1/*-
2 ***********************************************************************
3 *								       *
4 * Copyright (c) David L. Mills 1993-2001			       *
5 *								       *
6 * Permission to use, copy, modify, and distribute this software and   *
7 * its documentation for any purpose and without fee is hereby	       *
8 * granted, provided that the above copyright notice appears in all    *
9 * copies and that both the copyright notice and this permission       *
10 * notice appear in supporting documentation, and that the name	       *
11 * University of Delaware not be used in advertising or publicity      *
12 * pertaining to distribution of the software without specific,	       *
13 * written prior permission. The University of Delaware makes no       *
14 * representations about the suitability this software for any	       *
15 * purpose. It is provided "as is" without express or implied	       *
16 * warranty.							       *
17 *								       *
18 **********************************************************************/
19
20/*
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 *
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
27 *
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include "opt_ntp.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/eventhandler.h>
42#include <sys/kernel.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/time.h>
48#include <sys/timex.h>
49#include <sys/timetc.h>
50#include <sys/timepps.h>
51#include <sys/syscallsubr.h>
52#include <sys/sysctl.h>
53
54#ifdef PPS_SYNC
55FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56#endif
57
58/*
59 * Single-precision macros for 64-bit machines
60 */
61typedef int64_t l_fp;
62#define L_ADD(v, u)	((v) += (u))
63#define L_SUB(v, u)	((v) -= (u))
64#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
65#define L_NEG(v)	((v) = -(v))
66#define L_RSHIFT(v, n) \
67	do { \
68		if ((v) < 0) \
69			(v) = -(-(v) >> (n)); \
70		else \
71			(v) = (v) >> (n); \
72	} while (0)
73#define L_MPY(v, a)	((v) *= (a))
74#define L_CLR(v)	((v) = 0)
75#define L_ISNEG(v)	((v) < 0)
76#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
77#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78
79/*
80 * Generic NTP kernel interface
81 *
82 * These routines constitute the Network Time Protocol (NTP) interfaces
83 * for user and daemon application programs. The ntp_gettime() routine
84 * provides the time, maximum error (synch distance) and estimated error
85 * (dispersion) to client user application programs. The ntp_adjtime()
86 * routine is used by the NTP daemon to adjust the system clock to an
87 * externally derived time. The time offset and related variables set by
88 * this routine are used by other routines in this module to adjust the
89 * phase and frequency of the clock discipline loop which controls the
90 * system clock.
91 *
92 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93 * defined), the time at each tick interrupt is derived directly from
94 * the kernel time variable. When the kernel time is reckoned in
95 * microseconds, (NTP_NANO undefined), the time is derived from the
96 * kernel time variable together with a variable representing the
97 * leftover nanoseconds at the last tick interrupt. In either case, the
98 * current nanosecond time is reckoned from these values plus an
99 * interpolated value derived by the clock routines in another
100 * architecture-specific module. The interpolation can use either a
101 * dedicated counter or a processor cycle counter (PCC) implemented in
102 * some architectures.
103 *
104 * Note that all routines must run at priority splclock or higher.
105 */
106/*
107 * Phase/frequency-lock loop (PLL/FLL) definitions
108 *
109 * The nanosecond clock discipline uses two variable types, time
110 * variables and frequency variables. Both types are represented as 64-
111 * bit fixed-point quantities with the decimal point between two 32-bit
112 * halves. On a 32-bit machine, each half is represented as a single
113 * word and mathematical operations are done using multiple-precision
114 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115 * used.
116 *
117 * A time variable is a signed 64-bit fixed-point number in ns and
118 * fraction. It represents the remaining time offset to be amortized
119 * over succeeding tick interrupts. The maximum time offset is about
120 * 0.5 s and the resolution is about 2.3e-10 ns.
121 *
122 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 * |s s s|			 ns				   |
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * |			    fraction				   |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 *
130 * A frequency variable is a signed 64-bit fixed-point number in ns/s
131 * and fraction. It represents the ns and fraction to be added to the
132 * kernel time variable at each second. The maximum frequency offset is
133 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134 *
135 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138 * |s s s s s s s s s s s s s|	          ns/s			   |
139 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 * |			    fraction				   |
141 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 */
143/*
144 * The following variables establish the state of the PLL/FLL and the
145 * residual time and frequency offset of the local clock.
