1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * Copyright (c) 2013 EMC Corp.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * From:
32 *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
33 *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
34 */
35
36/*
37 * reference:
38 * -	Magazines and Vmem: Extending the Slab Allocator
39 *	to Many CPUs and Arbitrary Resources
40 *	http://www.usenix.org/event/usenix01/bonwick.html
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD$");
45
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/kernel.h>
51#include <sys/queue.h>
52#include <sys/callout.h>
53#include <sys/hash.h>
54#include <sys/lock.h>
55#include <sys/malloc.h>
56#include <sys/mutex.h>
57#include <sys/smp.h>
58#include <sys/condvar.h>
59#include <sys/sysctl.h>
60#include <sys/taskqueue.h>
61#include <sys/vmem.h>
62#include <sys/vmmeter.h>
63
64#include "opt_vm.h"
65
66#include <vm/uma.h>
67#include <vm/vm.h>
68#include <vm/pmap.h>
69#include <vm/vm_map.h>
70#include <vm/vm_object.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_extern.h>
73#include <vm/vm_param.h>
74#include <vm/vm_page.h>
75#include <vm/vm_pageout.h>
76#include <vm/vm_phys.h>
77#include <vm/vm_pagequeue.h>
78#include <vm/uma_int.h>
79
80#define	VMEM_OPTORDER		5
81#define	VMEM_OPTVALUE		(1 << VMEM_OPTORDER)
82#define	VMEM_MAXORDER						\
83    (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
84
85#define	VMEM_HASHSIZE_MIN	16
86#define	VMEM_HASHSIZE_MAX	131072
87
88#define	VMEM_QCACHE_IDX_MAX	16
89
90#define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
91
92#define	VMEM_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM |	\
93    M_BESTFIT | M_FIRSTFIT | M_NEXTFIT)
94
95#define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
96
97#define	QC_NAME_MAX	16
98
99/*
100 * Data structures private to vmem.
101 */
102MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
103
104typedef struct vmem_btag bt_t;
105
106TAILQ_HEAD(vmem_seglist, vmem_btag);
107LIST_HEAD(vmem_freelist, vmem_btag);
108LIST_HEAD(vmem_hashlist, vmem_btag);
109
110struct qcache {
111	uma_zone_t	qc_cache;
112	vmem_t 		*qc_vmem;
113	vmem_size_t	qc_size;
114	char		qc_name[QC_NAME_MAX];
115};
116typedef struct qcache qcache_t;
117#define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
118
119#define	VMEM_NAME_MAX	16
120
121/* boundary tag */
122struct vmem_btag {
123	TAILQ_ENTRY(vmem_btag) bt_seglist;
124	union {
125		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
126		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
127	} bt_u;
128#define	bt_hashlist	bt_u.u_hashlist
129#define	bt_freelist	bt_u.u_freelist
130	vmem_addr_t	bt_start;
131	vmem_size_t	bt_size;
132	int		bt_type;
133};
134
135/* vmem arena */
136struct vmem {
137	struct mtx_padalign	vm_lock;
138	struct cv		vm_cv;
139	char			vm_name[VMEM_NAME_MAX+1];
140	LIST_ENTRY(vmem)	vm_alllist;
141	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
142	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
143	struct vmem_seglist	vm_seglist;
144	struct vmem_hashlist	*vm_hashlist;
145	vmem_size_t		vm_hashsize;
146
147	/* Constant after init */
148	vmem_size_t		vm_qcache_max;
149	vmem_size_t		vm_quantum_mask;
150	vmem_size_t		vm_import_quantum;
151	int			vm_quantum_shift;
152
153	/* Written on alloc/free */
154	LIST_HEAD(, vmem_btag)	vm_freetags;
155	int			vm_nfreetags;
156	int			vm_nbusytag;
157	vmem_size_t		vm_inuse;
158	vmem_size_t		vm_size;
159	vmem_size_t		vm_limit;
160	struct vmem_btag	vm_cursor;
161
162	/* Used on import. */
163	vmem_import_t		*vm_importfn;
164	vmem_release_t		*vm_releasefn;
165	void			*vm_arg;
166
167	/* Space exhaustion callback. */
168	vmem_reclaim_t		*vm_reclaimfn;
169
170	/* quantum cache */
171	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
172};
173
174#define	BT_TYPE_SPAN		1	/* Allocated from importfn */
175#define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
176#define	BT_TYPE_FREE		3	/* Available space. */
177#define	BT_TYPE_BUSY		4	/* Used space. */
178#define	BT_TYPE_CURSOR		5	/* Cursor for nextfit allocations. */
179#define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
180
181#define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
182
183#if defined(DIAGNOSTIC)
184static int enable_vmem_check = 1;
185SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
186    &enable_vmem_check, 0, "Enable vmem check");
187static void vmem_check(vmem_t *);
188#endif
189
190static struct callout	vmem_periodic_ch;
191static int		vmem_periodic_interval;
192static struct task	vmem_periodic_wk;
193
194static struct mtx_padalign __exclusive_cache_line vmem_list_lock;
195static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
196static uma_zone_t vmem_zone;
197
198/* ---- misc */
199#define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
200#define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
201#define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
202#define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
203
204#define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
205#define	VMEM_TRYLOCK(vm)	mtx_trylock(&vm->vm_lock)
206#define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
207#define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
208#define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
209#define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);
210
211#define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))
212
213#define	VMEM_CROSS_P(addr1, addr2, boundary) \
214	((((addr1) ^ (addr2)) & -(boundary)) != 0)
215
216#define	ORDER2SIZE(order)	((order) < VMEM_OPTVALUE ? ((order) + 1) : \
217    (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
218#define	SIZE2ORDER(size)	((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
219    (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
220
221/*
222 * Maximum number of boundary tags that may be required to satisfy an
223 * allocation.  Two may be required to import.  Another two may be
224 * required to clip edges.
225 */
226#define	BT_MAXALLOC	4
227
228/*
229 * Max free limits the number of locally cached boundary tags.  We
230 * just want to avoid hitting the zone allocator for every call.
231 */
232#define BT_MAXFREE	(BT_MAXALLOC * 8)
233
234/* Allocator for boundary tags. */
235static uma_zone_t vmem_bt_zone;
236
237/* boot time arena storage. */
238static struct vmem kernel_arena_storage;
239static struct vmem buffer_arena_storage;
240static struct vmem transient_arena_storage;
241/* kernel and kmem arenas are aliased for backwards KPI compat. */
242vmem_t *kernel_arena = &kernel_arena_storage;
243vmem_t *kmem_arena = &kernel_arena_storage;
244vmem_t *buffer_arena = &buffer_arena_storage;
245vmem_t *transient_arena = &transient_arena_storage;
246
247#ifdef DEBUG_MEMGUARD
248static struct vmem memguard_arena_storage;
249vmem_t *memguard_arena = &memguard_arena_storage;
250#endif
251
252static bool
253bt_isbusy(bt_t *bt)
254{
255	return (bt->bt_type == BT_TYPE_BUSY);
256}
257
258static bool
259bt_isfree(bt_t *bt)
260{
261	return (bt->bt_type == BT_TYPE_FREE);
262}
263
264/*
265 * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
266 * allocation will not fail once bt_fill() passes.  To do so we cache
267 * at least the maximum possible tag allocations in the arena.
