1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2007-2009
5 * 	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010, The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed at the Centre for Advanced
10 * Internet Architectures, Swinburne University of Technology, Melbourne,
11 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/******************************************************
36 * Statistical Information For TCP Research (SIFTR)
37 *
38 * A FreeBSD kernel module that adds very basic intrumentation to the
39 * TCP stack, allowing internal stats to be recorded to a log file
40 * for experimental, debugging and performance analysis purposes.
41 *
42 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
43 * working on the NewTCP research project at Swinburne University of
44 * Technology's Centre for Advanced Internet Architectures, Melbourne,
45 * Australia, which was made possible in part by a grant from the Cisco
46 * University Research Program Fund at Community Foundation Silicon Valley.
47 * More details are available at:
48 *   http://caia.swin.edu.au/urp/newtcp/
49 *
50 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
51 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
52 * More details are available at:
53 *   http://www.freebsdfoundation.org/
54 *   http://caia.swin.edu.au/freebsd/etcp09/
55 *
56 * Lawrence Stewart is the current maintainer, and all contact regarding
57 * SIFTR should be directed to him via email: lastewart@swin.edu.au
58 *
59 * Initial release date: June 2007
60 * Most recent update: September 2010
61 ******************************************************/
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD$");
65
66#include <sys/param.h>
67#include <sys/alq.h>
68#include <sys/errno.h>
69#include <sys/eventhandler.h>
70#include <sys/hash.h>
71#include <sys/kernel.h>
72#include <sys/kthread.h>
73#include <sys/lock.h>
74#include <sys/mbuf.h>
75#include <sys/module.h>
76#include <sys/mutex.h>
77#include <sys/pcpu.h>
78#include <sys/proc.h>
79#include <sys/sbuf.h>
80#include <sys/sdt.h>
81#include <sys/smp.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/sysctl.h>
85#include <sys/unistd.h>
86
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/pfil.h>
90
91#include <netinet/in.h>
92#include <netinet/in_kdtrace.h>
93#include <netinet/in_pcb.h>
94#include <netinet/in_systm.h>
95#include <netinet/in_var.h>
96#include <netinet/ip.h>
97#include <netinet/ip_var.h>
98#include <netinet/tcp_var.h>
99
100#ifdef SIFTR_IPV6
101#include <netinet/ip6.h>
102#include <netinet/ip6_var.h>
103#include <netinet6/in6_pcb.h>
104#endif /* SIFTR_IPV6 */
105
106#include <machine/in_cksum.h>
107
108/*
109 * Three digit version number refers to X.Y.Z where:
110 * X is the major version number
111 * Y is bumped to mark backwards incompatible changes
112 * Z is bumped to mark backwards compatible changes
113 */
114#define V_MAJOR		1
115#define V_BACKBREAK	2
116#define V_BACKCOMPAT	4
117#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
118#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
119    __XSTRING(V_BACKCOMPAT)
120
121#define HOOK 0
122#define UNHOOK 1
123#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
124#define SYS_NAME "FreeBSD"
125#define PACKET_TAG_SIFTR 100
126#define PACKET_COOKIE_SIFTR 21749576
127#define SIFTR_LOG_FILE_MODE 0644
128#define SIFTR_DISABLE 0
129#define SIFTR_ENABLE 1
130
131/*
132 * Hard upper limit on the length of log messages. Bump this up if you add new
133 * data fields such that the line length could exceed the below value.
134 */
135#define MAX_LOG_MSG_LEN 200
136/* XXX: Make this a sysctl tunable. */
137#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
138
139/*
140 * 1 byte for IP version
141 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
142 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
143 */
144#ifdef SIFTR_IPV6
145#define FLOW_KEY_LEN 37
146#else
147#define FLOW_KEY_LEN 13
148#endif
149
150#ifdef SIFTR_IPV6
151#define SIFTR_IPMODE 6
152#else
153#define SIFTR_IPMODE 4
154#endif
155
156/* useful macros */
157#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
158#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
159
160#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
161#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
162#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
163#define FOURTH_OCTET(X)	((X) & 0x000000FF)
164
165static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
166static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
167    "SIFTR pkt_node struct");
168static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
169    "SIFTR flow_hash_node struct");
170
171/* Used as links in the pkt manager queue. */
172struct pkt_node {
173	/* Timestamp of pkt as noted in the pfil hook. */
174	struct timeval		tval;
175	/* Direction pkt is travelling. */
176	enum {
177		DIR_IN = 0,
178		DIR_OUT = 1,
179	}			direction;
180	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
181	uint8_t			ipver;
182	/* Hash of the pkt which triggered the log message. */
183	uint32_t		hash;
184	/* Local/foreign IP address. */
185#ifdef SIFTR_IPV6
186	uint32_t		ip_laddr[4];
187	uint32_t		ip_faddr[4];
188#else
189	uint8_t			ip_laddr[4];
190	uint8_t			ip_faddr[4];
191#endif
192	/* Local TCP port. */
193	uint16_t		tcp_localport;
194	/* Foreign TCP port. */
195	uint16_t		tcp_foreignport;
196	/* Congestion Window (bytes). */
197	u_long			snd_cwnd;
198	/* Sending Window (bytes). */
199	u_long			snd_wnd;
200	/* Receive Window (bytes). */
201	u_long			rcv_wnd;
202	/* Unused (was: Bandwidth Controlled Window (bytes)). */
203	u_long			snd_bwnd;
204	/* Slow Start Threshold (bytes). */
205	u_long			snd_ssthresh;
206	/* Current state of the TCP FSM. */
207	int			conn_state;
208	/* Max Segment Size (bytes). */
209	u_int			max_seg_size;
210	/*
211	 * Smoothed RTT stored as found in the TCP control block
212	 * in units of (TCP_RTT_SCALE*hz).
