1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * This module holds the global variables and machine independent functions
30 * used for the kernel SMP support.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/ktr.h>
40#include <sys/proc.h>
41#include <sys/bus.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/pcpu.h>
46#include <sys/sched.h>
47#include <sys/smp.h>
48#include <sys/sysctl.h>
49
50#include <machine/cpu.h>
51#include <machine/smp.h>
52
53#include "opt_sched.h"
54
55#ifdef SMP
56MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
57
58volatile cpuset_t stopped_cpus;
59volatile cpuset_t started_cpus;
60volatile cpuset_t suspended_cpus;
61cpuset_t hlt_cpus_mask;
62cpuset_t logical_cpus_mask;
63
64void (*cpustop_restartfunc)(void);
65#endif
66
67static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
68
69/* This is used in modules that need to work in both SMP and UP. */
70cpuset_t all_cpus;
71
72int mp_ncpus;
73/* export this for libkvm consumers. */
74int mp_maxcpus = MAXCPU;
75
76volatile int smp_started;
77u_int mp_maxid;
78
79static SYSCTL_NODE(_kern, OID_AUTO, smp,
80    CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
81    "Kernel SMP");
82
83SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
84    "Max CPU ID.");
85
86SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
87    0, "Max number of CPUs that the system was compiled for.");
88
89SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
90    NULL, 0, sysctl_kern_smp_active, "I",
91    "Indicates system is running in SMP mode");
92
93int smp_disabled = 0;	/* has smp been disabled? */
94SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
95    &smp_disabled, 0, "SMP has been disabled from the loader");
96
97int smp_cpus = 1;	/* how many cpu's running */
98SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
99    "Number of CPUs online");
100
101int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
102SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
103    &smp_threads_per_core, 0, "Number of SMT threads online per core");
104
105int mp_ncores = -1;	/* how many physical cores running */
106SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
107    "Number of physical cores online");
108
109int smp_topology = 0;	/* Which topology we're using. */
110SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
111    "Topology override setting; 0 is default provided by hardware.");
112
113#ifdef SMP
114/* Enable forwarding of a signal to a process running on a different CPU */
115static int forward_signal_enabled = 1;
116SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
117	   &forward_signal_enabled, 0,
118	   "Forwarding of a signal to a process on a different CPU");
119
120/* Variables needed for SMP rendezvous. */
121static volatile int smp_rv_ncpus;
122static void (*volatile smp_rv_setup_func)(void *arg);
123static void (*volatile smp_rv_action_func)(void *arg);
124static void (*volatile smp_rv_teardown_func)(void *arg);
125static void *volatile smp_rv_func_arg;
126static volatile int smp_rv_waiters[4];
127
128/*
129 * Shared mutex to restrict busywaits between smp_rendezvous() and
130 * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
131 * functions trigger at once and cause multiple CPUs to busywait with
132 * interrupts disabled.
133 */
134struct mtx smp_ipi_mtx;
135
136/*
137 * Let the MD SMP code initialize mp_maxid very early if it can.
138 */
139static void
140mp_setmaxid(void *dummy)
141{
142
143	cpu_mp_setmaxid();
144
145	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
146	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
147	    ("%s: one CPU but mp_maxid is not zero", __func__));
148	KASSERT(mp_maxid >= mp_ncpus - 1,
149	    ("%s: counters out of sync: max %d, count %d", __func__,
150		mp_maxid, mp_ncpus));
151}
152SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
153
154/*
155 * Call the MD SMP initialization code.
156 */
157static void
158mp_start(void *dummy)
159{
160
161	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
162
163	/* Probe for MP hardware. */
164	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
165		mp_ncores = 1;
166		mp_ncpus = 1;
167		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
168		return;
169	}
170
171	cpu_mp_start();
172	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
173	    mp_ncpus);
174
175	/* Provide a default for most architectures that don't have SMT/HTT. */
176	if (mp_ncores < 0)
177		mp_ncores = mp_ncpus;
178
179	cpu_mp_announce();
180}
181SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182
183void
184forward_signal(struct thread *td)
185{
186	int id;
187
188	/*
189	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
190	 * this thread, so all we need to do is poke it if it is currently
191	 * executing so that it executes ast().