268 */
269static __noinline int
270_bt_fill(vmem_t *vm, int flags)
271{
272	bt_t *bt;
273
274	VMEM_ASSERT_LOCKED(vm);
275
276	/*
277	 * Only allow the kernel arena and arenas derived from kernel arena to
278	 * dip into reserve tags.  They are where new tags come from.
279	 */
280	flags &= BT_FLAGS;
281	if (vm != kernel_arena && vm->vm_arg != kernel_arena)
282		flags &= ~M_USE_RESERVE;
283
284	/*
285	 * Loop until we meet the reserve.  To minimize the lock shuffle
286	 * and prevent simultaneous fills we first try a NOWAIT regardless
287	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
288	 * holding a vmem lock.
289	 */
290	while (vm->vm_nfreetags < BT_MAXALLOC) {
291		bt = uma_zalloc(vmem_bt_zone,
292		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
293		if (bt == NULL) {
294			VMEM_UNLOCK(vm);
295			bt = uma_zalloc(vmem_bt_zone, flags);
296			VMEM_LOCK(vm);
297			if (bt == NULL)
298				break;
299		}
300		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
301		vm->vm_nfreetags++;
302	}
303
304	if (vm->vm_nfreetags < BT_MAXALLOC)
305		return ENOMEM;
306
307	return 0;
308}
309
310static inline int
311bt_fill(vmem_t *vm, int flags)
312{
313	if (vm->vm_nfreetags >= BT_MAXALLOC)
314		return (0);
315	return (_bt_fill(vm, flags));
316}
317
318/*
319 * Pop a tag off of the freetag stack.
320 */
321static bt_t *
322bt_alloc(vmem_t *vm)
323{
324	bt_t *bt;
325
326	VMEM_ASSERT_LOCKED(vm);
327	bt = LIST_FIRST(&vm->vm_freetags);
328	MPASS(bt != NULL);
329	LIST_REMOVE(bt, bt_freelist);
330	vm->vm_nfreetags--;
331
332	return bt;
333}
334
335/*
336 * Trim the per-vmem free list.  Returns with the lock released to
337 * avoid allocator recursions.
338 */
339static void
340bt_freetrim(vmem_t *vm, int freelimit)
341{
342	LIST_HEAD(, vmem_btag) freetags;
343	bt_t *bt;
344
345	LIST_INIT(&freetags);
346	VMEM_ASSERT_LOCKED(vm);
347	while (vm->vm_nfreetags > freelimit) {
348		bt = LIST_FIRST(&vm->vm_freetags);
349		LIST_REMOVE(bt, bt_freelist);
350		vm->vm_nfreetags--;
351		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
352	}
353	VMEM_UNLOCK(vm);
354	while ((bt = LIST_FIRST(&freetags)) != NULL) {
355		LIST_REMOVE(bt, bt_freelist);
356		uma_zfree(vmem_bt_zone, bt);
357	}
358}
359
360static inline void
361bt_free(vmem_t *vm, bt_t *bt)
362{
363
364	VMEM_ASSERT_LOCKED(vm);
365	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
366	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
367	vm->vm_nfreetags++;
368}
369
370/*
371 * Hide MAXALLOC tags before dropping the arena lock to ensure that a
372 * concurrent allocation attempt does not grab them.
373 */
374static void
375bt_save(vmem_t *vm)
376{
377	KASSERT(vm->vm_nfreetags >= BT_MAXALLOC,
378	    ("%s: insufficient free tags %d", __func__, vm->vm_nfreetags));
379	vm->vm_nfreetags -= BT_MAXALLOC;
380}
381
382static void
383bt_restore(vmem_t *vm)
384{
385	vm->vm_nfreetags += BT_MAXALLOC;
386}
387
388/*
389 * freelist[0] ... [1, 1]
390 * freelist[1] ... [2, 2]
391 *  :
392 * freelist[29] ... [30, 30]
393 * freelist[30] ... [31, 31]
394 * freelist[31] ... [32, 63]
395 * freelist[33] ... [64, 127]
396 *  :
397 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
398 *  :
399 */
400
401static struct vmem_freelist *
402bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
403{
404	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
405	const int idx = SIZE2ORDER(qsize);
406
407	MPASS(size != 0 && qsize != 0);
408	MPASS((size & vm->vm_quantum_mask) == 0);
409	MPASS(idx >= 0);
410	MPASS(idx < VMEM_MAXORDER);
411
412	return &vm->vm_freelist[idx];
413}
414
415/*
416 * bt_freehead_toalloc: return the freelist for the given size and allocation
417 * strategy.
418 *
419 * For M_FIRSTFIT, return the list in which any blocks are large enough
420 * for the requested size.  otherwise, return the list which can have blocks
421 * large enough for the requested size.
422 */
423static struct vmem_freelist *
424bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
425{
426	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
427	int idx = SIZE2ORDER(qsize);
428
429	MPASS(size != 0 && qsize != 0);
430	MPASS((size & vm->vm_quantum_mask) == 0);
431
432	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
433		idx++;
434		/* check too large request? */
435	}
436	MPASS(idx >= 0);
437	MPASS(idx < VMEM_MAXORDER);
438
439	return &vm->vm_freelist[idx];
440}
441
442/* ---- boundary tag hash */
443
444static struct vmem_hashlist *
445bt_hashhead(vmem_t *vm, vmem_addr_t addr)
446{
447	struct vmem_hashlist *list;
448	unsigned int hash;
449
450	hash = hash32_buf(&addr, sizeof(addr), 0);
451	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
452
453	return list;
454}
455
456static bt_t *
457bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
458{
459	struct vmem_hashlist *list;
460	bt_t *bt;
461
462	VMEM_ASSERT_LOCKED(vm);
463	list = bt_hashhead(vm, addr);
464	LIST_FOREACH(bt, list, bt_hashlist) {
465		if (bt->bt_start == addr) {
466			break;
467		}
468	}
469
470	return bt;
471}
472
473static void
474bt_rembusy(vmem_t *vm, bt_t *bt)
475{
476
477	VMEM_ASSERT_LOCKED(vm);
478	MPASS(vm->vm_nbusytag > 0);
479	vm->vm_inuse -= bt->bt_size;
480	vm->vm_nbusytag--;
481	LIST_REMOVE(bt, bt_hashlist);
482}
483
484static void
485bt_insbusy(vmem_t *vm, bt_t *bt)
486{
487	struct vmem_hashlist *list;
488
489	VMEM_ASSERT_LOCKED(vm);
490	MPASS(bt->bt_type == BT_TYPE_BUSY);
491
492	list = bt_hashhead(vm, bt->bt_start);
493	LIST_INSERT_HEAD(list, bt, bt_hashlist);
494	vm->vm_nbusytag++;
495	vm->vm_inuse += bt->bt_size;
496}
497
498/* ---- boundary tag list */
499
500static void
501bt_remseg(vmem_t *vm, bt_t *bt)
502{
503
504	MPASS(bt->bt_type != BT_TYPE_CURSOR);
505	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
506	bt_free(vm, bt);
507}
508
509static void
510bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
511{
512
513	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
514}
515
516static void
517bt_insseg_tail(vmem_t *vm, bt_t *bt)
518{
519
520	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
521}
522
523static void
524bt_remfree(vmem_t *vm __unused, bt_t *bt)
525{
526
527	MPASS(bt->bt_type == BT_TYPE_FREE);
528
529	LIST_REMOVE(bt, bt_freelist);
530}
531
532static void
533bt_insfree(vmem_t *vm, bt_t *bt)
534{
535	struct vmem_freelist *list;
536
537	list = bt_freehead_tofree(vm, bt->bt_size);
538	LIST_INSERT_HEAD(list, bt, bt_freelist);
539}
540
541/* ---- vmem internal functions */
542
543/*
544 * Import from the arena into the quantum cache in UMA.
