1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31/*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 *     creating and destroying datasets, reading and writing objects, etc)
39 *     we have a simple routine to test that functionality.  These
40 *     individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 *     running them all in parallel, with as many threads as desired,
44 *     and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 *     verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 *     functions.  Thus even individual objects vary from block to block
51 *     in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 *     we run the entire test in a child of the main process.
55 *     At random times, the child self-immolates with a SIGKILL.
56 *     This is the software equivalent of pulling the power cord.
57 *     The parent then runs the test again, using the existing
58 *     storage pool, as many times as desired. If backwards compatibility
59 *     testing is enabled ztest will sometimes run the "older" version
60 *     of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 *     many of the functional tests record the transaction group number
64 *     as part of their data.  When reading old data, they verify that
65 *     the transaction group number is less than the current, open txg.
66 *     If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 *     Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful.  To get a little bit of information,
73 * specify -V.  To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91#include <sys/zfs_context.h>
92#include <sys/spa.h>
93#include <sys/dmu.h>
94#include <sys/txg.h>
95#include <sys/dbuf.h>
96#include <sys/zap.h>
97#include <sys/dmu_objset.h>
98#include <sys/poll.h>
99#include <sys/stat.h>
100#include <sys/time.h>
101#include <sys/wait.h>
102#include <sys/mman.h>
103#include <sys/resource.h>
104#include <sys/zio.h>
105#include <sys/zil.h>
106#include <sys/zil_impl.h>
107#include <sys/vdev_draid.h>
108#include <sys/vdev_impl.h>
109#include <sys/vdev_file.h>
110#include <sys/vdev_initialize.h>
111#include <sys/vdev_raidz.h>
112#include <sys/vdev_trim.h>
113#include <sys/spa_impl.h>
114#include <sys/metaslab_impl.h>
115#include <sys/dsl_prop.h>
116#include <sys/dsl_dataset.h>
117#include <sys/dsl_destroy.h>
118#include <sys/dsl_scan.h>
119#include <sys/zio_checksum.h>
120#include <sys/zfs_refcount.h>
121#include <sys/zfeature.h>
122#include <sys/dsl_userhold.h>
123#include <sys/abd.h>
124#include <stdio.h>
125#include <stdlib.h>
126#include <unistd.h>
127#include <getopt.h>
128#include <signal.h>
129#include <umem.h>
130#include <ctype.h>
131#include <math.h>
132#include <sys/fs/zfs.h>
133#include <zfs_fletcher.h>
134#include <libnvpair.h>
135#include <libzutil.h>
136#include <sys/crypto/icp.h>
137#if (__GLIBC__ && !__UCLIBC__)
138#include <execinfo.h> /* for backtrace() */
139#endif
140
141static int ztest_fd_data = -1;
142static int ztest_fd_rand = -1;
143
144typedef struct ztest_shared_hdr {
145	uint64_t	zh_hdr_size;
146	uint64_t	zh_opts_size;
147	uint64_t	zh_size;
148	uint64_t	zh_stats_size;
149	uint64_t	zh_stats_count;
150	uint64_t	zh_ds_size;
151	uint64_t	zh_ds_count;
152} ztest_shared_hdr_t;
153
154static ztest_shared_hdr_t *ztest_shared_hdr;
155
156enum ztest_class_state {
157	ZTEST_VDEV_CLASS_OFF,
158	ZTEST_VDEV_CLASS_ON,
159	ZTEST_VDEV_CLASS_RND
160};
161
162#define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
