ntp-keygen.c revision 293896
1/*
2 * Program to generate cryptographic keys for ntp clients and servers
3 *
4 * This program generates password encrypted data files for use with the
5 * Autokey security protocol and Network Time Protocol Version 4. Files
6 * are prefixed with a header giving the name and date of creation
7 * followed by a type-specific descriptive label and PEM-encoded data
8 * structure compatible with programs of the OpenSSL library.
9 *
10 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
11 * <type> is the file type, <hostname> the generating host name and
12 * <filestamp> the generation time in NTP seconds. The NTP programs
13 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
14 * association maintained by soft links. Following is a list of file
15 * types; the first line is the file name and the second link name.
16 *
17 * ntpkey_MD5key_<hostname>.<filestamp>
18 * 	MD5 (128-bit) keys used to compute message digests in symmetric
19 *	key cryptography
20 *
21 * ntpkey_RSAhost_<hostname>.<filestamp>
22 * ntpkey_host_<hostname>
23 *	RSA private/public host key pair used for public key signatures
24 *
25 * ntpkey_RSAsign_<hostname>.<filestamp>
26 * ntpkey_sign_<hostname>
27 *	RSA private/public sign key pair used for public key signatures
28 *
29 * ntpkey_DSAsign_<hostname>.<filestamp>
30 * ntpkey_sign_<hostname>
31 *	DSA Private/public sign key pair used for public key signatures
32 *
33 * Available digest/signature schemes
34 *
35 * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
36 * DSA:	DSA-SHA, DSA-SHA1
37 *
38 * ntpkey_XXXcert_<hostname>.<filestamp>
39 * ntpkey_cert_<hostname>
40 *	X509v3 certificate using RSA or DSA public keys and signatures.
41 *	XXX is a code identifying the message digest and signature
42 *	encryption algorithm
43 *
44 * Identity schemes. The key type par is used for the challenge; the key
45 * type key is used for the response.
46 *
47 * ntpkey_IFFkey_<groupname>.<filestamp>
48 * ntpkey_iffkey_<groupname>
49 *	Schnorr (IFF) identity parameters and keys
50 *
51 * ntpkey_GQkey_<groupname>.<filestamp>,
52 * ntpkey_gqkey_<groupname>
53 *	Guillou-Quisquater (GQ) identity parameters and keys
54 *
55 * ntpkey_MVkeyX_<groupname>.<filestamp>,
56 * ntpkey_mvkey_<groupname>
57 *	Mu-Varadharajan (MV) identity parameters and keys
58 *
59 * Note: Once in a while because of some statistical fluke this program
60 * fails to generate and verify some cryptographic data, as indicated by
61 * exit status -1. In this case simply run the program again. If the
62 * program does complete with exit code 0, the data are correct as
63 * verified.
64 *
65 * These cryptographic routines are characterized by the prime modulus
66 * size in bits. The default value of 512 bits is a compromise between
67 * cryptographic strength and computing time and is ordinarily
68 * considered adequate for this application. The routines have been
69 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
70 * digest and signature encryption schemes work with sizes less than 512
71 * bits. The computing time for sizes greater than 2048 bits is
72 * prohibitive on all but the fastest processors. An UltraSPARC Blade
73 * 1000 took something over nine minutes to generate and verify the
74 * values with size 2048. An old SPARC IPC would take a week.
75 *
76 * The OpenSSL library used by this program expects a random seed file.
77 * As described in the OpenSSL documentation, the file name defaults to
78 * first the RANDFILE environment variable in the user's home directory
79 * and then .rnd in the user's home directory.
80 */
81#ifdef HAVE_CONFIG_H
82# include <config.h>
83#endif
84#include <string.h>
85#include <stdio.h>
86#include <stdlib.h>
87#include <unistd.h>
88#include <sys/stat.h>
89#include <sys/time.h>
90#include <sys/types.h>
91
92#include "ntp.h"
93#include "ntp_random.h"
94#include "ntp_stdlib.h"
95#include "ntp_assert.h"
96#include "ntp_libopts.h"
97#include "ntp_unixtime.h"
98#include "ntp-keygen-opts.h"
99
100#ifdef OPENSSL
101#include "openssl/bn.h"
102#include "openssl/evp.h"
103#include "openssl/err.h"
104#include "openssl/rand.h"
105#include "openssl/pem.h"
106#include "openssl/x509v3.h"
107#include <openssl/objects.h>
108#endif	/* OPENSSL */
109#include <ssl_applink.c>
110
111#define _UC(str)	((char *)(intptr_t)(str))
112/*
113 * Cryptodefines
114 */
115#define	MD5KEYS		10	/* number of keys generated of each type */
116#define	MD5SIZE		20	/* maximum key size */
117#ifdef AUTOKEY
118#define	PLEN		512	/* default prime modulus size (bits) */
119#define	ILEN		256	/* default identity modulus size (bits) */
120#define	MVMAX		100	/* max MV parameters */
121
122/*
123 * Strings used in X509v3 extension fields
124 */
125#define KEY_USAGE		"digitalSignature,keyCertSign"
126#define BASIC_CONSTRAINTS	"critical,CA:TRUE"
127#define EXT_KEY_PRIVATE		"private"
128#define EXT_KEY_TRUST		"trustRoot"
129#endif	/* AUTOKEY */
130
131/*
132 * Prototypes
133 */
134FILE	*fheader	(const char *, const char *, const char *);
135int	gen_md5		(const char *);
136void	followlink	(char *, size_t);
137#ifdef AUTOKEY
138EVP_PKEY *gen_rsa	(const char *);
139EVP_PKEY *gen_dsa	(const char *);
140EVP_PKEY *gen_iffkey	(const char *);
141EVP_PKEY *gen_gqkey	(const char *);
142EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
143void	gen_mvserv	(char *, EVP_PKEY **);
144int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
145			    char *);
146void	cb		(int, int, void *);
147EVP_PKEY *genkey	(const char *, const char *);
148EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
149void	writekey	(char *, char *, u_int *, EVP_PKEY **);
150u_long	asn2ntp		(ASN1_TIME *);
151#endif	/* AUTOKEY */
152
153/*
154 * Program variables
155 */
156extern char *optarg;		/* command line argument */
157char	const *progname;
158u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
159int	nkeys;			/* MV keys */
160time_t	epoch;			/* Unix epoch (seconds) since 1970 */
161u_int	fstamp;			/* NTP filestamp */
162char	hostbuf[MAXHOSTNAME + 1];
163char	*hostname = NULL;	/* host, used in cert filenames */
164char	*groupname = NULL;	/* group name */
165char	certnamebuf[2 * sizeof(hostbuf)];
166char	*certname = NULL;	/* certificate subject/issuer name */
167char	*passwd1 = NULL;	/* input private key password */
168char	*passwd2 = NULL;	/* output private key password */
169char	filename[MAXFILENAME + 1]; /* file name */
170#ifdef AUTOKEY
171u_int	modulus = PLEN;		/* prime modulus size (bits) */
172u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
173long	d0, d1, d2, d3;		/* callback counters */
174const EVP_CIPHER * cipher = NULL;
175#endif	/* AUTOKEY */
176
177#ifdef SYS_WINNT
178BOOL init_randfile();
179
180/*
181 * Don't try to follow symbolic links on Windows.  Assume link == file.
182 */
183int
184readlink(
185	char *	link,
186	char *	file,
187	int	len
188	)
189{
190	return (int)strlen(file); /* assume no overflow possible */
191}
192
193/*
194 * Don't try to create symbolic links on Windows, that is supported on
195 * Vista and later only.  Instead, if CreateHardLink is available (XP
196 * and later), hardlink the linkname to the original filename.  On
197 * earlier systems, user must rename file to match expected link for
198 * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
199 * Windows pre-XP, runtime link to CreateHardLinkA().
200 */
201int
202symlink(
203	char *	filename,
204	char*	linkname
205	)
206{
207	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
208		__in LPCSTR	lpFileName,
209		__in LPCSTR	lpExistingFileName,
210		__reserved LPSECURITY_ATTRIBUTES lpSA
211		);
212	static PCREATEHARDLINKA pCreateHardLinkA;
213	static int		tried;
214	HMODULE			hDll;
215	FARPROC			pfn;
216	int			link_created;
217	int			saved_errno;
218
219	if (!tried) {
220		tried = TRUE;
221		hDll = LoadLibrary("kernel32");
222		pfn = GetProcAddress(hDll, "CreateHardLinkA");
223		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
224	}
225
226	if (NULL == pCreateHardLinkA) {
227		errno = ENOSYS;
228		return -1;
229	}
230
231	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
232
233	if (link_created)
234		return 0;
235
236	saved_errno = GetLastError();	/* yes we play loose */
237	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
238		 linkname, filename);
239	errno = saved_errno;
240	return -1;
241}
242
243void
244InitWin32Sockets() {
245	WORD wVersionRequested;
246	WSADATA wsaData;
247	wVersionRequested = MAKEWORD(2,0);
248	if (WSAStartup(wVersionRequested, &wsaData))
249	{
250		fprintf(stderr, "No useable winsock.dll\n");
251		exit(1);
252	}
253}
254#endif /* SYS_WINNT */
255
256
257/*
258 * followlink() - replace filename with its target if symlink.
259 *
260 * Some readlink() implementations do not null-terminate the result.