213	 */
214	int			smoothed_rtt;
215	/* Is SACK enabled? */
216	u_char			sack_enabled;
217	/* Window scaling for snd window. */
218	u_char			snd_scale;
219	/* Window scaling for recv window. */
220	u_char			rcv_scale;
221	/* TCP control block flags. */
222	u_int			flags;
223	/* Retransmit timeout length. */
224	int			rxt_length;
225	/* Size of the TCP send buffer in bytes. */
226	u_int			snd_buf_hiwater;
227	/* Current num bytes in the send socket buffer. */
228	u_int			snd_buf_cc;
229	/* Size of the TCP receive buffer in bytes. */
230	u_int			rcv_buf_hiwater;
231	/* Current num bytes in the receive socket buffer. */
232	u_int			rcv_buf_cc;
233	/* Number of bytes inflight that we are waiting on ACKs for. */
234	u_int			sent_inflight_bytes;
235	/* Number of segments currently in the reassembly queue. */
236	int			t_segqlen;
237	/* Flowid for the connection. */
238	u_int			flowid;
239	/* Flow type for the connection. */
240	u_int			flowtype;
241	/* Link to next pkt_node in the list. */
242	STAILQ_ENTRY(pkt_node)	nodes;
243};
244
245struct flow_hash_node
246{
247	uint16_t counter;
248	uint8_t key[FLOW_KEY_LEN];
249	LIST_ENTRY(flow_hash_node) nodes;
250};
251
252struct siftr_stats
253{
254	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
255	uint64_t n_in;
256	uint64_t n_out;
257	/* # pkts skipped due to failed malloc calls. */
258	uint32_t nskip_in_malloc;
259	uint32_t nskip_out_malloc;
260	/* # pkts skipped due to failed mtx acquisition. */
261	uint32_t nskip_in_mtx;
262	uint32_t nskip_out_mtx;
263	/* # pkts skipped due to failed inpcb lookups. */
264	uint32_t nskip_in_inpcb;
265	uint32_t nskip_out_inpcb;
266	/* # pkts skipped due to failed tcpcb lookups. */
267	uint32_t nskip_in_tcpcb;
268	uint32_t nskip_out_tcpcb;
269	/* # pkts skipped due to stack reinjection. */
270	uint32_t nskip_in_dejavu;
271	uint32_t nskip_out_dejavu;
272};
273
274DPCPU_DEFINE_STATIC(struct siftr_stats, ss);
275
276static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
277static unsigned int siftr_enabled = 0;
278static unsigned int siftr_pkts_per_log = 1;
279static unsigned int siftr_generate_hashes = 0;
280static uint16_t     siftr_port_filter = 0;
281/* static unsigned int siftr_binary_log = 0; */
282static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
283static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
284static u_long siftr_hashmask;
285STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
286LIST_HEAD(listhead, flow_hash_node) *counter_hash;
287static int wait_for_pkt;
288static struct alq *siftr_alq = NULL;
289static struct mtx siftr_pkt_queue_mtx;
290static struct mtx siftr_pkt_mgr_mtx;
291static struct thread *siftr_pkt_manager_thr = NULL;
292static char direction[2] = {'i','o'};
293
294/* Required function prototypes. */
295static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
296static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
297
298/* Declare the net.inet.siftr sysctl tree and populate it. */
299
300SYSCTL_DECL(_net_inet_siftr);
301
302SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
303    "siftr related settings");
304
305SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled,
306    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
307    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
308    "switch siftr module operations on/off");
309
310SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile,
311    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &siftr_logfile_shadow,
312    sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler, "A",
313    "file to save siftr log messages to");
314
315SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
316    &siftr_pkts_per_log, 1,
317    "number of packets between generating a log message");
318
319SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
320    &siftr_generate_hashes, 0,
321    "enable packet hash generation");
322
323SYSCTL_U16(_net_inet_siftr, OID_AUTO, port_filter, CTLFLAG_RW,
324    &siftr_port_filter, 0,
325    "enable packet filter on a TCP port");
326
327/* XXX: TODO
328SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
329    &siftr_binary_log, 0,
330    "write log files in binary instead of ascii");
331*/
332
333/* Begin functions. */
334
335static void
336siftr_process_pkt(struct pkt_node * pkt_node)
337{
338	struct flow_hash_node *hash_node;
339	struct listhead *counter_list;
340	struct siftr_stats *ss;
341	struct ale *log_buf;
342	uint8_t key[FLOW_KEY_LEN];
343	uint8_t found_match, key_offset;
344
345	hash_node = NULL;
346	ss = DPCPU_PTR(ss);
347	found_match = 0;
348	key_offset = 1;
349
350	/*
351	 * Create the key that will be used to create a hash index
352	 * into our hash table. Our key consists of:
353	 * ipversion, localip, localport, foreignip, foreignport
354	 */
355	key[0] = pkt_node->ipver;
356	memcpy(key + key_offset, &pkt_node->ip_laddr,
357	    sizeof(pkt_node->ip_laddr));
358	key_offset += sizeof(pkt_node->ip_laddr);
359	memcpy(key + key_offset, &pkt_node->tcp_localport,
360	    sizeof(pkt_node->tcp_localport));
361	key_offset += sizeof(pkt_node->tcp_localport);
362	memcpy(key + key_offset, &pkt_node->ip_faddr,
363	    sizeof(pkt_node->ip_faddr));
364	key_offset += sizeof(pkt_node->ip_faddr);
365	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
366	    sizeof(pkt_node->tcp_foreignport));
367
368	counter_list = counter_hash +
369	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
370
371	/*
372	 * If the list is not empty i.e. the hash index has
373	 * been used by another flow previously.
374	 */
375	if (LIST_FIRST(counter_list) != NULL) {
376		/*
377		 * Loop through the hash nodes in the list.
378		 * There should normally only be 1 hash node in the list,
379		 * except if there have been collisions at the hash index
380		 * computed by hash32_buf().
381		 */
382		LIST_FOREACH(hash_node, counter_list, nodes) {
383			/*
384			 * Check if the key for the pkt we are currently
385			 * processing is the same as the key stored in the
386			 * hash node we are currently processing.
387			 * If they are the same, then we've found the
388			 * hash node that stores the counter for the flow
389			 * the pkt belongs to.
390			 */
391			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
392				found_match = 1;
393				break;
394			}
395		}
396	}
397
398	/* If this flow hash hasn't been seen before or we have a collision. */
399	if (hash_node == NULL || !found_match) {
400		/* Create a new hash node to store the flow's counter. */
401		hash_node = malloc(sizeof(struct flow_hash_node),
402		    M_SIFTR_HASHNODE, M_WAITOK);
403
404		if (hash_node != NULL) {
405			/* Initialise our new hash node list entry. */
406			hash_node->counter = 0;
407			memcpy(hash_node->key, key, sizeof(key));
408			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
409		} else {
410			/* Malloc failed. */
411			if (pkt_node->direction == DIR_IN)
412				ss->nskip_in_malloc++;
413			else
414				ss->nskip_out_malloc++;
415
416			return;
417		}
418	} else if (siftr_pkts_per_log > 1) {
419		/*
420		 * Taking the remainder of the counter divided
421		 * by the current value of siftr_pkts_per_log
422		 * and storing that in counter provides a neat
423		 * way to modulate the frequency of log
424		 * messages being written to the log file.