545 *
546 * We use VMEM_ADDR_QCACHE_MIN instead of 0: uma_zalloc() returns 0 to indicate
547 * failure, so UMA can't be used to cache a resource with value 0.
548 */
549static int
550qc_import(void *arg, void **store, int cnt, int domain, int flags)
551{
552	qcache_t *qc;
553	vmem_addr_t addr;
554	int i;
555
556	KASSERT((flags & M_WAITOK) == 0, ("blocking allocation"));
557
558	qc = arg;
559	for (i = 0; i < cnt; i++) {
560		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
561		    VMEM_ADDR_QCACHE_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
562			break;
563		store[i] = (void *)addr;
564	}
565	return (i);
566}
567
568/*
569 * Release memory from the UMA cache to the arena.
570 */
571static void
572qc_release(void *arg, void **store, int cnt)
573{
574	qcache_t *qc;
575	int i;
576
577	qc = arg;
578	for (i = 0; i < cnt; i++)
579		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
580}
581
582static void
583qc_init(vmem_t *vm, vmem_size_t qcache_max)
584{
585	qcache_t *qc;
586	vmem_size_t size;
587	int qcache_idx_max;
588	int i;
589
590	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
591	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
592	    VMEM_QCACHE_IDX_MAX);
593	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
594	for (i = 0; i < qcache_idx_max; i++) {
595		qc = &vm->vm_qcache[i];
596		size = (i + 1) << vm->vm_quantum_shift;
597		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
598		    vm->vm_name, size);
599		qc->qc_vmem = vm;
600		qc->qc_size = size;
601		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
602		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc, 0);
603		MPASS(qc->qc_cache);
604	}
605}
606
607static void
608qc_destroy(vmem_t *vm)
609{
610	int qcache_idx_max;
611	int i;
612
613	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
614	for (i = 0; i < qcache_idx_max; i++)
615		uma_zdestroy(vm->vm_qcache[i].qc_cache);
616}
617
618static void
619qc_drain(vmem_t *vm)
620{
621	int qcache_idx_max;
622	int i;
623
624	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
625	for (i = 0; i < qcache_idx_max; i++)
626		uma_zone_reclaim(vm->vm_qcache[i].qc_cache, UMA_RECLAIM_DRAIN);
627}
628
629#ifndef UMA_MD_SMALL_ALLOC
630
631static struct mtx_padalign __exclusive_cache_line vmem_bt_lock;
632
633/*
634 * vmem_bt_alloc:  Allocate a new page of boundary tags.
635 *
636 * On architectures with uma_small_alloc there is no recursion; no address
637 * space need be allocated to allocate boundary tags.  For the others, we
638 * must handle recursion.  Boundary tags are necessary to allocate new
639 * boundary tags.
640 *
641 * UMA guarantees that enough tags are held in reserve to allocate a new
642 * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
643 * when allocating the page to hold new boundary tags.  In this way the
644 * reserve is automatically filled by the allocation that uses the reserve.
645 *
646 * We still have to guarantee that the new tags are allocated atomically since
647 * many threads may try concurrently.  The bt_lock provides this guarantee.
648 * We convert WAITOK allocations to NOWAIT and then handle the blocking here
649 * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
650 * loop again after checking to see if we lost the race to allocate.
651 *
652 * There is a small race between vmem_bt_alloc() returning the page and the
653 * zone lock being acquired to add the page to the zone.  For WAITOK
654 * allocations we just pause briefly.  NOWAIT may experience a transient
655 * failure.  To alleviate this we permit a small number of simultaneous
656 * fills to proceed concurrently so NOWAIT is less likely to fail unless
657 * we are really out of KVA.
658 */
659static void *
660vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
661    int wait)
662{
663	vmem_addr_t addr;
664
665	*pflag = UMA_SLAB_KERNEL;
666
667	/*
668	 * Single thread boundary tag allocation so that the address space
669	 * and memory are added in one atomic operation.
670	 */
671	mtx_lock(&vmem_bt_lock);
672	if (vmem_xalloc(vm_dom[domain].vmd_kernel_arena, bytes, 0, 0, 0,
673	    VMEM_ADDR_MIN, VMEM_ADDR_MAX,
674	    M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT, &addr) == 0) {
675		if (kmem_back_domain(domain, kernel_object, addr, bytes,
676		    M_NOWAIT | M_USE_RESERVE) == 0) {
677			mtx_unlock(&vmem_bt_lock);
678			return ((void *)addr);
679		}
680		vmem_xfree(vm_dom[domain].vmd_kernel_arena, addr, bytes);
681		mtx_unlock(&vmem_bt_lock);
682		/*
683		 * Out of memory, not address space.  This may not even be
684		 * possible due to M_USE_RESERVE page allocation.
685		 */
686		if (wait & M_WAITOK)
687			vm_wait_domain(domain);
688		return (NULL);
689	}
690	mtx_unlock(&vmem_bt_lock);
691	/*
692	 * We're either out of address space or lost a fill race.
693	 */
694	if (wait & M_WAITOK)
695		pause("btalloc", 1);
696
697	return (NULL);
698}
699#endif
700
701void
702vmem_startup(void)
703{
704
705	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
706	vmem_zone = uma_zcreate("vmem",
707	    sizeof(struct vmem), NULL, NULL, NULL, NULL,
708	    UMA_ALIGN_PTR, 0);
709	vmem_bt_zone = uma_zcreate("vmem btag",
710	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
711	    UMA_ALIGN_PTR, UMA_ZONE_VM);
712#ifndef UMA_MD_SMALL_ALLOC
713	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
714	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
715	/*
716	 * Reserve enough tags to allocate new tags.  We allow multiple
717	 * CPUs to attempt to allocate new tags concurrently to limit
718	 * false restarts in UMA.  vmem_bt_alloc() allocates from a per-domain
719	 * arena, which may involve importing a range from the kernel arena,
720	 * so we need to keep at least 2 * BT_MAXALLOC tags reserved.
