1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Michael J. Silbersack.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32/*
33 * IP ID generation is a fascinating topic.
34 *
35 * In order to avoid ID collisions during packet reassembly, common sense
36 * dictates that the period between reuse of IDs be as large as possible.
37 * This leads to the classic implementation of a system-wide counter, thereby
38 * ensuring that IDs repeat only once every 2^16 packets.
39 *
40 * Subsequent security researchers have pointed out that using a global
41 * counter makes ID values predictable.  This predictability allows traffic
42 * analysis, idle scanning, and even packet injection in specific cases.
43 * These results suggest that IP IDs should be as random as possible.
44 *
45 * The "searchable queues" algorithm used in this IP ID implementation was
46 * proposed by Amit Klein.  It is a compromise between the above two
47 * viewpoints that has provable behavior that can be tuned to the user's
48 * requirements.
49 *
50 * The basic concept is that we supplement a standard random number generator
51 * with a queue of the last L IDs that we have handed out to ensure that all
52 * IDs have a period of at least L.
53 *
54 * To efficiently implement this idea, we keep two data structures: a
55 * circular array of IDs of size L and a bitstring of 65536 bits.
56 *
57 * To start, we ask the RNG for a new ID.  A quick index into the bitstring
58 * is used to determine if this is a recently used value.  The process is
59 * repeated until a value is returned that is not in the bitstring.
60 *
61 * Having found a usable ID, we remove the ID stored at the current position
62 * in the queue from the bitstring and replace it with our new ID.  Our new
63 * ID is then added to the bitstring and the queue pointer is incremented.
64 *
65 * The lower limit of 512 was chosen because there doesn't seem to be much
66 * point to having a smaller value.  The upper limit of 32768 was chosen for
67 * two reasons.  First, every step above 32768 decreases the entropy.  Taken
68 * to an extreme, 65533 would offer 1 bit of entropy.  Second, the number of
69 * attempts it takes the algorithm to find an unused ID drastically
70 * increases, killing performance.  The default value of 8192 was chosen
71 * because it provides a good tradeoff between randomness and non-repetition.
72 *
73 * With L=8192, the queue will use 16K of memory.  The bitstring always
74 * uses 8K of memory.  No memory is allocated until the use of random ids is
75 * enabled.
76 */
77
78#include <sys/param.h>
79#include <sys/systm.h>
80#include <sys/counter.h>
81#include <sys/kernel.h>
82#include <sys/malloc.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/random.h>
86#include <sys/smp.h>
87#include <sys/sysctl.h>
88#include <sys/bitstring.h>
89
90#include <net/vnet.h>
91
92#include <netinet/in.h>
93#include <netinet/ip.h>
94#include <netinet/ip_var.h>
95
96/*
97 * By default we generate IP ID only for non-atomic datagrams, as
98 * suggested by RFC6864.  We use per-CPU counter for that, or if
99 * user wants to, we can turn on random ID generation.
100 */
101VNET_DEFINE_STATIC(int, ip_rfc6864) = 1;
102VNET_DEFINE_STATIC(int, ip_do_randomid) = 0;
103#define	V_ip_rfc6864		VNET(ip_rfc6864)
104#define	V_ip_do_randomid	VNET(ip_do_randomid)
105
106/*
107 * Random ID state engine.
108 */
109static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
110VNET_DEFINE_STATIC(uint16_t *, id_array);
111VNET_DEFINE_STATIC(bitstr_t *, id_bits);
112VNET_DEFINE_STATIC(int, array_ptr);
113VNET_DEFINE_STATIC(int, array_size);
114VNET_DEFINE_STATIC(int, random_id_collisions);
115VNET_DEFINE_STATIC(int, random_id_total);
116VNET_DEFINE_STATIC(struct mtx, ip_id_mtx);
117#define	V_id_array	VNET(id_array)
118#define	V_id_bits	VNET(id_bits)
119#define	V_array_ptr	VNET(array_ptr)
120#define	V_array_size	VNET(array_size)
121#define	V_random_id_collisions	VNET(random_id_collisions)
122#define	V_random_id_total	VNET(random_id_total)
123#define	V_ip_id_mtx	VNET(ip_id_mtx)
124
125/*
126 * Non-random ID state engine is simply a per-cpu counter.