425		 */
426		hash_node->counter = (hash_node->counter + 1) %
427		    siftr_pkts_per_log;
428
429		/*
430		 * If we have not seen enough packets since the last time
431		 * we wrote a log message for this connection, return.
432		 */
433		if (hash_node->counter > 0)
434			return;
435	}
436
437	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
438
439	if (log_buf == NULL)
440		return; /* Should only happen if the ALQ is shutting down. */
441
442#ifdef SIFTR_IPV6
443	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
444	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
445
446	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
447		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
448		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
449		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
450		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
451		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
452		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
453
454		/* Construct an IPv6 log message. */
455		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
456		    MAX_LOG_MSG_LEN,
457		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
458		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
459		    "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
460		    direction[pkt_node->direction],
461		    pkt_node->hash,
462		    pkt_node->tval.tv_sec,
463		    pkt_node->tval.tv_usec,
464		    UPPER_SHORT(pkt_node->ip_laddr[0]),
465		    LOWER_SHORT(pkt_node->ip_laddr[0]),
466		    UPPER_SHORT(pkt_node->ip_laddr[1]),
467		    LOWER_SHORT(pkt_node->ip_laddr[1]),
468		    UPPER_SHORT(pkt_node->ip_laddr[2]),
469		    LOWER_SHORT(pkt_node->ip_laddr[2]),
470		    UPPER_SHORT(pkt_node->ip_laddr[3]),
471		    LOWER_SHORT(pkt_node->ip_laddr[3]),
472		    ntohs(pkt_node->tcp_localport),
473		    UPPER_SHORT(pkt_node->ip_faddr[0]),
474		    LOWER_SHORT(pkt_node->ip_faddr[0]),
475		    UPPER_SHORT(pkt_node->ip_faddr[1]),
476		    LOWER_SHORT(pkt_node->ip_faddr[1]),
477		    UPPER_SHORT(pkt_node->ip_faddr[2]),
478		    LOWER_SHORT(pkt_node->ip_faddr[2]),
479		    UPPER_SHORT(pkt_node->ip_faddr[3]),
480		    LOWER_SHORT(pkt_node->ip_faddr[3]),
481		    ntohs(pkt_node->tcp_foreignport),
482		    pkt_node->snd_ssthresh,
483		    pkt_node->snd_cwnd,
484		    pkt_node->snd_bwnd,
485		    pkt_node->snd_wnd,
486		    pkt_node->rcv_wnd,
487		    pkt_node->snd_scale,
488		    pkt_node->rcv_scale,
489		    pkt_node->conn_state,
490		    pkt_node->max_seg_size,
491		    pkt_node->smoothed_rtt,
492		    pkt_node->sack_enabled,
493		    pkt_node->flags,
494		    pkt_node->rxt_length,
495		    pkt_node->snd_buf_hiwater,
496		    pkt_node->snd_buf_cc,
497		    pkt_node->rcv_buf_hiwater,
498		    pkt_node->rcv_buf_cc,
499		    pkt_node->sent_inflight_bytes,
500		    pkt_node->t_segqlen,
501		    pkt_node->flowid,
502		    pkt_node->flowtype);
503	} else { /* IPv4 packet */
504		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
505		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
506		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
507		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
508		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
509		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
510		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
511		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
512#endif /* SIFTR_IPV6 */
513
514		/* Construct an IPv4 log message. */
515		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
516		    MAX_LOG_MSG_LEN,
517		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
518		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
519		    direction[pkt_node->direction],
520		    pkt_node->hash,
521		    (intmax_t)pkt_node->tval.tv_sec,
522		    pkt_node->tval.tv_usec,
523		    pkt_node->ip_laddr[0],
524		    pkt_node->ip_laddr[1],
525		    pkt_node->ip_laddr[2],
526		    pkt_node->ip_laddr[3],
527		    ntohs(pkt_node->tcp_localport),
528		    pkt_node->ip_faddr[0],
529		    pkt_node->ip_faddr[1],
530		    pkt_node->ip_faddr[2],
531		    pkt_node->ip_faddr[3],
532		    ntohs(pkt_node->tcp_foreignport),
533		    pkt_node->snd_ssthresh,
534		    pkt_node->snd_cwnd,
535		    pkt_node->snd_bwnd,
536		    pkt_node->snd_wnd,
537		    pkt_node->rcv_wnd,
538		    pkt_node->snd_scale,
539		    pkt_node->rcv_scale,
540		    pkt_node->conn_state,
541		    pkt_node->max_seg_size,
542		    pkt_node->smoothed_rtt,
543		    pkt_node->sack_enabled,
544		    pkt_node->flags,
545		    pkt_node->rxt_length,
546		    pkt_node->snd_buf_hiwater,
547		    pkt_node->snd_buf_cc,
548		    pkt_node->rcv_buf_hiwater,
549		    pkt_node->rcv_buf_cc,
550		    pkt_node->sent_inflight_bytes,
551		    pkt_node->t_segqlen,
552		    pkt_node->flowid,
553		    pkt_node->flowtype);
554#ifdef SIFTR_IPV6
555	}
556#endif
557
558	alq_post_flags(siftr_alq, log_buf, 0);
559}
560
561static void
562siftr_pkt_manager_thread(void *arg)
563{
564	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
565	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
566	struct pkt_node *pkt_node, *pkt_node_temp;
567	uint8_t draining;
568
569	draining = 2;
570
571	mtx_lock(&siftr_pkt_mgr_mtx);
572
573	/* draining == 0 when queue has been flushed and it's safe to exit. */
574	while (draining) {
575		/*
576		 * Sleep until we are signalled to wake because thread has
577		 * been told to exit or until 1 tick has passed.
578		 */
579		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
580		    1);
581
582		/* Gain exclusive access to the pkt_node queue. */
583		mtx_lock(&siftr_pkt_queue_mtx);
584
585		/*
586		 * Move pkt_queue to tmp_pkt_queue, which leaves
587		 * pkt_queue empty and ready to receive more pkt_nodes.
588		 */
589		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
590
591		/*
592		 * We've finished making changes to the list. Unlock it
593		 * so the pfil hooks can continue queuing pkt_nodes.