261 */
262void
263followlink(
264	char *	fname,
265	size_t	bufsiz
266	)
267{
268	int len;
269
270	REQUIRE(bufsiz > 0);
271
272	len = readlink(fname, fname, (int)bufsiz);
273	if (len < 0 ) {
274		fname[0] = '\0';
275		return;
276	}
277	if (len > (int)bufsiz - 1)
278		len = (int)bufsiz - 1;
279	fname[len] = '\0';
280}
281
282
283/*
284 * Main program
285 */
286int
287main(
288	int	argc,		/* command line options */
289	char	**argv
290	)
291{
292	struct timeval tv;	/* initialization vector */
293	int	md5key = 0;	/* generate MD5 keys */
294	int	optct;		/* option count */
295#ifdef AUTOKEY
296	X509	*cert = NULL;	/* X509 certificate */
297	X509_EXTENSION *ext;	/* X509v3 extension */
298	EVP_PKEY *pkey_host = NULL; /* host key */
299	EVP_PKEY *pkey_sign = NULL; /* sign key */
300	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
301	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
302	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
303	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
304	int	hostkey = 0;	/* generate RSA keys */
305	int	iffkey = 0;	/* generate IFF keys */
306	int	gqkey = 0;	/* generate GQ keys */
307	int	mvkey = 0;	/* update MV keys */
308	int	mvpar = 0;	/* generate MV parameters */
309	char	*sign = NULL;	/* sign key */
310	EVP_PKEY *pkey = NULL;	/* temp key */
311	const EVP_MD *ectx;	/* EVP digest */
312	char	pathbuf[MAXFILENAME + 1];
313	const char *scheme = NULL; /* digest/signature scheme */
314	const char *ciphername = NULL; /* to encrypt priv. key */
315	const char *exten = NULL;	/* private extension */
316	char	*grpkey = NULL;	/* identity extension */
317	int	nid;		/* X509 digest/signature scheme */
318	FILE	*fstr = NULL;	/* file handle */
319	char	groupbuf[MAXHOSTNAME + 1];
320	u_int	temp;
321	BIO *	bp;
322	int	i, cnt;
323	char *	ptr;
324#endif	/* AUTOKEY */
325
326	progname = argv[0];
327
328#ifdef SYS_WINNT
329	/* Initialize before OpenSSL checks */
330	InitWin32Sockets();
331	if (!init_randfile())
332		fprintf(stderr, "Unable to initialize .rnd file\n");
333	ssl_applink();
334#endif
335
336#ifdef OPENSSL
337	ssl_check_version();
338#endif	/* OPENSSL */
339
340	ntp_crypto_srandom();
341
342	/*
343	 * Process options, initialize host name and timestamp.
344	 * gethostname() won't null-terminate if hostname is exactly the
345	 * length provided for the buffer.
346	 */
347	gethostname(hostbuf, sizeof(hostbuf) - 1);
348	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
349	hostname = hostbuf;
350	groupname = hostbuf;
351	passwd1 = hostbuf;
352	passwd2 = NULL;
353	GETTIMEOFDAY(&tv, NULL);
354	epoch = tv.tv_sec;
355	fstamp = (u_int)(epoch + JAN_1970);
356
357	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
358	argc -= optct;	// Just in case we care later.
359	argv += optct;	// Just in case we care later.
360
361#ifdef OPENSSL
362	if (SSLeay() == SSLEAY_VERSION_NUMBER)
363		fprintf(stderr, "Using OpenSSL version %s\n",
364			SSLeay_version(SSLEAY_VERSION));
365	else
366		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
367			OPENSSL_VERSION_TEXT, SSLeay_version(SSLEAY_VERSION));
368#endif /* OPENSSL */
369
370	debug = OPT_VALUE_SET_DEBUG_LEVEL;
371
372	if (HAVE_OPT( MD5KEY ))
373		md5key++;
374#ifdef AUTOKEY
375	if (HAVE_OPT( PASSWORD ))
376		passwd1 = estrdup(OPT_ARG( PASSWORD ));
377
378	if (HAVE_OPT( EXPORT_PASSWD ))
379		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
380
381	if (HAVE_OPT( HOST_KEY ))
382		hostkey++;
383
384	if (HAVE_OPT( SIGN_KEY ))
385		sign = estrdup(OPT_ARG( SIGN_KEY ));
386
387	if (HAVE_OPT( GQ_PARAMS ))
388		gqkey++;
389
390	if (HAVE_OPT( IFFKEY ))
391		iffkey++;
392
393	if (HAVE_OPT( MV_PARAMS )) {
394		mvkey++;
395		nkeys = OPT_VALUE_MV_PARAMS;
396	}
397	if (HAVE_OPT( MV_KEYS )) {
398		mvpar++;
399		nkeys = OPT_VALUE_MV_KEYS;
400	}
401
402	if (HAVE_OPT( IMBITS ))
403		modulus2 = OPT_VALUE_IMBITS;
404
405	if (HAVE_OPT( MODULUS ))
406		modulus = OPT_VALUE_MODULUS;
407
408	if (HAVE_OPT( CERTIFICATE ))
409		scheme = OPT_ARG( CERTIFICATE );
410
411	if (HAVE_OPT( CIPHER ))
412		ciphername = OPT_ARG( CIPHER );
413
414	if (HAVE_OPT( SUBJECT_NAME ))
415		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
416
417	if (HAVE_OPT( IDENT ))
418		groupname = estrdup(OPT_ARG( IDENT ));
419
420	if (HAVE_OPT( LIFETIME ))
421		lifetime = OPT_VALUE_LIFETIME;
422
423	if (HAVE_OPT( PVT_CERT ))
424		exten = EXT_KEY_PRIVATE;
425
426	if (HAVE_OPT( TRUSTED_CERT ))
427		exten = EXT_KEY_TRUST;
428
429	/*
430	 * Remove the group name from the hostname variable used
431	 * in host and sign certificate file names.
432	 */
433	if (hostname != hostbuf)
434		ptr = strchr(hostname, '@');
435	else
436		ptr = NULL;
437	if (ptr != NULL) {
438		*ptr = '\0';
439		groupname = estrdup(ptr + 1);
440		/* -s @group is equivalent to -i group, host unch. */
441		if (ptr == hostname)
442			hostname = hostbuf;
443	}
444
445	/*
446	 * Derive host certificate issuer/subject names from host name
447	 * and optional group.  If no groupname is provided, the issuer
448	 * and subject is the hostname with no '@group', and the
449	 * groupname variable is pointed to hostname for use in IFF, GQ,
450	 * and MV parameters file names.
451	 */
452	if (groupname == hostbuf) {
453		certname = hostname;
454	} else {
455		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
456			 hostname, groupname);
457		certname = certnamebuf;
458	}
459
460	/*
461	 * Seed random number generator and grow weeds.
462	 */
463	ERR_load_crypto_strings();
464	OpenSSL_add_all_algorithms();
465	if (!RAND_status()) {
466		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
467			fprintf(stderr, "RAND_file_name %s\n",
468			    ERR_error_string(ERR_get_error(), NULL));
469			exit (-1);
470		}
471		temp = RAND_load_file(pathbuf, -1);
472		if (temp == 0) {
473			fprintf(stderr,
474			    "RAND_load_file %s not found or empty\n",
475			    pathbuf);
476			exit (-1);
477		}
478		fprintf(stderr,
479		    "Random seed file %s %u bytes\n", pathbuf, temp);
480		RAND_add(&epoch, sizeof(epoch), 4.0);
481	}
482#endif	/* AUTOKEY */
483
484	/*
485	 * Create new unencrypted MD5 keys file if requested. If this
486	 * option is selected, ignore all other options.
487	 */
488	if (md5key) {
489		gen_md5("md5");
490		exit (0);
491	}
492
493#ifdef AUTOKEY
494	/*
495	 * Load previous certificate if available.
496	 */
497	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
498	if ((fstr = fopen(filename, "r")) != NULL) {
499		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
500		fclose(fstr);
501	}
502	if (cert != NULL) {
503
504		/*
505		 * Extract subject name.
506		 */
507		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
508		    MAXFILENAME);
509
510		/*
511		 * Extract digest/signature scheme.
512		 */
513		if (scheme == NULL) {
514			nid = OBJ_obj2nid(cert->cert_info->
515			    signature->algorithm);
516			scheme = OBJ_nid2sn(nid);
517		}
518
519		/*
520		 * If a key_usage extension field is present, determine
521		 * whether this is a trusted or private certificate.
522		 */
523		if (exten == NULL) {
524			ptr = strstr(groupbuf, "CN=");
525			cnt = X509_get_ext_count(cert);
526			for (i = 0; i < cnt; i++) {
527				ext = X509_get_ext(cert, i);
528				if (OBJ_obj2nid(ext->object) ==
529				    NID_ext_key_usage) {
530					bp = BIO_new(BIO_s_mem());
531					X509V3_EXT_print(bp, ext, 0, 0);
532					BIO_gets(bp, pathbuf,
533					    MAXFILENAME);
534					BIO_free(bp);
535					if (strcmp(pathbuf,
536					    "Trust Root") == 0)
537						exten = EXT_KEY_TRUST;
538					else if (strcmp(pathbuf,
539					    "Private") == 0)
540						exten = EXT_KEY_PRIVATE;
541					certname = estrdup(ptr + 3);
542				}
543			}
544		}
545	}
546	if (scheme == NULL)
547		scheme = "RSA-MD5";
548	if (ciphername == NULL)
549		ciphername = "des-ede3-cbc";
550	cipher = EVP_get_cipherbyname(ciphername);
551	if (cipher == NULL) {
552		fprintf(stderr, "Unknown cipher %s\n", ciphername);
553		exit(-1);
554	}
555	fprintf(stderr, "Using host %s group %s\n", hostname,
556	    groupname);
557
558	/*
559	 * Create a new encrypted RSA host key file if requested;
560	 * otherwise, look for an existing host key file. If not found,
561	 * create a new encrypted RSA host key file. If that fails, go
562	 * no further.
