1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 *	The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)tcp_sack.c	8.12 (Berkeley) 5/24/95
33 */
34
35/*-
36 *	@@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
37 *
38 * NRL grants permission for redistribution and use in source and binary
39 * forms, with or without modification, of the software and documentation
40 * created at NRL provided that the following conditions are met:
41 *
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 *    must display the following acknowledgements:
49 *	This product includes software developed by the University of
50 *	California, Berkeley and its contributors.
51 *	This product includes software developed at the Information
52 *	Technology Division, US Naval Research Laboratory.
53 * 4. Neither the name of the NRL nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68 *
69 * The views and conclusions contained in the software and documentation
70 * are those of the authors and should not be interpreted as representing
71 * official policies, either expressed or implied, of the US Naval
72 * Research Laboratory (NRL).
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD$");
77
78#include "opt_inet.h"
79#include "opt_inet6.h"
80#include "opt_tcpdebug.h"
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/kernel.h>
85#include <sys/sysctl.h>
86#include <sys/malloc.h>
87#include <sys/mbuf.h>
88#include <sys/proc.h>		/* for proc0 declaration */
89#include <sys/protosw.h>
90#include <sys/socket.h>
91#include <sys/socketvar.h>
92#include <sys/syslog.h>
93#include <sys/systm.h>
94
95#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
96
97#include <vm/uma.h>
98
99#include <net/if.h>
100#include <net/if_var.h>
101#include <net/route.h>
102#include <net/vnet.h>
103
104#include <netinet/in.h>
105#include <netinet/in_systm.h>
106#include <netinet/ip.h>
107#include <netinet/in_var.h>
108#include <netinet/in_pcb.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip6.h>
111#include <netinet/icmp6.h>
112#include <netinet6/nd6.h>
113#include <netinet6/ip6_var.h>
114#include <netinet6/in6_pcb.h>
115#include <netinet/tcp.h>
116#include <netinet/tcp_fsm.h>
117#include <netinet/tcp_seq.h>
118#include <netinet/tcp_timer.h>
119#include <netinet/tcp_var.h>
120#include <netinet6/tcp6_var.h>
121#include <netinet/tcpip.h>
122#ifdef TCPDEBUG
123#include <netinet/tcp_debug.h>
124#endif /* TCPDEBUG */
125
126#include <machine/in_cksum.h>
127
128VNET_DECLARE(struct uma_zone *, sack_hole_zone);
129#define	V_sack_hole_zone		VNET(sack_hole_zone)
130
131SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132    "TCP SACK");
133VNET_DEFINE(int, tcp_do_sack) = 1;
134#define	V_tcp_do_sack			VNET(tcp_do_sack)
135SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
136    &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
137
138VNET_DEFINE(int, tcp_sack_maxholes) = 128;
139SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
140    &VNET_NAME(tcp_sack_maxholes), 0,
141    "Maximum number of TCP SACK holes allowed per connection");
142
143VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
144SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
145    &VNET_NAME(tcp_sack_globalmaxholes), 0,
146    "Global maximum number of TCP SACK holes");
147
148VNET_DEFINE(int, tcp_sack_globalholes) = 0;
149SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
150    &VNET_NAME(tcp_sack_globalholes), 0,
151    "Global number of TCP SACK holes currently allocated");
152
153int
154tcp_dsack_block_exists(struct tcpcb *tp)
155{
156	/* Return true if a DSACK block exists */
157	if (tp->rcv_numsacks == 0)
158		return (0);
159	if (SEQ_LEQ(tp->sackblks[0].end, tp->rcv_nxt))
160		return(1);
161	return (0);
162}
163
164/*
165 * This function will find overlaps with the currently stored sackblocks
166 * and add any overlap as a dsack block upfront
167 */
168void
169tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
170{
171	struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
172	int i, j, n, identical;
173	tcp_seq start, end;
174
175	INP_WLOCK_ASSERT(tp->t_inpcb);
176
177	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
178
179	if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
