1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26 */
27
28#include <sys/spa.h>
29#include <sys/spa_impl.h>
30#include <sys/txg.h>
31#include <sys/vdev_impl.h>
32#include <sys/vdev_trim.h>
33#include <sys/metaslab_impl.h>
34#include <sys/dsl_synctask.h>
35#include <sys/zap.h>
36#include <sys/dmu_tx.h>
37#include <sys/arc_impl.h>
38
39/*
40 * TRIM is a feature which is used to notify a SSD that some previously
41 * written space is no longer allocated by the pool.  This is useful because
42 * writes to a SSD must be performed to blocks which have first been erased.
43 * Ensuring the SSD always has a supply of erased blocks for new writes
44 * helps prevent the performance from deteriorating.
45 *
46 * There are two supported TRIM methods; manual and automatic.
47 *
48 * Manual TRIM:
49 *
50 * A manual TRIM is initiated by running the 'zpool trim' command.  A single
51 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
52 * managing that vdev TRIM process.  This involves iterating over all the
53 * metaslabs, calculating the unallocated space ranges, and then issuing the
54 * required TRIM I/Os.
55 *
56 * While a metaslab is being actively trimmed it is not eligible to perform
57 * new allocations.  After traversing all of the metaslabs the thread is
58 * terminated.  Finally, both the requested options and current progress of
59 * the TRIM are regularly written to the pool.  This allows the TRIM to be
60 * suspended and resumed as needed.
61 *
62 * Automatic TRIM:
63 *
64 * An automatic TRIM is enabled by setting the 'autotrim' pool property
65 * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
66 * top-level (not leaf) vdev in the pool.  These threads perform the same
67 * core TRIM process as a manual TRIM, but with a few key differences.
68 *
69 * 1) Automatic TRIM happens continuously in the background and operates
70 *    solely on recently freed blocks (ms_trim not ms_allocatable).
71 *
72 * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
73 *    the benefit of simplifying the threading model, it makes it easier
74 *    to coordinate administrative commands, and it ensures only a single
75 *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
76 *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
77 *    children.
78 *
79 * 3) There is no automatic TRIM progress information stored on disk, nor
80 *    is it reported by 'zpool status'.
81 *
82 * While the automatic TRIM process is highly effective it is more likely
83 * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
84 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
85 * TRIM and are skipped.  This means small amounts of freed space may not
86 * be automatically trimmed.
87 *
88 * Furthermore, devices with attached hot spares and devices being actively
89 * replaced are skipped.  This is done to avoid adding additional stress to
90 * a potentially unhealthy device and to minimize the required rebuild time.
91 *
92 * For this reason it may be beneficial to occasionally manually TRIM a pool
93 * even when automatic TRIM is enabled.
94 */
95
96/*
97 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
98 */
99unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
100
101/*
102 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
103 */
104unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
105
106/*
107 * Skip uninitialized metaslabs during the TRIM process.  This option is
108 * useful for pools constructed from large thinly-provisioned devices where
109 * TRIM operations are slow.  As a pool ages an increasing fraction of
110 * the pools metaslabs will be initialized progressively degrading the
111 * usefulness of this option.  This setting is stored when starting a
112 * manual TRIM and will persist for the duration of the requested TRIM.
113 */
114unsigned int zfs_trim_metaslab_skip = 0;
115
116/*
117 * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
118 * concurrent TRIM I/Os issued to the device is controlled by the
119 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
120 */
121unsigned int zfs_trim_queue_limit = 10;
122
123/*
124 * The minimum number of transaction groups between automatic trims of a
125 * metaslab.  This setting represents a trade-off between issuing more
126 * efficient TRIM operations, by allowing them to be aggregated longer,
127 * and issuing them promptly so the trimmed space is available.  Note
128 * that this value is a minimum; metaslabs can be trimmed less frequently
129 * when there are a large number of ranges which need to be trimmed.
130 *
131 * Increasing this value will allow frees to be aggregated for a longer
132 * time.  This can result is larger TRIM operations, and increased memory
133 * usage in order to track the ranges to be trimmed.  Decreasing this value
134 * has the opposite effect.  The default value of 32 was determined though
135 * testing to be a reasonable compromise.
136 */
137unsigned int zfs_trim_txg_batch = 32;
138
139/*
140 * The trim_args are a control structure which describe how a leaf vdev
141 * should be trimmed.  The core elements are the vdev, the metaslab being
142 * trimmed and a range tree containing the extents to TRIM.  All provided
143 * ranges must be within the metaslab.
144 */
145typedef struct trim_args {
146	/*
147	 * These fields are set by the caller of vdev_trim_ranges().
148	 */
149	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
150	metaslab_t	*trim_msp;		/* Disabled metaslab */
151	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
152	trim_type_t	trim_type;		/* Manual or auto TRIM */
153	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
154	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
155	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
156
157	/*
158	 * These fields are updated by vdev_trim_ranges().
159	 */
160	hrtime_t	trim_start_time;	/* Start time */
161	uint64_t	trim_bytes_done;	/* Bytes trimmed */
162} trim_args_t;
163
164/*
165 * Determines whether a vdev_trim_thread() should be stopped.
166 */
167static boolean_t
168vdev_trim_should_stop(vdev_t *vd)
169{
170	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
171	    vd->vdev_detached || vd->vdev_top->vdev_removing);
172}
173
174/*
175 * Determines whether a vdev_autotrim_thread() should be stopped.
176 */
177static boolean_t
178vdev_autotrim_should_stop(vdev_t *tvd)
179{
180	return (tvd->vdev_autotrim_exit_wanted ||
181	    !vdev_writeable(tvd) || tvd->vdev_removing ||
182	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
183}
184
185/*
186 * The sync task for updating the on-disk state of a manual TRIM.  This
187 * is scheduled by vdev_trim_change_state().
188 */
189static void
190vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
191{
192	/*
193	 * We pass in the guid instead of the vdev_t since the vdev may
194	 * have been freed prior to the sync task being processed.  This
195	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
196	 * stop the trimming thread, schedule the sync task, and free
197	 * the vdev. Later when the scheduled sync task is invoked, it would
198	 * find that the vdev has been freed.