192	 */
193	THREAD_LOCK_ASSERT(td, MA_OWNED);
194	KASSERT(TD_IS_RUNNING(td),
195	    ("forward_signal: thread is not TDS_RUNNING"));
196
197	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198
199	if (!smp_started || cold || KERNEL_PANICKED())
200		return;
201	if (!forward_signal_enabled)
202		return;
203
204	/* No need to IPI ourself. */
205	if (td == curthread)
206		return;
207
208	id = td->td_oncpu;
209	if (id == NOCPU)
210		return;
211	ipi_cpu(id, IPI_AST);
212}
213
214/*
215 * When called the executing CPU will send an IPI to all other CPUs
216 *  requesting that they halt execution.
217 *
218 * Usually (but not necessarily) called with 'other_cpus' as its arg.
219 *
220 *  - Signals all CPUs in map to stop.
221 *  - Waits for each to stop.
222 *
223 * Returns:
224 *  -1: error
225 *   0: NA
226 *   1: ok
227 *
228 */
229#if defined(__amd64__) || defined(__i386__)
230#define	X86	1
231#else
232#define	X86	0
233#endif
234static int
235generic_stop_cpus(cpuset_t map, u_int type)
236{
237#ifdef KTR
238	char cpusetbuf[CPUSETBUFSIZ];
239#endif
240	static volatile u_int stopping_cpu = NOCPU;
241	int i;
242	volatile cpuset_t *cpus;
243
244	KASSERT(
245	    type == IPI_STOP || type == IPI_STOP_HARD
246#if X86
247	    || type == IPI_SUSPEND
248#endif
249	    , ("%s: invalid stop type", __func__));
250
251	if (!smp_started)
252		return (0);
253
254	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
255	    cpusetobj_strprint(cpusetbuf, &map), type);
256
257#if X86
258	/*
259	 * When suspending, ensure there are are no IPIs in progress.
260	 * IPIs that have been issued, but not yet delivered (e.g.
261	 * not pending on a vCPU when running under virtualization)
262	 * will be lost, violating FreeBSD's assumption of reliable
263	 * IPI delivery.
264	 */
265	if (type == IPI_SUSPEND)
266		mtx_lock_spin(&smp_ipi_mtx);
267#endif
268
269#if X86
270	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
271#endif
272	if (stopping_cpu != PCPU_GET(cpuid))
273		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
274		    PCPU_GET(cpuid)) == 0)
275			while (stopping_cpu != NOCPU)
276				cpu_spinwait(); /* spin */
277
278	/* send the stop IPI to all CPUs in map */
279	ipi_selected(map, type);
280#if X86
281	}
282#endif
283
284#if X86
285	if (type == IPI_SUSPEND)
286		cpus = &suspended_cpus;
287	else
288#endif
289		cpus = &stopped_cpus;
290
291	i = 0;
292	while (!CPU_SUBSET(cpus, &map)) {
293		/* spin */
294		cpu_spinwait();
295		i++;
296		if (i == 100000000) {
297			printf("timeout stopping cpus\n");
298			break;
299		}
300	}
301
302#if X86
303	if (type == IPI_SUSPEND)
304		mtx_unlock_spin(&smp_ipi_mtx);
305#endif
306
307	stopping_cpu = NOCPU;
308	return (1);
309}
310
311int
312stop_cpus(cpuset_t map)
313{
314
315	return (generic_stop_cpus(map, IPI_STOP));
316}
317
318int
319stop_cpus_hard(cpuset_t map)
320{
321
322	return (generic_stop_cpus(map, IPI_STOP_HARD));
323}
324
325#if X86
326int
327suspend_cpus(cpuset_t map)
328{
329
330	return (generic_stop_cpus(map, IPI_SUSPEND));
331}
332#endif
333
334/*
335 * Called by a CPU to restart stopped CPUs.
336 *
337 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
338 *
339 *  - Signals all CPUs in map to restart.
340 *  - Waits for each to restart.
341 *
342 * Returns:
343 *  -1: error
344 *   0: NA
345 *   1: ok
346 */
347static int
348generic_restart_cpus(cpuset_t map, u_int type)
349{
350#ifdef KTR
351	char cpusetbuf[CPUSETBUFSIZ];
352#endif
353	volatile cpuset_t *cpus;
354
355#if X86
356	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
357	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
358
359	if (!smp_started)
360		return (0);
361
362	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
363
364	if (type == IPI_SUSPEND)
365		cpus = &resuming_cpus;
366	else
367		cpus = &stopped_cpus;
368
369	/* signal other cpus to restart */
370	if (type == IPI_SUSPEND)
371		CPU_COPY_STORE_REL(&map, &toresume_cpus);
372	else
373		CPU_COPY_STORE_REL(&map, &started_cpus);
374
375	/*
376	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
377	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
378	 * relatively inexpensive.