180	    ((rcv_end == tp->rcv_nxt) &&
181	     (tp->rcv_numsacks > 0 ) &&
182	     (tp->sackblks[0].end == tp->rcv_nxt))) {
183		saved_blks[0].start = rcv_start;
184		saved_blks[0].end = rcv_end;
185	} else {
186		saved_blks[0].start = saved_blks[0].end = 0;
187	}
188
189	head_blk.start = head_blk.end = 0;
190	mid_blk.start = rcv_start;
191	mid_blk.end = rcv_end;
192	identical = 0;
193
194	for (i = 0; i < tp->rcv_numsacks; i++) {
195		start = tp->sackblks[i].start;
196		end = tp->sackblks[i].end;
197		if (SEQ_LT(rcv_end, start)) {
198			/* pkt left to sack blk */
199			continue;
200		}
201		if (SEQ_GT(rcv_start, end)) {
202			/* pkt right to sack blk */
203			continue;
204		}
205		if (SEQ_GT(tp->rcv_nxt, end)) {
206			if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
207			    (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
208			    (head_blk.start == head_blk.end))) {
209				head_blk.start = SEQ_MAX(rcv_start, start);
210				head_blk.end = SEQ_MIN(rcv_end, end);
211			}
212			continue;
213		}
214		if (((head_blk.start == head_blk.end) ||
215		     SEQ_LT(start, head_blk.start)) &&
216		     (SEQ_GT(end, rcv_start) &&
217		      SEQ_LEQ(start, rcv_end))) {
218			head_blk.start = start;
219			head_blk.end = end;
220		}
221		mid_blk.start = SEQ_MIN(mid_blk.start, start);
222		mid_blk.end = SEQ_MAX(mid_blk.end, end);
223		if ((mid_blk.start == start) &&
224		    (mid_blk.end == end))
225			identical = 1;
226	}
227	if (SEQ_LT(head_blk.start, head_blk.end)) {
228		/* store overlapping range */
229		saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
230		saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
231	}
232	n = 1;
233	/*
234	 * Second, if not ACKed, store the SACK block that
235	 * overlaps with the DSACK block unless it is identical
236	 */
237	if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
238	    !((mid_blk.start == saved_blks[0].start) &&
239	    (mid_blk.end == saved_blks[0].end))) ||
240	    identical == 1) {
241		saved_blks[n].start = mid_blk.start;
242		saved_blks[n++].end = mid_blk.end;
243	}
244	for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
245		if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
246		      SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
247		    (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
248		saved_blks[n++] = tp->sackblks[j];
249	}
250	j = 0;
251	for (i = 0; i < n; i++) {
252		/* we can end up with a stale initial entry */
253		if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
254			tp->sackblks[j++] = saved_blks[i];
255		}
256	}
257	tp->rcv_numsacks = j;
258}
259
260/*
261 * This function is called upon receipt of new valid data (while not in
262 * header prediction mode), and it updates the ordered list of sacks.
263 */
264void
265tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
266{
267	/*
268	 * First reported block MUST be the most recent one.  Subsequent
269	 * blocks SHOULD be in the order in which they arrived at the
270	 * receiver.  These two conditions make the implementation fully
271	 * compliant with RFC 2018.
272	 */
273	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
274	int num_head, num_saved, i;
275
276	INP_WLOCK_ASSERT(tp->t_inpcb);
277
278	/* Check arguments. */
279	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
280
281	if ((rcv_start == rcv_end) &&
282	    (tp->rcv_numsacks >= 1) &&
283	    (rcv_end == tp->sackblks[0].end)) {
284		/* retaining DSACK block below rcv_nxt (todrop) */
285		head_blk = tp->sackblks[0];
286	} else {
287		/* SACK block for the received segment. */
288		head_blk.start = rcv_start;
289		head_blk.end = rcv_end;
290	}
291
292	/*
293	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
294	 * blocks into saved_blks[].  num_saved will have the number of the
295	 * saved SACK blocks.
296	 */
297	num_saved = 0;
298	for (i = 0; i < tp->rcv_numsacks; i++) {
299		tcp_seq start = tp->sackblks[i].start;
300		tcp_seq end = tp->sackblks[i].end;
301		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
302			/*
303			 * Discard this SACK block.
304			 */
305		} else if (SEQ_LEQ(head_blk.start, end) &&
306			   SEQ_GEQ(head_blk.end, start)) {
307			/*
308			 * Merge this SACK block into head_blk.  This SACK
309			 * block itself will be discarded.