199	 */
200	uint64_t guid = *(uint64_t *)arg;
201	uint64_t txg = dmu_tx_get_txg(tx);
202	kmem_free(arg, sizeof (uint64_t));
203
204	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
205	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
206		return;
207
208	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
209	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
210
211	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
212
213	objset_t *mos = vd->vdev_spa->spa_meta_objset;
214
215	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
216
217		if (vd->vdev_trim_last_offset == UINT64_MAX)
218			last_offset = 0;
219
220		vd->vdev_trim_last_offset = last_offset;
221		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
222		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
223		    sizeof (last_offset), 1, &last_offset, tx));
224	}
225
226	if (vd->vdev_trim_action_time > 0) {
227		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
228		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
229		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
230		    1, &val, tx));
231	}
232
233	if (vd->vdev_trim_rate > 0) {
234		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
235
236		if (rate == UINT64_MAX)
237			rate = 0;
238
239		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
240		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
241	}
242
243	uint64_t partial = vd->vdev_trim_partial;
244	if (partial == UINT64_MAX)
245		partial = 0;
246
247	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
248	    sizeof (partial), 1, &partial, tx));
249
250	uint64_t secure = vd->vdev_trim_secure;
251	if (secure == UINT64_MAX)
252		secure = 0;
253
254	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
255	    sizeof (secure), 1, &secure, tx));
256
257
258	uint64_t trim_state = vd->vdev_trim_state;
259	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
260	    sizeof (trim_state), 1, &trim_state, tx));
261}
262
263/*
264 * Update the on-disk state of a manual TRIM.  This is called to request
265 * that a TRIM be started/suspended/canceled, or to change one of the
266 * TRIM options (partial, secure, rate).
267 */
268static void
269vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
270    uint64_t rate, boolean_t partial, boolean_t secure)
271{
272	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
273	spa_t *spa = vd->vdev_spa;
274
275	if (new_state == vd->vdev_trim_state)
276		return;
277
278	/*
279	 * Copy the vd's guid, this will be freed by the sync task.
280	 */
281	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
282	*guid = vd->vdev_guid;
283
284	/*
285	 * If we're suspending, then preserve the original start time.
286	 */
287	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
288		vd->vdev_trim_action_time = gethrestime_sec();
289	}
290
291	/*
292	 * If we're activating, then preserve the requested rate and trim
293	 * method.  Setting the last offset and rate to UINT64_MAX is used
294	 * as a sentinel to indicate they should be reset to default values.
295	 */
296	if (new_state == VDEV_TRIM_ACTIVE) {
297		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
298		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
299			vd->vdev_trim_last_offset = UINT64_MAX;
300			vd->vdev_trim_rate = UINT64_MAX;
301			vd->vdev_trim_partial = UINT64_MAX;
302			vd->vdev_trim_secure = UINT64_MAX;
303		}
304
305		if (rate != 0)
306			vd->vdev_trim_rate = rate;
307
308		if (partial != 0)
309			vd->vdev_trim_partial = partial;
310
311		if (secure != 0)
312			vd->vdev_trim_secure = secure;
313	}
314
315	vdev_trim_state_t old_state = vd->vdev_trim_state;
316	boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
317	vd->vdev_trim_state = new_state;
318
319	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
320	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
321	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
322	    guid, tx);
323
324	switch (new_state) {
325	case VDEV_TRIM_ACTIVE:
326		spa_event_notify(spa, vd, NULL,
327		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
328		spa_history_log_internal(spa, "trim", tx,
329		    "vdev=%s activated", vd->vdev_path);
330		break;
331	case VDEV_TRIM_SUSPENDED:
332		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
333		spa_history_log_internal(spa, "trim", tx,
334		    "vdev=%s suspended", vd->vdev_path);
335		break;
336	case VDEV_TRIM_CANCELED:
337		if (old_state == VDEV_TRIM_ACTIVE ||
338		    old_state == VDEV_TRIM_SUSPENDED) {
339			spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
340			spa_history_log_internal(spa, "trim", tx,
341			    "vdev=%s canceled", vd->vdev_path);
342		}
343		break;
344	case VDEV_TRIM_COMPLETE:
345		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
346		spa_history_log_internal(spa, "trim", tx,
347		    "vdev=%s complete", vd->vdev_path);
348		break;
349	default:
350		panic("invalid state %llu", (unsigned long long)new_state);
351	}
352
353	dmu_tx_commit(tx);
354
355	if (new_state != VDEV_TRIM_ACTIVE)
356		spa_notify_waiters(spa);
357}
358
359/*
360 * The zio_done_func_t done callback for each manual TRIM issued.  It is
361 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
362 * and limiting the number of in flight TRIM I/Os.
363 */
364static void
365vdev_trim_cb(zio_t *zio)
366{
367	vdev_t *vd = zio->io_vd;
368
369	mutex_enter(&vd->vdev_trim_io_lock);
370	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
371		/*
372		 * The I/O failed because the vdev was unavailable; roll the
373		 * last offset back. (This works because spa_sync waits on
374		 * spa_txg_zio before it runs sync tasks.)
375		 */
376		uint64_t *offset =
377		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
378		*offset = MIN(*offset, zio->io_offset);
379	} else {
380		if (zio->io_error != 0) {
381			vd->vdev_stat.vs_trim_errors++;
382			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
383			    0, 0, 0, 0, 1, zio->io_orig_size);
384		} else {
385			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
386			    1, zio->io_orig_size, 0, 0, 0, 0);
387		}
388
389		vd->vdev_trim_bytes_done += zio->io_orig_size;
390	}
391
392	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
393	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
394	cv_broadcast(&vd->vdev_trim_io_cv);
395	mutex_exit(&vd->vdev_trim_io_lock);
396
397	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
398}
399
400/*
401 * The zio_done_func_t done callback for each automatic TRIM issued.  It
402 * is responsible for updating the TRIM stats and limiting the number of
403 * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
404 * never reissued on failure.
405 */
406static void
407vdev_autotrim_cb(zio_t *zio)
408{
409	vdev_t *vd = zio->io_vd;
410
411	mutex_enter(&vd->vdev_trim_io_lock);
412
413	if (zio->io_error != 0) {
414		vd->vdev_stat.vs_trim_errors++;
415		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
416		    0, 0, 0, 0, 1, zio->io_orig_size);
417	} else {
418		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
419		    1, zio->io_orig_size, 0, 0, 0, 0);
420	}
421
422	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
423	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
424	cv_broadcast(&vd->vdev_trim_io_cv);
425	mutex_exit(&vd->vdev_trim_io_lock);
426
427	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
428}
429
430/*
431 * The zio_done_func_t done callback for each TRIM issued via
432 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
433 * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
434 * effort and are never reissued on failure.
435 */
436static void
437vdev_trim_simple_cb(zio_t *zio)
438{
439	vdev_t *vd = zio->io_vd;
440
441	mutex_enter(&vd->vdev_trim_io_lock);
442
443	if (zio->io_error != 0) {
444		vd->vdev_stat.vs_trim_errors++;
445		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
446		    0, 0, 0, 0, 1, zio->io_orig_size);
447	} else {
448		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
449		    1, zio->io_orig_size, 0, 0, 0, 0);
450	}
451
452	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
453	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
454	cv_broadcast(&vd->vdev_trim_io_cv);
455	mutex_exit(&vd->vdev_trim_io_lock);
456
457	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
458}
459/*
460 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
461 */
462static uint64_t
463vdev_trim_calculate_rate(trim_args_t *ta)
464{
465	return (ta->trim_bytes_done * 1000 /
466	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
467}
468
469/*
470 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
471 * and number of concurrent TRIM I/Os.
