.
3901 */
3902static inline void
3903br_ssl_server_set_cache(br_ssl_server_context *cc,
3904	const br_ssl_session_cache_class **vtable)
3905{
3906	cc->cache_vtable = vtable;
3907}
3908
3909/**
3910 * \brief Prepare or reset a server context for handling an incoming client.
3911 *
3912 * \param cc   server context.
3913 * \return  1 on success, 0 on error.
3914 */
3915int br_ssl_server_reset(br_ssl_server_context *cc);
3916
3917/* ===================================================================== */
3918
3919/*
3920 * Context for the simplified I/O context. The transport medium is accessed
3921 * through the low_read() and low_write() callback functions, each with
3922 * its own opaque context pointer.
3923 *
3924 *  low_read()    read some bytes, at most 'len' bytes, into data[]. The
3925 *                returned value is the number of read bytes, or -1 on error.
3926 *                The 'len' parameter is guaranteed never to exceed 20000,
3927 *                so the length always fits in an 'int' on all platforms.
3928 *
3929 *  low_write()   write up to 'len' bytes, to be read from data[]. The
3930 *                returned value is the number of written bytes, or -1 on
3931 *                error. The 'len' parameter is guaranteed never to exceed
3932 *                20000, so the length always fits in an 'int' on all
3933 *                parameters.
3934 *
3935 * A socket closure (if the transport medium is a socket) should be reported
3936 * as an error (-1). The callbacks shall endeavour to block until at least
3937 * one byte can be read or written; a callback returning 0 at times is
3938 * acceptable, but this normally leads to the callback being immediately
3939 * called again, so the callback should at least always try to block for
3940 * some time if no I/O can take place.
3941 *
3942 * The SSL engine naturally applies some buffering, so the callbacks need
3943 * not apply buffers of their own.
3944 */
3945/**
3946 * \brief Context structure for the simplified SSL I/O wrapper.
3947 *
3948 * This structure is initialised with `br_sslio_init()`. Its contents
3949 * are opaque and shall not be accessed directly.
3950 */
3951typedef struct {
3952#ifndef BR_DOXYGEN_IGNORE
3953	br_ssl_engine_context *engine;
3954	int (*low_read)(void *read_context,
3955		unsigned char *data, size_t len);
3956	void *read_context;
3957	int (*low_write)(void *write_context,
3958		const unsigned char *data, size_t len);
3959	void *write_context;
3960#endif
3961} br_sslio_context;
3962
3963/**
3964 * \brief Initialise a simplified I/O wrapper context.
3965 *
3966 * The simplified I/O wrapper offers a simpler read/write API for a SSL
3967 * engine (client or server), using the provided callback functions for
3968 * reading data from, or writing data to, the transport medium.
3969 *
3970 * The callback functions have the following semantics:
3971 *
3972 *   - Each callback receives an opaque context value (of type `void *`)
3973 *     that the callback may use arbitrarily (or possibly ignore).
3974 *
3975 *   - `low_read()` reads at least one byte, at most `len` bytes, from
3976 *     the transport medium. Read bytes shall be written in `data`.
3977 *
3978 *   - `low_write()` writes at least one byte, at most `len` bytes, unto
3979 *     the transport medium. The bytes to write are read from `data`.
3980 *
3981 *   - The `len` parameter is never zero, and is always lower than 20000.
3982 *
3983 *   - The number of processed bytes (read or written) is returned. Since
3984 *     that number is less than 20000, it always fits on an `int`.
3985 *
3986 *   - On error, the callbacks return -1. Reaching end-of-stream is an
3987 *     error. Errors are permanent: the SSL connection is terminated.
3988 *
3989 *   - Callbacks SHOULD NOT return 0. This is tolerated, as long as
3990 *     callbacks endeavour to block for some non-negligible amount of
3991 *     time until at least one byte can be sent or received (if a
3992 *     callback returns 0, then the wrapper invokes it again
3993 *     immediately).