379	 */
380	if (type == IPI_STOP) {
381		struct monitorbuf *mb;
382		u_int id;
383
384		CPU_FOREACH(id) {
385			if (!CPU_ISSET(id, &map))
386				continue;
387
388			mb = &pcpu_find(id)->pc_monitorbuf;
389			atomic_store_int(&mb->stop_state,
390			    MONITOR_STOPSTATE_RUNNING);
391		}
392	}
393
394	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
395		/* wait for each to clear its bit */
396		while (CPU_OVERLAP(cpus, &map))
397			cpu_spinwait();
398	}
399#else /* !X86 */
400	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
401	    ("%s: invalid stop type", __func__));
402
403	if (!smp_started)
404		return (0);
405
406	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
407
408	cpus = &stopped_cpus;
409
410	/* signal other cpus to restart */
411	CPU_COPY_STORE_REL(&map, &started_cpus);
412
413	/* wait for each to clear its bit */
414	while (CPU_OVERLAP(cpus, &map))
415		cpu_spinwait();
416#endif
417	return (1);
418}
419
420int
421restart_cpus(cpuset_t map)
422{
423
424	return (generic_restart_cpus(map, IPI_STOP));
425}
426
427#if X86
428int
429resume_cpus(cpuset_t map)
430{
431
432	return (generic_restart_cpus(map, IPI_SUSPEND));
433}
434#endif
435#undef X86
436
437/*
438 * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
439 * (if specified), rendezvous, execute the action function (if specified),
440 * rendezvous again, execute the teardown function (if specified), and then
441 * resume.
442 *
443 * Note that the supplied external functions _must_ be reentrant and aware
444 * that they are running in parallel and in an unknown lock context.
445 */
446void
447smp_rendezvous_action(void)
448{
449	struct thread *td;
450	void *local_func_arg;
451	void (*local_setup_func)(void*);
452	void (*local_action_func)(void*);
453	void (*local_teardown_func)(void*);
454#ifdef INVARIANTS
455	int owepreempt;
456#endif
457
458	/* Ensure we have up-to-date values. */
459	atomic_add_acq_int(&smp_rv_waiters[0], 1);
460	while (smp_rv_waiters[0] < smp_rv_ncpus)
461		cpu_spinwait();
462
463	/* Fetch rendezvous parameters after acquire barrier. */
464	local_func_arg = smp_rv_func_arg;
465	local_setup_func = smp_rv_setup_func;
466	local_action_func = smp_rv_action_func;
467	local_teardown_func = smp_rv_teardown_func;
468
469	/*
470	 * Use a nested critical section to prevent any preemptions
471	 * from occurring during a rendezvous action routine.
472	 * Specifically, if a rendezvous handler is invoked via an IPI
473	 * and the interrupted thread was in the critical_exit()
474	 * function after setting td_critnest to 0 but before
475	 * performing a deferred preemption, this routine can be
476	 * invoked with td_critnest set to 0 and td_owepreempt true.
477	 * In that case, a critical_exit() during the rendezvous
478	 * action would trigger a preemption which is not permitted in
479	 * a rendezvous action.  To fix this, wrap all of the
480	 * rendezvous action handlers in a critical section.  We
481	 * cannot use a regular critical section however as having
482	 * critical_exit() preempt from this routine would also be
483	 * problematic (the preemption must not occur before the IPI
484	 * has been acknowledged via an EOI).  Instead, we
485	 * intentionally ignore td_owepreempt when leaving the
486	 * critical section.  This should be harmless because we do
487	 * not permit rendezvous action routines to schedule threads,
488	 * and thus td_owepreempt should never transition from 0 to 1
489	 * during this routine.
490	 */
491	td = curthread;
492	td->td_critnest++;
493#ifdef INVARIANTS
494	owepreempt = td->td_owepreempt;
495#endif
496
497	/*
498	 * If requested, run a setup function before the main action
499	 * function.  Ensure all CPUs have completed the setup
500	 * function before moving on to the action function.
501	 */
502	if (local_setup_func != smp_no_rendezvous_barrier) {
503		if (smp_rv_setup_func != NULL)
504			smp_rv_setup_func(smp_rv_func_arg);
505		atomic_add_int(&smp_rv_waiters[1], 1);
506		while (smp_rv_waiters[1] < smp_rv_ncpus)
507                	cpu_spinwait();
508	}
509
510	if (local_action_func != NULL)
511		local_action_func(local_func_arg);
512
513	if (local_teardown_func != smp_no_rendezvous_barrier) {
514		/*
515		 * Signal that the main action has been completed.  If a
516		 * full exit rendezvous is requested, then all CPUs will
517		 * wait here until all CPUs have finished the main action.