472 */
473static int
474vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
475{
476	vdev_t *vd = ta->trim_vdev;
477	spa_t *spa = vd->vdev_spa;
478	void *cb;
479
480	mutex_enter(&vd->vdev_trim_io_lock);
481
482	/*
483	 * Limit manual TRIM I/Os to the requested rate.  This does not
484	 * apply to automatic TRIM since no per vdev rate can be specified.
485	 */
486	if (ta->trim_type == TRIM_TYPE_MANUAL) {
487		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
488		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
489			cv_timedwait_idle(&vd->vdev_trim_io_cv,
490			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
491			    MSEC_TO_TICK(10));
492		}
493	}
494	ta->trim_bytes_done += size;
495
496	/* Limit in flight trimming I/Os */
497	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
498	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
499		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
500	}
501	vd->vdev_trim_inflight[ta->trim_type]++;
502	mutex_exit(&vd->vdev_trim_io_lock);
503
504	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
505	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
506	uint64_t txg = dmu_tx_get_txg(tx);
507
508	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
509	mutex_enter(&vd->vdev_trim_lock);
510
511	if (ta->trim_type == TRIM_TYPE_MANUAL &&
512	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
513		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
514		*guid = vd->vdev_guid;
515
516		/* This is the first write of this txg. */
517		dsl_sync_task_nowait(spa_get_dsl(spa),
518		    vdev_trim_zap_update_sync, guid, tx);
519	}
520
521	/*
522	 * We know the vdev_t will still be around since all consumers of
523	 * vdev_free must stop the trimming first.
524	 */
525	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
526	    vdev_trim_should_stop(vd)) ||
527	    (ta->trim_type == TRIM_TYPE_AUTO &&
528	    vdev_autotrim_should_stop(vd->vdev_top))) {
529		mutex_enter(&vd->vdev_trim_io_lock);
530		vd->vdev_trim_inflight[ta->trim_type]--;
531		mutex_exit(&vd->vdev_trim_io_lock);
532		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
533		mutex_exit(&vd->vdev_trim_lock);
534		dmu_tx_commit(tx);
535		return (SET_ERROR(EINTR));
536	}
537	mutex_exit(&vd->vdev_trim_lock);
538
539	if (ta->trim_type == TRIM_TYPE_MANUAL)
540		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
541
542	if (ta->trim_type == TRIM_TYPE_MANUAL) {
543		cb = vdev_trim_cb;
544	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
545		cb = vdev_autotrim_cb;
546	} else {
547		cb = vdev_trim_simple_cb;
548	}
549
550	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
551	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
552	    ta->trim_flags));
553	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
554
555	dmu_tx_commit(tx);
556
557	return (0);
558}
559
560/*
561 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
562 * Additional parameters describing how the TRIM should be performed must
563 * be set in the trim_args structure.  See the trim_args definition for
564 * additional information.
565 */
566static int
567vdev_trim_ranges(trim_args_t *ta)
568{
569	vdev_t *vd = ta->trim_vdev;
570	zfs_btree_t *t = &ta->trim_tree->rt_root;
571	zfs_btree_index_t idx;
572	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
573	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
574	spa_t *spa = vd->vdev_spa;
575
576	ta->trim_start_time = gethrtime();
577	ta->trim_bytes_done = 0;
578
579	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
580	    rs = zfs_btree_next(t, &idx, &idx)) {
581		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
582		    ta->trim_tree);
583
584		if (extent_bytes_min && size < extent_bytes_min) {
585			spa_iostats_trim_add(spa, ta->trim_type,
586			    0, 0, 1, size, 0, 0);
587			continue;
588		}
589
590		/* Split range into legally-sized physical chunks */
591		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
592
593		for (uint64_t w = 0; w < writes_required; w++) {
594			int error;
595
596			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
597			    rs_get_start(rs, ta->trim_tree) +
598			    (w *extent_bytes_max), MIN(size -
599			    (w * extent_bytes_max), extent_bytes_max));
600			if (error != 0) {
601				return (error);
602			}
603		}
604	}
605
606	return (0);
607}
608
609static void
610vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
611{
612	uint64_t *last_rs_end = (uint64_t *)arg;
613
614	if (physical_rs->rs_end > *last_rs_end)
615		*last_rs_end = physical_rs->rs_end;
616}
617
618static void
619vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
620{
621	vdev_t *vd = (vdev_t *)arg;
622
623	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
624	vd->vdev_trim_bytes_est += size;
625
626	if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
627		vd->vdev_trim_bytes_done += size;
628	} else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
629	    vd->vdev_trim_last_offset <= physical_rs->rs_end) {
630		vd->vdev_trim_bytes_done +=
631		    vd->vdev_trim_last_offset - physical_rs->rs_start;
632	}
633}
634
635/*
636 * Calculates the completion percentage of a manual TRIM.
637 */
638static void
639vdev_trim_calculate_progress(vdev_t *vd)
640{
641	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
642	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
643	ASSERT(vd->vdev_leaf_zap != 0);
644
645	vd->vdev_trim_bytes_est = 0;
646	vd->vdev_trim_bytes_done = 0;
647
648	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
649		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
650		mutex_enter(&msp->ms_lock);
651
652		uint64_t ms_free = (msp->ms_size -
653		    metaslab_allocated_space(msp)) /
654		    vdev_get_ndisks(vd->vdev_top);
655
656		/*
657		 * Convert the metaslab range to a physical range
658		 * on our vdev. We use this to determine if we are
659		 * in the middle of this metaslab range.
660		 */
661		range_seg64_t logical_rs, physical_rs, remain_rs;
662		logical_rs.rs_start = msp->ms_start;
663		logical_rs.rs_end = msp->ms_start + msp->ms_size;
664
665		/* Metaslab space after this offset has not been trimmed. */
666		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
667		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
668			vd->vdev_trim_bytes_est += ms_free;
669			mutex_exit(&msp->ms_lock);
670			continue;
671		}
672
673		/* Metaslab space before this offset has been trimmed */
674		uint64_t last_rs_end = physical_rs.rs_end;
675		if (!vdev_xlate_is_empty(&remain_rs)) {
676			vdev_xlate_walk(vd, &remain_rs,
677			    vdev_trim_xlate_last_rs_end, &last_rs_end);
678		}
679
680		if (vd->vdev_trim_last_offset > last_rs_end) {
681			vd->vdev_trim_bytes_done += ms_free;
682			vd->vdev_trim_bytes_est += ms_free;
683			mutex_exit(&msp->ms_lock);
684			continue;
685		}
686
687		/*
688		 * If we get here, we're in the middle of trimming this
689		 * metaslab.  Load it and walk the free tree for more
690		 * accurate progress estimation.