3994 *
3995 *   - Callbacks MAY return as soon as at least one byte is processed;
3996 *     they MAY also insist on reading or writing _all_ requested bytes.
3997 *     Since SSL is a self-terminated protocol (each record has a length
3998 *     header), this does not change semantics.
3999 *
4000 *   - Callbacks need not apply any buffering (for performance) since SSL
4001 *     itself uses buffers.
4002 *
4003 * \param ctx             wrapper context to initialise.
4004 * \param engine          SSL engine to wrap.
4005 * \param low_read        callback for reading data from the transport.
4006 * \param read_context    context pointer for `low_read()`.
4007 * \param low_write       callback for writing data on the transport.
4008 * \param write_context   context pointer for `low_write()`.
4009 */
4010void br_sslio_init(br_sslio_context *ctx,
4011	br_ssl_engine_context *engine,
4012	int (*low_read)(void *read_context,
4013		unsigned char *data, size_t len),
4014	void *read_context,
4015	int (*low_write)(void *write_context,
4016		const unsigned char *data, size_t len),
4017	void *write_context);
4018
4019/**
4020 * \brief Read some application data from a SSL connection.
4021 *
4022 * If `len` is zero, then this function returns 0 immediately. In
4023 * all other cases, it never returns 0.
4024 *
4025 * This call returns only when at least one byte has been obtained.
4026 * Returned value is the number of bytes read, or -1 on error. The
4027 * number of bytes always fits on an 'int' (data from a single SSL/TLS
4028 * record is returned).
4029 *
4030 * On error or SSL closure, this function returns -1. The caller should
4031 * inspect the error status on the SSL engine to distinguish between
4032 * normal closure and error.
4033 *
4034 * \param cc    SSL wrapper context.
4035 * \param dst   destination buffer for application data.
4036 * \param len   maximum number of bytes to obtain.
4037 * \return  number of bytes obtained, or -1 on error.
4038 */
4039int br_sslio_read(br_sslio_context *cc, void *dst, size_t len);
4040
4041/**
4042 * \brief Read application data from a SSL connection.
4043 *
4044 * This calls returns only when _all_ requested `len` bytes are read,
4045 * or an error is reached. Returned value is 0 on success, -1 on error.
4046 * A normal (verified) SSL closure before that many bytes are obtained
4047 * is reported as an error by this function.
4048 *
4049 * \param cc    SSL wrapper context.
4050 * \param dst   destination buffer for application data.
4051 * \param len   number of bytes to obtain.
4052 * \return  0 on success, or -1 on error.
4053 */
4054int br_sslio_read_all(br_sslio_context *cc, void *dst, size_t len);
4055
4056/**
4057 * \brief Write some application data unto a SSL connection.
4058 *
4059 * If `len` is zero, then this function returns 0 immediately. In
4060 * all other cases, it never returns 0.
4061 *
4062 * This call returns only when at least one byte has been written.
4063 * Returned value is the number of bytes written, or -1 on error. The
4064 * number of bytes always fits on an 'int' (less than 20000).
4065 *
4066 * On error or SSL closure, this function returns -1. The caller should
4067 * inspect the error status on the SSL engine to distinguish between
4068 * normal closure and error.
4069 *
4070 * **Important:** SSL is buffered; a "written" byte is a byte that was
4071 * injected into the wrapped SSL engine, but this does not necessarily mean
4072 * that it has been scheduled for sending. Use `br_sslio_flush()` to
4073 * ensure that all pending data has been sent to the transport medium.
4074 *
4075 * \param cc    SSL wrapper context.
4076 * \param src   source buffer for application data.
4077 * \param len   maximum number of bytes to write.
4078 * \return  number of bytes written, or -1 on error.
4079 */
4080int br_sslio_write(br_sslio_context *cc, const void *src, size_t len);
4081
4082/**
4083 * \brief Write application data unto a SSL connection.