146 */
147#define SHIFT_PLL	4		/* PLL loop gain (shift) */
148#define SHIFT_FLL	2		/* FLL loop gain (shift) */
149
150static int time_state = TIME_OK;	/* clock state */
151int time_status = STA_UNSYNC;	/* clock status bits */
152static long time_tai;			/* TAI offset (s) */
153static long time_monitor;		/* last time offset scaled (ns) */
154static long time_constant;		/* poll interval (shift) (s) */
155static long time_precision = 1;		/* clock precision (ns) */
156static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158static long time_reftime;		/* uptime at last adjustment (s) */
159static l_fp time_offset;		/* time offset (ns) */
160static l_fp time_freq;			/* frequency offset (ns/s) */
161static l_fp time_adj;			/* tick adjust (ns/s) */
162
163static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
164
165static struct mtx ntp_lock;
166MTX_SYSINIT(ntp, &ntp_lock, "ntp", MTX_SPIN);
167
168#define	NTP_LOCK()		mtx_lock_spin(&ntp_lock)
169#define	NTP_UNLOCK()		mtx_unlock_spin(&ntp_lock)
170#define	NTP_ASSERT_LOCKED()	mtx_assert(&ntp_lock, MA_OWNED)
171
172#ifdef PPS_SYNC
173/*
174 * The following variables are used when a pulse-per-second (PPS) signal
175 * is available and connected via a modem control lead. They establish
176 * the engineering parameters of the clock discipline loop when
177 * controlled by the PPS signal.
178 */
179#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
180#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
181#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
182#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
183#define PPS_VALID	120		/* PPS signal watchdog max (s) */
184#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
185#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
186
187static struct timespec pps_tf[3];	/* phase median filter */
188static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
189static long pps_fcount;			/* frequency accumulator */
190static long pps_jitter;			/* nominal jitter (ns) */
191static long pps_stabil;			/* nominal stability (scaled ns/s) */
192static long pps_lastsec;		/* time at last calibration (s) */
193static int pps_valid;			/* signal watchdog counter */
194static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
195static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
196static int pps_intcnt;			/* wander counter */
197
198/*
199 * PPS signal quality monitors
200 */
201static long pps_calcnt;			/* calibration intervals */
202static long pps_jitcnt;			/* jitter limit exceeded */
203static long pps_stbcnt;			/* stability limit exceeded */
204static long pps_errcnt;			/* calibration errors */
205#endif /* PPS_SYNC */
206/*
207 * End of phase/frequency-lock loop (PLL/FLL) definitions
208 */
209
210static void ntp_init(void);
211static void hardupdate(long offset);
212static void ntp_gettime1(struct ntptimeval *ntvp);
213static bool ntp_is_time_error(int tsl);
214
215static bool
216ntp_is_time_error(int tsl)
217{
218
219	/*
220	 * Status word error decode. If any of these conditions occur,
221	 * an error is returned, instead of the status word. Most
222	 * applications will care only about the fact the system clock
223	 * may not be trusted, not about the details.
224	 *
225	 * Hardware or software error
226	 */
227	if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
228
229	/*
230	 * PPS signal lost when either time or frequency synchronization
231	 * requested
232	 */
233	    (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
234	    !(tsl & STA_PPSSIGNAL)) ||
235
236	/*
237	 * PPS jitter exceeded when time synchronization requested
238	 */
239	    (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
240
241	/*
242	 * PPS wander exceeded or calibration error when frequency
243	 * synchronization requested
244	 */
245	    (tsl & STA_PPSFREQ &&
246	    tsl & (STA_PPSWANDER | STA_PPSERROR)))
247		return (true);
248
249	return (false);
250}
251
252static void
253ntp_gettime1(struct ntptimeval *ntvp)
254{
255	struct timespec atv;	/* nanosecond time */
256
257	NTP_ASSERT_LOCKED();
258
259	nanotime(&atv);
260	ntvp->time.tv_sec = atv.tv_sec;
261	ntvp->time.tv_nsec = atv.tv_nsec;
262	ntvp->maxerror = time_maxerror;
263	ntvp->esterror = time_esterror;
264	ntvp->tai = time_tai;
265	ntvp->time_state = time_state;
266
267	if (ntp_is_time_error(time_status))
268		ntvp->time_state = TIME_ERROR;
269}
270
271/*
272 * ntp_gettime() - NTP user application interface
273 *
274 * See the timex.h header file for synopsis and API description.  Note that
275 * the TAI offset is returned in the ntvtimeval.tai structure member.