518		 */
519		atomic_add_int(&smp_rv_waiters[2], 1);
520		while (smp_rv_waiters[2] < smp_rv_ncpus)
521			cpu_spinwait();
522
523		if (local_teardown_func != NULL)
524			local_teardown_func(local_func_arg);
525	}
526
527	/*
528	 * Signal that the rendezvous is fully completed by this CPU.
529	 * This means that no member of smp_rv_* pseudo-structure will be
530	 * accessed by this target CPU after this point; in particular,
531	 * memory pointed by smp_rv_func_arg.
532	 *
533	 * The release semantic ensures that all accesses performed by
534	 * the current CPU are visible when smp_rendezvous_cpus()
535	 * returns, by synchronizing with the
536	 * atomic_load_acq_int(&smp_rv_waiters[3]).
537	 */
538	atomic_add_rel_int(&smp_rv_waiters[3], 1);
539
540	td->td_critnest--;
541	KASSERT(owepreempt == td->td_owepreempt,
542	    ("rendezvous action changed td_owepreempt"));
543}
544
545void
546smp_rendezvous_cpus(cpuset_t map,
547	void (* setup_func)(void *),
548	void (* action_func)(void *),
549	void (* teardown_func)(void *),
550	void *arg)
551{
552	int curcpumap, i, ncpus = 0;
553
554	/* See comments in the !SMP case. */
555	if (!smp_started) {
556		spinlock_enter();
557		if (setup_func != NULL)
558			setup_func(arg);
559		if (action_func != NULL)
560			action_func(arg);
561		if (teardown_func != NULL)
562			teardown_func(arg);
563		spinlock_exit();
564		return;
565	}
566
567	/*
568	 * Make sure we come here with interrupts enabled.  Otherwise we
569	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
570	 */
571	MPASS(curthread->td_md.md_spinlock_count == 0);
572
573	CPU_FOREACH(i) {
574		if (CPU_ISSET(i, &map))
575			ncpus++;
576	}
577	if (ncpus == 0)
578		panic("ncpus is 0 with non-zero map");
579
580	mtx_lock_spin(&smp_ipi_mtx);
581
582	/* Pass rendezvous parameters via global variables. */
583	smp_rv_ncpus = ncpus;
584	smp_rv_setup_func = setup_func;
585	smp_rv_action_func = action_func;
586	smp_rv_teardown_func = teardown_func;
587	smp_rv_func_arg = arg;
588	smp_rv_waiters[1] = 0;
589	smp_rv_waiters[2] = 0;
590	smp_rv_waiters[3] = 0;
591	atomic_store_rel_int(&smp_rv_waiters[0], 0);
592
593	/*
594	 * Signal other processors, which will enter the IPI with
595	 * interrupts off.
596	 */
597	curcpumap = CPU_ISSET(curcpu, &map);
598	CPU_CLR(curcpu, &map);
599	ipi_selected(map, IPI_RENDEZVOUS);
600
601	/* Check if the current CPU is in the map */
602	if (curcpumap != 0)
603		smp_rendezvous_action();
604
605	/*
606	 * Ensure that the master CPU waits for all the other
607	 * CPUs to finish the rendezvous, so that smp_rv_*
608	 * pseudo-structure and the arg are guaranteed to not
609	 * be in use.
610	 *
611	 * Load acquire synchronizes with the release add in
612	 * smp_rendezvous_action(), which ensures that our caller sees
613	 * all memory actions done by the called functions on other
614	 * CPUs.
615	 */
616	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
617		cpu_spinwait();
618
619	mtx_unlock_spin(&smp_ipi_mtx);
620}
621
622void
623smp_rendezvous(void (* setup_func)(void *),
624	       void (* action_func)(void *),
625	       void (* teardown_func)(void *),
626	       void *arg)
627{
628	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
629}
630
631static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
632
633struct cpu_group *
634smp_topo(void)
635{
636	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
637	struct cpu_group *top;
638
639	/*
640	 * Check for a fake topology request for debugging purposes.