4084 *
4085 * This calls returns only when _all_ requested `len` bytes have been
4086 * written, or an error is reached. Returned value is 0 on success, -1
4087 * on error. A normal (verified) SSL closure before that many bytes are
4088 * written is reported as an error by this function.
4089 *
4090 * **Important:** SSL is buffered; a "written" byte is a byte that was
4091 * injected into the wrapped SSL engine, but this does not necessarily mean
4092 * that it has been scheduled for sending. Use `br_sslio_flush()` to
4093 * ensure that all pending data has been sent to the transport medium.
4094 *
4095 * \param cc    SSL wrapper context.
4096 * \param src   source buffer for application data.
4097 * \param len   number of bytes to write.
4098 * \return  0 on success, or -1 on error.
4099 */
4100int br_sslio_write_all(br_sslio_context *cc, const void *src, size_t len);
4101
4102/**
4103 * \brief Flush pending data.
4104 *
4105 * This call makes sure that any buffered application data in the
4106 * provided context (including the wrapped SSL engine) has been sent
4107 * to the transport medium (i.e. accepted by the `low_write()` callback
4108 * method). If there is no such pending data, then this function does
4109 * nothing (and returns a success, i.e. 0).
4110 *
4111 * If the underlying transport medium has its own buffers, then it is
4112 * up to the caller to ensure the corresponding flushing.
4113 *
4114 * Returned value is 0 on success, -1 on error.
4115 *
4116 * \param cc    SSL wrapper context.
4117 * \return  0 on success, or -1 on error.
4118 */
4119int br_sslio_flush(br_sslio_context *cc);
4120
4121/**
4122 * \brief Close the SSL connection.
4123 *
4124 * This call runs the SSL closure protocol (sending a `close_notify`,
4125 * receiving the response `close_notify`). When it returns, the SSL
4126 * connection is finished. It is still up to the caller to manage the
4127 * possible transport-level termination, if applicable (alternatively,
4128 * the underlying transport stream may be reused for non-SSL messages).
4129 *
4130 * Returned value is 0 on success, -1 on error. A failure by the peer
4131 * to process the complete closure protocol (i.e. sending back the
4132 * `close_notify`) is an error.
4133 *
4134 * \param cc    SSL wrapper context.
4135 * \return  0 on success, or -1 on error.
4136 */
4137int br_sslio_close(br_sslio_context *cc);
4138
4139/* ===================================================================== */
4140
4141/*
4142 * Symbolic constants for cipher suites.
4143 */
4144
4145/* From RFC 5246 */
4146#define BR_TLS_NULL_WITH_NULL_NULL                   0x0000
4147#define BR_TLS_RSA_WITH_NULL_MD5                     0x0001
4148#define BR_TLS_RSA_WITH_NULL_SHA                     0x0002
4149#define BR_TLS_RSA_WITH_NULL_SHA256                  0x003B
4150#define BR_TLS_RSA_WITH_RC4_128_MD5                  0x0004
4151#define BR_TLS_RSA_WITH_RC4_128_SHA                  0x0005
4152#define BR_TLS_RSA_WITH_3DES_EDE_CBC_SHA             0x000A
4153#define BR_TLS_RSA_WITH_AES_128_CBC_SHA              0x002F
4154#define BR_TLS_RSA_WITH_AES_256_CBC_SHA              0x0035
4155#define BR_TLS_RSA_WITH_AES_128_CBC_SHA256           0x003C
4156#define BR_TLS_RSA_WITH_AES_256_CBC_SHA256           0x003D
4157#define BR_TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA          0x000D
4158#define BR_TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA          0x0010
4159#define BR_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA         0x0013
4160#define BR_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA         0x0016
4161#define BR_TLS_DH_DSS_WITH_AES_128_CBC_SHA           0x0030
4162#define BR_TLS_DH_RSA_WITH_AES_128_CBC_SHA           0x0031
4163#define BR_TLS_DHE_DSS_WITH_AES_128_CBC_SHA          0x0032
4164#define BR_TLS_DHE_RSA_WITH_AES_128_CBC_SHA          0x0033
4165#define BR_TLS_DH_DSS_WITH_AES_256_CBC_SHA           0x0036