310			 */
311			/*
312			 * |-|
313			 *   |---|  merge
314			 *
315			 *     |-|
316			 * |---|    merge
317			 *
318			 * |-----|
319			 *   |-|    DSACK smaller
320			 *
321			 *   |-|
322			 * |-----|  DSACK smaller
323			 */
324			if (head_blk.start == end)
325				head_blk.start = start;
326			else if (head_blk.end == start)
327				head_blk.end = end;
328			else {
329				if (SEQ_LT(head_blk.start, start)) {
330					tcp_seq temp = start;
331					start = head_blk.start;
332					head_blk.start = temp;
333				}
334				if (SEQ_GT(head_blk.end, end)) {
335					tcp_seq temp = end;
336					end = head_blk.end;
337					head_blk.end = temp;
338				}
339				if ((head_blk.start != start) ||
340				    (head_blk.end != end)) {
341					if ((num_saved >= 1) &&
342					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
343					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
344						num_saved--;
345					saved_blks[num_saved].start = start;
346					saved_blks[num_saved].end = end;
347					num_saved++;
348				}
349			}
350		} else {
351			/*
352			 * This block supercedes the prior block
353			 */
354			if ((num_saved >= 1) &&
355			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
356			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
357				num_saved--;
358			/*
359			 * Save this SACK block.
360			 */
361			saved_blks[num_saved].start = start;
362			saved_blks[num_saved].end = end;
363			num_saved++;
364		}
365	}
366
367	/*
368	 * Update SACK list in tp->sackblks[].
369	 */
370	num_head = 0;
371	if (SEQ_LT(rcv_start, rcv_end)) {
372		/*
373		 * The received data segment is an out-of-order segment.  Put
374		 * head_blk at the top of SACK list.
375		 */
376		tp->sackblks[0] = head_blk;
377		num_head = 1;
378		/*
379		 * If the number of saved SACK blocks exceeds its limit,
380		 * discard the last SACK block.
381		 */
382		if (num_saved >= MAX_SACK_BLKS)
383			num_saved--;
384	}
385	if ((rcv_start == rcv_end) &&
386	    (rcv_start == tp->sackblks[0].end)) {
387		num_head = 1;
388	}
389	if (num_saved > 0) {
390		/*
391		 * Copy the saved SACK blocks back.
392		 */
393		bcopy(saved_blks, &tp->sackblks[num_head],
394		      sizeof(struct sackblk) * num_saved);
395	}
396
397	/* Save the number of SACK blocks. */
398	tp->rcv_numsacks = num_head + num_saved;
399}
400
401void
402tcp_clean_dsack_blocks(struct tcpcb *tp)
403{
404	struct sackblk saved_blks[MAX_SACK_BLKS];
405	int num_saved, i;
406
407	INP_WLOCK_ASSERT(tp->t_inpcb);
408	/*
409	 * Clean up any DSACK blocks that
410	 * are in our queue of sack blocks.
411	 *
412	 */
413	num_saved = 0;
414	for (i = 0; i < tp->rcv_numsacks; i++) {
415		tcp_seq start = tp->sackblks[i].start;
416		tcp_seq end = tp->sackblks[i].end;
417		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
418			/*
419			 * Discard this D-SACK block.
420			 */
421			continue;
422		}
423		/*
424		 * Save this SACK block.
425		 */
426		saved_blks[num_saved].start = start;
427		saved_blks[num_saved].end = end;
428		num_saved++;
429	}
430	if (num_saved > 0) {
431		/*
432		 * Copy the saved SACK blocks back.
433		 */
434		bcopy(saved_blks, &tp->sackblks[0],
435		      sizeof(struct sackblk) * num_saved);
436	}
437	tp->rcv_numsacks = num_saved;
438}
439
440/*
441 * Delete all receiver-side SACK information.
442 */
443void
444tcp_clean_sackreport(struct tcpcb *tp)
445{
446	int i;
447
448	INP_WLOCK_ASSERT(tp->t_inpcb);
449	tp->rcv_numsacks = 0;
450	for (i = 0; i < MAX_SACK_BLKS; i++)
451		tp->sackblks[i].start = tp->sackblks[i].end=0;
452}
453
454/*
455 * Allocate struct sackhole.
456 */
457static struct sackhole *
458tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
459{
460	struct sackhole *hole;
461
462	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
463	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
464		TCPSTAT_INC(tcps_sack_sboverflow);
465		return NULL;
466	}
467
468	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
469	if (hole == NULL)
470		return NULL;
471
472	hole->start = start;
473	hole->end = end;
474	hole->rxmit = start;
475
476	tp->snd_numholes++;
477	atomic_add_int(&V_tcp_sack_globalholes, 1);
478
479	return hole;
480}
481
482/*
483 * Free struct sackhole.