641	 */
642	switch (smp_topology) {
643	case 1:
644		/* Dual core with no sharing.  */
645		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
646		break;
647	case 2:
648		/* No topology, all cpus are equal. */
649		top = smp_topo_none();
650		break;
651	case 3:
652		/* Dual core with shared L2.  */
653		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
654		break;
655	case 4:
656		/* quad core, shared l3 among each package, private l2.  */
657		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
658		break;
659	case 5:
660		/* quad core,  2 dualcore parts on each package share l2.  */
661		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
662		break;
663	case 6:
664		/* Single-core 2xHTT */
665		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
666		break;
667	case 7:
668		/* quad core with a shared l3, 8 threads sharing L2.  */
669		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
670		    CG_FLAG_SMT);
671		break;
672	default:
673		/* Default, ask the system what it wants. */
674		top = cpu_topo();
675		break;
676	}
677	/*
678	 * Verify the returned topology.
679	 */
680	if (top->cg_count != mp_ncpus)
681		panic("Built bad topology at %p.  CPU count %d != %d",
682		    top, top->cg_count, mp_ncpus);
683	if (CPU_CMP(&top->cg_mask, &all_cpus))
684		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
685		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
686		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
687
688	/*
689	 * Collapse nonsense levels that may be created out of convenience by
690	 * the MD layers.  They cause extra work in the search functions.
691	 */
692	while (top->cg_children == 1) {
693		top = &top->cg_child[0];
694		top->cg_parent = NULL;
695	}
696	return (top);
697}
698
699struct cpu_group *
700smp_topo_alloc(u_int count)
701{
702	static u_int index;
703	u_int curr;
704
705	curr = index;
706	index += count;
707	return (&group[curr]);
708}
709
710struct cpu_group *
711smp_topo_none(void)
712{
713	struct cpu_group *top;
714
715	top = &group[0];
716	top->cg_parent = NULL;
717	top->cg_child = NULL;
718	top->cg_mask = all_cpus;
719	top->cg_count = mp_ncpus;
720	top->cg_children = 0;
721	top->cg_level = CG_SHARE_NONE;
722	top->cg_flags = 0;
723
724	return (top);
725}
726
727static int
728smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
729    int count, int flags, int start)
730{
731	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
732	cpuset_t mask;
733	int i;
734
735	CPU_ZERO(&mask);
736	for (i = 0; i < count; i++, start++)
737		CPU_SET(start, &mask);
738	child->cg_parent = parent;
739	child->cg_child = NULL;
740	child->cg_children = 0;
741	child->cg_level = share;
742	child->cg_count = count;
743	child->cg_flags = flags;
744	child->cg_mask = mask;
745	parent->cg_children++;
746	for (; parent != NULL; parent = parent->cg_parent) {
747		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
748			panic("Duplicate children in %p.  mask (%s) child (%s)",
749			    parent,
750			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
751			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
752		CPU_OR(&parent->cg_mask, &child->cg_mask);
753		parent->cg_count += child->cg_count;
754	}
755
756	return (start);
757}
758
759struct cpu_group *
760smp_topo_1level(int share, int count, int flags)
761{
762	struct cpu_group *child;
763	struct cpu_group *top;
764	int packages;
765	int cpu;
766	int i;
767
768	cpu = 0;
769	top = &group[0];
770	packages = mp_ncpus / count;
771	top->cg_child = child = &group[1];
772	top->cg_level = CG_SHARE_NONE;
773	for (i = 0; i < packages; i++, child++)
774		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
775	return (top);
776}
777
778struct cpu_group *
779smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
780    int l1flags)
781{
782	struct cpu_group *top;
783	struct cpu_group *l1g;
784	struct cpu_group *l2g;
785	int cpu;
786	int i;
787	int j;
788
789	cpu = 0;
790	top = &group[0];
791	l2g = &group[1];
792	top->cg_child = l2g;
793	top->cg_level = CG_SHARE_NONE;
794	top->cg_children = mp_ncpus / (l2count * l1count);
795	l1g = l2g + top->cg_children;
796	for (i = 0; i < top->cg_children; i++, l2g++) {
797		l2g->cg_parent = top;
798		l2g->cg_child = l1g;
799		l2g->cg_level = l2share;
800		for (j = 0; j < l2count; j++, l1g++)
801			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
802			    l1flags, cpu);
803	}
804	return (top);
805}
806
807struct cpu_group *
808smp_topo_find(struct cpu_group *top, int cpu)
809{
810	struct cpu_group *cg;
811	cpuset_t mask;
812	int children;
813	int i;
814
815	CPU_SETOF(cpu, &mask);
816	cg = top;
817	for (;;) {
818		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
819			return (NULL);
820		if (cg->cg_children == 0)
821			return (cg);
822		children = cg->cg_children;
823		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
824			if (CPU_OVERLAP(&cg->cg_mask, &mask))
825				break;
826	}
827	return (NULL);
828}
829#else /* !SMP */
830
831void
832smp_rendezvous_cpus(cpuset_t map,
833	void (*setup_func)(void *),
834	void (*action_func)(void *),
835	void (*teardown_func)(void *),
836	void *arg)
837{
838	/*
839	 * In the !SMP case we just need to ensure the same initial conditions
840	 * as the SMP case.
