1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD$");
39
40#include "opt_hwpmc_hooks.h"
41#include "opt_sched.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/cpuset.h>
46#include <sys/kernel.h>
47#include <sys/ktr.h>
48#include <sys/lock.h>
49#include <sys/kthread.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sdt.h>
55#include <sys/smp.h>
56#include <sys/sysctl.h>
57#include <sys/sx.h>
58#include <sys/turnstile.h>
59#include <sys/umtx.h>
60#include <machine/pcb.h>
61#include <machine/smp.h>
62
63#ifdef HWPMC_HOOKS
64#include <sys/pmckern.h>
65#endif
66
67#ifdef KDTRACE_HOOKS
68#include <sys/dtrace_bsd.h>
69int __read_mostly		dtrace_vtime_active;
70dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
71#endif
72
73/*
74 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
75 * the range 100-256 Hz (approximately).
76 */
77#define	ESTCPULIM(e) \
78    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
79    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
80#ifdef SMP
81#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
82#else
83#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
84#endif
85#define	NICE_WEIGHT		1	/* Priorities per nice level. */
86
87#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
88
89/*
90 * The schedulable entity that runs a context.
91 * This is  an extension to the thread structure and is tailored to
92 * the requirements of this scheduler.
93 * All fields are protected by the scheduler lock.
94 */
95struct td_sched {
96	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
97	u_int		ts_estcpu;	/* Estimated cpu utilization. */
98	int		ts_cpticks;	/* Ticks of cpu time. */
99	int		ts_slptime;	/* Seconds !RUNNING. */
100	int		ts_slice;	/* Remaining part of time slice. */
101	int		ts_flags;
102	struct runq	*ts_runq;	/* runq the thread is currently on */
103#ifdef KTR
104	char		ts_name[TS_NAME_LEN];
105#endif
106};
107
108/* flags kept in td_flags */
109#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
110#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
111#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
112
113/* flags kept in ts_flags */
114#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
115
116#define SKE_RUNQ_PCPU(ts)						\
117    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
118
119#define	THREAD_CAN_SCHED(td, cpu)	\
120    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
121
122_Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
123    sizeof(struct thread0_storage),
124    "increase struct thread0_storage.t0st_sched size");
125
126static struct mtx sched_lock;
127
128static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
129static int	sched_tdcnt;	/* Total runnable threads in the system. */
130static int	sched_slice = 12; /* Thread run time before rescheduling. */
131
132static void	setup_runqs(void);
133static void	schedcpu(void);
134static void	schedcpu_thread(void);
135static void	sched_priority(struct thread *td, u_char prio);
136static void	sched_setup(void *dummy);
137static void	maybe_resched(struct thread *td);
138static void	updatepri(struct thread *td);
139static void	resetpriority(struct thread *td);
140static void	resetpriority_thread(struct thread *td);
141#ifdef SMP
142static int	sched_pickcpu(struct thread *td);
143static int	forward_wakeup(int cpunum);
144static void	kick_other_cpu(int pri, int cpuid);
145#endif
146
147static struct kproc_desc sched_kp = {
148        "schedcpu",
149        schedcpu_thread,
150        NULL
151};
152SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
153    &sched_kp);
154SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
155
156static void sched_initticks(void *dummy);
157SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
158    NULL);
159
160/*
161 * Global run queue.
162 */
163static struct runq runq;
164
165#ifdef SMP
166/*
167 * Per-CPU run queues
168 */
169static struct runq runq_pcpu[MAXCPU];
170long runq_length[MAXCPU];
171
172static cpuset_t idle_cpus_mask;
173#endif
174
175struct pcpuidlestat {
176	u_int idlecalls;
177	u_int oldidlecalls;
178};
179DPCPU_DEFINE_STATIC(struct pcpuidlestat, idlestat);
180
181static void
182setup_runqs(void)
183{
184#ifdef SMP
185	int i;
186
187	for (i = 0; i < MAXCPU; ++i)
188		runq_init(&runq_pcpu[i]);
189#endif
190
191	runq_init(&runq);
192}
193
194static int
195sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
196{
197	int error, new_val, period;
198
199	period = 1000000 / realstathz;
200	new_val = period * sched_slice;
201	error = sysctl_handle_int(oidp, &new_val, 0, req);
202	if (error != 0 || req->newptr == NULL)
203		return (error);
204	if (new_val <= 0)
205		return (EINVAL);
206	sched_slice = imax(1, (new_val + period / 2) / period);
207	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
208	    realstathz);
209	return (0);
210}
211
212SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
213    "Scheduler");
214
215SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
216    "Scheduler name");
217SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
218    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
219    sysctl_kern_quantum, "I",
220    "Quantum for timeshare threads in microseconds");
221SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
222    "Quantum for timeshare threads in stathz ticks");
223#ifdef SMP
224/* Enable forwarding of wakeups to all other cpus */
225static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup,
226    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
227    "Kernel SMP");
228
229static int runq_fuzz = 1;
230SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
231
232static int forward_wakeup_enabled = 1;
233SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
234	   &forward_wakeup_enabled, 0,
235	   "Forwarding of wakeup to idle CPUs");
236
237static int forward_wakeups_requested = 0;
238SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
239	   &forward_wakeups_requested, 0,
240	   "Requests for Forwarding of wakeup to idle CPUs");
241
242static int forward_wakeups_delivered = 0;
243SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
244	   &forward_wakeups_delivered, 0,
245	   "Completed Forwarding of wakeup to idle CPUs");
246
247static int forward_wakeup_use_mask = 1;
248SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
249	   &forward_wakeup_use_mask, 0,
250	   "Use the mask of idle cpus");
251
252static int forward_wakeup_use_loop = 0;
253SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
254	   &forward_wakeup_use_loop, 0,
255	   "Use a loop to find idle cpus");
256
257#endif
258#if 0
259static int sched_followon = 0;
260SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
261	   &sched_followon, 0,
262	   "allow threads to share a quantum");
263#endif
264
265SDT_PROVIDER_DEFINE(sched);
266
267SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
268    "struct proc *", "uint8_t");
269SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
270    "struct proc *", "void *");
271SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
272    "struct proc *", "void *", "int");
273SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
274    "struct proc *", "uint8_t", "struct thread *");
275SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
276SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
277    "struct proc *");
278SDT_PROBE_DEFINE(sched, , , on__cpu);
279SDT_PROBE_DEFINE(sched, , , remain__cpu);
280SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
281    "struct proc *");
282
283static __inline void
284sched_load_add(void)
285{
286
287	sched_tdcnt++;
288	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
289	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
290}
291
292static __inline void
293sched_load_rem(void)
294{
295
296	sched_tdcnt--;
297	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
298	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
299}
300/*
301 * Arrange to reschedule if necessary, taking the priorities and
302 * schedulers into account.