484 */
485static void
486tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
487{
488
489	uma_zfree(V_sack_hole_zone, hole);
490
491	tp->snd_numholes--;
492	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
493
494	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
495	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
496}
497
498/*
499 * Insert new SACK hole into scoreboard.
500 */
501static struct sackhole *
502tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
503    struct sackhole *after)
504{
505	struct sackhole *hole;
506
507	/* Allocate a new SACK hole. */
508	hole = tcp_sackhole_alloc(tp, start, end);
509	if (hole == NULL)
510		return NULL;
511
512	/* Insert the new SACK hole into scoreboard. */
513	if (after != NULL)
514		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
515	else
516		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
517
518	/* Update SACK hint. */
519	if (tp->sackhint.nexthole == NULL)
520		tp->sackhint.nexthole = hole;
521
522	return hole;
523}
524
525/*
526 * Remove SACK hole from scoreboard.
527 */
528static void
529tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
530{
531
532	/* Update SACK hint. */
533	if (tp->sackhint.nexthole == hole)
534		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
535
536	/* Remove this SACK hole. */
537	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
538
539	/* Free this SACK hole. */
540	tcp_sackhole_free(tp, hole);
541}
542
543/*
544 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
545 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
546 * the sequence space).
547 * Returns 1 if incoming ACK has previously unknown SACK information,
548 * 0 otherwise.
549 */
550int
551tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
552{
553	struct sackhole *cur, *temp;
554	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
555	int i, j, num_sack_blks, sack_changed;
556	int delivered_data, left_edge_delta;
557
558	INP_WLOCK_ASSERT(tp->t_inpcb);
559
560	num_sack_blks = 0;
561	sack_changed = 0;
562	delivered_data = 0;
563	left_edge_delta = 0;
564	/*
565	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
566	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
567	 * Account changes to SND.UNA always in delivered data.
568	 */
569	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
570		left_edge_delta = th_ack - tp->snd_una;
571		sack_blocks[num_sack_blks].start = tp->snd_una;
572		sack_blocks[num_sack_blks++].end = th_ack;
573		/*
574		 * Pulling snd_fack forward if we got here
575		 * due to DSACK blocks
576		 */
577		if (SEQ_LT(tp->snd_fack, th_ack)) {
578			delivered_data += th_ack - tp->snd_una;
579			tp->snd_fack = th_ack;
580			sack_changed = 1;
581		}
582	}
583	/*
584	 * Append received valid SACK blocks to sack_blocks[], but only if we
585	 * received new blocks from the other side.
586	 */
587	if (to->to_flags & TOF_SACK) {
588		for (i = 0; i < to->to_nsacks; i++) {
589			bcopy((to->to_sacks + i * TCPOLEN_SACK),
590			    &sack, sizeof(sack));
591			sack.start = ntohl(sack.start);
592			sack.end = ntohl(sack.end);
593			if (SEQ_GT(sack.end, sack.start) &&
594			    SEQ_GT(sack.start, tp->snd_una) &&
595			    SEQ_GT(sack.start, th_ack) &&
596			    SEQ_LT(sack.start, tp->snd_max) &&
597			    SEQ_GT(sack.end, tp->snd_una) &&
598			    SEQ_LEQ(sack.end, tp->snd_max)) {
599				sack_blocks[num_sack_blks++] = sack;
600			}
601		}
602	}
603	/*
604	 * Return if SND.UNA is not advanced and no valid SACK block is
605	 * received.
606	 */
607	if (num_sack_blks == 0)
608		return (sack_changed);
609
610	/*
611	 * Sort the SACK blocks so we can update the scoreboard with just one
612	 * pass. The overhead of sorting up to 4+1 elements is less than
613	 * making up to 4+1 passes over the scoreboard.
614	 */
615	for (i = 0; i < num_sack_blks; i++) {
616		for (j = i + 1; j < num_sack_blks; j++) {
617			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
618				sack = sack_blocks[i];
619				sack_blocks[i] = sack_blocks[j];
620				sack_blocks[j] = sack;
621			}
622		}
623	}
624	if (TAILQ_EMPTY(&tp->snd_holes)) {
625		/*
626		 * Empty scoreboard. Need to initialize snd_fack (it may be
627		 * uninitialized or have a bogus value). Scoreboard holes
628		 * (from the sack blocks received) are created later below
629		 * (in the logic that adds holes to the tail of the
630		 * scoreboard).