841	 */
842	spinlock_enter();
843	if (setup_func != NULL)
844		setup_func(arg);
845	if (action_func != NULL)
846		action_func(arg);
847	if (teardown_func != NULL)
848		teardown_func(arg);
849	spinlock_exit();
850}
851
852void
853smp_rendezvous(void (*setup_func)(void *),
854	       void (*action_func)(void *),
855	       void (*teardown_func)(void *),
856	       void *arg)
857{
858
859	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
860	    arg);
861}
862
863/*
864 * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
865 * APIs will still work using this dummy support.
866 */
867static void
868mp_setvariables_for_up(void *dummy)
869{
870	mp_ncpus = 1;
871	mp_ncores = 1;
872	mp_maxid = PCPU_GET(cpuid);
873	CPU_SETOF(mp_maxid, &all_cpus);
874	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
875}
876SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
877    mp_setvariables_for_up, NULL);
878#endif /* SMP */
879
880void
881smp_no_rendezvous_barrier(void *dummy)
882{
883#ifdef SMP
884	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
885#endif
886}
887
888void
889smp_rendezvous_cpus_retry(cpuset_t map,
890	void (* setup_func)(void *),
891	void (* action_func)(void *),
892	void (* teardown_func)(void *),
893	void (* wait_func)(void *, int),
894	struct smp_rendezvous_cpus_retry_arg *arg)
895{
896	int cpu;
897
898	CPU_COPY(&map, &arg->cpus);
899
900	/*
901	 * Only one CPU to execute on.
902	 */
903	if (!smp_started) {
904		spinlock_enter();
905		if (setup_func != NULL)
906			setup_func(arg);
907		if (action_func != NULL)
908			action_func(arg);
909		if (teardown_func != NULL)
910			teardown_func(arg);
911		spinlock_exit();
912		return;
913	}
914
915	/*
916	 * Execute an action on all specified CPUs while retrying until they
917	 * all acknowledge completion.
918	 */
919	for (;;) {
920		smp_rendezvous_cpus(
921		    arg->cpus,
922		    setup_func,
923		    action_func,
924		    teardown_func,
925		    arg);
926
927		if (CPU_EMPTY(&arg->cpus))
928			break;
929
930		CPU_FOREACH(cpu) {
931			if (!CPU_ISSET(cpu, &arg->cpus))
932				continue;
933			wait_func(arg, cpu);
934		}
935	}
936}
937
938void
939smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
940{
941
942	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
943}
944
945/*
946 * If (prio & PDROP) == 0:
947 * Wait for specified idle threads to switch once.  This ensures that even
948 * preempted threads have cycled through the switch function once,
949 * exiting their codepaths.  This allows us to change global pointers
950 * with no other synchronization.
951 * If (prio & PDROP) != 0:
952 * Force the specified CPUs to switch context at least once.
953 */
954int
955quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
956{
957	struct pcpu *pcpu;
958	u_int *gen;
959	int error;
960	int cpu;
961
962	error = 0;
963	if ((prio & PDROP) == 0) {
964		gen = malloc(sizeof(u_int) * MAXCPU, M_TEMP, M_WAITOK);
965		for (cpu = 0; cpu <= mp_maxid; cpu++) {
966			if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
967				continue;
968			pcpu = pcpu_find(cpu);
969			gen[cpu] = pcpu->pc_idlethread->td_generation;
970		}
971	}
972	for (cpu = 0; cpu <= mp_maxid; cpu++) {
973		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
974			continue;
975		pcpu = pcpu_find(cpu);
976		thread_lock(curthread);
977		sched_bind(curthread, cpu);
978		thread_unlock(curthread);
979		if ((prio & PDROP) != 0)
980			continue;
981		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
982			error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
983			if (error != EWOULDBLOCK)
984				goto out;
985			error = 0;
986		}
987	}
988out:
989	thread_lock(curthread);
990	sched_unbind(curthread);
991	thread_unlock(curthread);
992	if ((prio & PDROP) == 0)
993		free(gen, M_TEMP);
994
995	return (error);
996}
997
998int
999quiesce_all_cpus(const char *wmesg, int prio)
1000{
1001
1002	return quiesce_cpus(all_cpus, wmesg, prio);
1003}
1004
1005/*
1006 * Observe all CPUs not executing in critical section.