303 */
304static void
305maybe_resched(struct thread *td)
306{
307
308	THREAD_LOCK_ASSERT(td, MA_OWNED);
309	if (td->td_priority < curthread->td_priority)
310		curthread->td_flags |= TDF_NEEDRESCHED;
311}
312
313/*
314 * This function is called when a thread is about to be put on run queue
315 * because it has been made runnable or its priority has been adjusted.  It
316 * determines if the new thread should preempt the current thread.  If so,
317 * it sets td_owepreempt to request a preemption.
318 */
319int
320maybe_preempt(struct thread *td)
321{
322#ifdef PREEMPTION
323	struct thread *ctd;
324	int cpri, pri;
325
326	/*
327	 * The new thread should not preempt the current thread if any of the
328	 * following conditions are true:
329	 *
330	 *  - The kernel is in the throes of crashing (panicstr).
331	 *  - The current thread has a higher (numerically lower) or
332	 *    equivalent priority.  Note that this prevents curthread from
333	 *    trying to preempt to itself.
334	 *  - The current thread has an inhibitor set or is in the process of
335	 *    exiting.  In this case, the current thread is about to switch
336	 *    out anyways, so there's no point in preempting.  If we did,
337	 *    the current thread would not be properly resumed as well, so
338	 *    just avoid that whole landmine.
339	 *  - If the new thread's priority is not a realtime priority and
340	 *    the current thread's priority is not an idle priority and
341	 *    FULL_PREEMPTION is disabled.
342	 *
343	 * If all of these conditions are false, but the current thread is in
344	 * a nested critical section, then we have to defer the preemption
345	 * until we exit the critical section.  Otherwise, switch immediately
346	 * to the new thread.
347	 */
348	ctd = curthread;
349	THREAD_LOCK_ASSERT(td, MA_OWNED);
350	KASSERT((td->td_inhibitors == 0),
351			("maybe_preempt: trying to run inhibited thread"));
352	pri = td->td_priority;
353	cpri = ctd->td_priority;
354	if (KERNEL_PANICKED() || pri >= cpri /* || dumping */ ||
355	    TD_IS_INHIBITED(ctd))
356		return (0);
357#ifndef FULL_PREEMPTION
358	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
359		return (0);
360#endif
361
362	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
363	ctd->td_owepreempt = 1;
364	return (1);
365#else
366	return (0);
367#endif
368}
369
370/*
371 * Constants for digital decay and forget:
372 *	90% of (ts_estcpu) usage in 5 * loadav time
373 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
374 *          Note that, as ps(1) mentions, this can let percentages
375 *          total over 100% (I've seen 137.9% for 3 processes).
376 *
377 * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
378 *
379 * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
380 * That is, the system wants to compute a value of decay such
381 * that the following for loop:
382 * 	for (i = 0; i < (5 * loadavg); i++)
383 * 		ts_estcpu *= decay;
384 * will compute
385 * 	ts_estcpu *= 0.1;
386 * for all values of loadavg:
387 *
388 * Mathematically this loop can be expressed by saying:
389 * 	decay ** (5 * loadavg) ~= .1
390 *
391 * The system computes decay as:
392 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
393 *
394 * We wish to prove that the system's computation of decay
395 * will always fulfill the equation:
396 * 	decay ** (5 * loadavg) ~= .1
397 *
398 * If we compute b as:
399 * 	b = 2 * loadavg
400 * then
401 * 	decay = b / (b + 1)
402 *
403 * We now need to prove two things:
404 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
405 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
406 *
407 * Facts:
408 *         For x close to zero, exp(x) =~ 1 + x, since
409 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
410 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
411 *         For x close to zero, ln(1+x) =~ x, since
412 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
413 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
414 *         ln(.1) =~ -2.30
415 *
416 * Proof of (1):
417 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
418 *	solving for factor,
419 *      ln(factor) =~ (-2.30/5*loadav), or
420 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
421 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
422 *
423 * Proof of (2):
424 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
425 *	solving for power,
426 *      power*ln(b/(b+1)) =~ -2.30, or
427 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
428 *
429 * Actual power values for the implemented algorithm are as follows:
430 *      loadav: 1       2       3       4
431 *      power:  5.68    10.32   14.94   19.55
432 */
433
434/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
435#define	loadfactor(loadav)	(2 * (loadav))
436#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
437
438/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
439static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
440SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
441    "Decay factor used for updating %CPU");
442
443/*
444 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
445 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
446 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
447 *
448 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
449 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
450 *
451 * If you don't want to bother with the faster/more-accurate formula, you
452 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
453 * (more general) method of calculating the %age of CPU used by a process.
454 */
455#define	CCPU_SHIFT	11
456
457/*
458 * Recompute process priorities, every hz ticks.
459 * MP-safe, called without the Giant mutex.
460 */
461/* ARGSUSED */
462static void
463schedcpu(void)
464{
465	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
466	struct thread *td;
467	struct proc *p;
468	struct td_sched *ts;
469	int awake;
470
471	sx_slock(&allproc_lock);
472	FOREACH_PROC_IN_SYSTEM(p) {
473		PROC_LOCK(p);
474		if (p->p_state == PRS_NEW) {
475			PROC_UNLOCK(p);
476			continue;
477		}
478		FOREACH_THREAD_IN_PROC(p, td) {
479			awake = 0;
480			ts = td_get_sched(td);
481			thread_lock(td);
482			/*
483			 * Increment sleep time (if sleeping).  We
484			 * ignore overflow, as above.
485			 */
486			/*
487			 * The td_sched slptimes are not touched in wakeup
488			 * because the thread may not HAVE everything in
489			 * memory? XXX I think this is out of date.
490			 */
491			if (TD_ON_RUNQ(td)) {
492				awake = 1;
493				td->td_flags &= ~TDF_DIDRUN;
494			} else if (TD_IS_RUNNING(td)) {
495				awake = 1;
496				/* Do not clear TDF_DIDRUN */
497			} else if (td->td_flags & TDF_DIDRUN) {
498				awake = 1;
499				td->td_flags &= ~TDF_DIDRUN;
500			}
501
502			/*
503			 * ts_pctcpu is only for ps and ttyinfo().