631		 */
632		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
633		tp->sackhint.sacked_bytes = 0;	/* reset */
634	}
635	/*
636	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
637	 * SACK holes (snd_holes) are traversed from their tails with just
638	 * one pass in order to reduce the number of compares especially when
639	 * the bandwidth-delay product is large.
640	 *
641	 * Note: Typically, in the first RTT of SACK recovery, the highest
642	 * three or four SACK blocks with the same ack number are received.
643	 * In the second RTT, if retransmitted data segments are not lost,
644	 * the highest three or four SACK blocks with ack number advancing
645	 * are received.
646	 */
647	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
648	tp->sackhint.last_sack_ack = sblkp->end;
649	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
650		/*
651		 * The highest SACK block is beyond fack.  First,
652		 * check if there was a successful Rescue Retransmission,
653		 * and move this hole left. With normal holes, snd_fack
654		 * is always to the right of the end.
655		 */
656		if (((temp = TAILQ_LAST(&tp->snd_holes, sackhole_head)) != NULL) &&
657		    SEQ_LEQ(tp->snd_fack,temp->end)) {
658			temp->start = SEQ_MAX(tp->snd_fack, SEQ_MAX(tp->snd_una, th_ack));
659			temp->end = sblkp->start;
660			temp->rxmit = temp->start;
661			delivered_data += sblkp->end - sblkp->start;
662			tp->snd_fack = sblkp->end;
663			sblkp--;
664			sack_changed = 1;
665		} else {
666			/*
667			 * Append a new SACK hole at the tail.  If the
668			 * second or later highest SACK blocks are also
669			 * beyond the current fack, they will be inserted
670			 * by way of hole splitting in the while-loop below.
671			 */
672			temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
673			if (temp != NULL) {
674				delivered_data += sblkp->end - sblkp->start;
675				tp->snd_fack = sblkp->end;
676				/* Go to the previous sack block. */
677				sblkp--;
678				sack_changed = 1;
679			} else {
680				/*
681				 * We failed to add a new hole based on the current
682				 * sack block.  Skip over all the sack blocks that
683				 * fall completely to the right of snd_fack and
684				 * proceed to trim the scoreboard based on the
685				 * remaining sack blocks.  This also trims the
686				 * scoreboard for th_ack (which is sack_blocks[0]).
687				 */
688				while (sblkp >= sack_blocks &&
689				       SEQ_LT(tp->snd_fack, sblkp->start))
690					sblkp--;
691				if (sblkp >= sack_blocks &&
692				    SEQ_LT(tp->snd_fack, sblkp->end)) {
693					delivered_data += sblkp->end - tp->snd_fack;
694					tp->snd_fack = sblkp->end;
695					sack_changed = 1;
696				}
697			}
698		}
699	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
700		/* fack is advanced. */
701		delivered_data += sblkp->end - tp->snd_fack;
702		tp->snd_fack = sblkp->end;
703		sack_changed = 1;
704	}
705	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
706	/*
707	 * Since the incoming sack blocks are sorted, we can process them
708	 * making one sweep of the scoreboard.
709	 */
710	while (sblkp >= sack_blocks  && cur != NULL) {
711		if (SEQ_GEQ(sblkp->start, cur->end)) {
712			/*
713			 * SACKs data beyond the current hole.  Go to the
714			 * previous sack block.
715			 */
716			sblkp--;
717			continue;
718		}
719		if (SEQ_LEQ(sblkp->end, cur->start)) {
720			/*
721			 * SACKs data before the current hole.  Go to the
722			 * previous hole.
723			 */
724			cur = TAILQ_PREV(cur, sackhole_head, scblink);
725			continue;
726		}
727		tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
728		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
729		    ("sackhint bytes rtx >= 0"));
730		sack_changed = 1;
731		if (SEQ_LEQ(sblkp->start, cur->start)) {
732			/* Data acks at least the beginning of hole. */
733			if (SEQ_GEQ(sblkp->end, cur->end)) {
734				/* Acks entire hole, so delete hole. */
735				delivered_data += (cur->end - cur->start);
736				temp = cur;
737				cur = TAILQ_PREV(cur, sackhole_head, scblink);
738				tcp_sackhole_remove(tp, temp);
739				/*
740				 * The sack block may ack all or part of the
741				 * next hole too, so continue onto the next
742				 * hole.