1007 * We are not in one so the check for us is safe. If the found
1008 * thread changes to something else we know the section was
1009 * exited as well.
1010 */
1011void
1012quiesce_all_critical(void)
1013{
1014	struct thread *td, *newtd;
1015	struct pcpu *pcpu;
1016	int cpu;
1017
1018	MPASS(curthread->td_critnest == 0);
1019
1020	CPU_FOREACH(cpu) {
1021		pcpu = cpuid_to_pcpu[cpu];
1022		td = pcpu->pc_curthread;
1023		for (;;) {
1024			if (td->td_critnest == 0)
1025				break;
1026			cpu_spinwait();
1027			newtd = (struct thread *)
1028			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1029			if (td != newtd)
1030				break;
1031		}
1032	}
1033}
1034
1035static void
1036cpus_fence_seq_cst_issue(void *arg __unused)
1037{
1038
1039	atomic_thread_fence_seq_cst();
1040}
1041
1042/*
1043 * Send an IPI forcing a sequentially consistent fence.
1044 *
1045 * Allows replacement of an explicitly fence with a compiler barrier.
1046 * Trades speed up during normal execution for a significant slowdown when
1047 * the barrier is needed.
1048 */
1049void
1050cpus_fence_seq_cst(void)
1051{
1052
1053#ifdef SMP
1054	smp_rendezvous(
1055	    smp_no_rendezvous_barrier,
1056	    cpus_fence_seq_cst_issue,
1057	    smp_no_rendezvous_barrier,
1058	    NULL
1059	);
1060#else
1061	cpus_fence_seq_cst_issue(NULL);
1062#endif
1063}
1064
1065/* Extra care is taken with this sysctl because the data type is volatile */
1066static int
1067sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1068{
1069	int error, active;
1070
1071	active = smp_started;
1072	error = SYSCTL_OUT(req, &active, sizeof(active));
1073	return (error);
1074}
1075
1076#ifdef SMP
1077void
1078topo_init_node(struct topo_node *node)
1079{
1080
1081	bzero(node, sizeof(*node));
1082	TAILQ_INIT(&node->children);
1083}
1084
1085void
1086topo_init_root(struct topo_node *root)
1087{
1088
1089	topo_init_node(root);
1090	root->type = TOPO_TYPE_SYSTEM;
1091}
1092
1093/*
1094 * Add a child node with the given ID under the given parent.
1095 * Do nothing if there is already a child with that ID.
1096 */
1097struct topo_node *
1098topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1099    topo_node_type type, uintptr_t subtype)
1100{
1101	struct topo_node *node;
1102
1103	TAILQ_FOREACH_REVERSE(node, &parent->children,
1104	    topo_children, siblings) {
1105		if (node->hwid == hwid
1106		    && node->type == type && node->subtype == subtype) {
1107			return (node);
1108		}
1109	}
1110
1111	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1112	topo_init_node(node);
1113	node->parent = parent;
1114	node->hwid = hwid;
1115	node->type = type;
1116	node->subtype = subtype;
1117	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1118	parent->nchildren++;
1119
1120	return (node);
1121}
1122
1123/*
1124 * Find a child node with the given ID under the given parent.
1125 */
1126struct topo_node *
1127topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1128    topo_node_type type, uintptr_t subtype)
1129{
1130
1131	struct topo_node *node;
1132
1133	TAILQ_FOREACH(node, &parent->children, siblings) {
1134		if (node->hwid == hwid
1135		    && node->type == type && node->subtype == subtype) {
1136			return (node);
1137		}
1138	}
1139
1140	return (NULL);
1141}
1142
1143/*
1144 * Given a node change the order of its parent's child nodes such
1145 * that the node becomes the firt child while preserving the cyclic
1146 * order of the children.  In other words, the given node is promoted
1147 * by rotation.
1148 */
1149void
1150topo_promote_child(struct topo_node *child)
1151{
1152	struct topo_node *next;
1153	struct topo_node *node;
1154	struct topo_node *parent;
1155
1156	parent = child->parent;
1157	next = TAILQ_NEXT(child, siblings);
1158	TAILQ_REMOVE(&parent->children, child, siblings);
1159	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1160
1161	while (next != NULL) {
1162		node = next;
1163		next = TAILQ_NEXT(node, siblings);
1164		TAILQ_REMOVE(&parent->children, node, siblings);
1165		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1166		child = node;
1167	}
1168}
1169
1170/*
1171 * Iterate to the next node in the depth-first search (traversal) of
1172 * the topology tree.