276 */
277#ifndef _SYS_SYSPROTO_H_
278struct ntp_gettime_args {
279	struct ntptimeval *ntvp;
280};
281#endif
282/* ARGSUSED */
283int
284sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
285{
286	struct ntptimeval ntv;
287
288	memset(&ntv, 0, sizeof(ntv));
289
290	NTP_LOCK();
291	ntp_gettime1(&ntv);
292	NTP_UNLOCK();
293
294	td->td_retval[0] = ntv.time_state;
295	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
296}
297
298static int
299ntp_sysctl(SYSCTL_HANDLER_ARGS)
300{
301	struct ntptimeval ntv;	/* temporary structure */
302
303	memset(&ntv, 0, sizeof(ntv));
304
305	NTP_LOCK();
306	ntp_gettime1(&ntv);
307	NTP_UNLOCK();
308
309	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
310}
311
312SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
313    "");
314SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
315    CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
316    "");
317
318#ifdef PPS_SYNC
319SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
320    &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
321SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
322    &pps_shift, 0, "Interval duration (sec) (shift)");
323SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
324    &time_monitor, 0, "Last time offset scaled (ns)");
325
326SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
327    &pps_freq, 0,
328    "Scaled frequency offset (ns/sec)");
329SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
330    &time_freq, 0,
331    "Frequency offset (ns/sec)");
332#endif
333
334/*
335 * ntp_adjtime() - NTP daemon application interface
336 *
337 * See the timex.h header file for synopsis and API description.  Note that
338 * the timex.constant structure member has a dual purpose to set the time
339 * constant and to set the TAI offset.
340 */
341int
342kern_ntp_adjtime(struct thread *td, struct timex *ntv, int *retvalp)
343{
344	long freq;		/* frequency ns/s) */
345	int modes;		/* mode bits from structure */
346	int error, retval;
347
348	/*
349	 * Update selected clock variables - only the superuser can
350	 * change anything. Note that there is no error checking here on
351	 * the assumption the superuser should know what it is doing.
352	 * Note that either the time constant or TAI offset are loaded
353	 * from the ntv.constant member, depending on the mode bits. If
354	 * the STA_PLL bit in the status word is cleared, the state and
355	 * status words are reset to the initial values at boot.
356	 */
357	modes = ntv->modes;
358	error = 0;
359	if (modes)
360		error = priv_check(td, PRIV_NTP_ADJTIME);
361	if (error != 0)
362		return (error);
363	NTP_LOCK();
364	if (modes & MOD_MAXERROR)
365		time_maxerror = ntv->maxerror;
366	if (modes & MOD_ESTERROR)
367		time_esterror = ntv->esterror;
368	if (modes & MOD_STATUS) {
369		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
370			time_state = TIME_OK;
371			time_status = STA_UNSYNC;
372#ifdef PPS_SYNC
373			pps_shift = PPS_FAVG;
374#endif /* PPS_SYNC */
375		}
376		time_status &= STA_RONLY;
377		time_status |= ntv->status & ~STA_RONLY;
378	}
379	if (modes & MOD_TIMECONST) {
380		if (ntv->constant < 0)
381			time_constant = 0;
382		else if (ntv->constant > MAXTC)
383			time_constant = MAXTC;
384		else
385			time_constant = ntv->constant;
386	}
387	if (modes & MOD_TAI) {
388		if (ntv->constant > 0) /* XXX zero & negative numbers ? */
389			time_tai = ntv->constant;
390	}
391#ifdef PPS_SYNC
392	if (modes & MOD_PPSMAX) {
393		if (ntv->shift < PPS_FAVG)
394			pps_shiftmax = PPS_FAVG;
395		else if (ntv->shift > PPS_FAVGMAX)
396			pps_shiftmax = PPS_FAVGMAX;
397		else
398			pps_shiftmax = ntv->shift;
399	}
400#endif /* PPS_SYNC */
401	if (modes & MOD_NANO)
402		time_status |= STA_NANO;
403	if (modes & MOD_MICRO)
404		time_status &= ~STA_NANO;
405	if (modes & MOD_CLKB)
406		time_status |= STA_CLK;
407	if (modes & MOD_CLKA)
408		time_status &= ~STA_CLK;