721	 */
722	uma_zone_reserve(vmem_bt_zone, 2 * BT_MAXALLOC * mp_ncpus);
723	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
724#endif
725}
726
727/* ---- rehash */
728
729static int
730vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
731{
732	bt_t *bt;
733	struct vmem_hashlist *newhashlist;
734	struct vmem_hashlist *oldhashlist;
735	vmem_size_t i, oldhashsize;
736
737	MPASS(newhashsize > 0);
738
739	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
740	    M_VMEM, M_NOWAIT);
741	if (newhashlist == NULL)
742		return ENOMEM;
743	for (i = 0; i < newhashsize; i++) {
744		LIST_INIT(&newhashlist[i]);
745	}
746
747	VMEM_LOCK(vm);
748	oldhashlist = vm->vm_hashlist;
749	oldhashsize = vm->vm_hashsize;
750	vm->vm_hashlist = newhashlist;
751	vm->vm_hashsize = newhashsize;
752	if (oldhashlist == NULL) {
753		VMEM_UNLOCK(vm);
754		return 0;
755	}
756	for (i = 0; i < oldhashsize; i++) {
757		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
758			bt_rembusy(vm, bt);
759			bt_insbusy(vm, bt);
760		}
761	}
762	VMEM_UNLOCK(vm);
763
764	if (oldhashlist != vm->vm_hash0)
765		free(oldhashlist, M_VMEM);
766
767	return 0;
768}
769
770static void
771vmem_periodic_kick(void *dummy)
772{
773
774	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
775}
776
777static void
778vmem_periodic(void *unused, int pending)
779{
780	vmem_t *vm;
781	vmem_size_t desired;
782	vmem_size_t current;
783
784	mtx_lock(&vmem_list_lock);
785	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
786#ifdef DIAGNOSTIC
787		/* Convenient time to verify vmem state. */
788		if (enable_vmem_check == 1) {
789			VMEM_LOCK(vm);
790			vmem_check(vm);
791			VMEM_UNLOCK(vm);
792		}
793#endif
794		desired = 1 << flsl(vm->vm_nbusytag);
795		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
796		    VMEM_HASHSIZE_MAX);
797		current = vm->vm_hashsize;
798
799		/* Grow in powers of two.  Shrink less aggressively. */
800		if (desired >= current * 2 || desired * 4 <= current)
801			vmem_rehash(vm, desired);
802
803		/*
804		 * Periodically wake up threads waiting for resources,
805		 * so they could ask for reclamation again.
806		 */
807		VMEM_CONDVAR_BROADCAST(vm);
808	}
809	mtx_unlock(&vmem_list_lock);
810
811	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
812	    vmem_periodic_kick, NULL);
813}
814
815static void
816vmem_start_callout(void *unused)
817{
818
819	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
820	vmem_periodic_interval = hz * 10;
821	callout_init(&vmem_periodic_ch, 1);
822	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
823	    vmem_periodic_kick, NULL);
824}
825SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
826
827static void
828vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
829{
830	bt_t *btfree, *btprev, *btspan;
831
832	VMEM_ASSERT_LOCKED(vm);
833	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
834	MPASS((size & vm->vm_quantum_mask) == 0);
835
836	if (vm->vm_releasefn == NULL) {
837		/*
838		 * The new segment will never be released, so see if it is
839		 * contiguous with respect to an existing segment.  In this case
840		 * a span tag is not needed, and it may be possible now or in
841		 * the future to coalesce the new segment with an existing free
842		 * segment.
843		 */
844		btprev = TAILQ_LAST(&vm->vm_seglist, vmem_seglist);
845		if ((!bt_isbusy(btprev) && !bt_isfree(btprev)) ||
846		    btprev->bt_start + btprev->bt_size != addr)
847			btprev = NULL;
848	} else {
849		btprev = NULL;
850	}
851
852	if (btprev == NULL || bt_isbusy(btprev)) {
853		if (btprev == NULL) {
854			btspan = bt_alloc(vm);
855			btspan->bt_type = type;
856			btspan->bt_start = addr;
857			btspan->bt_size = size;
858			bt_insseg_tail(vm, btspan);
859		}
860
861		btfree = bt_alloc(vm);
862		btfree->bt_type = BT_TYPE_FREE;
863		btfree->bt_start = addr;
864		btfree->bt_size = size;
865		bt_insseg_tail(vm, btfree);
866		bt_insfree(vm, btfree);
867	} else {
868		bt_remfree(vm, btprev);
869		btprev->bt_size += size;
870		bt_insfree(vm, btprev);
871	}
872
873	vm->vm_size += size;
874}
875
876static void
877vmem_destroy1(vmem_t *vm)
878{
879	bt_t *bt;
880
881	/*
882	 * Drain per-cpu quantum caches.
883	 */
884	qc_destroy(vm);
885
886	/*
887	 * The vmem should now only contain empty segments.
888	 */
889	VMEM_LOCK(vm);
890	MPASS(vm->vm_nbusytag == 0);
891
892	TAILQ_REMOVE(&vm->vm_seglist, &vm->vm_cursor, bt_seglist);
893	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
894		bt_remseg(vm, bt);
895
896	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
897		free(vm->vm_hashlist, M_VMEM);
898
899	bt_freetrim(vm, 0);
900
901	VMEM_CONDVAR_DESTROY(vm);
902	VMEM_LOCK_DESTROY(vm);
903	uma_zfree(vmem_zone, vm);
904}
905
906static int
907vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
908{
909	vmem_addr_t addr;
910	int error;
911
912	if (vm->vm_importfn == NULL)
913		return (EINVAL);
914
915	/*
916	 * To make sure we get a span that meets the alignment we double it
917	 * and add the size to the tail.  This slightly overestimates.
918	 */
919	if (align != vm->vm_quantum_mask + 1)
920		size = (align * 2) + size;
921	size = roundup(size, vm->vm_import_quantum);
922
923	if (vm->vm_limit != 0 && vm->vm_limit < vm->vm_size + size)
924		return (ENOMEM);
925
926	bt_save(vm);
927	VMEM_UNLOCK(vm);
928	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
929	VMEM_LOCK(vm);
930	bt_restore(vm);
931	if (error)
932		return (ENOMEM);
933
934	vmem_add1(vm, addr, size, BT_TYPE_SPAN);
935
936	return 0;
937}
938
939/*
940 * vmem_fit: check if a bt can satisfy the given restrictions.
941 *
942 * it's a caller's responsibility to ensure the region is big enough
943 * before calling us.