594		 */
595		mtx_unlock(&siftr_pkt_queue_mtx);
596
597		/*
598		 * We can't hold a mutex whilst calling siftr_process_pkt
599		 * because ALQ might sleep waiting for buffer space.
600		 */
601		mtx_unlock(&siftr_pkt_mgr_mtx);
602
603		/* Flush all pkt_nodes to the log file. */
604		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
605		    pkt_node_temp) {
606			siftr_process_pkt(pkt_node);
607			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
608			free(pkt_node, M_SIFTR_PKTNODE);
609		}
610
611		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
612		    ("SIFTR tmp_pkt_queue not empty after flush"));
613
614		mtx_lock(&siftr_pkt_mgr_mtx);
615
616		/*
617		 * If siftr_exit_pkt_manager_thread gets set during the window
618		 * where we are draining the tmp_pkt_queue above, there might
619		 * still be pkts in pkt_queue that need to be drained.
620		 * Allow one further iteration to occur after
621		 * siftr_exit_pkt_manager_thread has been set to ensure
622		 * pkt_queue is completely empty before we kill the thread.
623		 *
624		 * siftr_exit_pkt_manager_thread is set only after the pfil
625		 * hooks have been removed, so only 1 extra iteration
626		 * is needed to drain the queue.
627		 */
628		if (siftr_exit_pkt_manager_thread)
629			draining--;
630	}
631
632	mtx_unlock(&siftr_pkt_mgr_mtx);
633
634	/* Calls wakeup on this thread's struct thread ptr. */
635	kthread_exit();
636}
637
638static uint32_t
639hash_pkt(struct mbuf *m, uint32_t offset)
640{
641	uint32_t hash;
642
643	hash = 0;
644
645	while (m != NULL && offset > m->m_len) {
646		/*
647		 * The IP packet payload does not start in this mbuf, so
648		 * need to figure out which mbuf it starts in and what offset
649		 * into the mbuf's data region the payload starts at.
650		 */
651		offset -= m->m_len;
652		m = m->m_next;
653	}
654
655	while (m != NULL) {
656		/* Ensure there is data in the mbuf */
657		if ((m->m_len - offset) > 0)
658			hash = hash32_buf(m->m_data + offset,
659			    m->m_len - offset, hash);
660
661		m = m->m_next;
662		offset = 0;
663        }
664
665	return (hash);
666}
667
668/*
669 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
670 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
671 * Return value >0 means the caller should skip processing this mbuf.
672 */
673static inline int
674siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
675{
676	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
677	    != NULL) {
678		if (dir == PFIL_IN)
679			ss->nskip_in_dejavu++;
680		else
681			ss->nskip_out_dejavu++;
682
683		return (1);
684	} else {
685		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
686		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
687		if (tag == NULL) {
688			if (dir == PFIL_IN)
689				ss->nskip_in_malloc++;
690			else
691				ss->nskip_out_malloc++;
692
693			return (1);
694		}
695
696		m_tag_prepend(m, tag);
697	}
698
699	return (0);
700}
701
702/*
703 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
704 * otherwise.
705 */
706static inline struct inpcb *
707siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
708    uint16_t dport, int dir, struct siftr_stats *ss)
709{
710	struct inpcb *inp;
711
712	/* We need the tcbinfo lock. */
713	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
714
715	if (dir == PFIL_IN)
716		inp = (ipver == INP_IPV4 ?
717		    in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
718		    dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
719		    :
720#ifdef SIFTR_IPV6
721		    in6_pcblookup(&V_tcbinfo,
722		    &((struct ip6_hdr *)ip)->ip6_src, sport,
723		    &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
724		    m->m_pkthdr.rcvif)
725#else
726		    NULL
727#endif
728		    );
729
730	else
731		inp = (ipver == INP_IPV4 ?
732		    in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
733		    sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
734		    :
735#ifdef SIFTR_IPV6
736		    in6_pcblookup(&V_tcbinfo,
737		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
738		    &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
739		    m->m_pkthdr.rcvif)
740#else
741		    NULL
742#endif
743		    );
744
745	/* If we can't find the inpcb, bail. */
746	if (inp == NULL) {
747		if (dir == PFIL_IN)
748			ss->nskip_in_inpcb++;
749		else
750			ss->nskip_out_inpcb++;
751	}
752
753	return (inp);
754}
755
756static inline void
757siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
758    int ipver, int dir, int inp_locally_locked)
759{
760#ifdef SIFTR_IPV6
761	if (ipver == INP_IPV4) {
762		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
763		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
764#else
765		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
766		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
767#endif
768#ifdef SIFTR_IPV6
769	} else {
770		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
771		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
772		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
773		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
774		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
775		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
776		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
777		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
778	}
779#endif
780	pn->tcp_localport = inp->inp_lport;
781	pn->tcp_foreignport = inp->inp_fport;
782	pn->snd_cwnd = tp->snd_cwnd;
783	pn->snd_wnd = tp->snd_wnd;
784	pn->rcv_wnd = tp->rcv_wnd;
785	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
786	pn->snd_ssthresh = tp->snd_ssthresh;
787	pn->snd_scale = tp->snd_scale;
788	pn->rcv_scale = tp->rcv_scale;
789	pn->conn_state = tp->t_state;
790	pn->max_seg_size = tp->t_maxseg;
791	pn->smoothed_rtt = tp->t_srtt;
792	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
793	pn->flags = tp->t_flags;
794	pn->rxt_length = tp->t_rxtcur;
795	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
796	pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
797	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
798	pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
799	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
800	pn->t_segqlen = tp->t_segqlen;
801	pn->flowid = inp->inp_flowid;
802	pn->flowtype = inp->inp_flowtype;
803
804	/* We've finished accessing the tcb so release the lock. */
805	if (inp_locally_locked)
806		INP_RUNLOCK(inp);
807
808	pn->ipver = ipver;
809	pn->direction = (dir == PFIL_IN ? DIR_IN : DIR_OUT);
810
811	/*
812	 * Significantly more accurate than using getmicrotime(), but slower!
813	 * Gives true microsecond resolution at the expense of a hit to
814	 * maximum pps throughput processing when SIFTR is loaded and enabled.
815	 */
816	microtime(&pn->tval);
817	TCP_PROBE1(siftr, &pn);
818
819}
820
821/*
822 * pfil hook that is called for each IPv4 packet making its way through the
823 * stack in either direction.