743				 */
744				continue;
745			} else {
746				/* Move start of hole forward. */
747				delivered_data += (sblkp->end - cur->start);
748				cur->start = sblkp->end;
749				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
750			}
751		} else {
752			/* Data acks at least the end of hole. */
753			if (SEQ_GEQ(sblkp->end, cur->end)) {
754				/* Move end of hole backward. */
755				delivered_data += (cur->end - sblkp->start);
756				cur->end = sblkp->start;
757				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
758			} else {
759				/*
760				 * ACKs some data in middle of a hole; need
761				 * to split current hole
762				 */
763				temp = tcp_sackhole_insert(tp, sblkp->end,
764				    cur->end, cur);
765				if (temp != NULL) {
766					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
767						temp->rxmit = cur->rxmit;
768						tp->sackhint.sack_bytes_rexmit
769						    += (temp->rxmit
770						    - temp->start);
771					}
772					cur->end = sblkp->start;
773					cur->rxmit = SEQ_MIN(cur->rxmit,
774					    cur->end);
775					delivered_data += (sblkp->end - sblkp->start);
776				}
777			}
778		}
779		tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
780		/*
781		 * Testing sblkp->start against cur->start tells us whether
782		 * we're done with the sack block or the sack hole.
783		 * Accordingly, we advance one or the other.
784		 */
785		if (SEQ_LEQ(sblkp->start, cur->start))
786			cur = TAILQ_PREV(cur, sackhole_head, scblink);
787		else
788			sblkp--;
789	}
790	if (!(to->to_flags & TOF_SACK))
791		/*
792		 * If this ACK did not contain any
793		 * SACK blocks, any only moved the
794		 * left edge right, it is a pure
795		 * cumulative ACK. Do not count
796		 * DupAck for this. Also required
797		 * for RFC6675 rescue retransmission.
798		 */
799		sack_changed = 0;
800	tp->sackhint.delivered_data = delivered_data;
801	tp->sackhint.sacked_bytes += delivered_data - left_edge_delta;
802	KASSERT((delivered_data >= 0), ("delivered_data < 0"));
803	KASSERT((tp->sackhint.sacked_bytes >= 0), ("sacked_bytes < 0"));
804	return (sack_changed);
805}
806
807/*
808 * Free all SACK holes to clear the scoreboard.
809 */
810void
811tcp_free_sackholes(struct tcpcb *tp)
812{
813	struct sackhole *q;
814
815	INP_WLOCK_ASSERT(tp->t_inpcb);
816	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
817		tcp_sackhole_remove(tp, q);
818	tp->sackhint.sack_bytes_rexmit = 0;
819
820	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
821	KASSERT(tp->sackhint.nexthole == NULL,
822		("tp->sackhint.nexthole == NULL"));
823}
824
825/*
826 * Partial ack handling within a sack recovery episode.  Keeping this very
827 * simple for now.  When a partial ack is received, force snd_cwnd to a value
828 * that will allow the sender to transmit no more than 2 segments.  If
829 * necessary, a better scheme can be adopted at a later point, but for now,
830 * the goal is to prevent the sender from bursting a large amount of data in
831 * the midst of sack recovery.
832 */
833void
834tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
835{
836	int num_segs = 1;
837	u_int maxseg = tcp_maxseg(tp);
838
839	INP_WLOCK_ASSERT(tp->t_inpcb);
840	tcp_timer_activate(tp, TT_REXMT, 0);
841	tp->t_rtttime = 0;
842	/* Send one or 2 segments based on how much new data was acked. */
843	if ((BYTES_THIS_ACK(tp, th) / maxseg) >= 2)
844		num_segs = 2;
845	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
846	    (tp->snd_nxt - tp->snd_recover) + num_segs * maxseg);
847	if (tp->snd_cwnd > tp->snd_ssthresh)
848		tp->snd_cwnd = tp->snd_ssthresh;
849	tp->t_flags |= TF_ACKNOW;
850	/*
851	 * RFC6675 rescue retransmission
852	 * Add a hole between th_ack (snd_una is not yet set) and snd_max,
853	 * if this was a pure cumulative ACK and no data was send beyond
854	 * recovery point. Since the data in the socket has not been freed
855	 * at this point, we check if the scoreboard is empty, and the ACK
856	 * delivered some new data, indicating a full ACK. Also, if the
857	 * recovery point is still at snd_max, we are probably application
858	 * limited. However, this inference might not always be true. The
859	 * rescue retransmission may rarely be slightly premature
860	 * compared to RFC6675.