409	if (modes & MOD_FREQUENCY) {
410		freq = (ntv->freq * 1000LL) >> 16;
411		if (freq > MAXFREQ)
412			L_LINT(time_freq, MAXFREQ);
413		else if (freq < -MAXFREQ)
414			L_LINT(time_freq, -MAXFREQ);
415		else {
416			/*
417			 * ntv->freq is [PPM * 2^16] = [us/s * 2^16]
418			 * time_freq is [ns/s * 2^32]
419			 */
420			time_freq = ntv->freq * 1000LL * 65536LL;
421		}
422#ifdef PPS_SYNC
423		pps_freq = time_freq;
424#endif /* PPS_SYNC */
425	}
426	if (modes & MOD_OFFSET) {
427		if (time_status & STA_NANO)
428			hardupdate(ntv->offset);
429		else
430			hardupdate(ntv->offset * 1000);
431	}
432
433	/*
434	 * Retrieve all clock variables. Note that the TAI offset is
435	 * returned only by ntp_gettime();
436	 */
437	if (time_status & STA_NANO)
438		ntv->offset = L_GINT(time_offset);
439	else
440		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
441	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
442	ntv->maxerror = time_maxerror;
443	ntv->esterror = time_esterror;
444	ntv->status = time_status;
445	ntv->constant = time_constant;
446	if (time_status & STA_NANO)
447		ntv->precision = time_precision;
448	else
449		ntv->precision = time_precision / 1000;
450	ntv->tolerance = MAXFREQ * SCALE_PPM;
451#ifdef PPS_SYNC
452	ntv->shift = pps_shift;
453	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
454	if (time_status & STA_NANO)
455		ntv->jitter = pps_jitter;
456	else
457		ntv->jitter = pps_jitter / 1000;
458	ntv->stabil = pps_stabil;
459	ntv->calcnt = pps_calcnt;
460	ntv->errcnt = pps_errcnt;
461	ntv->jitcnt = pps_jitcnt;
462	ntv->stbcnt = pps_stbcnt;
463#endif /* PPS_SYNC */
464	retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
465	NTP_UNLOCK();
466
467	*retvalp = retval;
468	return (0);
469}
470
471#ifndef _SYS_SYSPROTO_H_
472struct ntp_adjtime_args {
473	struct timex *tp;
474};
475#endif
476
477int
478sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
479{
480	struct timex ntv;
481	int error, retval;
482
483	error = copyin(uap->tp, &ntv, sizeof(ntv));
484	if (error == 0) {
485		error = kern_ntp_adjtime(td, &ntv, &retval);
486		if (error == 0) {
487			error = copyout(&ntv, uap->tp, sizeof(ntv));
488			if (error == 0)
489				td->td_retval[0] = retval;
490		}
491	}
492	return (error);
493}
494
495/*
496 * second_overflow() - called after ntp_tick_adjust()
497 *
498 * This routine is ordinarily called immediately following the above
499 * routine ntp_tick_adjust(). While these two routines are normally
500 * combined, they are separated here only for the purposes of
501 * simulation.
502 */
503void
504ntp_update_second(int64_t *adjustment, time_t *newsec)
505{
506	int tickrate;
507	l_fp ftemp;		/* 32/64-bit temporary */
508
509	NTP_LOCK();
510
511	/*
512	 * On rollover of the second both the nanosecond and microsecond
513	 * clocks are updated and the state machine cranked as
514	 * necessary. The phase adjustment to be used for the next
515	 * second is calculated and the maximum error is increased by
516	 * the tolerance.
517	 */
518	time_maxerror += MAXFREQ / 1000;
519
520	/*
521	 * Leap second processing. If in leap-insert state at
522	 * the end of the day, the system clock is set back one
523	 * second; if in leap-delete state, the system clock is
524	 * set ahead one second. The nano_time() routine or
525	 * external clock driver will insure that reported time
526	 * is always monotonic.
527	 */
528	switch (time_state) {
529		/*
530		 * No warning.
531		 */
532		case TIME_OK:
533		if (time_status & STA_INS)
534			time_state = TIME_INS;
535		else if (time_status & STA_DEL)
536			time_state = TIME_DEL;
537		break;
538
539		/*
540		 * Insert second 23:59:60 following second
541		 * 23:59:59.
542		 */
543		case TIME_INS:
544		if (!(time_status & STA_INS))
545			time_state = TIME_OK;
546		else if ((*newsec) % 86400 == 0) {
547			(*newsec)--;
548			time_state = TIME_OOP;
549			time_tai++;
550		}
551		break;
552
553		/*
554		 * Delete second 23:59:59.