504			 */
505			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
506			/*
507			 * If the td_sched has been idle the entire second,
508			 * stop recalculating its priority until
509			 * it wakes up.
510			 */
511			if (ts->ts_cpticks != 0) {
512#if	(FSHIFT >= CCPU_SHIFT)
513				ts->ts_pctcpu += (realstathz == 100)
514				    ? ((fixpt_t) ts->ts_cpticks) <<
515				    (FSHIFT - CCPU_SHIFT) :
516				    100 * (((fixpt_t) ts->ts_cpticks)
517				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
518#else
519				ts->ts_pctcpu += ((FSCALE - ccpu) *
520				    (ts->ts_cpticks *
521				    FSCALE / realstathz)) >> FSHIFT;
522#endif
523				ts->ts_cpticks = 0;
524			}
525			/*
526			 * If there are ANY running threads in this process,
527			 * then don't count it as sleeping.
528			 * XXX: this is broken.
529			 */
530			if (awake) {
531				if (ts->ts_slptime > 1) {
532					/*
533					 * In an ideal world, this should not
534					 * happen, because whoever woke us
535					 * up from the long sleep should have
536					 * unwound the slptime and reset our
537					 * priority before we run at the stale
538					 * priority.  Should KASSERT at some
539					 * point when all the cases are fixed.
540					 */
541					updatepri(td);
542				}
543				ts->ts_slptime = 0;
544			} else
545				ts->ts_slptime++;
546			if (ts->ts_slptime > 1) {
547				thread_unlock(td);
548				continue;
549			}
550			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
551		      	resetpriority(td);
552			resetpriority_thread(td);
553			thread_unlock(td);
554		}
555		PROC_UNLOCK(p);
556	}
557	sx_sunlock(&allproc_lock);
558}
559
560/*
561 * Main loop for a kthread that executes schedcpu once a second.
562 */
563static void
564schedcpu_thread(void)
565{
566
567	for (;;) {
568		schedcpu();
569		pause("-", hz);
570	}
571}
572
573/*
574 * Recalculate the priority of a process after it has slept for a while.
575 * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
576 * least six times the loadfactor will decay ts_estcpu to zero.
577 */
578static void
579updatepri(struct thread *td)
580{
581	struct td_sched *ts;
582	fixpt_t loadfac;
583	unsigned int newcpu;
584
585	ts = td_get_sched(td);
586	loadfac = loadfactor(averunnable.ldavg[0]);
587	if (ts->ts_slptime > 5 * loadfac)
588		ts->ts_estcpu = 0;
589	else {
590		newcpu = ts->ts_estcpu;
591		ts->ts_slptime--;	/* was incremented in schedcpu() */
592		while (newcpu && --ts->ts_slptime)
593			newcpu = decay_cpu(loadfac, newcpu);
594		ts->ts_estcpu = newcpu;
595	}
596}
597
598/*
599 * Compute the priority of a process when running in user mode.
600 * Arrange to reschedule if the resulting priority is better
601 * than that of the current process.
602 */
603static void
604resetpriority(struct thread *td)
605{
606	u_int newpriority;
607
608	if (td->td_pri_class != PRI_TIMESHARE)
609		return;
610	newpriority = PUSER +
611	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
612	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
613	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
614	    PRI_MAX_TIMESHARE);
615	sched_user_prio(td, newpriority);
616}
617
618/*
619 * Update the thread's priority when the associated process's user
620 * priority changes.
621 */
622static void
623resetpriority_thread(struct thread *td)
624{
625
626	/* Only change threads with a time sharing user priority. */
627	if (td->td_priority < PRI_MIN_TIMESHARE ||
628	    td->td_priority > PRI_MAX_TIMESHARE)
629		return;
630
631	/* XXX the whole needresched thing is broken, but not silly. */
632	maybe_resched(td);
633
634	sched_prio(td, td->td_user_pri);
635}
636
637/* ARGSUSED */
638static void
639sched_setup(void *dummy)
640{
641
642	setup_runqs();
643
644	/* Account for thread0. */
645	sched_load_add();
646}
647
648/*
649 * This routine determines time constants after stathz and hz are setup.
650 */
651static void
652sched_initticks(void *dummy)
653{
654
655	realstathz = stathz ? stathz : hz;
656	sched_slice = realstathz / 10;	/* ~100ms */
657	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
658	    realstathz);
659}
660
661/* External interfaces start here */
662
663/*
664 * Very early in the boot some setup of scheduler-specific
665 * parts of proc0 and of some scheduler resources needs to be done.
666 * Called from:
667 *  proc0_init()
668 */
669void
670schedinit(void)
671{
672
673	/*
674	 * Set up the scheduler specific parts of thread0.
675	 */
676	thread0.td_lock = &sched_lock;
677	td_get_sched(&thread0)->ts_slice = sched_slice;
678	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN);
679}
680
681int
682sched_runnable(void)
683{
684#ifdef SMP
685	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
686#else
687	return runq_check(&runq);
688#endif
689}
690
691int
692sched_rr_interval(void)
693{
694
695	/* Convert sched_slice from stathz to hz. */
696	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
697}
698
699/*
700 * We adjust the priority of the current process.  The priority of a
701 * process gets worse as it accumulates CPU time.  The cpu usage
702 * estimator (ts_estcpu) is increased here.  resetpriority() will
703 * compute a different priority each time ts_estcpu increases by
704 * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
705 * cpu usage estimator ramps up quite quickly when the process is
706 * running (linearly), and decays away exponentially, at a rate which
707 * is proportionally slower when the system is busy.  The basic
708 * principle is that the system will 90% forget that the process used
709 * a lot of CPU time in 5 * loadav seconds.  This causes the system to
710 * favor processes which haven't run much recently, and to round-robin
711 * among other processes.
712 */
713static void
714sched_clock_tick(struct thread *td)
715{
716	struct pcpuidlestat *stat;
717	struct td_sched *ts;
718
719	THREAD_LOCK_ASSERT(td, MA_OWNED);
720	ts = td_get_sched(td);
721
722	ts->ts_cpticks++;
723	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
724	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
725		resetpriority(td);
726		resetpriority_thread(td);
727	}
728
729	/*
730	 * Force a context switch if the current thread has used up a full
731	 * time slice (default is 100ms).
732	 */
733	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
734		ts->ts_slice = sched_slice;
735		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
736	}
737
738	stat = DPCPU_PTR(idlestat);
739	stat->oldidlecalls = stat->idlecalls;
740	stat->idlecalls = 0;
741}
742
743void
744sched_clock(struct thread *td, int cnt)
745{
746
747	for ( ; cnt > 0; cnt--)
748		sched_clock_tick(td);
749}
750
751/*
752 * Charge child's scheduling CPU usage to parent.