691		 */
692		VERIFY0(metaslab_load(msp));
693
694		range_tree_t *rt = msp->ms_allocatable;
695		zfs_btree_t *bt = &rt->rt_root;
696		zfs_btree_index_t idx;
697		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
698		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
699			logical_rs.rs_start = rs_get_start(rs, rt);
700			logical_rs.rs_end = rs_get_end(rs, rt);
701
702			vdev_xlate_walk(vd, &logical_rs,
703			    vdev_trim_xlate_progress, vd);
704		}
705		mutex_exit(&msp->ms_lock);
706	}
707}
708
709/*
710 * Load from disk the vdev's manual TRIM information.  This includes the
711 * state, progress, and options provided when initiating the manual TRIM.
712 */
713static int
714vdev_trim_load(vdev_t *vd)
715{
716	int err = 0;
717	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
718	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
719	ASSERT(vd->vdev_leaf_zap != 0);
720
721	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
722	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
723		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
724		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
725		    sizeof (vd->vdev_trim_last_offset), 1,
726		    &vd->vdev_trim_last_offset);
727		if (err == ENOENT) {
728			vd->vdev_trim_last_offset = 0;
729			err = 0;
730		}
731
732		if (err == 0) {
733			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
734			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
735			    sizeof (vd->vdev_trim_rate), 1,
736			    &vd->vdev_trim_rate);
737			if (err == ENOENT) {
738				vd->vdev_trim_rate = 0;
739				err = 0;
740			}
741		}
742
743		if (err == 0) {
744			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
745			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
746			    sizeof (vd->vdev_trim_partial), 1,
747			    &vd->vdev_trim_partial);
748			if (err == ENOENT) {
749				vd->vdev_trim_partial = 0;
750				err = 0;
751			}
752		}
753
754		if (err == 0) {
755			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
756			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
757			    sizeof (vd->vdev_trim_secure), 1,
758			    &vd->vdev_trim_secure);
759			if (err == ENOENT) {
760				vd->vdev_trim_secure = 0;
761				err = 0;
762			}
763		}
764	}
765
766	vdev_trim_calculate_progress(vd);
767
768	return (err);
769}
770
771static void
772vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
773{
774	trim_args_t *ta = arg;
775	vdev_t *vd = ta->trim_vdev;
776
777	/*
778	 * Only a manual trim will be traversing the vdev sequentially.
779	 * For an auto trim all valid ranges should be added.
780	 */
781	if (ta->trim_type == TRIM_TYPE_MANUAL) {
782
783		/* Only add segments that we have not visited yet */
784		if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
785			return;
786
787		/* Pick up where we left off mid-range. */
788		if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
789			ASSERT3U(physical_rs->rs_end, >,
790			    vd->vdev_trim_last_offset);
791			physical_rs->rs_start = vd->vdev_trim_last_offset;
792		}
793	}
794
795	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
796
797	range_tree_add(ta->trim_tree, physical_rs->rs_start,
798	    physical_rs->rs_end - physical_rs->rs_start);
799}
800
801/*
802 * Convert the logical range into physical ranges and add them to the
803 * range tree passed in the trim_args_t.
804 */
805static void
806vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
807{
808	trim_args_t *ta = arg;
809	vdev_t *vd = ta->trim_vdev;
810	range_seg64_t logical_rs;
811	logical_rs.rs_start = start;
812	logical_rs.rs_end = start + size;
813
814	/*
815	 * Every range to be trimmed must be part of ms_allocatable.
816	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
817	 * is always the case.
818	 */
819	if (zfs_flags & ZFS_DEBUG_TRIM) {
820		metaslab_t *msp = ta->trim_msp;
821		VERIFY0(metaslab_load(msp));
822		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
823		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
824	}
825
826	ASSERT(vd->vdev_ops->vdev_op_leaf);
827	vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
828}
829
830/*
831 * Each manual TRIM thread is responsible for trimming the unallocated
832 * space for each leaf vdev.  This is accomplished by sequentially iterating
833 * over its top-level metaslabs and issuing TRIM I/O for the space described
834 * by its ms_allocatable.  While a metaslab is undergoing trimming it is
835 * not eligible for new allocations.
836 */
837static void
838vdev_trim_thread(void *arg)
839{
840	vdev_t *vd = arg;
841	spa_t *spa = vd->vdev_spa;
842	trim_args_t ta;
843	int error = 0;
844
845	/*
846	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
847	 * vdev_trim().  Wait for the updated values to be reflected
848	 * in the zap in order to start with the requested settings.
849	 */
850	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
851
852	ASSERT(vdev_is_concrete(vd));
853	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
854
855	vd->vdev_trim_last_offset = 0;
856	vd->vdev_trim_rate = 0;
857	vd->vdev_trim_partial = 0;
858	vd->vdev_trim_secure = 0;
859
860	VERIFY0(vdev_trim_load(vd));
861
862	ta.trim_vdev = vd;
863	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
864	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
865	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
866	ta.trim_type = TRIM_TYPE_MANUAL;
867	ta.trim_flags = 0;
868
869	/*
870	 * When a secure TRIM has been requested infer that the intent
871	 * is that everything must be trimmed.  Override the default
872	 * minimum TRIM size to prevent ranges from being skipped.
873	 */
874	if (vd->vdev_trim_secure) {
875		ta.trim_flags |= ZIO_TRIM_SECURE;
876		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
877	}
878
879	uint64_t ms_count = 0;
880	for (uint64_t i = 0; !vd->vdev_detached &&
881	    i < vd->vdev_top->vdev_ms_count; i++) {
882		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
883
884		/*
885		 * If we've expanded the top-level vdev or it's our
886		 * first pass, calculate our progress.
887		 */
888		if (vd->vdev_top->vdev_ms_count != ms_count) {
889			vdev_trim_calculate_progress(vd);
890			ms_count = vd->vdev_top->vdev_ms_count;
891		}
892
893		spa_config_exit(spa, SCL_CONFIG, FTAG);
894		metaslab_disable(msp);
895		mutex_enter(&msp->ms_lock);
896		VERIFY0(metaslab_load(msp));
897
898		/*
899		 * If a partial TRIM was requested skip metaslabs which have
900		 * never been initialized and thus have never been written.