4166#define BR_TLS_DH_RSA_WITH_AES_256_CBC_SHA           0x0037
4167#define BR_TLS_DHE_DSS_WITH_AES_256_CBC_SHA          0x0038
4168#define BR_TLS_DHE_RSA_WITH_AES_256_CBC_SHA          0x0039
4169#define BR_TLS_DH_DSS_WITH_AES_128_CBC_SHA256        0x003E
4170#define BR_TLS_DH_RSA_WITH_AES_128_CBC_SHA256        0x003F
4171#define BR_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256       0x0040
4172#define BR_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256       0x0067
4173#define BR_TLS_DH_DSS_WITH_AES_256_CBC_SHA256        0x0068
4174#define BR_TLS_DH_RSA_WITH_AES_256_CBC_SHA256        0x0069
4175#define BR_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256       0x006A
4176#define BR_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256       0x006B
4177#define BR_TLS_DH_anon_WITH_RC4_128_MD5              0x0018
4178#define BR_TLS_DH_anon_WITH_3DES_EDE_CBC_SHA         0x001B
4179#define BR_TLS_DH_anon_WITH_AES_128_CBC_SHA          0x0034
4180#define BR_TLS_DH_anon_WITH_AES_256_CBC_SHA          0x003A
4181#define BR_TLS_DH_anon_WITH_AES_128_CBC_SHA256       0x006C
4182#define BR_TLS_DH_anon_WITH_AES_256_CBC_SHA256       0x006D
4183
4184/* From RFC 4492 */
4185#define BR_TLS_ECDH_ECDSA_WITH_NULL_SHA              0xC001
4186#define BR_TLS_ECDH_ECDSA_WITH_RC4_128_SHA           0xC002
4187#define BR_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA      0xC003
4188#define BR_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA       0xC004
4189#define BR_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA       0xC005
4190#define BR_TLS_ECDHE_ECDSA_WITH_NULL_SHA             0xC006
4191#define BR_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA          0xC007
4192#define BR_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA     0xC008
4193#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA      0xC009
4194#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA      0xC00A
4195#define BR_TLS_ECDH_RSA_WITH_NULL_SHA                0xC00B
4196#define BR_TLS_ECDH_RSA_WITH_RC4_128_SHA             0xC00C
4197#define BR_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA        0xC00D
4198#define BR_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA         0xC00E
4199#define BR_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA         0xC00F
4200#define BR_TLS_ECDHE_RSA_WITH_NULL_SHA               0xC010
4201#define BR_TLS_ECDHE_RSA_WITH_RC4_128_SHA            0xC011
4202#define BR_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA       0xC012
4203#define BR_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA        0xC013
4204#define BR_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA        0xC014
4205#define BR_TLS_ECDH_anon_WITH_NULL_SHA               0xC015
4206#define BR_TLS_ECDH_anon_WITH_RC4_128_SHA            0xC016
4207#define BR_TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA       0xC017
4208#define BR_TLS_ECDH_anon_WITH_AES_128_CBC_SHA        0xC018
4209#define BR_TLS_ECDH_anon_WITH_AES_256_CBC_SHA        0xC019
4210
4211/* From RFC 5288 */
4212#define BR_TLS_RSA_WITH_AES_128_GCM_SHA256           0x009C
4213#define BR_TLS_RSA_WITH_AES_256_GCM_SHA384           0x009D
4214#define BR_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256       0x009E
4215#define BR_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384       0x009F
4216#define BR_TLS_DH_RSA_WITH_AES_128_GCM_SHA256        0x00A0
4217#define BR_TLS_DH_RSA_WITH_AES_256_GCM_SHA384        0x00A1
4218#define BR_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256       0x00A2
4219#define BR_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384       0x00A3
4220#define BR_TLS_DH_DSS_WITH_AES_128_GCM_SHA256        0x00A4
4221#define BR_TLS_DH_DSS_WITH_AES_256_GCM_SHA384        0x00A5
4222#define BR_TLS_DH_anon_WITH_AES_128_GCM_SHA256       0x00A6
4223#define BR_TLS_DH_anon_WITH_AES_256_GCM_SHA384       0x00A7