753 */
754void
755sched_exit(struct proc *p, struct thread *td)
756{
757
758	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
759	    "prio:%d", td->td_priority);
760
761	PROC_LOCK_ASSERT(p, MA_OWNED);
762	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
763}
764
765void
766sched_exit_thread(struct thread *td, struct thread *child)
767{
768
769	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
770	    "prio:%d", child->td_priority);
771	thread_lock(td);
772	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
773	    td_get_sched(child)->ts_estcpu);
774	thread_unlock(td);
775	thread_lock(child);
776	if ((child->td_flags & TDF_NOLOAD) == 0)
777		sched_load_rem();
778	thread_unlock(child);
779}
780
781void
782sched_fork(struct thread *td, struct thread *childtd)
783{
784	sched_fork_thread(td, childtd);
785}
786
787void
788sched_fork_thread(struct thread *td, struct thread *childtd)
789{
790	struct td_sched *ts, *tsc;
791
792	childtd->td_oncpu = NOCPU;
793	childtd->td_lastcpu = NOCPU;
794	childtd->td_lock = &sched_lock;
795	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
796	childtd->td_domain.dr_policy = td->td_cpuset->cs_domain;
797	childtd->td_priority = childtd->td_base_pri;
798	ts = td_get_sched(childtd);
799	bzero(ts, sizeof(*ts));
800	tsc = td_get_sched(td);
801	ts->ts_estcpu = tsc->ts_estcpu;
802	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
803	ts->ts_slice = 1;
804}
805
806void
807sched_nice(struct proc *p, int nice)
808{
809	struct thread *td;
810
811	PROC_LOCK_ASSERT(p, MA_OWNED);
812	p->p_nice = nice;
813	FOREACH_THREAD_IN_PROC(p, td) {
814		thread_lock(td);
815		resetpriority(td);
816		resetpriority_thread(td);
817		thread_unlock(td);
818	}
819}
820
821void
822sched_class(struct thread *td, int class)
823{
824	THREAD_LOCK_ASSERT(td, MA_OWNED);
825	td->td_pri_class = class;
826}
827
828/*
829 * Adjust the priority of a thread.
830 */
831static void
832sched_priority(struct thread *td, u_char prio)
833{
834
835	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
836	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
837	    sched_tdname(curthread));
838	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
839	if (td != curthread && prio > td->td_priority) {
840		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
841		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
842		    prio, KTR_ATTR_LINKED, sched_tdname(td));
843		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
844		    curthread);
845	}
846	THREAD_LOCK_ASSERT(td, MA_OWNED);
847	if (td->td_priority == prio)
848		return;
849	td->td_priority = prio;
850	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
851		sched_rem(td);
852		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
853	}
854}
855
856/*
857 * Update a thread's priority when it is lent another thread's
858 * priority.
859 */
860void
861sched_lend_prio(struct thread *td, u_char prio)
862{
863
864	td->td_flags |= TDF_BORROWING;
865	sched_priority(td, prio);
866}
867
868/*
869 * Restore a thread's priority when priority propagation is
870 * over.  The prio argument is the minimum priority the thread
871 * needs to have to satisfy other possible priority lending
872 * requests.  If the thread's regulary priority is less
873 * important than prio the thread will keep a priority boost
874 * of prio.
875 */
876void
877sched_unlend_prio(struct thread *td, u_char prio)
878{
879	u_char base_pri;
880
881	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
882	    td->td_base_pri <= PRI_MAX_TIMESHARE)
883		base_pri = td->td_user_pri;
884	else
885		base_pri = td->td_base_pri;
886	if (prio >= base_pri) {
887		td->td_flags &= ~TDF_BORROWING;
888		sched_prio(td, base_pri);
889	} else
890		sched_lend_prio(td, prio);
891}
892
893void
894sched_prio(struct thread *td, u_char prio)
895{
896	u_char oldprio;
897
898	/* First, update the base priority. */
899	td->td_base_pri = prio;
900
901	/*
902	 * If the thread is borrowing another thread's priority, don't ever
903	 * lower the priority.
904	 */
905	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
906		return;
907
908	/* Change the real priority. */
909	oldprio = td->td_priority;
910	sched_priority(td, prio);
911
912	/*
913	 * If the thread is on a turnstile, then let the turnstile update
914	 * its state.
915	 */
916	if (TD_ON_LOCK(td) && oldprio != prio)
917		turnstile_adjust(td, oldprio);
918}
919
920void
921sched_user_prio(struct thread *td, u_char prio)
922{
923
924	THREAD_LOCK_ASSERT(td, MA_OWNED);
925	td->td_base_user_pri = prio;
926	if (td->td_lend_user_pri <= prio)
927		return;
928	td->td_user_pri = prio;
929}
930
931void
932sched_lend_user_prio(struct thread *td, u_char prio)
933{
934
935	THREAD_LOCK_ASSERT(td, MA_OWNED);
936	td->td_lend_user_pri = prio;
937	td->td_user_pri = min(prio, td->td_base_user_pri);
938	if (td->td_priority > td->td_user_pri)
939		sched_prio(td, td->td_user_pri);
940	else if (td->td_priority != td->td_user_pri)
941		td->td_flags |= TDF_NEEDRESCHED;
942}
943
944/*
945 * Like the above but first check if there is anything to do.
946 */
947void
948sched_lend_user_prio_cond(struct thread *td, u_char prio)
949{
950
951	if (td->td_lend_user_pri != prio)
952		goto lend;
953	if (td->td_user_pri != min(prio, td->td_base_user_pri))
954		goto lend;
955	if (td->td_priority != td->td_user_pri)
956		goto lend;
957	return;
958
959lend:
960	thread_lock(td);
961	sched_lend_user_prio(td, prio);
962	thread_unlock(td);
963}
964
965void
966sched_sleep(struct thread *td, int pri)
967{
968
969	THREAD_LOCK_ASSERT(td, MA_OWNED);
970	td->td_slptick = ticks;
971	td_get_sched(td)->ts_slptime = 0;
972	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
973		sched_prio(td, pri);
974	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
975		td->td_flags |= TDF_CANSWAP;
976}
977
978void
979sched_switch(struct thread *td, int flags)
980{
981	struct thread *newtd;
982	struct mtx *tmtx;
983	struct td_sched *ts;
984	struct proc *p;
985	int preempted;
986
987	tmtx = &sched_lock;
988	ts = td_get_sched(td);
989	p = td->td_proc;
990
991	THREAD_LOCK_ASSERT(td, MA_OWNED);
992
993	td->td_lastcpu = td->td_oncpu;
994	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
995	    (flags & SW_PREEMPT) != 0;
996	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
997	td->td_owepreempt = 0;
998	td->td_oncpu = NOCPU;
999
1000	/*
1001	 * At the last moment, if this thread is still marked RUNNING,
1002	 * then put it back on the run queue as it has not been suspended
1003	 * or stopped or any thing else similar.  We never put the idle
1004	 * threads on the run queue, however.