563	 */
564	if (hostkey)
565		pkey_host = genkey("RSA", "host");
566	if (pkey_host == NULL) {
567		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
568		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
569		if (pkey_host != NULL) {
570			followlink(filename, sizeof(filename));
571			fprintf(stderr, "Using host key %s\n",
572			    filename);
573		} else {
574			pkey_host = genkey("RSA", "host");
575		}
576	}
577	if (pkey_host == NULL) {
578		fprintf(stderr, "Generating host key fails\n");
579		exit(-1);
580	}
581
582	/*
583	 * Create new encrypted RSA or DSA sign keys file if requested;
584	 * otherwise, look for an existing sign key file. If not found,
585	 * use the host key instead.
586	 */
587	if (sign != NULL)
588		pkey_sign = genkey(sign, "sign");
589	if (pkey_sign == NULL) {
590		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
591			 hostname);
592		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
593		if (pkey_sign != NULL) {
594			followlink(filename, sizeof(filename));
595			fprintf(stderr, "Using sign key %s\n",
596			    filename);
597		} else {
598			pkey_sign = pkey_host;
599			fprintf(stderr, "Using host key as sign key\n");
600		}
601	}
602
603	/*
604	 * Create new encrypted GQ server keys file if requested;
605	 * otherwise, look for an exisiting file. If found, fetch the
606	 * public key for the certificate.
607	 */
608	if (gqkey)
609		pkey_gqkey = gen_gqkey("gqkey");
610	if (pkey_gqkey == NULL) {
611		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
612		    groupname);
613		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
614		if (pkey_gqkey != NULL) {
615			followlink(filename, sizeof(filename));
616			fprintf(stderr, "Using GQ parameters %s\n",
617			    filename);
618		}
619	}
620	if (pkey_gqkey != NULL)
621		grpkey = BN_bn2hex(pkey_gqkey->pkey.rsa->q);
622
623	/*
624	 * Write the nonencrypted GQ client parameters to the stdout
625	 * stream. The parameter file is the server key file with the
626	 * private key obscured.
627	 */
628	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
629		RSA	*rsa;
630
631		snprintf(filename, sizeof(filename),
632		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
633		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
634		    filename);
635		fprintf(stdout, "# %s\n# %s\n", filename,
636		    ctime(&epoch));
637		rsa = pkey_gqkey->pkey.rsa;
638		BN_copy(rsa->p, BN_value_one());
639		BN_copy(rsa->q, BN_value_one());
640		pkey = EVP_PKEY_new();
641		EVP_PKEY_assign_RSA(pkey, rsa);
642		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
643		    NULL, NULL);
644		fflush(stdout);
645		if (debug)
646			RSA_print_fp(stderr, rsa, 0);
647	}
648
649	/*
650	 * Write the encrypted GQ server keys to the stdout stream.
651	 */
652	if (pkey_gqkey != NULL && passwd2 != NULL) {
653		RSA	*rsa;
654
655		snprintf(filename, sizeof(filename),
656		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
657		fprintf(stderr, "Writing GQ keys %s to stdout\n",
658		    filename);
659		fprintf(stdout, "# %s\n# %s\n", filename,
660		    ctime(&epoch));
661		rsa = pkey_gqkey->pkey.rsa;
662		pkey = EVP_PKEY_new();
663		EVP_PKEY_assign_RSA(pkey, rsa);
664		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
665		    NULL, passwd2);
666		fflush(stdout);
667		if (debug)
668			RSA_print_fp(stderr, rsa, 0);
669	}
670
671	/*
672	 * Create new encrypted IFF server keys file if requested;
673	 * otherwise, look for existing file.
674	 */
675	if (iffkey)
676		pkey_iffkey = gen_iffkey("iffkey");
677	if (pkey_iffkey == NULL) {
678		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
679		    groupname);
680		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
681		if (pkey_iffkey != NULL) {
682			followlink(filename, sizeof(filename));
683			fprintf(stderr, "Using IFF keys %s\n",
684			    filename);
685		}
686	}
687
688	/*
689	 * Write the nonencrypted IFF client parameters to the stdout
690	 * stream. The parameter file is the server key file with the
691	 * private key obscured.
692	 */
693	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
694		DSA	*dsa;
695
696		snprintf(filename, sizeof(filename),
697		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
698		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
699		    filename);
700		fprintf(stdout, "# %s\n# %s\n", filename,
701		    ctime(&epoch));
702		dsa = pkey_iffkey->pkey.dsa;
703		BN_copy(dsa->priv_key, BN_value_one());
704		pkey = EVP_PKEY_new();
705		EVP_PKEY_assign_DSA(pkey, dsa);
706		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
707		    NULL, NULL);
708		fflush(stdout);
709		if (debug)
710			DSA_print_fp(stderr, dsa, 0);
711	}
712
713	/*
714	 * Write the encrypted IFF server keys to the stdout stream.
715	 */
716	if (pkey_iffkey != NULL && passwd2 != NULL) {
717		DSA	*dsa;
718
719		snprintf(filename, sizeof(filename),
720		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
721		fprintf(stderr, "Writing IFF keys %s to stdout\n",
722		    filename);
723		fprintf(stdout, "# %s\n# %s\n", filename,
724		    ctime(&epoch));
725		dsa = pkey_iffkey->pkey.dsa;
726		pkey = EVP_PKEY_new();
727		EVP_PKEY_assign_DSA(pkey, dsa);
728		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
729		    NULL, passwd2);
730		fflush(stdout);
731		if (debug)
732			DSA_print_fp(stderr, dsa, 0);
733	}
734
735	/*
736	 * Create new encrypted MV trusted-authority keys file if
737	 * requested; otherwise, look for existing keys file.
738	 */
739	if (mvkey)
740		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
741	if (pkey_mvkey == NULL) {
742		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
743		    groupname);
744		pkey_mvkey = readkey(filename, passwd1, &fstamp,
745		    pkey_mvpar);
746		if (pkey_mvkey != NULL) {
747			followlink(filename, sizeof(filename));
748			fprintf(stderr, "Using MV keys %s\n",
749			    filename);
750		}
751	}
752
753	/*
754	 * Write the nonencrypted MV client parameters to the stdout
755	 * stream. For the moment, we always use the client parameters
756	 * associated with client key 1.
757	 */
758	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
759		snprintf(filename, sizeof(filename),
760		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
761		fprintf(stderr, "Writing MV parameters %s to stdout\n",
762		    filename);
763		fprintf(stdout, "# %s\n# %s\n", filename,
764		    ctime(&epoch));
765		pkey = pkey_mvpar[2];
766		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
767		    NULL, NULL);
768		fflush(stdout);
769		if (debug)
770			DSA_print_fp(stderr, pkey->pkey.dsa, 0);
771	}
772
773	/*
774	 * Write the encrypted MV server keys to the stdout stream.
775	 */
776	if (pkey_mvkey != NULL && passwd2 != NULL) {
777		snprintf(filename, sizeof(filename),
778		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
779		fprintf(stderr, "Writing MV keys %s to stdout\n",
780		    filename);
781		fprintf(stdout, "# %s\n# %s\n", filename,
782		    ctime(&epoch));
783		pkey = pkey_mvpar[1];
784		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
785		    NULL, passwd2);
786		fflush(stdout);
787		if (debug)
788			DSA_print_fp(stderr, pkey->pkey.dsa, 0);
789	}
790
791	/*
792	 * Decode the digest/signature scheme and create the
793	 * certificate. Do this every time we run the program.
794	 */
795	ectx = EVP_get_digestbyname(scheme);
796	if (ectx == NULL) {
797		fprintf(stderr,
798		    "Invalid digest/signature combination %s\n",
799		    scheme);
800			exit (-1);
801	}
802	x509(pkey_sign, ectx, grpkey, exten, certname);
803#endif	/* AUTOKEY */
804	exit(0);
805}
806
807
808/*
809 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
810 * if OpenSSL is around, generate random SHA1 keys compatible with
811 * symmetric key cryptography.
812 */
813int
814gen_md5(
815	const char *id		/* file name id */
816	)
817{
818	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
819	FILE	*str;
820	int	i, j;
821#ifdef OPENSSL
822	u_char	keystr[MD5SIZE];
823	u_char	hexstr[2 * MD5SIZE + 1];
824	u_char	hex[] = "0123456789abcdef";
825#endif	/* OPENSSL */
826
827	str = fheader("MD5key", id, groupname);
828	for (i = 1; i <= MD5KEYS; i++) {
829		for (j = 0; j < MD5SIZE; j++) {
830			u_char temp;
831
832			while (1) {
833				int rc;
834
835				rc = ntp_crypto_random_buf(
836				    &temp, sizeof(temp));
837				if (-1 == rc) {
838					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
839					exit (-1);
840				}
841				if (temp == '#')
842					continue;
843
844				if (temp > 0x20 && temp < 0x7f)
845					break;
846			}
847			md5key[j] = temp;
848		}
849		md5key[j] = '\0';
850		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
851		    md5key);
852	}
853#ifdef OPENSSL
854	for (i = 1; i <= MD5KEYS; i++) {
855		RAND_bytes(keystr, 20);
856		for (j = 0; j < MD5SIZE; j++) {
857			hexstr[2 * j] = hex[keystr[j] >> 4];
858			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
859		}
860		hexstr[2 * MD5SIZE] = '\0';
861		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
862		    hexstr);
863	}
864#endif	/* OPENSSL */
865	fclose(str);
866	return (1);
867}
868
869
870#ifdef AUTOKEY
871/*
872 * readkey - load cryptographic parameters and keys
873 *
874 * This routine loads a PEM-encoded file of given name and password and
875 * extracts the filestamp from the file name. It returns a pointer to
876 * the first key if valid, NULL if not.