824 * The pfil subsystem holds a non-sleepable mutex somewhere when
825 * calling our hook function, so we can't sleep at all.
826 * It's very important to use the M_NOWAIT flag with all function calls
827 * that support it so that they won't sleep, otherwise you get a panic.
828 */
829static pfil_return_t
830siftr_chkpkt(struct mbuf **m, struct ifnet *ifp, int flags,
831    void *ruleset __unused, struct inpcb *inp)
832{
833	struct pkt_node *pn;
834	struct ip *ip;
835	struct tcphdr *th;
836	struct tcpcb *tp;
837	struct siftr_stats *ss;
838	unsigned int ip_hl;
839	int inp_locally_locked, dir;
840
841	inp_locally_locked = 0;
842	dir = PFIL_DIR(flags);
843	ss = DPCPU_PTR(ss);
844
845	/*
846	 * m_pullup is not required here because ip_{input|output}
847	 * already do the heavy lifting for us.
848	 */
849
850	ip = mtod(*m, struct ip *);
851
852	/* Only continue processing if the packet is TCP. */
853	if (ip->ip_p != IPPROTO_TCP)
854		goto ret;
855
856	/*
857	 * If a kernel subsystem reinjects packets into the stack, our pfil
858	 * hook will be called multiple times for the same packet.
859	 * Make sure we only process unique packets.
860	 */
861	if (siftr_chkreinject(*m, dir, ss))
862		goto ret;
863
864	if (dir == PFIL_IN)
865		ss->n_in++;
866	else
867		ss->n_out++;
868
869	/*
870	 * Create a tcphdr struct starting at the correct offset
871	 * in the IP packet. ip->ip_hl gives the ip header length
872	 * in 4-byte words, so multiply it to get the size in bytes.
873	 */
874	ip_hl = (ip->ip_hl << 2);
875	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
876
877	/*
878	 * If the pfil hooks don't provide a pointer to the
879	 * inpcb, we need to find it ourselves and lock it.
880	 */
881	if (!inp) {
882		/* Find the corresponding inpcb for this pkt. */
883		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
884		    th->th_dport, dir, ss);
885
886		if (inp == NULL)
887			goto ret;
888		else
889			inp_locally_locked = 1;
890	}
891
892	INP_LOCK_ASSERT(inp);
893
894	/* Find the TCP control block that corresponds with this packet */
895	tp = intotcpcb(inp);
896
897	/*
898	 * If we can't find the TCP control block (happens occasionaly for a
899	 * packet sent during the shutdown phase of a TCP connection),
900	 * or we're in the timewait state, bail
901	 */
902	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
903		if (dir == PFIL_IN)
904			ss->nskip_in_tcpcb++;
905		else
906			ss->nskip_out_tcpcb++;
907
908		goto inp_unlock;
909	}
910
911	/*
912	 * Only pkts selected by the tcp port filter
913	 * can be inserted into the pkt_queue
914	 */
915	if ((siftr_port_filter != 0) &&
916	    (siftr_port_filter != ntohs(inp->inp_lport)) &&
917	    (siftr_port_filter != ntohs(inp->inp_fport))) {
918		goto inp_unlock;
919	}
920
921	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
922
923	if (pn == NULL) {
924		if (dir == PFIL_IN)
925			ss->nskip_in_malloc++;
926		else
927			ss->nskip_out_malloc++;
928
929		goto inp_unlock;
930	}
931
932	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
933
934	if (siftr_generate_hashes) {
935		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
936			/*
937			 * For outbound packets, the TCP checksum isn't
938			 * calculated yet. This is a problem for our packet
939			 * hashing as the receiver will calc a different hash
940			 * to ours if we don't include the correct TCP checksum
941			 * in the bytes being hashed. To work around this
942			 * problem, we manually calc the TCP checksum here in
943			 * software. We unset the CSUM_TCP flag so the lower
944			 * layers don't recalc it.
945			 */
946			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
947
948			/*
949			 * Calculate the TCP checksum in software and assign
950			 * to correct TCP header field, which will follow the
951			 * packet mbuf down the stack. The trick here is that
952			 * tcp_output() sets th->th_sum to the checksum of the
953			 * pseudo header for us already. Because of the nature
954			 * of the checksumming algorithm, we can sum over the
955			 * entire IP payload (i.e. TCP header and data), which
956			 * will include the already calculated pseduo header
957			 * checksum, thus giving us the complete TCP checksum.
958			 *
959			 * To put it in simple terms, if checksum(1,2,3,4)=10,
960			 * then checksum(1,2,3,4,5) == checksum(10,5).
961			 * This property is what allows us to "cheat" and
962			 * checksum only the IP payload which has the TCP
963			 * th_sum field populated with the pseudo header's
964			 * checksum, and not need to futz around checksumming
965			 * pseudo header bytes and TCP header/data in one hit.
966			 * Refer to RFC 1071 for more info.
967			 *
968			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
969			 * in_cksum_skip 2nd argument is NOT the number of
970			 * bytes to read from the mbuf at "skip" bytes offset
971			 * from the start of the mbuf (very counter intuitive!).
972			 * The number of bytes to read is calculated internally
973			 * by the function as len-skip i.e. to sum over the IP
974			 * payload (TCP header + data) bytes, it is INCORRECT
975			 * to call the function like this:
976			 * in_cksum_skip(at, ip->ip_len - offset, offset)
977			 * Rather, it should be called like this:
978			 * in_cksum_skip(at, ip->ip_len, offset)
979			 * which means read "ip->ip_len - offset" bytes from
980			 * the mbuf cluster "at" at offset "offset" bytes from
981			 * the beginning of the "at" mbuf's data pointer.
982			 */
983			th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
984			    ip_hl);
985		}
986
987		/*
988		 * XXX: Having to calculate the checksum in software and then
989		 * hash over all bytes is really inefficient. Would be nice to
990		 * find a way to create the hash and checksum in the same pass
991		 * over the bytes.