1005	 */
1006	if (td->td_flags & TDF_IDLETD) {
1007		TD_SET_CAN_RUN(td);
1008#ifdef SMP
1009		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1010#endif
1011	} else {
1012		if (TD_IS_RUNNING(td)) {
1013			/* Put us back on the run queue. */
1014			sched_add(td, preempted ?
1015			    SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1016			    SRQ_HOLDTD|SRQ_OURSELF|SRQ_YIELDING);
1017		}
1018	}
1019
1020	/*
1021	 * Switch to the sched lock to fix things up and pick
1022	 * a new thread.  Block the td_lock in order to avoid
1023	 * breaking the critical path.
1024	 */
1025	if (td->td_lock != &sched_lock) {
1026		mtx_lock_spin(&sched_lock);
1027		tmtx = thread_lock_block(td);
1028		mtx_unlock_spin(tmtx);
1029	}
1030
1031	if ((td->td_flags & TDF_NOLOAD) == 0)
1032		sched_load_rem();
1033
1034	newtd = choosethread();
1035	MPASS(newtd->td_lock == &sched_lock);
1036
1037#if (KTR_COMPILE & KTR_SCHED) != 0
1038	if (TD_IS_IDLETHREAD(td))
1039		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
1040		    "prio:%d", td->td_priority);
1041	else
1042		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
1043		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
1044		    "lockname:\"%s\"", td->td_lockname);
1045#endif
1046
1047	if (td != newtd) {
1048#ifdef	HWPMC_HOOKS
1049		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1050			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1051#endif
1052
1053		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1054
1055                /* I feel sleepy */
1056		lock_profile_release_lock(&sched_lock.lock_object, true);
1057#ifdef KDTRACE_HOOKS
1058		/*
1059		 * If DTrace has set the active vtime enum to anything
1060		 * other than INACTIVE (0), then it should have set the
1061		 * function to call.
1062		 */
1063		if (dtrace_vtime_active)
1064			(*dtrace_vtime_switch_func)(newtd);
1065#endif
1066
1067		cpu_switch(td, newtd, tmtx);
1068		lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
1069		    0, 0, __FILE__, __LINE__);
1070		/*
1071		 * Where am I?  What year is it?
1072		 * We are in the same thread that went to sleep above,
1073		 * but any amount of time may have passed. All our context
1074		 * will still be available as will local variables.
1075		 * PCPU values however may have changed as we may have
1076		 * changed CPU so don't trust cached values of them.
1077		 * New threads will go to fork_exit() instead of here
1078		 * so if you change things here you may need to change
1079		 * things there too.
1080		 *
1081		 * If the thread above was exiting it will never wake
1082		 * up again here, so either it has saved everything it
1083		 * needed to, or the thread_wait() or wait() will
1084		 * need to reap it.
1085		 */
1086
1087		SDT_PROBE0(sched, , , on__cpu);
1088#ifdef	HWPMC_HOOKS
1089		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1090			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1091#endif
1092	} else {
1093		td->td_lock = &sched_lock;
1094		SDT_PROBE0(sched, , , remain__cpu);
1095	}
1096
1097	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1098	    "prio:%d", td->td_priority);
1099
1100#ifdef SMP
1101	if (td->td_flags & TDF_IDLETD)
1102		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1103#endif
1104	sched_lock.mtx_lock = (uintptr_t)td;
1105	td->td_oncpu = PCPU_GET(cpuid);
1106	spinlock_enter();
1107	mtx_unlock_spin(&sched_lock);
1108}
1109
1110void
1111sched_wakeup(struct thread *td, int srqflags)
1112{
1113	struct td_sched *ts;
1114
1115	THREAD_LOCK_ASSERT(td, MA_OWNED);
1116	ts = td_get_sched(td);
1117	td->td_flags &= ~TDF_CANSWAP;
1118	if (ts->ts_slptime > 1) {
1119		updatepri(td);
1120		resetpriority(td);
1121	}
1122	td->td_slptick = 0;
1123	ts->ts_slptime = 0;
1124	ts->ts_slice = sched_slice;
1125	sched_add(td, srqflags);
1126}
1127
1128#ifdef SMP
1129static int
1130forward_wakeup(int cpunum)
1131{
1132	struct pcpu *pc;
1133	cpuset_t dontuse, map, map2;
1134	u_int id, me;
1135	int iscpuset;
1136
1137	mtx_assert(&sched_lock, MA_OWNED);
1138
1139	CTR0(KTR_RUNQ, "forward_wakeup()");
1140
1141	if ((!forward_wakeup_enabled) ||
1142	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1143		return (0);
1144	if (!smp_started || KERNEL_PANICKED())
1145		return (0);
1146
1147	forward_wakeups_requested++;
1148
1149	/*
1150	 * Check the idle mask we received against what we calculated
1151	 * before in the old version.