877 */
878EVP_PKEY *			/* public/private key pair */
879readkey(
880	char	*cp,		/* file name */
881	char	*passwd,	/* password */
882	u_int	*estamp,	/* file stamp */
883	EVP_PKEY **evpars	/* parameter list pointer */
884	)
885{
886	FILE	*str;		/* file handle */
887	EVP_PKEY *pkey = NULL;	/* public/private key */
888	u_int	gstamp;		/* filestamp */
889	char	linkname[MAXFILENAME]; /* filestamp buffer) */
890	EVP_PKEY *parkey;
891	char	*ptr;
892	int	i;
893
894	/*
895	 * Open the key file.
896	 */
897	str = fopen(cp, "r");
898	if (str == NULL)
899		return (NULL);
900
901	/*
902	 * Read the filestamp, which is contained in the first line.
903	 */
904	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
905		fprintf(stderr, "Empty key file %s\n", cp);
906		fclose(str);
907		return (NULL);
908	}
909	if ((ptr = strrchr(ptr, '.')) == NULL) {
910		fprintf(stderr, "No filestamp found in %s\n", cp);
911		fclose(str);
912		return (NULL);
913	}
914	if (sscanf(++ptr, "%u", &gstamp) != 1) {
915		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
916		fclose(str);
917		return (NULL);
918	}
919
920	/*
921	 * Read and decrypt PEM-encoded private keys. The first one
922	 * found is returned. If others are expected, add them to the
923	 * parameter list.
924	 */
925	for (i = 0; i <= MVMAX - 1;) {
926		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
927		if (evpars != NULL) {
928			evpars[i++] = parkey;
929			evpars[i] = NULL;
930		}
931		if (parkey == NULL)
932			break;
933
934		if (pkey == NULL)
935			pkey = parkey;
936		if (debug) {
937			if (parkey->type == EVP_PKEY_DSA)
938				DSA_print_fp(stderr, parkey->pkey.dsa,
939				    0);
940			else if (parkey->type == EVP_PKEY_RSA)
941				RSA_print_fp(stderr, parkey->pkey.rsa,
942				    0);
943		}
944	}
945	fclose(str);
946	if (pkey == NULL) {
947		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
948		    cp, passwd, ERR_error_string(ERR_get_error(),
949		    NULL));
950		exit (-1);
951	}
952	*estamp = gstamp;
953	return (pkey);
954}
955
956
957/*
958 * Generate RSA public/private key pair
959 */
960EVP_PKEY *			/* public/private key pair */
961gen_rsa(
962	const char *id		/* file name id */
963	)
964{
965	EVP_PKEY *pkey;		/* private key */
966	RSA	*rsa;		/* RSA parameters and key pair */
967	FILE	*str;
968
969	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
970	rsa = RSA_generate_key(modulus, 65537, cb, _UC("RSA"));
971	fprintf(stderr, "\n");
972	if (rsa == NULL) {
973		fprintf(stderr, "RSA generate keys fails\n%s\n",
974		    ERR_error_string(ERR_get_error(), NULL));
975		return (NULL);
976	}
977
978	/*
979	 * For signature encryption it is not necessary that the RSA
980	 * parameters be strictly groomed and once in a while the
981	 * modulus turns out to be non-prime. Just for grins, we check
982	 * the primality.
983	 */
984	if (!RSA_check_key(rsa)) {
985		fprintf(stderr, "Invalid RSA key\n%s\n",
986		    ERR_error_string(ERR_get_error(), NULL));
987		RSA_free(rsa);
988		return (NULL);
989	}
990
991	/*
992	 * Write the RSA parameters and keys as a RSA private key
993	 * encoded in PEM.
994	 */
995	if (strcmp(id, "sign") == 0)
996		str = fheader("RSAsign", id, hostname);
997	else
998		str = fheader("RSAhost", id, hostname);
999	pkey = EVP_PKEY_new();
1000	EVP_PKEY_assign_RSA(pkey, rsa);
1001	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1002	    passwd1);
1003	fclose(str);
1004	if (debug)
1005		RSA_print_fp(stderr, rsa, 0);
1006	return (pkey);
1007}
1008
1009
1010/*
1011 * Generate DSA public/private key pair
1012 */
1013EVP_PKEY *			/* public/private key pair */
1014gen_dsa(
1015	const char *id		/* file name id */
1016	)
1017{
1018	EVP_PKEY *pkey;		/* private key */
1019	DSA	*dsa;		/* DSA parameters */
1020	u_char	seed[20];	/* seed for parameters */
1021	FILE	*str;
1022
1023	/*
1024	 * Generate DSA parameters.
1025	 */
1026	fprintf(stderr,
1027	    "Generating DSA parameters (%d bits)...\n", modulus);
1028	RAND_bytes(seed, sizeof(seed));
1029	dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL,
1030	    NULL, cb, _UC("DSA"));
1031	fprintf(stderr, "\n");
1032	if (dsa == NULL) {
1033		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1034		    ERR_error_string(ERR_get_error(), NULL));
1035		return (NULL);
1036	}
1037
1038	/*
1039	 * Generate DSA keys.
1040	 */
1041	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1042	if (!DSA_generate_key(dsa)) {
1043		fprintf(stderr, "DSA generate keys fails\n%s\n",
1044		    ERR_error_string(ERR_get_error(), NULL));
1045		DSA_free(dsa);
1046		return (NULL);
1047	}
1048
1049	/*
1050	 * Write the DSA parameters and keys as a DSA private key
1051	 * encoded in PEM.
1052	 */
1053	str = fheader("DSAsign", id, hostname);
1054	pkey = EVP_PKEY_new();
1055	EVP_PKEY_assign_DSA(pkey, dsa);
1056	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1057	    passwd1);
1058	fclose(str);
1059	if (debug)
1060		DSA_print_fp(stderr, dsa, 0);
1061	return (pkey);
1062}
1063
1064
1065/*
1066 ***********************************************************************
1067 *								       *
1068 * The following routines implement the Schnorr (IFF) identity scheme  *
1069 *								       *
1070 ***********************************************************************
1071 *
1072 * The Schnorr (IFF) identity scheme is intended for use when
1073 * certificates are generated by some other trusted certificate
1074 * authority and the certificate cannot be used to convey public
1075 * parameters. There are two kinds of files: encrypted server files that
1076 * contain private and public values and nonencrypted client files that
1077 * contain only public values. New generations of server files must be
1078 * securely transmitted to all servers of the group; client files can be
1079 * distributed by any means. The scheme is self contained and
1080 * independent of new generations of host keys, sign keys and
1081 * certificates.
1082 *
1083 * The IFF values hide in a DSA cuckoo structure which uses the same
1084 * parameters. The values are used by an identity scheme based on DSA
1085 * cryptography and described in Stimson p. 285. The p is a 512-bit
1086 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1087 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1088 * private random group key b (0 < b < q) and public key v = g^b, then
1089 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1090 * Alice challenges Bob to confirm identity using the protocol described
1091 * below.
1092 *
1093 * How it works
1094 *
1095 * The scheme goes like this. Both Alice and Bob have the public primes
1096 * p, q and generator g. The TA gives private key b to Bob and public
1097 * key v to Alice.
1098 *
1099 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
1100 * the IFF request message. Bob rolls new random k (0 < k < q), then
1101 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
1102 * to Alice in the response message. Besides making the response
1103 * shorter, the hash makes it effectivey impossible for an intruder to
1104 * solve for b by observing a number of these messages.
1105 *
1106 * Alice receives the response and computes g^y v^r mod p. After a bit
1107 * of algebra, this simplifies to g^k. If the hash of this result
1108 * matches hash(x), Alice knows that Bob has the group key b. The signed
1109 * response binds this knowledge to Bob's private key and the public key
1110 * previously received in his certificate.
1111 */
1112/*
1113 * Generate Schnorr (IFF) keys.
1114 */
1115EVP_PKEY *			/* DSA cuckoo nest */
1116gen_iffkey(
1117	const char *id		/* file name id */
1118	)
1119{
1120	EVP_PKEY *pkey;		/* private key */
1121	DSA	*dsa;		/* DSA parameters */
1122	u_char	seed[20];	/* seed for parameters */
1123	BN_CTX	*ctx;		/* BN working space */
1124	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
1125	FILE	*str;
1126	u_int	temp;
1127
1128	/*
1129	 * Generate DSA parameters for use as IFF parameters.
1130	 */
1131	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1132	    modulus2);
1133	RAND_bytes(seed, sizeof(seed));
1134	dsa = DSA_generate_parameters(modulus2, seed, sizeof(seed), NULL,
1135	    NULL, cb, _UC("IFF"));
1136	fprintf(stderr, "\n");
1137	if (dsa == NULL) {
1138		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1139		    ERR_error_string(ERR_get_error(), NULL));
1140		return (NULL);;
1141	}
1142
1143	/*
1144	 * Generate the private and public keys. The DSA parameters and
1145	 * private key are distributed to the servers, while all except
1146	 * the private key are distributed to the clients.
1147	 */
1148	b = BN_new(); r = BN_new(); k = BN_new();
1149	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1150	BN_rand(b, BN_num_bits(dsa->q), -1, 0);	/* a */
1151	BN_mod(b, b, dsa->q, ctx);
1152	BN_sub(v, dsa->q, b);
1153	BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */
1154	BN_mod_exp(u, dsa->g, b, dsa->p, ctx);	/* g^b mod p */
1155	BN_mod_mul(u, u, v, dsa->p, ctx);
1156	temp = BN_is_one(u);
1157	fprintf(stderr,
1158	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1159	    "yes" : "no");
1160	if (!temp) {
1161		BN_free(b); BN_free(r); BN_free(k);
1162		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1163		return (NULL);
1164	}
1165	dsa->priv_key = BN_dup(b);		/* private key */
1166	dsa->pub_key = BN_dup(v);		/* public key */
1167
1168	/*
1169	 * Here is a trial round of the protocol. First, Alice rolls
1170	 * random nonce r mod q and sends it to Bob. She needs only
1171	 * q from parameters.