944 */
945static int
946vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
947    vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
948    vmem_addr_t maxaddr, vmem_addr_t *addrp)
949{
950	vmem_addr_t start;
951	vmem_addr_t end;
952
953	MPASS(size > 0);
954	MPASS(bt->bt_size >= size); /* caller's responsibility */
955
956	/*
957	 * XXX assumption: vmem_addr_t and vmem_size_t are
958	 * unsigned integer of the same size.
959	 */
960
961	start = bt->bt_start;
962	if (start < minaddr) {
963		start = minaddr;
964	}
965	end = BT_END(bt);
966	if (end > maxaddr)
967		end = maxaddr;
968	if (start > end)
969		return (ENOMEM);
970
971	start = VMEM_ALIGNUP(start - phase, align) + phase;
972	if (start < bt->bt_start)
973		start += align;
974	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
975		MPASS(align < nocross);
976		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
977	}
978	if (start <= end && end - start >= size - 1) {
979		MPASS((start & (align - 1)) == phase);
980		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
981		MPASS(minaddr <= start);
982		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
983		MPASS(bt->bt_start <= start);
984		MPASS(BT_END(bt) - start >= size - 1);
985		*addrp = start;
986
987		return (0);
988	}
989	return (ENOMEM);
990}
991
992/*
993 * vmem_clip:  Trim the boundary tag edges to the requested start and size.
994 */
995static void
996vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
997{
998	bt_t *btnew;
999	bt_t *btprev;
1000
1001	VMEM_ASSERT_LOCKED(vm);
1002	MPASS(bt->bt_type == BT_TYPE_FREE);
1003	MPASS(bt->bt_size >= size);
1004	bt_remfree(vm, bt);
1005	if (bt->bt_start != start) {
1006		btprev = bt_alloc(vm);
1007		btprev->bt_type = BT_TYPE_FREE;
1008		btprev->bt_start = bt->bt_start;
1009		btprev->bt_size = start - bt->bt_start;
1010		bt->bt_start = start;
1011		bt->bt_size -= btprev->bt_size;
1012		bt_insfree(vm, btprev);
1013		bt_insseg(vm, btprev,
1014		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1015	}
1016	MPASS(bt->bt_start == start);
1017	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1018		/* split */
1019		btnew = bt_alloc(vm);
1020		btnew->bt_type = BT_TYPE_BUSY;
1021		btnew->bt_start = bt->bt_start;
1022		btnew->bt_size = size;
1023		bt->bt_start = bt->bt_start + size;
1024		bt->bt_size -= size;
1025		bt_insfree(vm, bt);
1026		bt_insseg(vm, btnew,
1027		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1028		bt_insbusy(vm, btnew);
1029		bt = btnew;
1030	} else {
1031		bt->bt_type = BT_TYPE_BUSY;
1032		bt_insbusy(vm, bt);
1033	}
1034	MPASS(bt->bt_size >= size);
1035}
1036
1037static int
1038vmem_try_fetch(vmem_t *vm, const vmem_size_t size, vmem_size_t align, int flags)
1039{
1040	vmem_size_t avail;
1041
1042	VMEM_ASSERT_LOCKED(vm);
1043
1044	/*
1045	 * XXX it is possible to fail to meet xalloc constraints with the
1046	 * imported region.  It is up to the user to specify the
1047	 * import quantum such that it can satisfy any allocation.
1048	 */
1049	if (vmem_import(vm, size, align, flags) == 0)
1050		return (1);
1051
1052	/*
1053	 * Try to free some space from the quantum cache or reclaim
1054	 * functions if available.
1055	 */
1056	if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1057		avail = vm->vm_size - vm->vm_inuse;
1058		bt_save(vm);
1059		VMEM_UNLOCK(vm);
1060		if (vm->vm_qcache_max != 0)
1061			qc_drain(vm);
1062		if (vm->vm_reclaimfn != NULL)
1063			vm->vm_reclaimfn(vm, flags);
1064		VMEM_LOCK(vm);
1065		bt_restore(vm);
1066		/* If we were successful retry even NOWAIT. */
1067		if (vm->vm_size - vm->vm_inuse > avail)
1068			return (1);
1069	}
1070	if ((flags & M_NOWAIT) != 0)
1071		return (0);
1072	bt_save(vm);
1073	VMEM_CONDVAR_WAIT(vm);
1074	bt_restore(vm);
1075	return (1);
1076}
1077
1078static int
1079vmem_try_release(vmem_t *vm, struct vmem_btag *bt, const bool remfree)
1080{
1081	struct vmem_btag *prev;
1082
1083	MPASS(bt->bt_type == BT_TYPE_FREE);
1084
1085	if (vm->vm_releasefn == NULL)
1086		return (0);
1087
1088	prev = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1089	MPASS(prev != NULL);
1090	MPASS(prev->bt_type != BT_TYPE_FREE);
1091
1092	if (prev->bt_type == BT_TYPE_SPAN && prev->bt_size == bt->bt_size) {
1093		vmem_addr_t spanaddr;
1094		vmem_size_t spansize;
1095
1096		MPASS(prev->bt_start == bt->bt_start);
1097		spanaddr = prev->bt_start;
1098		spansize = prev->bt_size;
1099		if (remfree)
1100			bt_remfree(vm, bt);
1101		bt_remseg(vm, bt);
1102		bt_remseg(vm, prev);
1103		vm->vm_size -= spansize;
1104		VMEM_CONDVAR_BROADCAST(vm);
1105		bt_freetrim(vm, BT_MAXFREE);
1106		vm->vm_releasefn(vm->vm_arg, spanaddr, spansize);
1107		return (1);
1108	}
1109	return (0);
1110}
1111
1112static int
1113vmem_xalloc_nextfit(vmem_t *vm, const vmem_size_t size, vmem_size_t align,
1114    const vmem_size_t phase, const vmem_size_t nocross, int flags,
1115    vmem_addr_t *addrp)
1116{
1117	struct vmem_btag *bt, *cursor, *next, *prev;
1118	int error;
1119
1120	error = ENOMEM;
1121	VMEM_LOCK(vm);
1122
1123	/*
1124	 * Make sure we have enough tags to complete the operation.
1125	 */
1126	if (bt_fill(vm, flags) != 0)
1127		goto out;
1128
1129retry:
1130	/*
1131	 * Find the next free tag meeting our constraints.  If one is found,
1132	 * perform the allocation.
1133	 */
1134	for (cursor = &vm->vm_cursor, bt = TAILQ_NEXT(cursor, bt_seglist);
1135	    bt != cursor; bt = TAILQ_NEXT(bt, bt_seglist)) {
1136		if (bt == NULL)
1137			bt = TAILQ_FIRST(&vm->vm_seglist);
1138		if (bt->bt_type == BT_TYPE_FREE && bt->bt_size >= size &&
1139		    (error = vmem_fit(bt, size, align, phase, nocross,
1140		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, addrp)) == 0) {
1141			vmem_clip(vm, bt, *addrp, size);
1142			break;
1143		}
1144	}
1145
1146	/*
1147	 * Try to coalesce free segments around the cursor.  If we succeed, and
1148	 * have not yet satisfied the allocation request, try again with the
1149	 * newly coalesced segment.