901		 */
902		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
903			mutex_exit(&msp->ms_lock);
904			metaslab_enable(msp, B_FALSE, B_FALSE);
905			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
906			vdev_trim_calculate_progress(vd);
907			continue;
908		}
909
910		ta.trim_msp = msp;
911		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
912		range_tree_vacate(msp->ms_trim, NULL, NULL);
913		mutex_exit(&msp->ms_lock);
914
915		error = vdev_trim_ranges(&ta);
916		metaslab_enable(msp, B_TRUE, B_FALSE);
917		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
918
919		range_tree_vacate(ta.trim_tree, NULL, NULL);
920		if (error != 0)
921			break;
922	}
923
924	spa_config_exit(spa, SCL_CONFIG, FTAG);
925	mutex_enter(&vd->vdev_trim_io_lock);
926	while (vd->vdev_trim_inflight[0] > 0) {
927		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
928	}
929	mutex_exit(&vd->vdev_trim_io_lock);
930
931	range_tree_destroy(ta.trim_tree);
932
933	mutex_enter(&vd->vdev_trim_lock);
934	if (!vd->vdev_trim_exit_wanted) {
935		if (vdev_writeable(vd)) {
936			vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
937			    vd->vdev_trim_rate, vd->vdev_trim_partial,
938			    vd->vdev_trim_secure);
939		} else if (vd->vdev_faulted) {
940			vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
941			    vd->vdev_trim_rate, vd->vdev_trim_partial,
942			    vd->vdev_trim_secure);
943		}
944	}
945	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
946
947	/*
948	 * Drop the vdev_trim_lock while we sync out the txg since it's
949	 * possible that a device might be trying to come online and must
950	 * check to see if it needs to restart a trim. That thread will be
951	 * holding the spa_config_lock which would prevent the txg_wait_synced
952	 * from completing.
953	 */
954	mutex_exit(&vd->vdev_trim_lock);
955	txg_wait_synced(spa_get_dsl(spa), 0);
956	mutex_enter(&vd->vdev_trim_lock);
957
958	vd->vdev_trim_thread = NULL;
959	cv_broadcast(&vd->vdev_trim_cv);
960	mutex_exit(&vd->vdev_trim_lock);
961
962	thread_exit();
963}
964
965/*
966 * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
967 * the vdev_t must be a leaf and cannot already be manually trimming.
968 */
969void
970vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
971{
972	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
973	ASSERT(vd->vdev_ops->vdev_op_leaf);
974	ASSERT(vdev_is_concrete(vd));
975	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
976	ASSERT(!vd->vdev_detached);
977	ASSERT(!vd->vdev_trim_exit_wanted);
978	ASSERT(!vd->vdev_top->vdev_removing);
979
980	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
981	vd->vdev_trim_thread = thread_create(NULL, 0,
982	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
983}
984
985/*
986 * Wait for the trimming thread to be terminated (canceled or stopped).
987 */
988static void
989vdev_trim_stop_wait_impl(vdev_t *vd)
990{
991	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
992
993	while (vd->vdev_trim_thread != NULL)
994		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
995
996	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
997	vd->vdev_trim_exit_wanted = B_FALSE;
998}
999
1000/*
1001 * Wait for vdev trim threads which were listed to cleanly exit.
1002 */
1003void
1004vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1005{
1006	vdev_t *vd;
1007
1008	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1009
1010	while ((vd = list_remove_head(vd_list)) != NULL) {
1011		mutex_enter(&vd->vdev_trim_lock);
1012		vdev_trim_stop_wait_impl(vd);
1013		mutex_exit(&vd->vdev_trim_lock);
1014	}
1015}
1016
1017/*
1018 * Stop trimming a device, with the resultant trimming state being tgt_state.
1019 * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1020 * provided the stopping vdev is inserted in to the list.  Callers are then
1021 * required to call vdev_trim_stop_wait() to block for all the trim threads
1022 * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1023 * the spa config, as the trimming thread may try to enter the config as a
1024 * reader before exiting.
1025 */
1026void
1027vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1028{
1029	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1030	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1031	ASSERT(vd->vdev_ops->vdev_op_leaf);
1032	ASSERT(vdev_is_concrete(vd));
1033
1034	/*
1035	 * Allow cancel requests to proceed even if the trim thread has
1036	 * stopped.
1037	 */
1038	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1039		return;
1040
1041	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1042	vd->vdev_trim_exit_wanted = B_TRUE;
1043
1044	if (vd_list == NULL) {
1045		vdev_trim_stop_wait_impl(vd);
1046	} else {
1047		ASSERT(MUTEX_HELD(&spa_namespace_lock));
1048		list_insert_tail(vd_list, vd);
1049	}
1050}
1051
1052/*
1053 * Requests that all listed vdevs stop trimming.
1054 */
1055static void
1056vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1057    list_t *vd_list)
1058{
1059	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1060		mutex_enter(&vd->vdev_trim_lock);
1061		vdev_trim_stop(vd, tgt_state, vd_list);
1062		mutex_exit(&vd->vdev_trim_lock);
1063		return;
1064	}
1065
1066	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1067		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1068		    vd_list);
1069	}
1070}
1071
1072/*
1073 * Convenience function to stop trimming of a vdev tree and set all trim
1074 * thread pointers to NULL.
1075 */
1076void
1077vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1078{
1079	spa_t *spa = vd->vdev_spa;
1080	list_t vd_list;
1081	vdev_t *vd_l2cache;
1082
1083	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1084
1085	list_create(&vd_list, sizeof (vdev_t),
1086	    offsetof(vdev_t, vdev_trim_node));
1087
1088	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1089
1090	/*
1091	 * Iterate over cache devices and request stop trimming the
1092	 * whole device in case we export the pool or remove the cache
1093	 * device prematurely.
1094	 */
1095	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1096		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1097		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1098	}
1099
1100	vdev_trim_stop_wait(spa, &vd_list);
1101
1102	if (vd->vdev_spa->spa_sync_on) {
1103		/* Make sure that our state has been synced to disk */
1104		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1105	}
1106
1107	list_destroy(&vd_list);
1108}
1109
1110/*
1111 * Conditionally restarts a manual TRIM given its on-disk state.