555		 */
556		case TIME_DEL:
557		if (!(time_status & STA_DEL))
558			time_state = TIME_OK;
559		else if (((*newsec) + 1) % 86400 == 0) {
560			(*newsec)++;
561			time_tai--;
562			time_state = TIME_WAIT;
563		}
564		break;
565
566		/*
567		 * Insert second in progress.
568		 */
569		case TIME_OOP:
570			time_state = TIME_WAIT;
571		break;
572
573		/*
574		 * Wait for status bits to clear.
575		 */
576		case TIME_WAIT:
577		if (!(time_status & (STA_INS | STA_DEL)))
578			time_state = TIME_OK;
579	}
580
581	/*
582	 * Compute the total time adjustment for the next second
583	 * in ns. The offset is reduced by a factor depending on
584	 * whether the PPS signal is operating. Note that the
585	 * value is in effect scaled by the clock frequency,
586	 * since the adjustment is added at each tick interrupt.
587	 */
588	ftemp = time_offset;
589#ifdef PPS_SYNC
590	/* XXX even if PPS signal dies we should finish adjustment ? */
591	if (time_status & STA_PPSTIME && time_status &
592	    STA_PPSSIGNAL)
593		L_RSHIFT(ftemp, pps_shift);
594	else
595		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
596#else
597		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
598#endif /* PPS_SYNC */
599	time_adj = ftemp;
600	L_SUB(time_offset, ftemp);
601	L_ADD(time_adj, time_freq);
602
603	/*
604	 * Apply any correction from adjtime(2).  If more than one second
605	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500 PPM)
606	 * until the last second is slewed the final < 500 usecs.
607	 */
608	if (time_adjtime != 0) {
609		if (time_adjtime > 1000000)
610			tickrate = 5000;
611		else if (time_adjtime < -1000000)
612			tickrate = -5000;
613		else if (time_adjtime > 500)
614			tickrate = 500;
615		else if (time_adjtime < -500)
616			tickrate = -500;
617		else
618			tickrate = time_adjtime;
619		time_adjtime -= tickrate;
620		L_LINT(ftemp, tickrate * 1000);
621		L_ADD(time_adj, ftemp);
622	}
623	*adjustment = time_adj;
624
625#ifdef PPS_SYNC
626	if (pps_valid > 0)
627		pps_valid--;
628	else
629		time_status &= ~STA_PPSSIGNAL;
630#endif /* PPS_SYNC */
631
632	NTP_UNLOCK();
633}
634
635/*
636 * ntp_init() - initialize variables and structures
637 *
638 * This routine must be called after the kernel variables hz and tick
639 * are set or changed and before the next tick interrupt. In this
640 * particular implementation, these values are assumed set elsewhere in
641 * the kernel. The design allows the clock frequency and tick interval
642 * to be changed while the system is running. So, this routine should
643 * probably be integrated with the code that does that.
644 */
645static void
646ntp_init(void)
647{
648
649	/*
650	 * The following variables are initialized only at startup. Only
651	 * those structures not cleared by the compiler need to be
652	 * initialized, and these only in the simulator. In the actual
653	 * kernel, any nonzero values here will quickly evaporate.
654	 */
655	L_CLR(time_offset);
656	L_CLR(time_freq);
657#ifdef PPS_SYNC
658	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
659	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
660	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
661	pps_fcount = 0;
662	L_CLR(pps_freq);
663#endif /* PPS_SYNC */
664}
665
666SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
667
668/*
669 * hardupdate() - local clock update
670 *
671 * This routine is called by ntp_adjtime() to update the local clock
672 * phase and frequency. The implementation is of an adaptive-parameter,
673 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
674 * time and frequency offset estimates for each call. If the kernel PPS
675 * discipline code is configured (PPS_SYNC), the PPS signal itself
676 * determines the new time offset, instead of the calling argument.
677 * Presumably, calls to ntp_adjtime() occur only when the caller
678 * believes the local clock is valid within some bound (+-128 ms with
679 * NTP). If the caller's time is far different than the PPS time, an
680 * argument will ensue, and it's not clear who will lose.
681 *
682 * For uncompensated quartz crystal oscillators and nominal update
683 * intervals less than 256 s, operation should be in phase-lock mode,
684 * where the loop is disciplined to phase. For update intervals greater
685 * than 1024 s, operation should be in frequency-lock mode, where the
686 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
687 * is selected by the STA_MODE status bit.