1173 */
1174struct topo_node *
1175topo_next_node(struct topo_node *top, struct topo_node *node)
1176{
1177	struct topo_node *next;
1178
1179	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1180		return (next);
1181
1182	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1183		return (next);
1184
1185	while (node != top && (node = node->parent) != top)
1186		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1187			return (next);
1188
1189	return (NULL);
1190}
1191
1192/*
1193 * Iterate to the next node in the depth-first search of the topology tree,
1194 * but without descending below the current node.
1195 */
1196struct topo_node *
1197topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1198{
1199	struct topo_node *next;
1200
1201	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1202		return (next);
1203
1204	while (node != top && (node = node->parent) != top)
1205		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1206			return (next);
1207
1208	return (NULL);
1209}
1210
1211/*
1212 * Assign the given ID to the given topology node that represents a logical
1213 * processor.
1214 */
1215void
1216topo_set_pu_id(struct topo_node *node, cpuid_t id)
1217{
1218
1219	KASSERT(node->type == TOPO_TYPE_PU,
1220	    ("topo_set_pu_id: wrong node type: %u", node->type));
1221	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1222	    ("topo_set_pu_id: cpuset already not empty"));
1223	node->id = id;
1224	CPU_SET(id, &node->cpuset);
1225	node->cpu_count = 1;
1226	node->subtype = 1;
1227
1228	while ((node = node->parent) != NULL) {
1229		KASSERT(!CPU_ISSET(id, &node->cpuset),
1230		    ("logical ID %u is already set in node %p", id, node));
1231		CPU_SET(id, &node->cpuset);
1232		node->cpu_count++;
1233	}
1234}
1235
1236static struct topology_spec {
1237	topo_node_type	type;
1238	bool		match_subtype;
1239	uintptr_t	subtype;
1240} topology_level_table[TOPO_LEVEL_COUNT] = {
1241	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1242	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1243	[TOPO_LEVEL_CACHEGROUP] = {
1244		.type = TOPO_TYPE_CACHE,
1245		.match_subtype = true,
1246		.subtype = CG_SHARE_L3,
1247	},
1248	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1249	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1250};
1251
1252static bool
1253topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1254    struct topo_analysis *results)
1255{
1256	struct topology_spec *spec;
1257	struct topo_node *node;
1258	int count;
1259
1260	if (level >= TOPO_LEVEL_COUNT)
1261		return (true);
1262
1263	spec = &topology_level_table[level];
1264	count = 0;
1265	node = topo_next_node(root, root);
1266
1267	while (node != NULL) {
1268		if (node->type != spec->type ||
1269		    (spec->match_subtype && node->subtype != spec->subtype)) {
1270			node = topo_next_node(root, node);
1271			continue;
1272		}
1273		if (!all && CPU_EMPTY(&node->cpuset)) {
1274			node = topo_next_nonchild_node(root, node);
1275			continue;
1276		}
1277
1278		count++;
1279
1280		if (!topo_analyze_table(node, all, level + 1, results))
1281			return (false);
1282
1283		node = topo_next_nonchild_node(root, node);
1284	}
1285
1286	/* No explicit subgroups is essentially one subgroup. */
1287	if (count == 0) {
1288		count = 1;
1289
1290		if (!topo_analyze_table(root, all, level + 1, results))
1291			return (false);
1292	}
1293
1294	if (results->entities[level] == -1)
1295		results->entities[level] = count;
1296	else if (results->entities[level] != count)
1297		return (false);
1298
1299	return (true);
1300}
1301
1302/*
1303 * Check if the topology is uniform, that is, each package has the same number
1304 * of cores in it and each core has the same number of threads (logical
1305 * processors) in it.  If so, calculate the number of packages, the number of
1306 * groups per package, the number of cachegroups per group, and the number of
1307 * logical processors per cachegroup.  'all' parameter tells whether to include
1308 * administratively disabled logical processors into the analysis.
1309 */
1310int
1311topo_analyze(struct topo_node *topo_root, int all,
1312    struct topo_analysis *results)
1313{
1314
1315	results->entities[TOPO_LEVEL_PKG] = -1;
1316	results->entities[TOPO_LEVEL_CORE] = -1;
1317	results->entities[TOPO_LEVEL_THREAD] = -1;
1318	results->entities[TOPO_LEVEL_GROUP] = -1;
1319	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1320
1321	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1322		return (0);
1323
1324	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1325		("bug in topology or analysis"));
1326
1327	return (1);
1328}
1329
1330#endif /* SMP */
1331