163#define	ZO_GVARS_MAX_COUNT	((size_t)10)
164
165typedef struct ztest_shared_opts {
166	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
167	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
168	char zo_alt_ztest[MAXNAMELEN];
169	char zo_alt_libpath[MAXNAMELEN];
170	uint64_t zo_vdevs;
171	uint64_t zo_vdevtime;
172	size_t zo_vdev_size;
173	int zo_ashift;
174	int zo_mirrors;
175	int zo_raid_children;
176	int zo_raid_parity;
177	char zo_raid_type[8];
178	int zo_draid_data;
179	int zo_draid_spares;
180	int zo_datasets;
181	int zo_threads;
182	uint64_t zo_passtime;
183	uint64_t zo_killrate;
184	int zo_verbose;
185	int zo_init;
186	uint64_t zo_time;
187	uint64_t zo_maxloops;
188	uint64_t zo_metaslab_force_ganging;
189	int zo_mmp_test;
190	int zo_special_vdevs;
191	int zo_dump_dbgmsg;
192	int zo_gvars_count;
193	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
194} ztest_shared_opts_t;
195
196/* Default values for command line options. */
197#define	DEFAULT_POOL "ztest"
198#define	DEFAULT_VDEV_DIR "/tmp"
199#define	DEFAULT_VDEV_COUNT 5
200#define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
201#define	DEFAULT_VDEV_SIZE_STR "256M"
202#define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
203#define	DEFAULT_MIRRORS 2
204#define	DEFAULT_RAID_CHILDREN 4
205#define	DEFAULT_RAID_PARITY 1
206#define	DEFAULT_DRAID_DATA 4
207#define	DEFAULT_DRAID_SPARES 1
208#define	DEFAULT_DATASETS_COUNT 7
209#define	DEFAULT_THREADS 23
210#define	DEFAULT_RUN_TIME 300 /* 300 seconds */
211#define	DEFAULT_RUN_TIME_STR "300 sec"
212#define	DEFAULT_PASS_TIME 60 /* 60 seconds */
213#define	DEFAULT_PASS_TIME_STR "60 sec"
214#define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
215#define	DEFAULT_KILLRATE_STR "70%"
216#define	DEFAULT_INITS 1
217#define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
218#define	DEFAULT_FORCE_GANGING (64 << 10)
219#define	DEFAULT_FORCE_GANGING_STR "64K"
220
221/* Simplifying assumption: -1 is not a valid default. */
222#define	NO_DEFAULT -1
223
224static const ztest_shared_opts_t ztest_opts_defaults = {
225	.zo_pool = DEFAULT_POOL,
226	.zo_dir = DEFAULT_VDEV_DIR,
227	.zo_alt_ztest = { '\0' },
228	.zo_alt_libpath = { '\0' },
229	.zo_vdevs = DEFAULT_VDEV_COUNT,
230	.zo_ashift = DEFAULT_ASHIFT,
231	.zo_mirrors = DEFAULT_MIRRORS,
232	.zo_raid_children = DEFAULT_RAID_CHILDREN,
233	.zo_raid_parity = DEFAULT_RAID_PARITY,
234	.zo_raid_type = VDEV_TYPE_RAIDZ,
235	.zo_vdev_size = DEFAULT_VDEV_SIZE,
236	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
237	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
238	.zo_datasets = DEFAULT_DATASETS_COUNT,
239	.zo_threads = DEFAULT_THREADS,
240	.zo_passtime = DEFAULT_PASS_TIME,
241	.zo_killrate = DEFAULT_KILL_RATE,
242	.zo_verbose = 0,
243	.zo_mmp_test = 0,
244	.zo_init = DEFAULT_INITS,
245	.zo_time = DEFAULT_RUN_TIME,
246	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
247	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
248	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
249	.zo_gvars_count = 0,
250};
251
252extern uint64_t metaslab_force_ganging;
253extern uint64_t metaslab_df_alloc_threshold;
254extern unsigned long zfs_deadman_synctime_ms;
255extern int metaslab_preload_limit;
256extern boolean_t zfs_compressed_arc_enabled;
257extern int zfs_abd_scatter_enabled;
258extern int dmu_object_alloc_chunk_shift;
259extern boolean_t zfs_force_some_double_word_sm_entries;
260extern unsigned long zio_decompress_fail_fraction;