688 */
689static void
690hardupdate(offset)
691	long offset;		/* clock offset (ns) */
692{
693	long mtemp;
694	l_fp ftemp;
695
696	NTP_ASSERT_LOCKED();
697
698	/*
699	 * Select how the phase is to be controlled and from which
700	 * source. If the PPS signal is present and enabled to
701	 * discipline the time, the PPS offset is used; otherwise, the
702	 * argument offset is used.
703	 */
704	if (!(time_status & STA_PLL))
705		return;
706	if (!(time_status & STA_PPSTIME && time_status &
707	    STA_PPSSIGNAL)) {
708		if (offset > MAXPHASE)
709			time_monitor = MAXPHASE;
710		else if (offset < -MAXPHASE)
711			time_monitor = -MAXPHASE;
712		else
713			time_monitor = offset;
714		L_LINT(time_offset, time_monitor);
715	}
716
717	/*
718	 * Select how the frequency is to be controlled and in which
719	 * mode (PLL or FLL). If the PPS signal is present and enabled
720	 * to discipline the frequency, the PPS frequency is used;
721	 * otherwise, the argument offset is used to compute it.
722	 */
723	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
724		time_reftime = time_uptime;
725		return;
726	}
727	if (time_status & STA_FREQHOLD || time_reftime == 0)
728		time_reftime = time_uptime;
729	mtemp = time_uptime - time_reftime;
730	L_LINT(ftemp, time_monitor);
731	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
732	L_MPY(ftemp, mtemp);
733	L_ADD(time_freq, ftemp);
734	time_status &= ~STA_MODE;
735	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
736	    MAXSEC)) {
737		L_LINT(ftemp, (time_monitor << 4) / mtemp);
738		L_RSHIFT(ftemp, SHIFT_FLL + 4);
739		L_ADD(time_freq, ftemp);
740		time_status |= STA_MODE;
741	}
742	time_reftime = time_uptime;
743	if (L_GINT(time_freq) > MAXFREQ)
744		L_LINT(time_freq, MAXFREQ);
745	else if (L_GINT(time_freq) < -MAXFREQ)
746		L_LINT(time_freq, -MAXFREQ);
747}
748
749#ifdef PPS_SYNC
750/*
751 * hardpps() - discipline CPU clock oscillator to external PPS signal
752 *
753 * This routine is called at each PPS interrupt in order to discipline
754 * the CPU clock oscillator to the PPS signal. There are two independent
755 * first-order feedback loops, one for the phase, the other for the
756 * frequency. The phase loop measures and grooms the PPS phase offset
757 * and leaves it in a handy spot for the seconds overflow routine. The
758 * frequency loop averages successive PPS phase differences and
759 * calculates the PPS frequency offset, which is also processed by the
760 * seconds overflow routine. The code requires the caller to capture the
761 * time and architecture-dependent hardware counter values in
762 * nanoseconds at the on-time PPS signal transition.
763 *
764 * Note that, on some Unix systems this routine runs at an interrupt
765 * priority level higher than the timer interrupt routine hardclock().
766 * Therefore, the variables used are distinct from the hardclock()
767 * variables, except for the actual time and frequency variables, which
768 * are determined by this routine and updated atomically.
769 *
770 * tsp  - time at PPS
771 * nsec - hardware counter at PPS
772 */
773void
774hardpps(struct timespec *tsp, long nsec)
775{
776	long u_sec, u_nsec, v_nsec; /* temps */
777	l_fp ftemp;
778
779	NTP_LOCK();
780
781	/*
782	 * The signal is first processed by a range gate and frequency
783	 * discriminator. The range gate rejects noise spikes outside
784	 * the range +-500 us. The frequency discriminator rejects input
785	 * signals with apparent frequency outside the range 1 +-500
786	 * PPM. If two hits occur in the same second, we ignore the
787	 * later hit; if not and a hit occurs outside the range gate,
788	 * keep the later hit for later comparison, but do not process
789	 * it.
790	 */
791	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
792	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
793	pps_valid = PPS_VALID;
794	u_sec = tsp->tv_sec;
795	u_nsec = tsp->tv_nsec;
796	if (u_nsec >= (NANOSECOND >> 1)) {
797		u_nsec -= NANOSECOND;
798		u_sec++;
799	}
800	v_nsec = u_nsec - pps_tf[0].tv_nsec;
801	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
802		goto out;
803	pps_tf[2] = pps_tf[1];
804	pps_tf[1] = pps_tf[0];
805	pps_tf[0].tv_sec = u_sec;
806	pps_tf[0].tv_nsec = u_nsec;
807
808	/*
809	 * Compute the difference between the current and previous
810	 * counter values. If the difference exceeds 0.5 s, assume it
811	 * has wrapped around, so correct 1.0 s. If the result exceeds
812	 * the tick interval, the sample point has crossed a tick
813	 * boundary during the last second, so correct the tick. Very
814	 * intricate.