1152	 */
1153	me = PCPU_GET(cpuid);
1154
1155	/* Don't bother if we should be doing it ourself. */
1156	if (CPU_ISSET(me, &idle_cpus_mask) &&
1157	    (cpunum == NOCPU || me == cpunum))
1158		return (0);
1159
1160	CPU_SETOF(me, &dontuse);
1161	CPU_OR(&dontuse, &stopped_cpus);
1162	CPU_OR(&dontuse, &hlt_cpus_mask);
1163	CPU_ZERO(&map2);
1164	if (forward_wakeup_use_loop) {
1165		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1166			id = pc->pc_cpuid;
1167			if (!CPU_ISSET(id, &dontuse) &&
1168			    pc->pc_curthread == pc->pc_idlethread) {
1169				CPU_SET(id, &map2);
1170			}
1171		}
1172	}
1173
1174	if (forward_wakeup_use_mask) {
1175		map = idle_cpus_mask;
1176		CPU_ANDNOT(&map, &dontuse);
1177
1178		/* If they are both on, compare and use loop if different. */
1179		if (forward_wakeup_use_loop) {
1180			if (CPU_CMP(&map, &map2)) {
1181				printf("map != map2, loop method preferred\n");
1182				map = map2;
1183			}
1184		}
1185	} else {
1186		map = map2;
1187	}
1188
1189	/* If we only allow a specific CPU, then mask off all the others. */
1190	if (cpunum != NOCPU) {
1191		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1192		iscpuset = CPU_ISSET(cpunum, &map);
1193		if (iscpuset == 0)
1194			CPU_ZERO(&map);
1195		else
1196			CPU_SETOF(cpunum, &map);
1197	}
1198	if (!CPU_EMPTY(&map)) {
1199		forward_wakeups_delivered++;
1200		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1201			id = pc->pc_cpuid;
1202			if (!CPU_ISSET(id, &map))
1203				continue;
1204			if (cpu_idle_wakeup(pc->pc_cpuid))
1205				CPU_CLR(id, &map);
1206		}
1207		if (!CPU_EMPTY(&map))
1208			ipi_selected(map, IPI_AST);
1209		return (1);
1210	}
1211	if (cpunum == NOCPU)
1212		printf("forward_wakeup: Idle processor not found\n");
1213	return (0);
1214}
1215
1216static void
1217kick_other_cpu(int pri, int cpuid)
1218{
1219	struct pcpu *pcpu;
1220	int cpri;
1221
1222	pcpu = pcpu_find(cpuid);
1223	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1224		forward_wakeups_delivered++;
1225		if (!cpu_idle_wakeup(cpuid))
1226			ipi_cpu(cpuid, IPI_AST);
1227		return;
1228	}
1229
1230	cpri = pcpu->pc_curthread->td_priority;
1231	if (pri >= cpri)
1232		return;
1233
1234#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1235#if !defined(FULL_PREEMPTION)
1236	if (pri <= PRI_MAX_ITHD)
1237#endif /* ! FULL_PREEMPTION */
1238	{
1239		ipi_cpu(cpuid, IPI_PREEMPT);
1240		return;
1241	}
1242#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1243
1244	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1245	ipi_cpu(cpuid, IPI_AST);
1246	return;
1247}
1248#endif /* SMP */
1249
1250#ifdef SMP
1251static int
1252sched_pickcpu(struct thread *td)
1253{
1254	int best, cpu;
1255
1256	mtx_assert(&sched_lock, MA_OWNED);
1257
1258	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
1259		best = td->td_lastcpu;
1260	else
1261		best = NOCPU;
1262	CPU_FOREACH(cpu) {
1263		if (!THREAD_CAN_SCHED(td, cpu))
1264			continue;
1265
1266		if (best == NOCPU)
1267			best = cpu;
1268		else if (runq_length[cpu] < runq_length[best])
1269			best = cpu;
1270	}
1271	KASSERT(best != NOCPU, ("no valid CPUs"));
1272
1273	return (best);
1274}
1275#endif
1276
1277void
1278sched_add(struct thread *td, int flags)
1279#ifdef SMP
1280{
1281	cpuset_t tidlemsk;
1282	struct td_sched *ts;
1283	u_int cpu, cpuid;
1284	int forwarded = 0;
1285	int single_cpu = 0;
1286
1287	ts = td_get_sched(td);
1288	THREAD_LOCK_ASSERT(td, MA_OWNED);
1289	KASSERT((td->td_inhibitors == 0),
1290	    ("sched_add: trying to run inhibited thread"));
1291	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1292	    ("sched_add: bad thread state"));
1293	KASSERT(td->td_flags & TDF_INMEM,
1294	    ("sched_add: thread swapped out"));
1295
1296	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1297	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1298	    sched_tdname(curthread));
1299	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1300	    KTR_ATTR_LINKED, sched_tdname(td));
1301	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1302	    flags & SRQ_PREEMPTED);
1303
1304	/*
1305	 * Now that the thread is moving to the run-queue, set the lock
1306	 * to the scheduler's lock.
1307	 */
1308	if (td->td_lock != &sched_lock) {
1309		mtx_lock_spin(&sched_lock);
1310		if ((flags & SRQ_HOLD) != 0)
1311			td->td_lock = &sched_lock;
1312		else
1313			thread_lock_set(td, &sched_lock);
1314	}
1315	TD_SET_RUNQ(td);
1316
1317	/*
1318	 * If SMP is started and the thread is pinned or otherwise limited to
1319	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1320	 * Otherwise, queue the thread to the global run queue.
1321	 *
1322	 * If SMP has not yet been started we must use the global run queue
1323	 * as per-CPU state may not be initialized yet and we may crash if we
1324	 * try to access the per-CPU run queues.
1325	 */
1326	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1327	    ts->ts_flags & TSF_AFFINITY)) {
1328		if (td->td_pinned != 0)
1329			cpu = td->td_lastcpu;
1330		else if (td->td_flags & TDF_BOUND) {
1331			/* Find CPU from bound runq. */
1332			KASSERT(SKE_RUNQ_PCPU(ts),
1333			    ("sched_add: bound td_sched not on cpu runq"));
1334			cpu = ts->ts_runq - &runq_pcpu[0];
1335		} else
1336			/* Find a valid CPU for our cpuset */
1337			cpu = sched_pickcpu(td);
1338		ts->ts_runq = &runq_pcpu[cpu];
1339		single_cpu = 1;
1340		CTR3(KTR_RUNQ,
1341		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1342		    cpu);
1343	} else {
1344		CTR2(KTR_RUNQ,
1345		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1346		    td);
1347		cpu = NOCPU;
1348		ts->ts_runq = &runq;
1349	}
1350
1351	if ((td->td_flags & TDF_NOLOAD) == 0)
1352		sched_load_add();
1353	runq_add(ts->ts_runq, td, flags);
1354	if (cpu != NOCPU)
1355		runq_length[cpu]++;
1356
1357	cpuid = PCPU_GET(cpuid);
1358	if (single_cpu && cpu != cpuid) {
1359	        kick_other_cpu(td->td_priority, cpu);
1360	} else {
1361		if (!single_cpu) {
1362			tidlemsk = idle_cpus_mask;
1363			CPU_ANDNOT(&tidlemsk, &hlt_cpus_mask);
1364			CPU_CLR(cpuid, &tidlemsk);
1365
1366			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1367			    ((flags & SRQ_INTR) == 0) &&
1368			    !CPU_EMPTY(&tidlemsk))
1369				forwarded = forward_wakeup(cpu);
1370		}
1371
1372		if (!forwarded) {
1373			if (!maybe_preempt(td))
1374				maybe_resched(td);
1375		}
1376	}
1377	if ((flags & SRQ_HOLDTD) == 0)
1378		thread_unlock(td);
1379}
1380#else /* SMP */
1381{
1382	struct td_sched *ts;
1383
1384	ts = td_get_sched(td);
1385	THREAD_LOCK_ASSERT(td, MA_OWNED);
1386	KASSERT((td->td_inhibitors == 0),
1387	    ("sched_add: trying to run inhibited thread"));
1388	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1389	    ("sched_add: bad thread state"));
1390	KASSERT(td->td_flags & TDF_INMEM,
1391	    ("sched_add: thread swapped out"));
1392	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1393	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1394	    sched_tdname(curthread));
1395	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1396	    KTR_ATTR_LINKED, sched_tdname(td));
1397	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1398	    flags & SRQ_PREEMPTED);
1399
1400	/*
1401	 * Now that the thread is moving to the run-queue, set the lock
1402	 * to the scheduler's lock.