1150	 */
1151	if ((next = TAILQ_NEXT(cursor, bt_seglist)) != NULL &&
1152	    (prev = TAILQ_PREV(cursor, vmem_seglist, bt_seglist)) != NULL &&
1153	    next->bt_type == BT_TYPE_FREE && prev->bt_type == BT_TYPE_FREE &&
1154	    prev->bt_start + prev->bt_size == next->bt_start) {
1155		prev->bt_size += next->bt_size;
1156		bt_remfree(vm, next);
1157		bt_remseg(vm, next);
1158
1159		/*
1160		 * The coalesced segment might be able to satisfy our request.
1161		 * If not, we might need to release it from the arena.
1162		 */
1163		if (error == ENOMEM && prev->bt_size >= size &&
1164		    (error = vmem_fit(prev, size, align, phase, nocross,
1165		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, addrp)) == 0) {
1166			vmem_clip(vm, prev, *addrp, size);
1167			bt = prev;
1168		} else
1169			(void)vmem_try_release(vm, prev, true);
1170	}
1171
1172	/*
1173	 * If the allocation was successful, advance the cursor.
1174	 */
1175	if (error == 0) {
1176		TAILQ_REMOVE(&vm->vm_seglist, cursor, bt_seglist);
1177		for (; bt != NULL && bt->bt_start < *addrp + size;
1178		    bt = TAILQ_NEXT(bt, bt_seglist))
1179			;
1180		if (bt != NULL)
1181			TAILQ_INSERT_BEFORE(bt, cursor, bt_seglist);
1182		else
1183			TAILQ_INSERT_HEAD(&vm->vm_seglist, cursor, bt_seglist);
1184	}
1185
1186	/*
1187	 * Attempt to bring additional resources into the arena.  If that fails
1188	 * and M_WAITOK is specified, sleep waiting for resources to be freed.
1189	 */
1190	if (error == ENOMEM && vmem_try_fetch(vm, size, align, flags))
1191		goto retry;
1192
1193out:
1194	VMEM_UNLOCK(vm);
1195	return (error);
1196}
1197
1198/* ---- vmem API */
1199
1200void
1201vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
1202     vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
1203{
1204
1205	VMEM_LOCK(vm);
1206	KASSERT(vm->vm_size == 0, ("%s: arena is non-empty", __func__));
1207	vm->vm_importfn = importfn;
1208	vm->vm_releasefn = releasefn;
1209	vm->vm_arg = arg;
1210	vm->vm_import_quantum = import_quantum;
1211	VMEM_UNLOCK(vm);
1212}
1213
1214void
1215vmem_set_limit(vmem_t *vm, vmem_size_t limit)
1216{
1217
1218	VMEM_LOCK(vm);
1219	vm->vm_limit = limit;
1220	VMEM_UNLOCK(vm);
1221}
1222
1223void
1224vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
1225{
1226
1227	VMEM_LOCK(vm);
1228	vm->vm_reclaimfn = reclaimfn;
1229	VMEM_UNLOCK(vm);
1230}
1231
1232/*
1233 * vmem_init: Initializes vmem arena.
1234 */
1235vmem_t *
1236vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
1237    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1238{
1239	vmem_size_t i;
1240
1241	MPASS(quantum > 0);
1242	MPASS((quantum & (quantum - 1)) == 0);
1243
1244	bzero(vm, sizeof(*vm));
1245
1246	VMEM_CONDVAR_INIT(vm, name);
1247	VMEM_LOCK_INIT(vm, name);
1248	vm->vm_nfreetags = 0;
1249	LIST_INIT(&vm->vm_freetags);
1250	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1251	vm->vm_quantum_mask = quantum - 1;
1252	vm->vm_quantum_shift = flsl(quantum) - 1;
1253	vm->vm_nbusytag = 0;
1254	vm->vm_size = 0;
1255	vm->vm_limit = 0;
1256	vm->vm_inuse = 0;
1257	qc_init(vm, qcache_max);
1258
1259	TAILQ_INIT(&vm->vm_seglist);
1260	vm->vm_cursor.bt_start = vm->vm_cursor.bt_size = 0;
1261	vm->vm_cursor.bt_type = BT_TYPE_CURSOR;
1262	TAILQ_INSERT_TAIL(&vm->vm_seglist, &vm->vm_cursor, bt_seglist);
1263
1264	for (i = 0; i < VMEM_MAXORDER; i++)
1265		LIST_INIT(&vm->vm_freelist[i]);
1266
1267	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1268	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
1269	vm->vm_hashlist = vm->vm_hash0;
1270
1271	if (size != 0) {
1272		if (vmem_add(vm, base, size, flags) != 0) {
1273			vmem_destroy1(vm);
1274			return NULL;
1275		}
1276	}
1277
1278	mtx_lock(&vmem_list_lock);
1279	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1280	mtx_unlock(&vmem_list_lock);
1281
1282	return vm;
1283}
1284
1285/*
1286 * vmem_create: create an arena.
1287 */
1288vmem_t *
1289vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1290    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1291{
1292
1293	vmem_t *vm;
1294
1295	vm = uma_zalloc(vmem_zone, flags & (M_WAITOK|M_NOWAIT));
1296	if (vm == NULL)
1297		return (NULL);
1298	if (vmem_init(vm, name, base, size, quantum, qcache_max,
1299	    flags) == NULL)
1300		return (NULL);
1301	return (vm);
1302}
1303
1304void
1305vmem_destroy(vmem_t *vm)
1306{
1307
1308	mtx_lock(&vmem_list_lock);
1309	LIST_REMOVE(vm, vm_alllist);
1310	mtx_unlock(&vmem_list_lock);
1311
1312	vmem_destroy1(vm);
1313}
1314
1315vmem_size_t
1316vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1317{
1318
1319	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1320}
1321
1322/*
1323 * vmem_alloc: allocate resource from the arena.
1324 */
1325int
1326vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1327{
1328	const int strat __unused = flags & VMEM_FITMASK;
1329	qcache_t *qc;
1330
1331	flags &= VMEM_FLAGS;
1332	MPASS(size > 0);
1333	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT || strat == M_NEXTFIT);
1334	if ((flags & M_NOWAIT) == 0)
1335		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1336
1337	if (size <= vm->vm_qcache_max) {
1338		/*
1339		 * Resource 0 cannot be cached, so avoid a blocking allocation
1340		 * in qc_import() and give the vmem_xalloc() call below a chance
1341		 * to return 0.