861	 * The corresponding ACK+SACK will cause any further outstanding
862	 * segments to be retransmitted. This addresses a corner case, when
863	 * the trailing packets of a window are lost and no further data
864	 * is available for sending.
865	 */
866	if ((V_tcp_do_rfc6675_pipe) &&
867	    SEQ_LT(th->th_ack, tp->snd_recover) &&
868	    (tp->snd_recover == tp->snd_max) &&
869	    TAILQ_EMPTY(&tp->snd_holes) &&
870	    (tp->sackhint.delivered_data > 0)) {
871		/*
872		 * Exclude FIN sequence space in
873		 * the hole for the rescue retransmission,
874		 * and also don't create a hole, if only
875		 * the ACK for a FIN is outstanding.
876		 */
877		tcp_seq highdata = tp->snd_max;
878		if (tp->t_flags & TF_SENTFIN)
879			highdata--;
880		if (th->th_ack != highdata) {
881			tp->snd_fack = th->th_ack;
882			(void)tcp_sackhole_insert(tp, SEQ_MAX(th->th_ack,
883			    highdata - maxseg), highdata, NULL);
884		}
885	}
886	(void) tp->t_fb->tfb_tcp_output(tp);
887}
888
889#if 0
890/*
891 * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
892 * now to sanity check the hint.
893 */
894static struct sackhole *
895tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
896{
897	struct sackhole *p;
898
899	INP_WLOCK_ASSERT(tp->t_inpcb);
900	*sack_bytes_rexmt = 0;
901	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
902		if (SEQ_LT(p->rxmit, p->end)) {
903			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
904				continue;
905			}
906			*sack_bytes_rexmt += (p->rxmit - p->start);
907			break;
908		}
909		*sack_bytes_rexmt += (p->rxmit - p->start);
910	}
911	return (p);
912}
913#endif
914
915/*
916 * Returns the next hole to retransmit and the number of retransmitted bytes
917 * from the scoreboard.  We store both the next hole and the number of
918 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
919 * reception).  This avoids scoreboard traversals completely.
920 *
921 * The loop here will traverse *at most* one link.  Here's the argument.  For
922 * the loop to traverse more than 1 link before finding the next hole to
923 * retransmit, we would need to have at least 1 node following the current
924 * hint with (rxmit == end).  But, for all holes following the current hint,
925 * (start == rxmit), since we have not yet retransmitted from them.
926 * Therefore, in order to traverse more 1 link in the loop below, we need to
927 * have at least one node following the current hint with (start == rxmit ==
928 * end).  But that can't happen, (start == end) means that all the data in
929 * that hole has been sacked, in which case, the hole would have been removed
930 * from the scoreboard.
931 */
932struct sackhole *
933tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
934{
935	struct sackhole *hole = NULL;
936
937	INP_WLOCK_ASSERT(tp->t_inpcb);
938	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
939	hole = tp->sackhint.nexthole;
940	if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
941		goto out;
942	while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
943		if (SEQ_LT(hole->rxmit, hole->end)) {
944			tp->sackhint.nexthole = hole;
945			break;
946		}
947	}
948out:
949	return (hole);
950}
951
952/*
953 * After a timeout, the SACK list may be rebuilt.  This SACK information
954 * should be used to avoid retransmitting SACKed data.  This function
955 * traverses the SACK list to see if snd_nxt should be moved forward.
956 */
957void
958tcp_sack_adjust(struct tcpcb *tp)
959{
960	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
961
962	INP_WLOCK_ASSERT(tp->t_inpcb);
963	if (cur == NULL)
964		return; /* No holes */
965	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
966		return; /* We're already beyond any SACKed blocks */
967	/*-
968	 * Two cases for which we want to advance snd_nxt:
969	 * i) snd_nxt lies between end of one hole and beginning of another
970	 * ii) snd_nxt lies between end of last hole and snd_fack
971	 */
972	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
973		if (SEQ_LT(tp->snd_nxt, cur->end))
974			return;
975		if (SEQ_GEQ(tp->snd_nxt, p->start))
976			cur = p;
977		else {
978			tp->snd_nxt = p->start;
979			return;
980		}
981	}
982	if (SEQ_LT(tp->snd_nxt, cur->end))
983		return;
984	tp->snd_nxt = tp->snd_fack;
985}
986