1403	 */
1404	if (td->td_lock != &sched_lock) {
1405		mtx_lock_spin(&sched_lock);
1406		if ((flags & SRQ_HOLD) != 0)
1407			td->td_lock = &sched_lock;
1408		else
1409			thread_lock_set(td, &sched_lock);
1410	}
1411	TD_SET_RUNQ(td);
1412	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1413	ts->ts_runq = &runq;
1414
1415	if ((td->td_flags & TDF_NOLOAD) == 0)
1416		sched_load_add();
1417	runq_add(ts->ts_runq, td, flags);
1418	if (!maybe_preempt(td))
1419		maybe_resched(td);
1420	if ((flags & SRQ_HOLDTD) == 0)
1421		thread_unlock(td);
1422}
1423#endif /* SMP */
1424
1425void
1426sched_rem(struct thread *td)
1427{
1428	struct td_sched *ts;
1429
1430	ts = td_get_sched(td);
1431	KASSERT(td->td_flags & TDF_INMEM,
1432	    ("sched_rem: thread swapped out"));
1433	KASSERT(TD_ON_RUNQ(td),
1434	    ("sched_rem: thread not on run queue"));
1435	mtx_assert(&sched_lock, MA_OWNED);
1436	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1437	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1438	    sched_tdname(curthread));
1439	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1440
1441	if ((td->td_flags & TDF_NOLOAD) == 0)
1442		sched_load_rem();
1443#ifdef SMP
1444	if (ts->ts_runq != &runq)
1445		runq_length[ts->ts_runq - runq_pcpu]--;
1446#endif
1447	runq_remove(ts->ts_runq, td);
1448	TD_SET_CAN_RUN(td);
1449}
1450
1451/*
1452 * Select threads to run.  Note that running threads still consume a
1453 * slot.
1454 */
1455struct thread *
1456sched_choose(void)
1457{
1458	struct thread *td;
1459	struct runq *rq;
1460
1461	mtx_assert(&sched_lock,  MA_OWNED);
1462#ifdef SMP
1463	struct thread *tdcpu;
1464
1465	rq = &runq;
1466	td = runq_choose_fuzz(&runq, runq_fuzz);
1467	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1468
1469	if (td == NULL ||
1470	    (tdcpu != NULL &&
1471	     tdcpu->td_priority < td->td_priority)) {
1472		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1473		     PCPU_GET(cpuid));
1474		td = tdcpu;
1475		rq = &runq_pcpu[PCPU_GET(cpuid)];
1476	} else {
1477		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1478	}
1479
1480#else
1481	rq = &runq;
1482	td = runq_choose(&runq);
1483#endif
1484
1485	if (td) {
1486#ifdef SMP
1487		if (td == tdcpu)
1488			runq_length[PCPU_GET(cpuid)]--;
1489#endif
1490		runq_remove(rq, td);
1491		td->td_flags |= TDF_DIDRUN;
1492
1493		KASSERT(td->td_flags & TDF_INMEM,
1494		    ("sched_choose: thread swapped out"));
1495		return (td);
1496	}
1497	return (PCPU_GET(idlethread));
1498}
1499
1500void
1501sched_preempt(struct thread *td)
1502{
1503
1504	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1505	if (td->td_critnest > 1) {
1506		td->td_owepreempt = 1;
1507	} else {
1508		thread_lock(td);
1509		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT);
1510	}
1511}
1512
1513void
1514sched_userret_slowpath(struct thread *td)
1515{
1516
1517	thread_lock(td);
1518	td->td_priority = td->td_user_pri;
1519	td->td_base_pri = td->td_user_pri;
1520	thread_unlock(td);
1521}
1522
1523void
1524sched_bind(struct thread *td, int cpu)
1525{
1526	struct td_sched *ts;
1527
1528	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1529	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1530
1531	ts = td_get_sched(td);
1532
1533	td->td_flags |= TDF_BOUND;
1534#ifdef SMP
1535	ts->ts_runq = &runq_pcpu[cpu];
1536	if (PCPU_GET(cpuid) == cpu)
1537		return;
1538
1539	mi_switch(SW_VOL);
1540	thread_lock(td);
1541#endif
1542}
1543
1544void
1545sched_unbind(struct thread* td)
1546{
1547	THREAD_LOCK_ASSERT(td, MA_OWNED);
1548	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1549	td->td_flags &= ~TDF_BOUND;
1550}
1551
1552int
1553sched_is_bound(struct thread *td)
1554{
1555	THREAD_LOCK_ASSERT(td, MA_OWNED);
1556	return (td->td_flags & TDF_BOUND);
1557}
1558
1559void
1560sched_relinquish(struct thread *td)
1561{
1562	thread_lock(td);
1563	mi_switch(SW_VOL | SWT_RELINQUISH);
1564}
1565
1566int
1567sched_load(void)
1568{
1569	return (sched_tdcnt);
1570}
1571
1572int
1573sched_sizeof_proc(void)
1574{
1575	return (sizeof(struct proc));
1576}
1577
1578int
1579sched_sizeof_thread(void)
1580{
1581	return (sizeof(struct thread) + sizeof(struct td_sched));
1582}
1583
1584fixpt_t
1585sched_pctcpu(struct thread *td)
1586{
1587	struct td_sched *ts;
1588
1589	THREAD_LOCK_ASSERT(td, MA_OWNED);
1590	ts = td_get_sched(td);
1591	return (ts->ts_pctcpu);
1592}
1593
1594#ifdef RACCT
1595/*
1596 * Calculates the contribution to the thread cpu usage for the latest
1597 * (unfinished) second.