1112 */
1113void
1114vdev_trim_restart(vdev_t *vd)
1115{
1116	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1117	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1118
1119	if (vd->vdev_leaf_zap != 0) {
1120		mutex_enter(&vd->vdev_trim_lock);
1121		uint64_t trim_state = VDEV_TRIM_NONE;
1122		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1123		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1124		    sizeof (trim_state), 1, &trim_state);
1125		ASSERT(err == 0 || err == ENOENT);
1126		vd->vdev_trim_state = trim_state;
1127
1128		uint64_t timestamp = 0;
1129		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1130		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1131		    sizeof (timestamp), 1, &timestamp);
1132		ASSERT(err == 0 || err == ENOENT);
1133		vd->vdev_trim_action_time = timestamp;
1134
1135		if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1136		    vd->vdev_offline) {
1137			/* load progress for reporting, but don't resume */
1138			VERIFY0(vdev_trim_load(vd));
1139		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1140		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1141		    vd->vdev_trim_thread == NULL) {
1142			VERIFY0(vdev_trim_load(vd));
1143			vdev_trim(vd, vd->vdev_trim_rate,
1144			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1145		}
1146
1147		mutex_exit(&vd->vdev_trim_lock);
1148	}
1149
1150	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1151		vdev_trim_restart(vd->vdev_child[i]);
1152	}
1153}
1154
1155/*
1156 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1157 * every TRIM range is contained within ms_allocatable.
1158 */
1159static void
1160vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1161{
1162	trim_args_t *ta = arg;
1163	metaslab_t *msp = ta->trim_msp;
1164
1165	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1166	VERIFY3U(msp->ms_disabled, >, 0);
1167	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1168}
1169
1170/*
1171 * Each automatic TRIM thread is responsible for managing the trimming of a
1172 * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1173 *
1174 * N.B. This behavior is different from a manual TRIM where a thread
1175 * is created for each leaf vdev, instead of each top-level vdev.
1176 */
1177static void
1178vdev_autotrim_thread(void *arg)
1179{
1180	vdev_t *vd = arg;
1181	spa_t *spa = vd->vdev_spa;
1182	int shift = 0;
1183
1184	mutex_enter(&vd->vdev_autotrim_lock);
1185	ASSERT3P(vd->vdev_top, ==, vd);
1186	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1187	mutex_exit(&vd->vdev_autotrim_lock);
1188	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1189
1190	uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1191	uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1192
1193	while (!vdev_autotrim_should_stop(vd)) {
1194		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1195		boolean_t issued_trim = B_FALSE;
1196
1197		/*
1198		 * All of the metaslabs are divided in to groups of size
1199		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1200		 * is composed of metaslabs which are spread evenly over the
1201		 * device.
1202		 *
1203		 * For example, when zfs_trim_txg_batch = 32 (default) then
1204		 * group 0 will contain metaslabs 0, 32, 64, ...;
1205		 * group 1 will contain metaslabs 1, 33, 65, ...;
1206		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1207		 *
1208		 * On each pass through the while() loop one of these groups
1209		 * is selected.  This is accomplished by using a shift value
1210		 * to select the starting metaslab, then striding over the
1211		 * metaslabs using the zfs_trim_txg_batch size.  This is
1212		 * done to accomplish two things.
1213		 *
1214		 * 1) By dividing the metaslabs in to groups, and making sure
1215		 *    that each group takes a minimum of one txg to process.
1216		 *    Then zfs_trim_txg_batch controls the minimum number of
1217		 *    txgs which must occur before a metaslab is revisited.
1218		 *
1219		 * 2) Selecting non-consecutive metaslabs distributes the
1220		 *    TRIM commands for a group evenly over the entire device.
1221		 *    This can be advantageous for certain types of devices.
1222		 */
1223		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1224		    i += txgs_per_trim) {
1225			metaslab_t *msp = vd->vdev_ms[i];
1226			range_tree_t *trim_tree;
1227
1228			spa_config_exit(spa, SCL_CONFIG, FTAG);
1229			metaslab_disable(msp);
1230			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1231
1232			mutex_enter(&msp->ms_lock);
1233
1234			/*
1235			 * Skip the metaslab when it has never been allocated
1236			 * or when there are no recent frees to trim.
1237			 */
1238			if (msp->ms_sm == NULL ||
1239			    range_tree_is_empty(msp->ms_trim)) {
1240				mutex_exit(&msp->ms_lock);
1241				metaslab_enable(msp, B_FALSE, B_FALSE);
1242				continue;
1243			}
1244
1245			/*
1246			 * Skip the metaslab when it has already been disabled.
1247			 * This may happen when a manual TRIM or initialize
1248			 * operation is running concurrently.  In the case
1249			 * of a manual TRIM, the ms_trim tree will have been
1250			 * vacated.  Only ranges added after the manual TRIM
1251			 * disabled the metaslab will be included in the tree.
1252			 * These will be processed when the automatic TRIM
1253			 * next revisits this metaslab.
1254			 */
1255			if (msp->ms_disabled > 1) {
1256				mutex_exit(&msp->ms_lock);
1257				metaslab_enable(msp, B_FALSE, B_FALSE);
1258				continue;
1259			}
1260
1261			/*
1262			 * Allocate an empty range tree which is swapped in
1263			 * for the existing ms_trim tree while it is processed.
1264			 */
1265			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1266			    0, 0);
1267			range_tree_swap(&msp->ms_trim, &trim_tree);
1268			ASSERT(range_tree_is_empty(msp->ms_trim));
1269
1270			/*
1271			 * There are two cases when constructing the per-vdev
1272			 * trim trees for a metaslab.  If the top-level vdev
1273			 * has no children then it is also a leaf and should
1274			 * be trimmed.  Otherwise our children are the leaves
1275			 * and a trim tree should be constructed for each.
1276			 */
1277			trim_args_t *tap;
1278			uint64_t children = vd->vdev_children;
1279			if (children == 0) {
1280				children = 1;
1281				tap = kmem_zalloc(sizeof (trim_args_t) *
1282				    children, KM_SLEEP);
1283				tap[0].trim_vdev = vd;
1284			} else {
1285				tap = kmem_zalloc(sizeof (trim_args_t) *
1286				    children, KM_SLEEP);
1287
1288				for (uint64_t c = 0; c < children; c++) {
1289					tap[c].trim_vdev = vd->vdev_child[c];
1290				}
1291			}
1292
1293			for (uint64_t c = 0; c < children; c++) {
1294				trim_args_t *ta = &tap[c];
1295				vdev_t *cvd = ta->trim_vdev;
1296
1297				ta->trim_msp = msp;
1298				ta->trim_extent_bytes_max = extent_bytes_max;
1299				ta->trim_extent_bytes_min = extent_bytes_min;
1300				ta->trim_type = TRIM_TYPE_AUTO;
1301				ta->trim_flags = 0;
1302
1303				if (cvd->vdev_detached ||
1304				    !vdev_writeable(cvd) ||
1305				    !cvd->vdev_has_trim ||
1306				    cvd->vdev_trim_thread != NULL) {
1307					continue;
1308				}
1309
1310				/*
1311				 * When a device has an attached hot spare, or
1312				 * is being replaced it will not be trimmed.
1313				 * This is done to avoid adding additional
1314				 * stress to a potentially unhealthy device,
1315				 * and to minimize the required rebuild time.