1172	 */
1173	BN_rand(r, BN_num_bits(dsa->q), -1, 0);	/* r */
1174	BN_mod(r, r, dsa->q, ctx);
1175
1176	/*
1177	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1178	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1179	 * p, q and b from parameters and r from Alice.
1180	 */
1181	BN_rand(k, BN_num_bits(dsa->q), -1, 0);	/* k, 0 < k < q  */
1182	BN_mod(k, k, dsa->q, ctx);
1183	BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */
1184	BN_add(v, v, k);
1185	BN_mod(v, v, dsa->q, ctx);		/* y = k + b r mod q */
1186	BN_mod_exp(u, dsa->g, k, dsa->p, ctx);	/* x = g^k mod p */
1187
1188	/*
1189	 * Alice verifies x = g^y v^r to confirm that Bob has group key
1190	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1191	 * original r. We omit the detail here thatt only the hash of y
1192	 * is sent.
1193	 */
1194	BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */
1195	BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */
1196	BN_mod_mul(v, w, v, dsa->p, ctx);	/* product mod p */
1197	temp = BN_cmp(u, v);
1198	fprintf(stderr,
1199	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1200	    0 ? "yes" : "no");
1201	BN_free(b); BN_free(r);	BN_free(k);
1202	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1203	if (temp != 0) {
1204		DSA_free(dsa);
1205		return (NULL);
1206	}
1207
1208	/*
1209	 * Write the IFF keys as an encrypted DSA private key encoded in
1210	 * PEM.
1211	 *
1212	 * p	modulus p
1213	 * q	modulus q
1214	 * g	generator g
1215	 * priv_key b
1216	 * public_key v
1217	 * kinv	not used
1218	 * r	not used
1219	 */
1220	str = fheader("IFFkey", id, groupname);
1221	pkey = EVP_PKEY_new();
1222	EVP_PKEY_assign_DSA(pkey, dsa);
1223	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1224	    passwd1);
1225	fclose(str);
1226	if (debug)
1227		DSA_print_fp(stderr, dsa, 0);
1228	return (pkey);
1229}
1230
1231
1232/*
1233 ***********************************************************************
1234 *								       *
1235 * The following routines implement the Guillou-Quisquater (GQ)        *
1236 * identity scheme                                                     *
1237 *								       *
1238 ***********************************************************************
1239 *
1240 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1241 * the certificate can be used to convey public parameters. The scheme
1242 * uses a X509v3 certificate extension field do convey the public key of
1243 * a private key known only to servers. There are two kinds of files:
1244 * encrypted server files that contain private and public values and
1245 * nonencrypted client files that contain only public values. New
1246 * generations of server files must be securely transmitted to all
1247 * servers of the group; client files can be distributed by any means.
1248 * The scheme is self contained and independent of new generations of
1249 * host keys and sign keys. The scheme is self contained and independent
1250 * of new generations of host keys and sign keys.
1251 *
1252 * The GQ parameters hide in a RSA cuckoo structure which uses the same
1253 * parameters. The values are used by an identity scheme based on RSA
1254 * cryptography and described in Stimson p. 300 (with errors). The 512-
1255 * bit public modulus is n = p q, where p and q are secret large primes.
1256 * The TA rolls private random group key b as RSA exponent. These values
1257 * are known to all group members.
1258 *
1259 * When rolling new certificates, a server recomputes the private and
1260 * public keys. The private key u is a random roll, while the public key
1261 * is the inverse obscured by the group key v = (u^-1)^b. These values
1262 * replace the private and public keys normally generated by the RSA
1263 * scheme. Alice challenges Bob to confirm identity using the protocol
1264 * described below.
1265 *
1266 * How it works
1267 *
1268 * The scheme goes like this. Both Alice and Bob have the same modulus n
1269 * and some random b as the group key. These values are computed and
1270 * distributed in advance via secret means, although only the group key
1271 * b is truly secret. Each has a private random private key u and public
1272 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1273 * can regenerate the key pair from time to time without affecting
1274 * operations. The public key is conveyed on the certificate in an
1275 * extension field; the private key is never revealed.
1276 *
1277 * Alice rolls new random challenge r and sends to Bob in the GQ
1278 * request message. Bob rolls new random k, then computes y = k u^r mod
1279 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1280 * message. Besides making the response shorter, the hash makes it
1281 * effectivey impossible for an intruder to solve for b by observing
1282 * a number of these messages.
1283 *
1284 * Alice receives the response and computes y^b v^r mod n. After a bit
1285 * of algebra, this simplifies to k^b. If the hash of this result
1286 * matches hash(x), Alice knows that Bob has the group key b. The signed
1287 * response binds this knowledge to Bob's private key and the public key
1288 * previously received in his certificate.
1289 */
1290/*
1291 * Generate Guillou-Quisquater (GQ) parameters file.
1292 */
1293EVP_PKEY *			/* RSA cuckoo nest */
1294gen_gqkey(
1295	const char *id		/* file name id */
1296	)
1297{
1298	EVP_PKEY *pkey;		/* private key */
1299	RSA	*rsa;		/* RSA parameters */
1300	BN_CTX	*ctx;		/* BN working space */
1301	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
1302	FILE	*str;
1303	u_int	temp;
1304
1305	/*
1306	 * Generate RSA parameters for use as GQ parameters.
1307	 */
1308	fprintf(stderr,
1309	    "Generating GQ parameters (%d bits)...\n",
1310	     modulus2);
1311	rsa = RSA_generate_key(modulus2, 65537, cb, _UC("GQ"));
1312	fprintf(stderr, "\n");
1313	if (rsa == NULL) {
1314		fprintf(stderr, "RSA generate keys fails\n%s\n",
1315		    ERR_error_string(ERR_get_error(), NULL));
1316		return (NULL);
1317	}
1318	u = BN_new(); v = BN_new(); g = BN_new();
1319	k = BN_new(); r = BN_new(); y = BN_new();
1320
1321	/*
1322	 * Generate the group key b, which is saved in the e member of
1323	 * the RSA structure. The group key is transmitted to each group
1324	 * member encrypted by the member private key.
1325	 */
1326	ctx = BN_CTX_new();
1327	BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */
1328	BN_mod(rsa->e, rsa->e, rsa->n, ctx);
1329
1330	/*
1331	 * When generating his certificate, Bob rolls random private key
1332	 * u, then computes inverse v = u^-1.
1333	 */
1334	BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */
1335	BN_mod(u, u, rsa->n, ctx);
1336	BN_mod_inverse(v, u, rsa->n, ctx);	/* u^-1 mod n */
1337	BN_mod_mul(k, v, u, rsa->n, ctx);
1338
1339	/*
1340	 * Bob computes public key v = (u^-1)^b, which is saved in an
1341	 * extension field on his certificate. We check that u^b v =
1342	 * 1 mod n.
1343	 */
1344	BN_mod_exp(v, v, rsa->e, rsa->n, ctx);
1345	BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */
1346	BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */
1347	temp = BN_is_one(g);
1348	fprintf(stderr,
1349	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1350	    "no");
1351	if (!temp) {
1352		BN_free(u); BN_free(v);
1353		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1354		BN_CTX_free(ctx);
1355		RSA_free(rsa);
1356		return (NULL);
1357	}
1358	BN_copy(rsa->p, u);			/* private key */
1359	BN_copy(rsa->q, v);			/* public key */
1360
1361	/*
1362	 * Here is a trial run of the protocol. First, Alice rolls
1363	 * random nonce r mod n and sends it to Bob. She needs only n
1364	 * from parameters.
1365	 */
1366	BN_rand(r, BN_num_bits(rsa->n), -1, 0);	/* r */
1367	BN_mod(r, r, rsa->n, ctx);
1368
1369	/*
1370	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1371	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1372	 * from parameters and r from Alice.
1373	 */
1374	BN_rand(k, BN_num_bits(rsa->n), -1, 0);	/* k */
1375	BN_mod(k, k, rsa->n, ctx);
1376	BN_mod_exp(y, rsa->p, r, rsa->n, ctx);	/* u^r mod n */
1377	BN_mod_mul(y, k, y, rsa->n, ctx);	/* y = k u^r mod n */
1378	BN_mod_exp(g, k, rsa->e, rsa->n, ctx);	/* g = k^b mod n */
1379
1380	/*
1381	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1382	 * private key u. She needs n, g from parameters, public key v =
1383	 * (u^-1)^b from the certificate, (y, g) from Bob and the
1384	 * original r. We omit the detaul here that only the hash of g
1385	 * is sent.
1386	 */
1387	BN_mod_exp(v, rsa->q, r, rsa->n, ctx);	/* v^r mod n */
1388	BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */
1389	BN_mod_mul(y, v, y, rsa->n, ctx);	/* v^r y^b mod n */
1390	temp = BN_cmp(y, g);
1391	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1392	    "yes" : "no");
1393	BN_CTX_free(ctx); BN_free(u); BN_free(v);
1394	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1395	if (temp != 0) {
1396		RSA_free(rsa);
1397		return (NULL);
1398	}
1399
1400	/*
1401	 * Write the GQ parameter file as an encrypted RSA private key
1402	 * encoded in PEM.