1342		 */
1343		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1344		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache,
1345		    (flags & ~M_WAITOK) | M_NOWAIT);
1346		if (__predict_true(*addrp != 0))
1347			return (0);
1348	}
1349
1350	return (vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1351	    flags, addrp));
1352}
1353
1354int
1355vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1356    const vmem_size_t phase, const vmem_size_t nocross,
1357    const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1358    vmem_addr_t *addrp)
1359{
1360	const vmem_size_t size = vmem_roundup_size(vm, size0);
1361	struct vmem_freelist *list;
1362	struct vmem_freelist *first;
1363	struct vmem_freelist *end;
1364	bt_t *bt;
1365	int error;
1366	int strat;
1367
1368	flags &= VMEM_FLAGS;
1369	strat = flags & VMEM_FITMASK;
1370	MPASS(size0 > 0);
1371	MPASS(size > 0);
1372	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT || strat == M_NEXTFIT);
1373	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1374	if ((flags & M_NOWAIT) == 0)
1375		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1376	MPASS((align & vm->vm_quantum_mask) == 0);
1377	MPASS((align & (align - 1)) == 0);
1378	MPASS((phase & vm->vm_quantum_mask) == 0);
1379	MPASS((nocross & vm->vm_quantum_mask) == 0);
1380	MPASS((nocross & (nocross - 1)) == 0);
1381	MPASS((align == 0 && phase == 0) || phase < align);
1382	MPASS(nocross == 0 || nocross >= size);
1383	MPASS(minaddr <= maxaddr);
1384	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1385	if (strat == M_NEXTFIT)
1386		MPASS(minaddr == VMEM_ADDR_MIN && maxaddr == VMEM_ADDR_MAX);
1387
1388	if (align == 0)
1389		align = vm->vm_quantum_mask + 1;
1390	*addrp = 0;
1391
1392	/*
1393	 * Next-fit allocations don't use the freelists.
1394	 */
1395	if (strat == M_NEXTFIT)
1396		return (vmem_xalloc_nextfit(vm, size0, align, phase, nocross,
1397		    flags, addrp));
1398
1399	end = &vm->vm_freelist[VMEM_MAXORDER];
1400	/*
1401	 * choose a free block from which we allocate.
1402	 */
1403	first = bt_freehead_toalloc(vm, size, strat);
1404	VMEM_LOCK(vm);
1405
1406	/*
1407	 * Make sure we have enough tags to complete the operation.
1408	 */
1409	error = bt_fill(vm, flags);
1410	if (error != 0)
1411		goto out;
1412	for (;;) {
1413		/*
1414	 	 * Scan freelists looking for a tag that satisfies the
1415		 * allocation.  If we're doing BESTFIT we may encounter
1416		 * sizes below the request.  If we're doing FIRSTFIT we
1417		 * inspect only the first element from each list.
1418		 */
1419		for (list = first; list < end; list++) {
1420			LIST_FOREACH(bt, list, bt_freelist) {
1421				if (bt->bt_size >= size) {
1422					error = vmem_fit(bt, size, align, phase,
1423					    nocross, minaddr, maxaddr, addrp);
1424					if (error == 0) {
1425						vmem_clip(vm, bt, *addrp, size);
1426						goto out;
1427					}
1428				}
1429				/* FIRST skips to the next list. */
1430				if (strat == M_FIRSTFIT)
1431					break;
1432			}
1433		}
1434
1435		/*
1436		 * Retry if the fast algorithm failed.
1437		 */
1438		if (strat == M_FIRSTFIT) {
1439			strat = M_BESTFIT;
1440			first = bt_freehead_toalloc(vm, size, strat);
1441			continue;
1442		}
1443
1444		/*
1445		 * Try a few measures to bring additional resources into the
1446		 * arena.  If all else fails, we will sleep waiting for
1447		 * resources to be freed.
1448		 */
1449		if (!vmem_try_fetch(vm, size, align, flags)) {
1450			error = ENOMEM;
1451			break;
1452		}
1453	}
1454out:
1455	VMEM_UNLOCK(vm);
1456	if (error != 0 && (flags & M_NOWAIT) == 0)
1457		panic("failed to allocate waiting allocation\n");
1458
1459	return (error);
1460}
1461
1462/*
1463 * vmem_free: free the resource to the arena.
1464 */
1465void
1466vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1467{
1468	qcache_t *qc;
1469	MPASS(size > 0);
1470
1471	if (size <= vm->vm_qcache_max &&
1472	    __predict_true(addr >= VMEM_ADDR_QCACHE_MIN)) {
1473		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1474		uma_zfree(qc->qc_cache, (void *)addr);
1475	} else
1476		vmem_xfree(vm, addr, size);
1477}
1478
1479void
1480vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size __unused)
1481{
1482	bt_t *bt;
1483	bt_t *t;
1484
1485	MPASS(size > 0);
1486
1487	VMEM_LOCK(vm);
1488	bt = bt_lookupbusy(vm, addr);
1489	MPASS(bt != NULL);
1490	MPASS(bt->bt_start == addr);
1491	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1492	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1493	MPASS(bt->bt_type == BT_TYPE_BUSY);
1494	bt_rembusy(vm, bt);
1495	bt->bt_type = BT_TYPE_FREE;
1496
1497	/* coalesce */
1498	t = TAILQ_NEXT(bt, bt_seglist);
1499	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1500		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
1501		bt->bt_size += t->bt_size;
1502		bt_remfree(vm, t);
1503		bt_remseg(vm, t);
1504	}
1505	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1506	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1507		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
1508		bt->bt_size += t->bt_size;
1509		bt->bt_start = t->bt_start;
1510		bt_remfree(vm, t);
1511		bt_remseg(vm, t);
1512	}
1513
1514	if (!vmem_try_release(vm, bt, false)) {
1515		bt_insfree(vm, bt);
1516		VMEM_CONDVAR_BROADCAST(vm);
1517		bt_freetrim(vm, BT_MAXFREE);
1518	}
1519}
1520
1521/*
1522 * vmem_add:
1523 *
1524 */
1525int
1526vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1527{
1528	int error;
1529
1530	flags &= VMEM_FLAGS;
1531
1532	VMEM_LOCK(vm);
1533	error = bt_fill(vm, flags);
1534	if (error == 0)
1535		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1536	VMEM_UNLOCK(vm);
1537
1538	return (error);
1539}
1540
1541/*
1542 * vmem_size: information about arenas size
1543 */
1544vmem_size_t
1545vmem_size(vmem_t *vm, int typemask)
1546{
1547	int i;
1548
1549	switch (typemask) {
1550	case VMEM_ALLOC:
1551		return vm->vm_inuse;
1552	case VMEM_FREE:
1553		return vm->vm_size - vm->vm_inuse;
1554	case VMEM_FREE|VMEM_ALLOC:
1555		return vm->vm_size;
1556	case VMEM_MAXFREE:
1557		VMEM_LOCK(vm);
1558		for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
1559			if (LIST_EMPTY(&vm->vm_freelist[i]))
1560				continue;
1561			VMEM_UNLOCK(vm);
1562			return ((vmem_size_t)ORDER2SIZE(i) <<
1563			    vm->vm_quantum_shift);
1564		}
1565		VMEM_UNLOCK(vm);
1566		return (0);
1567	default:
1568		panic("vmem_size");
1569	}
1570}
1571
1572/* ---- debug */
1573
1574#if defined(DDB) || defined(DIAGNOSTIC)
1575
1576static void bt_dump(const bt_t *, int (*)(const char *, ...)