815	 */
816	u_nsec = nsec;
817	if (u_nsec > (NANOSECOND >> 1))
818		u_nsec -= NANOSECOND;
819	else if (u_nsec < -(NANOSECOND >> 1))
820		u_nsec += NANOSECOND;
821	pps_fcount += u_nsec;
822	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
823		goto out;
824	time_status &= ~STA_PPSJITTER;
825
826	/*
827	 * A three-stage median filter is used to help denoise the PPS
828	 * time. The median sample becomes the time offset estimate; the
829	 * difference between the other two samples becomes the time
830	 * dispersion (jitter) estimate.
831	 */
832	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
833		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
834			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
835			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
836		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
837			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
838			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
839		} else {
840			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
841			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
842		}
843	} else {
844		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
845			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
846			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
847		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
848			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
849			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
850		} else {
851			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
852			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
853		}
854	}
855
856	/*
857	 * Nominal jitter is due to PPS signal noise and interrupt
858	 * latency. If it exceeds the popcorn threshold, the sample is
859	 * discarded. otherwise, if so enabled, the time offset is
860	 * updated. We can tolerate a modest loss of data here without
861	 * much degrading time accuracy.
862	 *
863	 * The measurements being checked here were made with the system
864	 * timecounter, so the popcorn threshold is not allowed to fall below
865	 * the number of nanoseconds in two ticks of the timecounter.  For a
866	 * timecounter running faster than 1 GHz the lower bound is 2ns, just
867	 * to avoid a nonsensical threshold of zero.
868	*/
869	if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
870	    2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
871		time_status |= STA_PPSJITTER;
872		pps_jitcnt++;
873	} else if (time_status & STA_PPSTIME) {
874		time_monitor = -v_nsec;
875		L_LINT(time_offset, time_monitor);
876	}
877	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
878	u_sec = pps_tf[0].tv_sec - pps_lastsec;
879	if (u_sec < (1 << pps_shift))
880		goto out;
881
882	/*
883	 * At the end of the calibration interval the difference between
884	 * the first and last counter values becomes the scaled
885	 * frequency. It will later be divided by the length of the
886	 * interval to determine the frequency update. If the frequency
887	 * exceeds a sanity threshold, or if the actual calibration
888	 * interval is not equal to the expected length, the data are
889	 * discarded. We can tolerate a modest loss of data here without
890	 * much degrading frequency accuracy.
891	 */
892	pps_calcnt++;
893	v_nsec = -pps_fcount;
894	pps_lastsec = pps_tf[0].tv_sec;
895	pps_fcount = 0;
896	u_nsec = MAXFREQ << pps_shift;
897	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
898		time_status |= STA_PPSERROR;
899		pps_errcnt++;
900		goto out;
901	}
902
903	/*
904	 * Here the raw frequency offset and wander (stability) is
905	 * calculated. If the wander is less than the wander threshold
906	 * for four consecutive averaging intervals, the interval is
907	 * doubled; if it is greater than the threshold for four
908	 * consecutive intervals, the interval is halved. The scaled
909	 * frequency offset is converted to frequency offset. The
910	 * stability metric is calculated as the average of recent
911	 * frequency changes, but is used only for performance
912	 * monitoring.
913	 */
914	L_LINT(ftemp, v_nsec);
915	L_RSHIFT(ftemp, pps_shift);
916	L_SUB(ftemp, pps_freq);
917	u_nsec = L_GINT(ftemp);
918	if (u_nsec > PPS_MAXWANDER) {
919		L_LINT(ftemp, PPS_MAXWANDER);
920		pps_intcnt--;
921		time_status |= STA_PPSWANDER;
922		pps_stbcnt++;
923	} else if (u_nsec < -PPS_MAXWANDER) {
924		L_LINT(ftemp, -PPS_MAXWANDER);
925		pps_intcnt--;
926		time_status |= STA_PPSWANDER;
927		pps_stbcnt++;
928	} else {
929		pps_intcnt++;
930	}
931	if (pps_intcnt >= 4) {
932		pps_intcnt = 4;
933		if (pps_shift < pps_shiftmax) {
934			pps_shift++;
935			pps_intcnt = 0;
936		}
937	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
938		pps_intcnt = -4;
939		if (pps_shift > PPS_FAVG) {
940			pps_shift--;
941			pps_intcnt = 0;
942		}
943	}
944	if (u_nsec < 0)
945		u_nsec = -u_nsec;
946	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
947
948	/*
949	 * The PPS frequency is recalculated and clamped to the maximum
950	 * MAXFREQ. If enabled, the system clock frequency is updated as
951	 * well.