1403	 *
1404	 * n	modulus n
1405	 * e	group key b
1406	 * d	not used
1407	 * p	private key u
1408	 * q	public key (u^-1)^b
1409	 * dmp1	not used
1410	 * dmq1	not used
1411	 * iqmp	not used
1412	 */
1413	BN_copy(rsa->d, BN_value_one());
1414	BN_copy(rsa->dmp1, BN_value_one());
1415	BN_copy(rsa->dmq1, BN_value_one());
1416	BN_copy(rsa->iqmp, BN_value_one());
1417	str = fheader("GQkey", id, groupname);
1418	pkey = EVP_PKEY_new();
1419	EVP_PKEY_assign_RSA(pkey, rsa);
1420	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1421	    passwd1);
1422	fclose(str);
1423	if (debug)
1424		RSA_print_fp(stderr, rsa, 0);
1425	return (pkey);
1426}
1427
1428
1429/*
1430 ***********************************************************************
1431 *								       *
1432 * The following routines implement the Mu-Varadharajan (MV) identity  *
1433 * scheme                                                              *
1434 *								       *
1435 ***********************************************************************
1436 *
1437 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1438 * servers broadcast messages to clients, but clients never send
1439 * messages to servers. There is one encryption key for the server and a
1440 * separate decryption key for each client. It operated something like a
1441 * pay-per-view satellite broadcasting system where the session key is
1442 * encrypted by the broadcaster and the decryption keys are held in a
1443 * tamperproof set-top box.
1444 *
1445 * The MV parameters and private encryption key hide in a DSA cuckoo
1446 * structure which uses the same parameters, but generated in a
1447 * different way. The values are used in an encryption scheme similar to
1448 * El Gamal cryptography and a polynomial formed from the expansion of
1449 * product terms (x - x[j]), as described in Mu, Y., and V.
1450 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1451 * 223-231. The paper has significant errors and serious omissions.
1452 *
1453 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1454 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1455 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1456 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1457 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1458 * project into Zp* as exponents of g. Sometimes we have to compute an
1459 * inverse b^-1 of random b in Zq, but for that purpose we require
1460 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1461 * relatively small, like 30. These are the parameters of the scheme and
1462 * they are expensive to compute.
1463 *
1464 * We set up an instance of the scheme as follows. A set of random
1465 * values x[j] mod q (j = 1...n), are generated as the zeros of a
1466 * polynomial of order n. The product terms (x - x[j]) are expanded to
1467 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1468 * used as exponents of the generator g mod p to generate the private
1469 * encryption key A. The pair (gbar, ghat) of public server keys and the
1470 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1471 * to construct the decryption keys. The devil is in the details.
1472 *
1473 * This routine generates a private server encryption file including the
1474 * private encryption key E and partial decryption keys gbar and ghat.
1475 * It then generates public client decryption files including the public
1476 * keys xbar[j] and xhat[j] for each client j. The partial decryption
1477 * files are used to compute the inverse of E. These values are suitably
1478 * blinded so secrets are not revealed.
1479 *
1480 * The distinguishing characteristic of this scheme is the capability to
1481 * revoke keys. Included in the calculation of E, gbar and ghat is the
1482 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1483 * subsequently removed from the product and E, gbar and ghat
1484 * recomputed, the jth client will no longer be able to compute E^-1 and
1485 * thus unable to decrypt the messageblock.
1486 *
1487 * How it works
1488 *
1489 * The scheme goes like this. Bob has the server values (p, E, q,
1490 * gbar, ghat) and Alice has the client values (p, xbar, xhat).
1491 *
1492 * Alice rolls new random nonce r mod p and sends to Bob in the MV
1493 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1494 * mod p and sends (y, gbar^k, ghat^k) to Alice.
1495 *
1496 * Alice receives the response and computes the inverse (E^k)^-1 from
1497 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1498 * decrypts y and verifies it matches the original r. The signed
1499 * response binds this knowledge to Bob's private key and the public key
1500 * previously received in his certificate.
1501 */
1502EVP_PKEY *			/* DSA cuckoo nest */
1503gen_mvkey(
1504	const char *id,		/* file name id */
1505	EVP_PKEY **evpars	/* parameter list pointer */
1506	)
1507{
1508	EVP_PKEY *pkey, *pkey1;	/* private keys */
1509	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
1510	BN_CTX	*ctx;		/* BN working space */
1511	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
1512	BIGNUM	*g[MVMAX];	/* public key vector */
1513	BIGNUM	*s1[MVMAX];	/* private enabling keys */
1514	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
1515	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1516	BIGNUM	*b;		/* group key */
1517	BIGNUM	*b1;		/* inverse group key */
1518	BIGNUM	*s;		/* enabling key */
1519	BIGNUM	*biga;		/* master encryption key */
1520	BIGNUM	*bige;		/* session encryption key */
1521	BIGNUM	*gbar, *ghat;	/* public key */
1522	BIGNUM	*u, *v, *w;	/* BN scratch */
1523	int	i, j, n;
1524	FILE	*str;
1525	u_int	temp;
1526
1527	/*
1528	 * Generate MV parameters.
1529	 *
1530	 * The object is to generate a multiplicative group Zp* modulo a
1531	 * prime p and a subset Zq mod q, where q is the product of n
1532	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1533	 * first generate n m-bit primes, where the product n m is in
1534	 * the order of 512 bits. One or more of these may have to be
1535	 * replaced later. As a practical matter, it is tough to find
1536	 * more than 31 distinct primes for 512 bits or 61 primes for
1537	 * 1024 bits. The latter can take several hundred iterations
1538	 * and several minutes on a Sun Blade 1000.
1539	 */
1540	n = nkeys;
1541	fprintf(stderr,
1542	    "Generating MV parameters for %d keys (%d bits)...\n", n,
1543	    modulus2 / n);
1544	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1545	b = BN_new(); b1 = BN_new();
1546	dsa = DSA_new();
1547	dsa->p = BN_new(); dsa->q = BN_new(); dsa->g = BN_new();
1548	dsa->priv_key = BN_new(); dsa->pub_key = BN_new();
1549	temp = 0;
1550	for (j = 1; j <= n; j++) {
1551		s1[j] = BN_new();
1552		while (1) {
1553			BN_generate_prime(s1[j], modulus2 / n, 0, NULL,
1554			    NULL, NULL, NULL);
1555			for (i = 1; i < j; i++) {
1556				if (BN_cmp(s1[i], s1[j]) == 0)
1557					break;
1558			}
1559			if (i == j)
1560				break;
1561			temp++;
1562		}
1563	}
1564	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1565
1566	/*
1567	 * Compute the modulus q as the product of the primes. Compute
1568	 * the modulus p as 2 * q + 1 and test p for primality. If p
1569	 * is composite, replace one of the primes with a new distinct
1570	 * one and try again. Note that q will hardly be a secret since
1571	 * we have to reveal p to servers, but not clients. However,
1572	 * factoring q to find the primes should be adequately hard, as
1573	 * this is the same problem considered hard in RSA. Question: is
1574	 * it as hard to find n small prime factors totalling n bits as
1575	 * it is to find two large prime factors totalling n bits?
1576	 * Remember, the bad guy doesn't know n.
1577	 */
1578	temp = 0;
1579	while (1) {
1580		BN_one(dsa->q);
1581		for (j = 1; j <= n; j++)
1582			BN_mul(dsa->q, dsa->q, s1[j], ctx);
1583		BN_copy(dsa->p, dsa->q);
1584		BN_add(dsa->p, dsa->p, dsa->p);
1585		BN_add_word(dsa->p, 1);
1586		if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx,
1587		    NULL))
1588			break;
1589
1590		temp++;
1591		j = temp % n + 1;
1592		while (1) {
1593			BN_generate_prime(u, modulus2 / n, 0, 0, NULL,
1594			    NULL, NULL);
1595			for (i = 1; i <= n; i++) {
1596				if (BN_cmp(u, s1[i]) == 0)
1597					break;
1598			}
1599			if (i > n)
1600				break;
1601		}
1602		BN_copy(s1[j], u);
1603	}
1604	fprintf(stderr, "Defective keys regenerated %d\n", temp);
1605
1606	/*
1607	 * Compute the generator g using a random roll such that
1608	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1609	 * q. This may take several iterations.
1610	 */
1611	BN_copy(v, dsa->p);
1612	BN_sub_word(v, 1);
1613	while (1) {
1614		BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0);
1615		BN_mod(dsa->g, dsa->g, dsa->p, ctx);
1616		BN_gcd(u, dsa->g, v, ctx);
1617		if (!BN_is_one(u))
1618			continue;
1619
1620		BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx);
1621		if (BN_is_one(u))
1622			break;
1623	}
1624
1625	/*
1626	 * Setup is now complete. Roll random polynomial roots x[j]
1627	 * (j = 1...n) for all j. While it may not be strictly
1628	 * necessary, Make sure each root has no factors in common with
1629	 * q.
1630	 */
1631	fprintf(stderr,
1632	    "Generating polynomial coefficients for %d roots (%d bits)\n",
1633	    n, BN_num_bits(dsa->q));
1634	for (j = 1; j <= n; j++) {
1635		x[j] = BN_new();
1636
1637		while (1) {
1638			BN_rand(x[j], BN_num_bits(dsa->q), 0, 0);
1639			BN_mod(x[j], x[j], dsa->q, ctx);
1640			BN_gcd(u, x[j], dsa->q, ctx);
1641			if (BN_is_one(u))
1642				break;
1643		}
1644	}
1645
1646	/*
1647	 * Generate polynomial coefficients a[i] (i = 0...n) from the
1648	 * expansion of root products (x - x[j]) mod q for all j. The
1649	 * method is a present from Charlie Boncelet.
1650	 */
1651	for (i = 0; i <= n; i++) {
1652		a[i] = BN_new();
1653		BN_one(a[i]);
1654	}
1655	for (j = 1; j <= n; j++) {
1656		BN_zero(w);
1657		for (i = 0; i < j; i++) {
1658			BN_copy(u, dsa->q);
1659			BN_mod_mul(v, a[i], x[j], dsa->q, ctx);
1660			BN_sub(u, u, v);
1661			BN_add(u, u, w);
1662			BN_copy(w, a[i]);
1663			BN_mod(a[i], u, dsa->q, ctx);
1664		}
1665	}
1666
1667	/*
1668	 * Generate g[i] = g^a[i] mod p for all i and the generator g.