127 */
128VNET_DEFINE_STATIC(counter_u64_t, ip_id);
129#define	V_ip_id		VNET(ip_id)
130
131static int	sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
132static int	sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
133static void	ip_initid(int);
134static uint16_t ip_randomid(void);
135static void	ipid_sysinit(void);
136static void	ipid_sysuninit(void);
137
138SYSCTL_DECL(_net_inet_ip);
139SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
140    CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_MPSAFE,
141    &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
142    "Assign random ip_id values");
143SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
144    &VNET_NAME(ip_rfc6864), 0,
145    "Use constant IP ID for atomic datagrams");
146SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
147    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET | CTLFLAG_MPSAFE,
148    &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
149SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
150    CTLFLAG_RD | CTLFLAG_VNET,
151    &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
152SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
153    &VNET_NAME(random_id_total), 0, "Count of IP IDs created");
154
155static int
156sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
157{
158	int error, new;
159
160	new = V_ip_do_randomid;
161	error = sysctl_handle_int(oidp, &new, 0, req);
162	if (error || req->newptr == NULL)
163		return (error);
164	if (new != 0 && new != 1)
165		return (EINVAL);
166	if (new == V_ip_do_randomid)
167		return (0);
168	if (new == 1 && V_ip_do_randomid == 0)
169		ip_initid(8192);
170	/* We don't free memory when turning random ID off, due to race. */
171	V_ip_do_randomid = new;
172	return (0);
173}
174
175static int
176sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
177{
178	int error, new;
179
180	new = V_array_size;
181	error = sysctl_handle_int(oidp, &new, 0, req);
182	if (error == 0 && req->newptr) {
183		if (new >= 512 && new <= 32768)
184			ip_initid(new);
185		else
186			error = EINVAL;
187	}
188	return (error);
189}
190
191static void
192ip_initid(int new_size)
193{
194	uint16_t *new_array;
195	bitstr_t *new_bits;
196
197	new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
198	    M_WAITOK | M_ZERO);
199	new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
200
201	mtx_lock(&V_ip_id_mtx);
202	if (V_id_array != NULL) {
203		free(V_id_array, M_IPID);
204		free(V_id_bits, M_IPID);
205	}
206	V_id_array = new_array;
207	V_id_bits = new_bits;
208	V_array_size = new_size;
209	V_array_ptr = 0;
210	V_random_id_collisions = 0;
211	V_random_id_total = 0;
212	mtx_unlock(&V_ip_id_mtx);
213}
214
215static uint16_t
216ip_randomid(void)
217{
218	uint16_t new_id;
219
220	mtx_lock(&V_ip_id_mtx);
221	/*
222	 * To avoid a conflict with the zeros that the array is initially
223	 * filled with, we never hand out an id of zero.
224	 */
225	new_id = 0;
226	do {
227		if (new_id != 0)
228			V_random_id_collisions++;
229		arc4rand(&new_id, sizeof(new_id), 0);
230	} while (bit_test(V_id_bits, new_id) || new_id == 0);
231	bit_clear(V_id_bits, V_id_array[V_array_ptr]);
232	bit_set(V_id_bits, new_id);
233	V_id_array[V_array_ptr] = new_id;
234	V_array_ptr++;
235	if (V_array_ptr == V_array_size)
236		V_array_ptr = 0;
237	V_random_id_total++;
238	mtx_unlock(&V_ip_id_mtx);
239	return (new_id);
240}
241
242void
243ip_fillid(struct ip *ip)
244{
245
246	/*
247	 * Per RFC6864 Section 4
248	 *
249	 * o  Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
250	 * o  Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
251	 */
252	if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
253		ip->ip_id = 0;
254	else if (V_ip_do_randomid)
255		ip->ip_id = ip_randomid();
256	else {
257		counter_u64_add(V_ip_id, 1);
258		/*
259		 * There are two issues about this trick, to be kept in mind.
260		 * 1) We can migrate between counter_u64_add() and next
261		 *    line, and grab counter from other CPU, resulting in too
262		 *    quick ID reuse. This is tolerable in our particular case,
263		 *    since probability of such event is much lower then reuse
264		 *    of ID due to legitimate overflow, that at modern Internet
265		 *    speeds happens all the time.
266		 * 2) We are relying on the fact that counter(9) is based on
267		 *    UMA_ZONE_PCPU uma(9) zone. We also take only last
268		 *    sixteen bits of a counter, so we don't care about the
269		 *    fact that machines with 32-bit word update their counters
270		 *    not atomically.
271		 */
272		ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
273	}
274}
275
276static void
277ipid_sysinit(void)
278{
279	int i;
280
281	mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
282	V_ip_id = counter_u64_alloc(M_WAITOK);
283
284	CPU_FOREACH(i)
285		arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
286}
287VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
288
289static void
290ipid_sysuninit(void)
291{
292
293	if (V_id_array != NULL) {
294		free(V_id_array, M_IPID);
295		free(V_id_bits, M_IPID);
296	}
297	counter_u64_free(V_ip_id);
298	mtx_destroy(&V_ip_id_mtx);
299}
300VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL);
301