952	 */
953	L_ADD(pps_freq, ftemp);
954	u_nsec = L_GINT(pps_freq);
955	if (u_nsec > MAXFREQ)
956		L_LINT(pps_freq, MAXFREQ);
957	else if (u_nsec < -MAXFREQ)
958		L_LINT(pps_freq, -MAXFREQ);
959	if (time_status & STA_PPSFREQ)
960		time_freq = pps_freq;
961
962out:
963	NTP_UNLOCK();
964}
965#endif /* PPS_SYNC */
966
967#ifndef _SYS_SYSPROTO_H_
968struct adjtime_args {
969	struct timeval *delta;
970	struct timeval *olddelta;
971};
972#endif
973/* ARGSUSED */
974int
975sys_adjtime(struct thread *td, struct adjtime_args *uap)
976{
977	struct timeval delta, olddelta, *deltap;
978	int error;
979
980	if (uap->delta) {
981		error = copyin(uap->delta, &delta, sizeof(delta));
982		if (error)
983			return (error);
984		deltap = &delta;
985	} else
986		deltap = NULL;
987	error = kern_adjtime(td, deltap, &olddelta);
988	if (uap->olddelta && error == 0)
989		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
990	return (error);
991}
992
993int
994kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
995{
996	struct timeval atv;
997	int64_t ltr, ltw;
998	int error;
999
1000	if (delta != NULL) {
1001		error = priv_check(td, PRIV_ADJTIME);
1002		if (error != 0)
1003			return (error);
1004		ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
1005	}
1006	NTP_LOCK();
1007	ltr = time_adjtime;
1008	if (delta != NULL)
1009		time_adjtime = ltw;
1010	NTP_UNLOCK();
1011	if (olddelta != NULL) {
1012		atv.tv_sec = ltr / 1000000;
1013		atv.tv_usec = ltr % 1000000;
1014		if (atv.tv_usec < 0) {
1015			atv.tv_usec += 1000000;
1016			atv.tv_sec--;
1017		}
1018		*olddelta = atv;
1019	}
1020	return (0);
1021}
1022
1023static struct callout resettodr_callout;
1024static int resettodr_period = 1800;
1025
1026static void
1027periodic_resettodr(void *arg __unused)
1028{
1029
1030	/*
1031	 * Read of time_status is lock-less, which is fine since
1032	 * ntp_is_time_error() operates on the consistent read value.
1033	 */
1034	if (!ntp_is_time_error(time_status))
1035		resettodr();
1036	if (resettodr_period > 0)
1037		callout_schedule(&resettodr_callout, resettodr_period * hz);
1038}
1039
1040static void
1041shutdown_resettodr(void *arg __unused, int howto __unused)
1042{
1043
1044	callout_drain(&resettodr_callout);
1045	/* Another unlocked read of time_status */
1046	if (resettodr_period > 0 && !ntp_is_time_error(time_status))
1047		resettodr();
1048}
1049
1050static int
1051sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1052{
1053	int error;
1054
1055	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1056	if (error || !req->newptr)
1057		return (error);
1058	if (cold)
1059		goto done;
1060	if (resettodr_period == 0)
1061		callout_stop(&resettodr_callout);
1062	else
1063		callout_reset(&resettodr_callout, resettodr_period * hz,
1064		    periodic_resettodr, NULL);
1065done:
1066	return (0);
1067}
1068
1069SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
1070    CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
1071    "Save system time to RTC with this period (in seconds)");
1072
1073static void
1074start_periodic_resettodr(void *arg __unused)
1075{
1076
1077	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1078	    SHUTDOWN_PRI_FIRST);
1079	callout_init(&resettodr_callout, 1);
1080	if (resettodr_period == 0)
1081		return;
1082	callout_reset(&resettodr_callout, resettodr_period * hz,
1083	    periodic_resettodr, NULL);
1084}
1085
1086SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1087	start_periodic_resettodr, NULL);
1088