992		 */
993		pn->hash = hash_pkt(*m, ip_hl);
994	}
995
996	mtx_lock(&siftr_pkt_queue_mtx);
997	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
998	mtx_unlock(&siftr_pkt_queue_mtx);
999	goto ret;
1000
1001inp_unlock:
1002	if (inp_locally_locked)
1003		INP_RUNLOCK(inp);
1004
1005ret:
1006	return (PFIL_PASS);
1007}
1008
1009#ifdef SIFTR_IPV6
1010static int
1011siftr_chkpkt6(struct mbuf **m, struct ifnet *ifp, int flags, struct inpcb *inp)
1012{
1013	struct pkt_node *pn;
1014	struct ip6_hdr *ip6;
1015	struct tcphdr *th;
1016	struct tcpcb *tp;
1017	struct siftr_stats *ss;
1018	unsigned int ip6_hl;
1019	int inp_locally_locked, dir;
1020
1021	inp_locally_locked = 0;
1022	dir = PFIL_DIR(flags);
1023	ss = DPCPU_PTR(ss);
1024
1025	/*
1026	 * m_pullup is not required here because ip6_{input|output}
1027	 * already do the heavy lifting for us.
1028	 */
1029
1030	ip6 = mtod(*m, struct ip6_hdr *);
1031
1032	/*
1033	 * Only continue processing if the packet is TCP
1034	 * XXX: We should follow the next header fields
1035	 * as shown on Pg 6 RFC 2460, but right now we'll
1036	 * only check pkts that have no extension headers.
1037	 */
1038	if (ip6->ip6_nxt != IPPROTO_TCP)
1039		goto ret6;
1040
1041	/*
1042	 * If a kernel subsystem reinjects packets into the stack, our pfil
1043	 * hook will be called multiple times for the same packet.
1044	 * Make sure we only process unique packets.
1045	 */
1046	if (siftr_chkreinject(*m, dir, ss))
1047		goto ret6;
1048
1049	if (dir == PFIL_IN)
1050		ss->n_in++;
1051	else
1052		ss->n_out++;
1053
1054	ip6_hl = sizeof(struct ip6_hdr);
1055
1056	/*
1057	 * Create a tcphdr struct starting at the correct offset
1058	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1059	 * in 4-byte words, so multiply it to get the size in bytes.
1060	 */
1061	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1062
1063	/*
1064	 * For inbound packets, the pfil hooks don't provide a pointer to the
1065	 * inpcb, so we need to find it ourselves and lock it.
1066	 */
1067	if (!inp) {
1068		/* Find the corresponding inpcb for this pkt. */
1069		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1070		    th->th_sport, th->th_dport, dir, ss);
1071
1072		if (inp == NULL)
1073			goto ret6;
1074		else
1075			inp_locally_locked = 1;
1076	}
1077
1078	/* Find the TCP control block that corresponds with this packet. */
1079	tp = intotcpcb(inp);
1080
1081	/*
1082	 * If we can't find the TCP control block (happens occasionaly for a
1083	 * packet sent during the shutdown phase of a TCP connection),
1084	 * or we're in the timewait state, bail.
1085	 */
1086	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1087		if (dir == PFIL_IN)
1088			ss->nskip_in_tcpcb++;
1089		else
1090			ss->nskip_out_tcpcb++;
1091
1092		goto inp_unlock6;
1093	}
1094
1095	/*
1096	 * Only pkts selected by the tcp port filter
1097	 * can be inserted into the pkt_queue
1098	 */
1099	if ((siftr_port_filter != 0) &&
1100	    (siftr_port_filter != ntohs(inp->inp_lport)) &&
1101	    (siftr_port_filter != ntohs(inp->inp_fport))) {
1102		goto inp_unlock6;
1103	}
1104
1105	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1106
1107	if (pn == NULL) {
1108		if (dir == PFIL_IN)
1109			ss->nskip_in_malloc++;
1110		else
1111			ss->nskip_out_malloc++;
1112
1113		goto inp_unlock6;
1114	}
1115
1116	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1117
1118	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1119
1120	mtx_lock(&siftr_pkt_queue_mtx);
1121	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1122	mtx_unlock(&siftr_pkt_queue_mtx);
1123	goto ret6;
1124
1125inp_unlock6:
1126	if (inp_locally_locked)
1127		INP_RUNLOCK(inp);
1128
1129ret6:
1130	/* Returning 0 ensures pfil will not discard the pkt. */
1131	return (0);
1132}
1133#endif /* #ifdef SIFTR_IPV6 */
1134
1135VNET_DEFINE_STATIC(pfil_hook_t, siftr_inet_hook);
1136#define	V_siftr_inet_hook	VNET(siftr_inet_hook)
1137#ifdef INET6
1138VNET_DEFINE_STATIC(pfil_hook_t, siftr_inet6_hook);
1139#define	V_siftr_inet6_hook	VNET(siftr_inet6_hook)
1140#endif
1141static int
1142siftr_pfil(int action)
1143{
1144	struct pfil_hook_args pha;
1145	struct pfil_link_args pla;
1146
1147	pha.pa_version = PFIL_VERSION;
1148	pha.pa_flags = PFIL_IN | PFIL_OUT;
1149	pha.pa_modname = "siftr";
1150	pha.pa_ruleset = NULL;
1151	pha.pa_rulname = "default";
1152
1153	pla.pa_version = PFIL_VERSION;
1154	pla.pa_flags = PFIL_IN | PFIL_OUT |
1155	    PFIL_HEADPTR | PFIL_HOOKPTR;
1156
1157	VNET_ITERATOR_DECL(vnet_iter);
1158
1159	VNET_LIST_RLOCK();
1160	VNET_FOREACH(vnet_iter) {
1161		CURVNET_SET(vnet_iter);
1162
1163		if (action == HOOK) {
1164			pha.pa_func = siftr_chkpkt;
1165			pha.pa_type = PFIL_TYPE_IP4;
1166			V_siftr_inet_hook = pfil_add_hook(&pha);
1167			pla.pa_hook = V_siftr_inet_hook;
1168			pla.pa_head = V_inet_pfil_head;
1169			(void)pfil_link(&pla);
1170#ifdef SIFTR_IPV6
1171			pha.pa_func = siftr_chkpkt6;
1172			pha.pa_type = PFIL_TYPE_IP6;
1173			V_siftr_inet6_hook = pfil_add_hook(&pha);
1174			pla.pa_hook = V_siftr_inet6_hook;
1175			pla.pa_head = V_inet6_pfil_head;
1176			(void)pfil_link(&pla);
1177#endif
1178		} else if (action == UNHOOK) {
1179			pfil_remove_hook(V_siftr_inet_hook);
1180#ifdef SIFTR_IPV6
1181			pfil_remove_hook(V_siftr_inet6_hook);
1182#endif
1183		}
1184		CURVNET_RESTORE();
1185	}
1186	VNET_LIST_RUNLOCK();
1187
1188	return (0);
1189}
1190
1191static int
1192siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1193{
1194	struct alq *new_alq;
1195	int error;
1196
1197	error = sysctl_handle_string(oidp, arg1, arg2, req);
1198
1199	/* Check for error or same filename */
1200	if (error != 0 || req->newptr == NULL ||
1201	    strncmp(siftr_logfile, arg1, arg2) == 0)
1202		goto done;
1203
1204	/* Filname changed */
1205	error = alq_open(&new_alq, arg1, curthread->td_ucred,
1206	    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1207	if (error != 0)
1208		goto done;
1209
1210	/*
1211	 * If disabled, siftr_alq == NULL so we simply close
1212	 * the alq as we've proved it can be opened.