4224
4225/* From RFC 5289 */
4226#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256   0xC023
4227#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384   0xC024
4228#define BR_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256    0xC025
4229#define BR_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384    0xC026
4230#define BR_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256     0xC027
4231#define BR_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384     0xC028
4232#define BR_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256      0xC029
4233#define BR_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384      0xC02A
4234#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256   0xC02B
4235#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384   0xC02C
4236#define BR_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256    0xC02D
4237#define BR_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384    0xC02E
4238#define BR_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256     0xC02F
4239#define BR_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384     0xC030
4240#define BR_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256      0xC031
4241#define BR_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384      0xC032
4242
4243/* From RFC 6655 and 7251 */
4244#define BR_TLS_RSA_WITH_AES_128_CCM                  0xC09C
4245#define BR_TLS_RSA_WITH_AES_256_CCM                  0xC09D
4246#define BR_TLS_RSA_WITH_AES_128_CCM_8                0xC0A0
4247#define BR_TLS_RSA_WITH_AES_256_CCM_8                0xC0A1
4248#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CCM          0xC0AC
4249#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CCM          0xC0AD
4250#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8        0xC0AE
4251#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8        0xC0AF
4252
4253/* From RFC 7905 */
4254#define BR_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256     0xCCA8
4255#define BR_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256   0xCCA9
4256#define BR_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256       0xCCAA
4257#define BR_TLS_PSK_WITH_CHACHA20_POLY1305_SHA256           0xCCAB
4258#define BR_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256     0xCCAC
4259#define BR_TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256       0xCCAD
4260#define BR_TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256       0xCCAE
4261
4262/* From RFC 7507 */
4263#define BR_TLS_FALLBACK_SCSV                         0x5600
4264
4265/*
4266 * Symbolic constants for alerts.
4267 */
4268#define BR_ALERT_CLOSE_NOTIFY                0
4269#define BR_ALERT_UNEXPECTED_MESSAGE         10
4270#define BR_ALERT_BAD_RECORD_MAC             20
4271#define BR_ALERT_RECORD_OVERFLOW            22
4272#define BR_ALERT_DECOMPRESSION_FAILURE      30
4273#define BR_ALERT_HANDSHAKE_FAILURE          40
4274#define BR_ALERT_BAD_CERTIFICATE            42
4275#define BR_ALERT_UNSUPPORTED_CERTIFICATE    43
4276#define BR_ALERT_CERTIFICATE_REVOKED        44
4277#define BR_ALERT_CERTIFICATE_EXPIRED        45
4278#define BR_ALERT_CERTIFICATE_UNKNOWN        46
4279#define BR_ALERT_ILLEGAL_PARAMETER          47
4280#define BR_ALERT_UNKNOWN_CA                 48
4281#define BR_ALERT_ACCESS_DENIED              49
4282#define BR_ALERT_DECODE_ERROR               50
4283#define BR_ALERT_DECRYPT_ERROR              51
4284#define BR_ALERT_PROTOCOL_VERSION           70
4285#define BR_ALERT_INSUFFICIENT_SECURITY      71
4286#define BR_ALERT_INTERNAL_ERROR             80
4287#define BR_ALERT_USER_CANCELED              90
4288#define BR_ALERT_NO_RENEGOTIATION          100
4289#define BR_ALERT_UNSUPPORTED_EXTENSION     110
4290#define BR_ALERT_NO_APPLICATION_PROTOCOL   120
4291
4292#ifdef __cplusplus
4293}
4294#endif
4295
4296#endif
4297