1316				 */
1317				if (!cvd->vdev_ops->vdev_op_leaf)
1318					continue;
1319
1320				ta->trim_tree = range_tree_create(NULL,
1321				    RANGE_SEG64, NULL, 0, 0);
1322				range_tree_walk(trim_tree,
1323				    vdev_trim_range_add, ta);
1324			}
1325
1326			mutex_exit(&msp->ms_lock);
1327			spa_config_exit(spa, SCL_CONFIG, FTAG);
1328
1329			/*
1330			 * Issue the TRIM I/Os for all ranges covered by the
1331			 * TRIM trees.  These ranges are safe to TRIM because
1332			 * no new allocations will be performed until the call
1333			 * to metaslab_enabled() below.
1334			 */
1335			for (uint64_t c = 0; c < children; c++) {
1336				trim_args_t *ta = &tap[c];
1337
1338				/*
1339				 * Always yield to a manual TRIM if one has
1340				 * been started for the child vdev.
1341				 */
1342				if (ta->trim_tree == NULL ||
1343				    ta->trim_vdev->vdev_trim_thread != NULL) {
1344					continue;
1345				}
1346
1347				/*
1348				 * After this point metaslab_enable() must be
1349				 * called with the sync flag set.  This is done
1350				 * here because vdev_trim_ranges() is allowed
1351				 * to be interrupted (EINTR) before issuing all
1352				 * of the required TRIM I/Os.
1353				 */
1354				issued_trim = B_TRUE;
1355
1356				int error = vdev_trim_ranges(ta);
1357				if (error)
1358					break;
1359			}
1360
1361			/*
1362			 * Verify every range which was trimmed is still
1363			 * contained within the ms_allocatable tree.
1364			 */
1365			if (zfs_flags & ZFS_DEBUG_TRIM) {
1366				mutex_enter(&msp->ms_lock);
1367				VERIFY0(metaslab_load(msp));
1368				VERIFY3P(tap[0].trim_msp, ==, msp);
1369				range_tree_walk(trim_tree,
1370				    vdev_trim_range_verify, &tap[0]);
1371				mutex_exit(&msp->ms_lock);
1372			}
1373
1374			range_tree_vacate(trim_tree, NULL, NULL);
1375			range_tree_destroy(trim_tree);
1376
1377			metaslab_enable(msp, issued_trim, B_FALSE);
1378			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1379
1380			for (uint64_t c = 0; c < children; c++) {
1381				trim_args_t *ta = &tap[c];
1382
1383				if (ta->trim_tree == NULL)
1384					continue;
1385
1386				range_tree_vacate(ta->trim_tree, NULL, NULL);
1387				range_tree_destroy(ta->trim_tree);
1388			}
1389
1390			kmem_free(tap, sizeof (trim_args_t) * children);
1391		}
1392
1393		spa_config_exit(spa, SCL_CONFIG, FTAG);
1394
1395		/*
1396		 * After completing the group of metaslabs wait for the next
1397		 * open txg.  This is done to make sure that a minimum of
1398		 * zfs_trim_txg_batch txgs will occur before these metaslabs
1399		 * are trimmed again.
1400		 */
1401		txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
1402
1403		shift++;
1404		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1405	}
1406
1407	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1408		vdev_t *cvd = vd->vdev_child[c];
1409		mutex_enter(&cvd->vdev_trim_io_lock);
1410
1411		while (cvd->vdev_trim_inflight[1] > 0) {
1412			cv_wait(&cvd->vdev_trim_io_cv,
1413			    &cvd->vdev_trim_io_lock);
1414		}
1415		mutex_exit(&cvd->vdev_trim_io_lock);
1416	}
1417
1418	spa_config_exit(spa, SCL_CONFIG, FTAG);
1419
1420	/*
1421	 * When exiting because the autotrim property was set to off, then
1422	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1423	 */
1424	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1425		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1426			metaslab_t *msp = vd->vdev_ms[i];
1427
1428			mutex_enter(&msp->ms_lock);
1429			range_tree_vacate(msp->ms_trim, NULL, NULL);
1430			mutex_exit(&msp->ms_lock);
1431		}
1432	}
1433
1434	mutex_enter(&vd->vdev_autotrim_lock);
1435	ASSERT(vd->vdev_autotrim_thread != NULL);
1436	vd->vdev_autotrim_thread = NULL;
1437	cv_broadcast(&vd->vdev_autotrim_cv);
1438	mutex_exit(&vd->vdev_autotrim_lock);
1439
1440	thread_exit();
1441}
1442
1443/*
1444 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1445 * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1446 */
1447void
1448vdev_autotrim(spa_t *spa)
1449{
1450	vdev_t *root_vd = spa->spa_root_vdev;
1451
1452	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1453		vdev_t *tvd = root_vd->vdev_child[i];
1454
1455		mutex_enter(&tvd->vdev_autotrim_lock);
1456		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1457		    tvd->vdev_autotrim_thread == NULL) {
1458			ASSERT3P(tvd->vdev_top, ==, tvd);
1459
1460			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1461			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1462			    maxclsyspri);
1463			ASSERT(tvd->vdev_autotrim_thread != NULL);
1464		}
1465		mutex_exit(&tvd->vdev_autotrim_lock);
1466	}
1467}
1468
1469/*
1470 * Wait for the vdev_autotrim_thread associated with the passed top-level
1471 * vdev to be terminated (canceled or stopped).
1472 */
1473void
1474vdev_autotrim_stop_wait(vdev_t *tvd)
1475{
1476	mutex_enter(&tvd->vdev_autotrim_lock);
1477	if (tvd->vdev_autotrim_thread != NULL) {
1478		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1479
1480		while (tvd->vdev_autotrim_thread != NULL) {
1481			cv_wait(&tvd->vdev_autotrim_cv,
1482			    &tvd->vdev_autotrim_lock);
1483		}
1484
1485		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1486		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1487	}
1488	mutex_exit(&tvd->vdev_autotrim_lock);
1489}
1490
1491/*
1492 * Wait for all of the vdev_autotrim_thread associated with the pool to
1493 * be terminated (canceled or stopped).