1577    __printflike(1, 2));
1578
1579static const char *
1580bt_type_string(int type)
1581{
1582
1583	switch (type) {
1584	case BT_TYPE_BUSY:
1585		return "busy";
1586	case BT_TYPE_FREE:
1587		return "free";
1588	case BT_TYPE_SPAN:
1589		return "span";
1590	case BT_TYPE_SPAN_STATIC:
1591		return "static span";
1592	case BT_TYPE_CURSOR:
1593		return "cursor";
1594	default:
1595		break;
1596	}
1597	return "BOGUS";
1598}
1599
1600static void
1601bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1602{
1603
1604	(*pr)("\t%p: %jx %jx, %d(%s)\n",
1605	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1606	    bt->bt_type, bt_type_string(bt->bt_type));
1607}
1608
1609static void
1610vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1611{
1612	const bt_t *bt;
1613	int i;
1614
1615	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1616	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1617		bt_dump(bt, pr);
1618	}
1619
1620	for (i = 0; i < VMEM_MAXORDER; i++) {
1621		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1622
1623		if (LIST_EMPTY(fl)) {
1624			continue;
1625		}
1626
1627		(*pr)("freelist[%d]\n", i);
1628		LIST_FOREACH(bt, fl, bt_freelist) {
1629			bt_dump(bt, pr);
1630		}
1631	}
1632}
1633
1634#endif /* defined(DDB) || defined(DIAGNOSTIC) */
1635
1636#if defined(DDB)
1637#include <ddb/ddb.h>
1638
1639static bt_t *
1640vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1641{
1642	bt_t *bt;
1643
1644	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1645		if (BT_ISSPAN_P(bt)) {
1646			continue;
1647		}
1648		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1649			return bt;
1650		}
1651	}
1652
1653	return NULL;
1654}
1655
1656void
1657vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1658{
1659	vmem_t *vm;
1660
1661	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1662		bt_t *bt;
1663
1664		bt = vmem_whatis_lookup(vm, addr);
1665		if (bt == NULL) {
1666			continue;
1667		}
1668		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1669		    (void *)addr, (void *)bt->bt_start,
1670		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1671		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1672	}
1673}
1674
1675void
1676vmem_printall(const char *modif, int (*pr)(const char *, ...))
1677{
1678	const vmem_t *vm;
1679
1680	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1681		vmem_dump(vm, pr);
1682	}
1683}
1684
1685void
1686vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1687{
1688	const vmem_t *vm = (const void *)addr;
1689
1690	vmem_dump(vm, pr);
1691}
1692
1693DB_SHOW_COMMAND(vmemdump, vmemdump)
1694{
1695
1696	if (!have_addr) {
1697		db_printf("usage: show vmemdump <addr>\n");
1698		return;
1699	}
1700
1701	vmem_dump((const vmem_t *)addr, db_printf);
1702}
1703
1704DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall)
1705{
1706	const vmem_t *vm;
1707
1708	LIST_FOREACH(vm, &vmem_list, vm_alllist)
1709		vmem_dump(vm, db_printf);
1710}
1711
1712DB_SHOW_COMMAND(vmem, vmem_summ)
1713{
1714	const vmem_t *vm = (const void *)addr;
1715	const bt_t *bt;
1716	size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER];
1717	size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER];
1718	int ord;
1719
1720	if (!have_addr) {
1721		db_printf("usage: show vmem <addr>\n");
1722		return;
1723	}
1724
1725	db_printf("vmem %p '%s'\n", vm, vm->vm_name);
1726	db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1);
1727	db_printf("\tsize:\t%zu\n", vm->vm_size);
1728	db_printf("\tinuse:\t%zu\n", vm->vm_inuse);
1729	db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse);
1730	db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag);
1731	db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags);
1732
1733	memset(&ft, 0, sizeof(ft));
1734	memset(&ut, 0, sizeof(ut));
1735	memset(&fs, 0, sizeof(fs));
1736	memset(&us, 0, sizeof(us));
1737	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1738		ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift);
1739		if (bt->bt_type == BT_TYPE_BUSY) {
1740			ut[ord]++;
1741			us[ord] += bt->bt_size;
1742		} else if (bt->bt_type == BT_TYPE_FREE) {
1743			ft[ord]++;
1744			fs[ord] += bt->bt_size;
1745		}
1746	}
1747	db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n");
1748	for (ord = 0; ord < VMEM_MAXORDER; ord++) {
1749		if (ut[ord] == 0 && ft[ord] == 0)
1750			continue;
1751		db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n",
1752		    ORDER2SIZE(ord) << vm->vm_quantum_shift,
1753		    ut[ord], us[ord], ft[ord], fs[ord]);
1754	}
1755}
1756
1757DB_SHOW_ALL_COMMAND(vmem, vmem_summall)
1758{
1759	const vmem_t *vm;
1760
1761	LIST_FOREACH(vm, &vmem_list, vm_alllist)
1762		vmem_summ((db_expr_t)vm, TRUE, count, modif);
1763}
1764#endif /* defined(DDB) */
1765
1766#define vmem_printf printf
1767
1768#if defined(DIAGNOSTIC)
1769
1770static bool
1771vmem_check_sanity(vmem_t *vm)
1772{
1773	const bt_t *bt, *bt2;
1774
1775	MPASS(vm != NULL);
1776
1777	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1778		if (bt->bt_start > BT_END(bt)) {
1779			printf("corrupted tag\n");
1780			bt_dump(bt, vmem_printf);
1781			return false;
1782		}
1783	}
1784	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1785		if (bt->bt_type == BT_TYPE_CURSOR) {
1786			if (bt->bt_start != 0 || bt->bt_size != 0) {
1787				printf("corrupted cursor\n");
1788				return false;
1789			}
1790			continue;
1791		}
1792		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1793			if (bt == bt2) {
1794				continue;
1795			}
1796			if (bt2->bt_type == BT_TYPE_CURSOR) {
1797				continue;
1798			}
1799			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1800				continue;
1801			}
1802			if (bt->bt_start <= BT_END(bt2) &&
1803			    bt2->bt_start <= BT_END(bt)) {
1804				printf("overwrapped tags\n");
1805				bt_dump(bt, vmem_printf);
1806				bt_dump(bt2, vmem_printf);
1807				return false;
1808			}
1809		}
1810	}
1811
1812	return true;
1813}
1814
1815static void
1816vmem_check(vmem_t *vm)
1817{
1818
1819	if (!vmem_check_sanity(vm)) {
1820		panic("insanity vmem %p", vm);
1821	}
1822}
1823
1824#endif /* defined(DIAGNOSTIC) */
1825