1598 */
1599fixpt_t
1600sched_pctcpu_delta(struct thread *td)
1601{
1602	struct td_sched *ts;
1603	fixpt_t delta;
1604	int realstathz;
1605
1606	THREAD_LOCK_ASSERT(td, MA_OWNED);
1607	ts = td_get_sched(td);
1608	delta = 0;
1609	realstathz = stathz ? stathz : hz;
1610	if (ts->ts_cpticks != 0) {
1611#if	(FSHIFT >= CCPU_SHIFT)
1612		delta = (realstathz == 100)
1613		    ? ((fixpt_t) ts->ts_cpticks) <<
1614		    (FSHIFT - CCPU_SHIFT) :
1615		    100 * (((fixpt_t) ts->ts_cpticks)
1616		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1617#else
1618		delta = ((FSCALE - ccpu) *
1619		    (ts->ts_cpticks *
1620		    FSCALE / realstathz)) >> FSHIFT;
1621#endif
1622	}
1623
1624	return (delta);
1625}
1626#endif
1627
1628u_int
1629sched_estcpu(struct thread *td)
1630{
1631
1632	return (td_get_sched(td)->ts_estcpu);
1633}
1634
1635/*
1636 * The actual idle process.
1637 */
1638void
1639sched_idletd(void *dummy)
1640{
1641	struct pcpuidlestat *stat;
1642
1643	THREAD_NO_SLEEPING();
1644	stat = DPCPU_PTR(idlestat);
1645	for (;;) {
1646		mtx_assert(&Giant, MA_NOTOWNED);
1647
1648		while (sched_runnable() == 0) {
1649			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1650			stat->idlecalls++;
1651		}
1652
1653		mtx_lock_spin(&sched_lock);
1654		mi_switch(SW_VOL | SWT_IDLE);
1655	}
1656}
1657
1658/*
1659 * A CPU is entering for the first time or a thread is exiting.
1660 */
1661void
1662sched_throw(struct thread *td)
1663{
1664	/*
1665	 * Correct spinlock nesting.  The idle thread context that we are
1666	 * borrowing was created so that it would start out with a single
1667	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1668	 * explicitly acquired locks in this function, the nesting count
1669	 * is now 2 rather than 1.  Since we are nested, calling
1670	 * spinlock_exit() will simply adjust the counts without allowing
1671	 * spin lock using code to interrupt us.
1672	 */
1673	if (td == NULL) {
1674		mtx_lock_spin(&sched_lock);
1675		spinlock_exit();
1676		PCPU_SET(switchtime, cpu_ticks());
1677		PCPU_SET(switchticks, ticks);
1678	} else {
1679		lock_profile_release_lock(&sched_lock.lock_object, true);
1680		MPASS(td->td_lock == &sched_lock);
1681		td->td_lastcpu = td->td_oncpu;
1682		td->td_oncpu = NOCPU;
1683	}
1684	mtx_assert(&sched_lock, MA_OWNED);
1685	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1686	cpu_throw(td, choosethread());	/* doesn't return */
1687}
1688
1689void
1690sched_fork_exit(struct thread *td)
1691{
1692
1693	/*
1694	 * Finish setting up thread glue so that it begins execution in a
1695	 * non-nested critical section with sched_lock held but not recursed.
1696	 */
1697	td->td_oncpu = PCPU_GET(cpuid);
1698	sched_lock.mtx_lock = (uintptr_t)td;
1699	lock_profile_obtain_lock_success(&sched_lock.lock_object, true,
1700	    0, 0, __FILE__, __LINE__);
1701	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1702
1703	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1704	    "prio:%d", td->td_priority);
1705	SDT_PROBE0(sched, , , on__cpu);
1706}
1707
1708char *
1709sched_tdname(struct thread *td)
1710{
1711#ifdef KTR
1712	struct td_sched *ts;
1713
1714	ts = td_get_sched(td);
1715	if (ts->ts_name[0] == '\0')
1716		snprintf(ts->ts_name, sizeof(ts->ts_name),
1717		    "%s tid %d", td->td_name, td->td_tid);
1718	return (ts->ts_name);
1719#else
1720	return (td->td_name);
1721#endif
1722}
1723
1724#ifdef KTR
1725void
1726sched_clear_tdname(struct thread *td)
1727{
1728	struct td_sched *ts;
1729
1730	ts = td_get_sched(td);
1731	ts->ts_name[0] = '\0';
1732}
1733#endif
1734
1735void
1736sched_affinity(struct thread *td)
1737{
1738#ifdef SMP
1739	struct td_sched *ts;
1740	int cpu;
1741
1742	THREAD_LOCK_ASSERT(td, MA_OWNED);
1743
1744	/*
1745	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1746	 * thread can't run on.
1747	 */
1748	ts = td_get_sched(td);
1749	ts->ts_flags &= ~TSF_AFFINITY;
1750	CPU_FOREACH(cpu) {
1751		if (!THREAD_CAN_SCHED(td, cpu)) {
1752			ts->ts_flags |= TSF_AFFINITY;
1753			break;
1754		}
1755	}
1756
1757	/*
1758	 * If this thread can run on all CPUs, nothing else to do.
1759	 */
1760	if (!(ts->ts_flags & TSF_AFFINITY))
1761		return;
1762
1763	/* Pinned threads and bound threads should be left alone. */
1764	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1765		return;
1766
1767	switch (td->td_state) {
1768	case TDS_RUNQ:
1769		/*
1770		 * If we are on a per-CPU runqueue that is in the set,
1771		 * then nothing needs to be done.
1772		 */
1773		if (ts->ts_runq != &runq &&
1774		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1775			return;
1776
1777		/* Put this thread on a valid per-CPU runqueue. */
1778		sched_rem(td);
1779		sched_add(td, SRQ_HOLDTD | SRQ_BORING);
1780		break;
1781	case TDS_RUNNING:
1782		/*
1783		 * See if our current CPU is in the set.  If not, force a
1784		 * context switch.
1785		 */
1786		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1787			return;
1788
1789		td->td_flags |= TDF_NEEDRESCHED;
1790		if (td != curthread)
1791			ipi_cpu(cpu, IPI_AST);
1792		break;
1793	default:
1794		break;
1795	}
1796#endif
1797}
1798