1494 */
1495void
1496vdev_autotrim_stop_all(spa_t *spa)
1497{
1498	vdev_t *root_vd = spa->spa_root_vdev;
1499
1500	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1501		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1502}
1503
1504/*
1505 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1506 */
1507void
1508vdev_autotrim_restart(spa_t *spa)
1509{
1510	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1511
1512	if (spa->spa_autotrim)
1513		vdev_autotrim(spa);
1514}
1515
1516static void
1517vdev_trim_l2arc_thread(void *arg)
1518{
1519	vdev_t		*vd = arg;
1520	spa_t		*spa = vd->vdev_spa;
1521	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1522	trim_args_t	ta;
1523	range_seg64_t 	physical_rs;
1524
1525	ASSERT(vdev_is_concrete(vd));
1526	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1527
1528	vd->vdev_trim_last_offset = 0;
1529	vd->vdev_trim_rate = 0;
1530	vd->vdev_trim_partial = 0;
1531	vd->vdev_trim_secure = 0;
1532
1533	bzero(&ta, sizeof (ta));
1534	ta.trim_vdev = vd;
1535	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1536	ta.trim_type = TRIM_TYPE_MANUAL;
1537	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1538	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1539	ta.trim_flags = 0;
1540
1541	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1542	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1543	    vdev_get_min_asize(vd);
1544
1545	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1546	    physical_rs.rs_end - physical_rs.rs_start);
1547
1548	mutex_enter(&vd->vdev_trim_lock);
1549	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1550	mutex_exit(&vd->vdev_trim_lock);
1551
1552	(void) vdev_trim_ranges(&ta);
1553
1554	spa_config_exit(spa, SCL_CONFIG, FTAG);
1555	mutex_enter(&vd->vdev_trim_io_lock);
1556	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1557		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1558	}
1559	mutex_exit(&vd->vdev_trim_io_lock);
1560
1561	range_tree_vacate(ta.trim_tree, NULL, NULL);
1562	range_tree_destroy(ta.trim_tree);
1563
1564	mutex_enter(&vd->vdev_trim_lock);
1565	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1566		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1567		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1568		    vd->vdev_trim_secure);
1569	}
1570	ASSERT(vd->vdev_trim_thread != NULL ||
1571	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1572
1573	/*
1574	 * Drop the vdev_trim_lock while we sync out the txg since it's
1575	 * possible that a device might be trying to come online and
1576	 * must check to see if it needs to restart a trim. That thread
1577	 * will be holding the spa_config_lock which would prevent the
1578	 * txg_wait_synced from completing. Same strategy as in
1579	 * vdev_trim_thread().
1580	 */
1581	mutex_exit(&vd->vdev_trim_lock);
1582	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1583	mutex_enter(&vd->vdev_trim_lock);
1584
1585	/*
1586	 * Update the header of the cache device here, before
1587	 * broadcasting vdev_trim_cv which may lead to the removal
1588	 * of the device. The same applies for setting l2ad_trim_all to
1589	 * false.
1590	 */
1591	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1592	    RW_READER);
1593	bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize);
1594	l2arc_dev_hdr_update(dev);
1595	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1596
1597	vd->vdev_trim_thread = NULL;
1598	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1599		dev->l2ad_trim_all = B_FALSE;
1600
1601	cv_broadcast(&vd->vdev_trim_cv);
1602	mutex_exit(&vd->vdev_trim_lock);
1603
1604	thread_exit();
1605}
1606
1607/*
1608 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1609 * to vd->vdev_trim_thread variable. This facilitates the management of
1610 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1611 * to a pool or pool creation or when the header of the device is invalid.
1612 */
1613void
1614vdev_trim_l2arc(spa_t *spa)
1615{
1616	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1617
1618	/*
1619	 * Locate the spa's l2arc devices and kick off TRIM threads.
1620	 */
1621	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1622		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1623		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1624
1625		if (dev == NULL || !dev->l2ad_trim_all) {
1626			/*
1627			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1628			 * cache device was not marked for whole device TRIM
1629			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1630			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1631			 * l2ad_log_entries > 0).
1632			 */
1633			continue;
1634		}
1635
1636		mutex_enter(&vd->vdev_trim_lock);
1637		ASSERT(vd->vdev_ops->vdev_op_leaf);
1638		ASSERT(vdev_is_concrete(vd));
1639		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1640		ASSERT(!vd->vdev_detached);
1641		ASSERT(!vd->vdev_trim_exit_wanted);
1642		ASSERT(!vd->vdev_top->vdev_removing);
1643		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1644		vd->vdev_trim_thread = thread_create(NULL, 0,
1645		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1646		mutex_exit(&vd->vdev_trim_lock);
1647	}
1648}
1649
1650/*
1651 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1652 * on leaf vdevs.
1653 */
1654int
1655vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1656{
1657	trim_args_t		ta;
1658	range_seg64_t 		physical_rs;
1659	int			error;
1660	physical_rs.rs_start = start;
1661	physical_rs.rs_end = start + size;
1662
1663	ASSERT(vdev_is_concrete(vd));
1664	ASSERT(vd->vdev_ops->vdev_op_leaf);
1665	ASSERT(!vd->vdev_detached);
1666	ASSERT(!vd->vdev_top->vdev_removing);
1667
1668	bzero(&ta, sizeof (ta));
1669	ta.trim_vdev = vd;
1670	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1671	ta.trim_type = TRIM_TYPE_SIMPLE;
1672	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1673	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1674	ta.trim_flags = 0;
1675
1676	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1677
1678	if (physical_rs.rs_end > physical_rs.rs_start) {
1679		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1680		    physical_rs.rs_end - physical_rs.rs_start);
1681	} else {
1682		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1683	}
1684
1685	error = vdev_trim_ranges(&ta);
1686
1687	mutex_enter(&vd->vdev_trim_io_lock);
1688	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1689		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1690	}
1691	mutex_exit(&vd->vdev_trim_io_lock);
1692
1693	range_tree_vacate(ta.trim_tree, NULL, NULL);
1694	range_tree_destroy(ta.trim_tree);
1695
1696	return (error);
1697}
1698
1699EXPORT_SYMBOL(vdev_trim);
1700EXPORT_SYMBOL(vdev_trim_stop);
1701EXPORT_SYMBOL(vdev_trim_stop_all);
1702EXPORT_SYMBOL(vdev_trim_stop_wait);
1703EXPORT_SYMBOL(vdev_trim_restart);
1704EXPORT_SYMBOL(vdev_autotrim);
1705EXPORT_SYMBOL(vdev_autotrim_stop_all);
1706EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1707EXPORT_SYMBOL(vdev_autotrim_restart);
1708EXPORT_SYMBOL(vdev_trim_l2arc);
1709EXPORT_SYMBOL(vdev_trim_simple);
1710
1711/* BEGIN CSTYLED */
1712ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1713    "Max size of TRIM commands, larger will be split");
1714
1715ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1716    "Min size of TRIM commands, smaller will be skipped");
1717
1718ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1719    "Skip metaslabs which have never been initialized");
1720
1721ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1722    "Min number of txgs to aggregate frees before issuing TRIM");
1723
1724ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1725    "Max queued TRIMs outstanding per leaf vdev");
1726/* END CSTYLED */
1727