1669	 */
1670	for (i = 0; i <= n; i++) {
1671		g[i] = BN_new();
1672		BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx);
1673	}
1674
1675	/*
1676	 * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1677	 * a[i] x[j]^i exponent is computed mod q, but the g[i] is
1678	 * computed mod p. also note the expression given in the paper
1679	 * is incorrect.
1680	 */
1681	temp = 1;
1682	for (j = 1; j <= n; j++) {
1683		BN_one(u);
1684		for (i = 0; i <= n; i++) {
1685			BN_set_word(v, i);
1686			BN_mod_exp(v, x[j], v, dsa->q, ctx);
1687			BN_mod_mul(v, v, a[i], dsa->q, ctx);
1688			BN_mod_exp(v, dsa->g, v, dsa->p, ctx);
1689			BN_mod_mul(u, u, v, dsa->p, ctx);
1690		}
1691		if (!BN_is_one(u))
1692			temp = 0;
1693	}
1694	fprintf(stderr,
1695	    "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1696	    "yes" : "no");
1697	if (!temp) {
1698		return (NULL);
1699	}
1700
1701	/*
1702	 * Make private encryption key A. Keep it around for awhile,
1703	 * since it is expensive to compute.
1704	 */
1705	biga = BN_new();
1706
1707	BN_one(biga);
1708	for (j = 1; j <= n; j++) {
1709		for (i = 0; i < n; i++) {
1710			BN_set_word(v, i);
1711			BN_mod_exp(v, x[j], v, dsa->q, ctx);
1712			BN_mod_exp(v, g[i], v, dsa->p, ctx);
1713			BN_mod_mul(biga, biga, v, dsa->p, ctx);
1714		}
1715	}
1716
1717	/*
1718	 * Roll private random group key b mod q (0 < b < q), where
1719	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1720	 * mod q. If b is changed, the client keys must be recomputed.
1721	 */
1722	while (1) {
1723		BN_rand(b, BN_num_bits(dsa->q), 0, 0);
1724		BN_mod(b, b, dsa->q, ctx);
1725		BN_gcd(u, b, dsa->q, ctx);
1726		if (BN_is_one(u))
1727			break;
1728	}
1729	BN_mod_inverse(b1, b, dsa->q, ctx);
1730
1731	/*
1732	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1733	 * that the keys for the jth client do not s1[j] or the product
1734	 * s1[j]) (j = 1...n) which is q by construction.
1735	 *
1736	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1737	 * easy way to do this is to compute (q + s1[j]) / s1[j].
1738	 * Exercise for the student: prove the remainder is always zero.
1739	 */
1740	for (j = 1; j <= n; j++) {
1741		xbar[j] = BN_new(); xhat[j] = BN_new();
1742
1743		BN_add(w, dsa->q, s1[j]);
1744		BN_div(w, u, w, s1[j], ctx);
1745		BN_zero(xbar[j]);
1746		BN_set_word(v, n);
1747		for (i = 1; i <= n; i++) {
1748			if (i == j)
1749				continue;
1750
1751			BN_mod_exp(u, x[i], v, dsa->q, ctx);
1752			BN_add(xbar[j], xbar[j], u);
1753		}
1754		BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx);
1755		BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx);
1756		BN_mod_mul(xhat[j], xhat[j], w, dsa->q, ctx);
1757	}
1758
1759	/*
1760	 * We revoke client j by dividing q by s1[j]. The quotient
1761	 * becomes the enabling key s. Note we always have to revoke
1762	 * one key; otherwise, the plaintext and cryptotext would be
1763	 * identical. For the present there are no provisions to revoke
1764	 * additional keys, so we sail on with only token revocations.
1765	 */
1766	s = BN_new();
1767	BN_copy(s, dsa->q);
1768	BN_div(s, u, s, s1[n], ctx);
1769
1770	/*
1771	 * For each combination of clients to be revoked, make private
1772	 * encryption key E = A^s and partial decryption keys gbar = g^s
1773	 * and ghat = g^(s b), all mod p. The servers use these keys to
1774	 * compute the session encryption key and partial decryption
1775	 * keys. These values must be regenerated if the enabling key is
1776	 * changed.
1777	 */
1778	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1779	BN_mod_exp(bige, biga, s, dsa->p, ctx);
1780	BN_mod_exp(gbar, dsa->g, s, dsa->p, ctx);
1781	BN_mod_mul(v, s, b, dsa->q, ctx);
1782	BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx);
1783
1784	/*
1785	 * Notes: We produce the key media in three steps. The first
1786	 * step is to generate the system parameters p, q, g, b, A and
1787	 * the enabling keys s1[j]. Associated with each s1[j] are
1788	 * parameters xbar[j] and xhat[j]. All of these parameters are
1789	 * retained in a data structure protecteted by the trusted-agent
1790	 * password. The p, xbar[j] and xhat[j] paremeters are
1791	 * distributed to the j clients. When the client keys are to be
1792	 * activated, the enabled keys are multipied together to form
1793	 * the master enabling key s. This and the other parameters are
1794	 * used to compute the server encryption key E and the partial
1795	 * decryption keys gbar and ghat.
1796	 *
1797	 * In the identity exchange the client rolls random r and sends
1798	 * it to the server. The server rolls random k, which is used
1799	 * only once, then computes the session key E^k and partial
1800	 * decryption keys gbar^k and ghat^k. The server sends the
1801	 * encrypted r along with gbar^k and ghat^k to the client. The
1802	 * client completes the decryption and verifies it matches r.
1803	 */
1804	/*
1805	 * Write the MV trusted-agent parameters and keys as a DSA
1806	 * private key encoded in PEM.
1807	 *
1808	 * p	modulus p
1809	 * q	modulus q
1810	 * g	generator g
1811	 * priv_key A mod p
1812	 * pub_key b mod q
1813	 * (remaining values are not used)
1814	 */
1815	i = 0;
1816	str = fheader("MVta", "mvta", groupname);
1817	fprintf(stderr, "Generating MV trusted-authority keys\n");
1818	BN_copy(dsa->priv_key, biga);
1819	BN_copy(dsa->pub_key, b);
1820	pkey = EVP_PKEY_new();
1821	EVP_PKEY_assign_DSA(pkey, dsa);
1822	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1823	    passwd1);
1824	evpars[i++] = pkey;
1825	if (debug)
1826		DSA_print_fp(stderr, dsa, 0);
1827
1828	/*
1829	 * Append the MV server parameters and keys as a DSA key encoded
1830	 * in PEM.
1831	 *
1832	 * p	modulus p
1833	 * q	modulus q (used only when generating k)
1834	 * g	bige
1835	 * priv_key gbar
1836	 * pub_key ghat
1837	 * (remaining values are not used)
1838	 */
1839	fprintf(stderr, "Generating MV server keys\n");
1840	dsa2 = DSA_new();
1841	dsa2->p = BN_dup(dsa->p);
1842	dsa2->q = BN_dup(dsa->q);
1843	dsa2->g = BN_dup(bige);
1844	dsa2->priv_key = BN_dup(gbar);
1845	dsa2->pub_key = BN_dup(ghat);
1846	pkey1 = EVP_PKEY_new();
1847	EVP_PKEY_assign_DSA(pkey1, dsa2);
1848	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
1849	    passwd1);
1850	evpars[i++] = pkey1;
1851	if (debug)
1852		DSA_print_fp(stderr, dsa2, 0);
1853
1854	/*
1855	 * Append the MV client parameters for each client j as DSA keys
1856	 * encoded in PEM.
1857	 *
1858	 * p	modulus p
1859	 * priv_key xbar[j] mod q
1860	 * pub_key xhat[j] mod q
1861	 * (remaining values are not used)
1862	 */
1863	fprintf(stderr, "Generating %d MV client keys\n", n);
1864	for (j = 1; j <= n; j++) {
1865		sdsa = DSA_new();
1866		sdsa->p = BN_dup(dsa->p);
1867		sdsa->q = BN_dup(BN_value_one());
1868		sdsa->g = BN_dup(BN_value_one());
1869		sdsa->priv_key = BN_dup(xbar[j]);
1870		sdsa->pub_key = BN_dup(xhat[j]);
1871		pkey1 = EVP_PKEY_new();
1872		EVP_PKEY_set1_DSA(pkey1, sdsa);
1873		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
1874		    NULL, passwd1);
1875		evpars[i++] = pkey1;
1876		if (debug)
1877			DSA_print_fp(stderr, sdsa, 0);
1878
1879		/*
1880		 * The product gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1881		 * are inverses of each other. We check that the product
1882		 * is one for each client except the ones that have been
1883		 * revoked.
1884		 */
1885		BN_mod_exp(v, dsa2->priv_key, sdsa->pub_key, dsa->p,
1886		    ctx);
1887		BN_mod_exp(u, dsa2->pub_key, sdsa->priv_key, dsa->p,
1888		    ctx);
1889		BN_mod_mul(u, u, v, dsa->p, ctx);
1890		BN_mod_mul(u, u, bige, dsa->p, ctx);
1891		if (!BN_is_one(u)) {
1892			fprintf(stderr, "Revoke key %d\n", j);
1893			continue;
1894		}
1895	}
1896	evpars[i++] = NULL;
1897	fclose(str);
1898
1899	/*
1900	 * Free the countries.