1213	 * If enabled, close the existing alq and switch the old
1214	 * for the new.
1215	 */
1216	if (siftr_alq == NULL) {
1217		alq_close(new_alq);
1218	} else {
1219		alq_close(siftr_alq);
1220		siftr_alq = new_alq;
1221	}
1222
1223	/* Update filename upon success */
1224	strlcpy(siftr_logfile, arg1, arg2);
1225done:
1226	return (error);
1227}
1228
1229static int
1230siftr_manage_ops(uint8_t action)
1231{
1232	struct siftr_stats totalss;
1233	struct timeval tval;
1234	struct flow_hash_node *counter, *tmp_counter;
1235	struct sbuf *s;
1236	int i, key_index, error;
1237	uint32_t bytes_to_write, total_skipped_pkts;
1238	uint16_t lport, fport;
1239	uint8_t *key, ipver __unused;
1240
1241#ifdef SIFTR_IPV6
1242	uint32_t laddr[4];
1243	uint32_t faddr[4];
1244#else
1245	uint8_t laddr[4];
1246	uint8_t faddr[4];
1247#endif
1248
1249	error = 0;
1250	total_skipped_pkts = 0;
1251
1252	/* Init an autosizing sbuf that initially holds 200 chars. */
1253	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1254		return (-1);
1255
1256	if (action == SIFTR_ENABLE && siftr_pkt_manager_thr == NULL) {
1257		/*
1258		 * Create our alq
1259		 * XXX: We should abort if alq_open fails!
1260		 */
1261		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1262		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1263
1264		STAILQ_INIT(&pkt_queue);
1265
1266		DPCPU_ZERO(ss);
1267
1268		siftr_exit_pkt_manager_thread = 0;
1269
1270		kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1271		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1272		    "siftr_pkt_manager_thr");
1273
1274		siftr_pfil(HOOK);
1275
1276		microtime(&tval);
1277
1278		sbuf_printf(s,
1279		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1280		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1281		    "sysver=%u\tipmode=%u\n",
1282		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1283		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1284
1285		sbuf_finish(s);
1286		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1287
1288	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1289		/*
1290		 * Remove the pfil hook functions. All threads currently in
1291		 * the hook functions are allowed to exit before siftr_pfil()
1292		 * returns.
1293		 */
1294		siftr_pfil(UNHOOK);
1295
1296		/* This will block until the pkt manager thread unlocks it. */
1297		mtx_lock(&siftr_pkt_mgr_mtx);
1298
1299		/* Tell the pkt manager thread that it should exit now. */
1300		siftr_exit_pkt_manager_thread = 1;
1301
1302		/*
1303		 * Wake the pkt_manager thread so it realises that
1304		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1305		 * The wakeup won't be delivered until we unlock
1306		 * siftr_pkt_mgr_mtx so this isn't racy.
1307		 */
1308		wakeup(&wait_for_pkt);
1309
1310		/* Wait for the pkt_manager thread to exit. */
1311		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1312		    "thrwait", 0);
1313
1314		siftr_pkt_manager_thr = NULL;
1315		mtx_unlock(&siftr_pkt_mgr_mtx);
1316
1317		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1318		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1319		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1320		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1321		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1322		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1323		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1324		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1325		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1326		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1327
1328		total_skipped_pkts = totalss.nskip_in_malloc +
1329		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1330		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1331		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1332		    totalss.nskip_out_inpcb;
1333
1334		microtime(&tval);
1335
1336		sbuf_printf(s,
1337		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1338		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1339		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1340		    "num_outbound_skipped_pkts_malloc=%u\t"
1341		    "num_inbound_skipped_pkts_mtx=%u\t"
1342		    "num_outbound_skipped_pkts_mtx=%u\t"
1343		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1344		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1345		    "num_inbound_skipped_pkts_inpcb=%u\t"
1346		    "num_outbound_skipped_pkts_inpcb=%u\t"
1347		    "total_skipped_tcp_pkts=%u\tflow_list=",
1348		    (intmax_t)tval.tv_sec,
1349		    tval.tv_usec,
1350		    (uintmax_t)totalss.n_in,
1351		    (uintmax_t)totalss.n_out,
1352		    (uintmax_t)(totalss.n_in + totalss.n_out),
1353		    totalss.nskip_in_malloc,
1354		    totalss.nskip_out_malloc,
1355		    totalss.nskip_in_mtx,
1356		    totalss.nskip_out_mtx,
1357		    totalss.nskip_in_tcpcb,
1358		    totalss.nskip_out_tcpcb,
1359		    totalss.nskip_in_inpcb,
1360		    totalss.nskip_out_inpcb,
1361		    total_skipped_pkts);
1362
1363		/*
1364		 * Iterate over the flow hash, printing a summary of each
1365		 * flow seen and freeing any malloc'd memory.
1366		 * The hash consists of an array of LISTs (man 3 queue).