1901	 */
1902	for (i = 0; i <= n; i++) {
1903		BN_free(a[i]); BN_free(g[i]);
1904	}
1905	for (j = 1; j <= n; j++) {
1906		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1907		BN_free(s1[j]);
1908	}
1909	return (pkey);
1910}
1911
1912
1913/*
1914 * Generate X509v3 certificate.
1915 *
1916 * The certificate consists of the version number, serial number,
1917 * validity interval, issuer name, subject name and public key. For a
1918 * self-signed certificate, the issuer name is the same as the subject
1919 * name and these items are signed using the subject private key. The
1920 * validity interval extends from the current time to the same time one
1921 * year hence. For NTP purposes, it is convenient to use the NTP seconds
1922 * of the current time as the serial number.
1923 */
1924int
1925x509	(
1926	EVP_PKEY *pkey,		/* signing key */
1927	const EVP_MD *md,	/* signature/digest scheme */
1928	char	*gqpub,		/* identity extension (hex string) */
1929	const char *exten,	/* private cert extension */
1930	char	*name		/* subject/issuer name */
1931	)
1932{
1933	X509	*cert;		/* X509 certificate */
1934	X509_NAME *subj;	/* distinguished (common) name */
1935	X509_EXTENSION *ex;	/* X509v3 extension */
1936	FILE	*str;		/* file handle */
1937	ASN1_INTEGER *serial;	/* serial number */
1938	const char *id;		/* digest/signature scheme name */
1939	char	pathbuf[MAXFILENAME + 1];
1940
1941	/*
1942	 * Generate X509 self-signed certificate.
1943	 *
1944	 * Set the certificate serial to the NTP seconds for grins. Set
1945	 * the version to 3. Set the initial validity to the current
1946	 * time and the finalvalidity one year hence.
1947	 */
1948 	id = OBJ_nid2sn(md->pkey_type);
1949	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
1950	cert = X509_new();
1951	X509_set_version(cert, 2L);
1952	serial = ASN1_INTEGER_new();
1953	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
1954	X509_set_serialNumber(cert, serial);
1955	ASN1_INTEGER_free(serial);
1956	X509_time_adj(X509_get_notBefore(cert), 0L, &epoch);
1957	X509_time_adj(X509_get_notAfter(cert), lifetime * SECSPERDAY, &epoch);
1958	subj = X509_get_subject_name(cert);
1959	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1960	    (u_char *)name, -1, -1, 0);
1961	subj = X509_get_issuer_name(cert);
1962	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1963	    (u_char *)name, -1, -1, 0);
1964	if (!X509_set_pubkey(cert, pkey)) {
1965		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
1966		    ERR_error_string(ERR_get_error(), NULL));
1967		X509_free(cert);
1968		return (0);
1969	}
1970
1971	/*
1972	 * Add X509v3 extensions if present. These represent the minimum
1973	 * set defined in RFC3280 less the certificate_policy extension,
1974	 * which is seriously obfuscated in OpenSSL.
1975	 */
1976	/*
1977	 * The basic_constraints extension CA:TRUE allows servers to
1978	 * sign client certficitates.
1979	 */
1980	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
1981	    BASIC_CONSTRAINTS);
1982	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
1983	    _UC(BASIC_CONSTRAINTS));
1984	if (!X509_add_ext(cert, ex, -1)) {
1985		fprintf(stderr, "Add extension field fails\n%s\n",
1986		    ERR_error_string(ERR_get_error(), NULL));
1987		return (0);
1988	}
1989	X509_EXTENSION_free(ex);
1990
1991	/*
1992	 * The key_usage extension designates the purposes the key can
1993	 * be used for.
1994	 */
1995	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
1996	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
1997	if (!X509_add_ext(cert, ex, -1)) {
1998		fprintf(stderr, "Add extension field fails\n%s\n",
1999		    ERR_error_string(ERR_get_error(), NULL));
2000		return (0);
2001	}
2002	X509_EXTENSION_free(ex);
2003	/*
2004	 * The subject_key_identifier is used for the GQ public key.
2005	 * This should not be controversial.
2006	 */
2007	if (gqpub != NULL) {
2008		fprintf(stderr, "%s\n", LN_subject_key_identifier);
2009		ex = X509V3_EXT_conf_nid(NULL, NULL,
2010		    NID_subject_key_identifier, gqpub);
2011		if (!X509_add_ext(cert, ex, -1)) {
2012			fprintf(stderr,
2013			    "Add extension field fails\n%s\n",
2014			    ERR_error_string(ERR_get_error(), NULL));
2015			return (0);
2016		}
2017		X509_EXTENSION_free(ex);
2018	}
2019
2020	/*
2021	 * The extended key usage extension is used for special purpose
2022	 * here. The semantics probably do not conform to the designer's
2023	 * intent and will likely change in future.
2024	 *
2025	 * "trustRoot" designates a root authority
2026	 * "private" designates a private certificate
2027	 */
2028	if (exten != NULL) {
2029		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
2030		ex = X509V3_EXT_conf_nid(NULL, NULL,
2031		    NID_ext_key_usage, _UC(exten));
2032		if (!X509_add_ext(cert, ex, -1)) {
2033			fprintf(stderr,
2034			    "Add extension field fails\n%s\n",
2035			    ERR_error_string(ERR_get_error(), NULL));
2036			return (0);
2037		}
2038		X509_EXTENSION_free(ex);
2039	}
2040
2041	/*
2042	 * Sign and verify.
2043	 */
2044	X509_sign(cert, pkey, md);
2045	if (X509_verify(cert, pkey) <= 0) {
2046		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
2047		    ERR_error_string(ERR_get_error(), NULL));
2048		X509_free(cert);
2049		return (0);
2050	}
2051
2052	/*
2053	 * Write the certificate encoded in PEM.
2054	 */
2055	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
2056	str = fheader(pathbuf, "cert", hostname);
2057	PEM_write_X509(str, cert);
2058	fclose(str);
2059	if (debug)
2060		X509_print_fp(stderr, cert);
2061	X509_free(cert);
2062	return (1);
2063}
2064
2065#if 0	/* asn2ntp is used only with commercial certificates */
2066/*
2067 * asn2ntp - convert ASN1_TIME time structure to NTP time
2068 */
2069u_long
2070asn2ntp	(
2071	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2072	)
2073{
2074	char	*v;		/* pointer to ASN1_TIME string */
2075	struct	tm tm;		/* time decode structure time */
2076
2077	/*
2078	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
2079	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2080	 * SS fiels start with zero and the Z character should be 'Z'
2081	 * for UTC. Also note that years less than 50 map to years
2082	 * greater than 100. Dontcha love ASN.1?
2083	 */
2084	if (asn1time->length > 13)
2085		return (-1);
2086	v = (char *)asn1time->data;
2087	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2088	if (tm.tm_year < 50)
2089		tm.tm_year += 100;
2090	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2091	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2092	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2093	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2094	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2095	tm.tm_wday = 0;
2096	tm.tm_yday = 0;
2097	tm.tm_isdst = 0;
2098	return (mktime(&tm) + JAN_1970);
2099}
2100#endif
2101
2102/*
2103 * Callback routine
2104 */
2105void
2106cb	(
2107	int	n1,		/* arg 1 */
2108	int	n2,		/* arg 2 */
2109	void	*chr		/* arg 3 */
2110	)
2111{
2112	switch (n1) {
2113	case 0:
2114		d0++;
2115		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2116		    d0);
2117		break;
2118	case 1:
2119		d1++;
2120		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2121		    n2, d1);
2122		break;
2123	case 2:
2124		d2++;
2125		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2126		    n1, n2, d2);
2127		break;
2128	case 3:
2129		d3++;
2130		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2131		    (char *)chr, n1, n2, d3);
2132		break;
2133	}
2134}
2135
2136
2137/*
2138 * Generate key
2139 */
2140EVP_PKEY *			/* public/private key pair */
2141genkey(
2142	const char *type,	/* key type (RSA or DSA) */
2143	const char *id		/* file name id */
2144	)
2145{
2146	if (type == NULL)
2147		return (NULL);
2148	if (strcmp(type, "RSA") == 0)
2149		return (gen_rsa(id));
2150
2151	else if (strcmp(type, "DSA") == 0)
2152		return (gen_dsa(id));
2153
2154	fprintf(stderr, "Invalid %s key type %s\n", id, type);
2155	return (NULL);
2156}
2157#endif	/* AUTOKEY */
2158
2159
2160/*
2161 * Generate file header and link
2162 */
2163FILE *
2164fheader	(
2165	const char *file,	/* file name id */
2166	const char *ulink,	/* linkname */
2167	const char *owner	/* owner name */
2168	)
2169{
2170	FILE	*str;		/* file handle */
2171	char	linkname[MAXFILENAME]; /* link name */
2172	int	temp;
2173#ifdef HAVE_UMASK
2174        mode_t  orig_umask;
2175#endif
2176
2177	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
2178	    owner, fstamp);
2179#ifdef HAVE_UMASK
2180        orig_umask = umask( S_IWGRP | S_IRWXO );
2181        str = fopen(filename, "w");
2182        (void) umask(orig_umask);
2183#else
2184        str = fopen(filename, "w");
2185#endif
2186	if (str == NULL) {
2187		perror("Write");
2188		exit (-1);
2189	}
2190        if (strcmp(ulink, "md5") == 0) {
2191          strcpy(linkname,"ntp.keys");
2192        } else {
2193          snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
2194                   hostname);
2195        }
2196	(void)remove(linkname);		/* The symlink() line below matters */
2197	temp = symlink(filename, linkname);
2198	if (temp < 0)
2199		perror(file);
2200	fprintf(stderr, "Generating new %s file and link\n", ulink);
2201	fprintf(stderr, "%s->%s\n", linkname, filename);
2202	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2203	return (str);
2204}
2205