1367		 */
1368		for (i = 0; i <= siftr_hashmask; i++) {
1369			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1370			    tmp_counter) {
1371				key = counter->key;
1372				key_index = 1;
1373
1374				ipver = key[0];
1375
1376				memcpy(laddr, key + key_index, sizeof(laddr));
1377				key_index += sizeof(laddr);
1378				memcpy(&lport, key + key_index, sizeof(lport));
1379				key_index += sizeof(lport);
1380				memcpy(faddr, key + key_index, sizeof(faddr));
1381				key_index += sizeof(faddr);
1382				memcpy(&fport, key + key_index, sizeof(fport));
1383
1384#ifdef SIFTR_IPV6
1385				laddr[3] = ntohl(laddr[3]);
1386				faddr[3] = ntohl(faddr[3]);
1387
1388				if (ipver == INP_IPV6) {
1389					laddr[0] = ntohl(laddr[0]);
1390					laddr[1] = ntohl(laddr[1]);
1391					laddr[2] = ntohl(laddr[2]);
1392					faddr[0] = ntohl(faddr[0]);
1393					faddr[1] = ntohl(faddr[1]);
1394					faddr[2] = ntohl(faddr[2]);
1395
1396					sbuf_printf(s,
1397					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1398					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1399					    UPPER_SHORT(laddr[0]),
1400					    LOWER_SHORT(laddr[0]),
1401					    UPPER_SHORT(laddr[1]),
1402					    LOWER_SHORT(laddr[1]),
1403					    UPPER_SHORT(laddr[2]),
1404					    LOWER_SHORT(laddr[2]),
1405					    UPPER_SHORT(laddr[3]),
1406					    LOWER_SHORT(laddr[3]),
1407					    ntohs(lport),
1408					    UPPER_SHORT(faddr[0]),
1409					    LOWER_SHORT(faddr[0]),
1410					    UPPER_SHORT(faddr[1]),
1411					    LOWER_SHORT(faddr[1]),
1412					    UPPER_SHORT(faddr[2]),
1413					    LOWER_SHORT(faddr[2]),
1414					    UPPER_SHORT(faddr[3]),
1415					    LOWER_SHORT(faddr[3]),
1416					    ntohs(fport));
1417				} else {
1418					laddr[0] = FIRST_OCTET(laddr[3]);
1419					laddr[1] = SECOND_OCTET(laddr[3]);
1420					laddr[2] = THIRD_OCTET(laddr[3]);
1421					laddr[3] = FOURTH_OCTET(laddr[3]);
1422					faddr[0] = FIRST_OCTET(faddr[3]);
1423					faddr[1] = SECOND_OCTET(faddr[3]);
1424					faddr[2] = THIRD_OCTET(faddr[3]);
1425					faddr[3] = FOURTH_OCTET(faddr[3]);
1426#endif
1427					sbuf_printf(s,
1428					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1429					    laddr[0],
1430					    laddr[1],
1431					    laddr[2],
1432					    laddr[3],
1433					    ntohs(lport),
1434					    faddr[0],
1435					    faddr[1],
1436					    faddr[2],
1437					    faddr[3],
1438					    ntohs(fport));
1439#ifdef SIFTR_IPV6
1440				}
1441#endif
1442
1443				free(counter, M_SIFTR_HASHNODE);
1444			}
1445
1446			LIST_INIT(counter_hash + i);
1447		}
1448
1449		sbuf_printf(s, "\n");
1450		sbuf_finish(s);
1451
1452		i = 0;
1453		do {
1454			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1455			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1456			i += bytes_to_write;
1457		} while (i < sbuf_len(s));
1458
1459		alq_close(siftr_alq);
1460		siftr_alq = NULL;
1461	} else
1462		error = EINVAL;
1463
1464	sbuf_delete(s);
1465
1466	/*
1467	 * XXX: Should be using ret to check if any functions fail
1468	 * and set error appropriately
1469	 */
1470
1471	return (error);
1472}
1473
1474static int
1475siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1476{
1477	int error;
1478	uint32_t new;
1479
1480	new = siftr_enabled;
1481	error = sysctl_handle_int(oidp, &new, 0, req);
1482	if (error == 0 && req->newptr != NULL) {
1483		if (new > 1)
1484			return (EINVAL);
1485		else if (new != siftr_enabled) {
1486			if ((error = siftr_manage_ops(new)) == 0) {
1487				siftr_enabled = new;
1488			} else {
1489				siftr_manage_ops(SIFTR_DISABLE);
1490			}
1491		}
1492	}
1493
1494	return (error);
1495}
1496
1497static void
1498siftr_shutdown_handler(void *arg)
1499{
1500	if (siftr_enabled == 1) {
1501		siftr_manage_ops(SIFTR_DISABLE);
1502	}
1503}
1504
1505/*
1506 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1507 */
1508static int
1509deinit_siftr(void)
1510{
1511	/* Cleanup. */
1512	siftr_manage_ops(SIFTR_DISABLE);
1513	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1514	mtx_destroy(&siftr_pkt_queue_mtx);
1515	mtx_destroy(&siftr_pkt_mgr_mtx);
1516
1517	return (0);
1518}
1519
1520/*
1521 * Module has just been loaded into the kernel.
1522 */
1523static int
1524init_siftr(void)
1525{
1526	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1527	    SHUTDOWN_PRI_FIRST);
1528
1529	/* Initialise our flow counter hash table. */
1530	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1531	    &siftr_hashmask);
1532
1533	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1534	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1535
1536	/* Print message to the user's current terminal. */
1537	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1538	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1539	    MODVERSION_STR);
1540
1541	return (0);
1542}
1543
1544/*
1545 * This is the function that is called to load and unload the module.
1546 * When the module is loaded, this function is called once with
1547 * "what" == MOD_LOAD
1548 * When the module is unloaded, this function is called twice with
1549 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1550 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1551 * this function is called once with "what" = MOD_SHUTDOWN
1552 * When the system is shut down, the handler isn't called until the very end
1553 * of the shutdown sequence i.e. after the disks have been synced.
1554 */
1555static int
1556siftr_load_handler(module_t mod, int what, void *arg)
1557{
1558	int ret;
1559
1560	switch (what) {
1561	case MOD_LOAD:
1562		ret = init_siftr();
1563		break;
1564
1565	case MOD_QUIESCE:
1566	case MOD_SHUTDOWN:
1567		ret = deinit_siftr();
1568		break;
1569
1570	case MOD_UNLOAD:
1571		ret = 0;
1572		break;
1573
1574	default:
1575		ret = EINVAL;
1576		break;
1577	}
1578
1579	return (ret);
1580}
1581
1582static moduledata_t siftr_mod = {
1583	.name = "siftr",
1584	.evhand = siftr_load_handler,
1585};
1586
1587/*
1588 * Param 1: name of the kernel module
1589 * Param 2: moduledata_t struct containing info about the kernel module
1590 *          and the execution entry point for the module
1591 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1592 *          Defines the module initialisation order
1593 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1594 *          Defines the initialisation order of this kld relative to others
1595 *          within the same subsystem as defined by param 3
1596 */
1597DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
1598MODULE_DEPEND(siftr, alq, 1, 1, 1);
1599MODULE_VERSION(siftr, MODVERSION);
1600