261extern unsigned long zfs_reconstruct_indirect_damage_fraction;
262
263
264static ztest_shared_opts_t *ztest_shared_opts;
265static ztest_shared_opts_t ztest_opts;
266static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
267
268typedef struct ztest_shared_ds {
269	uint64_t	zd_seq;
270} ztest_shared_ds_t;
271
272static ztest_shared_ds_t *ztest_shared_ds;
273#define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
274
275#define	BT_MAGIC	0x123456789abcdefULL
276#define	MAXFAULTS(zs) \
277	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
278
279enum ztest_io_type {
280	ZTEST_IO_WRITE_TAG,
281	ZTEST_IO_WRITE_PATTERN,
282	ZTEST_IO_WRITE_ZEROES,
283	ZTEST_IO_TRUNCATE,
284	ZTEST_IO_SETATTR,
285	ZTEST_IO_REWRITE,
286	ZTEST_IO_TYPES
287};
288
289typedef struct ztest_block_tag {
290	uint64_t	bt_magic;
291	uint64_t	bt_objset;
292	uint64_t	bt_object;
293	uint64_t	bt_dnodesize;
294	uint64_t	bt_offset;
295	uint64_t	bt_gen;
296	uint64_t	bt_txg;
297	uint64_t	bt_crtxg;
298} ztest_block_tag_t;
299
300typedef struct bufwad {
301	uint64_t	bw_index;
302	uint64_t	bw_txg;
303	uint64_t	bw_data;
304} bufwad_t;
305
306/*
307 * It would be better to use a rangelock_t per object.  Unfortunately
308 * the rangelock_t is not a drop-in replacement for rl_t, because we
309 * still need to map from object ID to rangelock_t.
310 */
311typedef enum {
312	RL_READER,
313	RL_WRITER,
314	RL_APPEND
315} rl_type_t;
316
317typedef struct rll {
318	void		*rll_writer;
319	int		rll_readers;
320	kmutex_t	rll_lock;
321	kcondvar_t	rll_cv;
322} rll_t;
323
324typedef struct rl {
325	uint64_t	rl_object;
326	uint64_t	rl_offset;
327	uint64_t	rl_size;
328	rll_t		*rl_lock;
329} rl_t;
330
331#define	ZTEST_RANGE_LOCKS	64
332#define	ZTEST_OBJECT_LOCKS	64
333
334/*
335 * Object descriptor.  Used as a template for object lookup/create/remove.
336 */
337typedef struct ztest_od {
338	uint64_t	od_dir;
339	uint64_t	od_object;
340	dmu_object_type_t od_type;
341	dmu_object_type_t od_crtype;
342	uint64_t	od_blocksize;
343	uint64_t	od_crblocksize;
344	uint64_t	od_crdnodesize;
345	uint64_t	od_gen;
346	uint64_t	od_crgen;
347	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
348} ztest_od_t;
349
350/*
351 * Per-dataset state.
352 */
353typedef struct ztest_ds {
354	ztest_shared_ds_t *zd_shared;
355	objset_t	*zd_os;
356	pthread_rwlock_t zd_zilog_lock;
357	zilog_t		*zd_zilog;
358	ztest_od_t	*zd_od;		/* debugging aid */
359	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
360	kmutex_t	zd_dirobj_lock;
361	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
362	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
363} ztest_ds_t;
364
365/*
366 * Per-iteration state.
367 */
368typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
369
370typedef struct ztest_info {
371	ztest_func_t	*zi_func;	/* test function */
372	uint64_t	zi_iters;	/* iterations per execution */
373	uint64_t	*zi_interval;	/* execute every <interval> seconds */
374	const char	*zi_funcname;	/* name of test function */
375} ztest_info_t;
376
377typedef struct ztest_shared_callstate {
378	uint64_t	zc_count;	/* per-pass count */
379	uint64_t	zc_time;	/* per-pass time */
380	uint64_t	zc_next;	/* next time to call this function */
381} ztest_shared_callstate_t;
382
383static ztest_shared_callstate_t *ztest_shared_callstate;
384#define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
385
386ztest_func_t ztest_dmu_read_write;
387ztest_func_t ztest_dmu_write_parallel;
388ztest_func_t ztest_dmu_object_alloc_free;
389ztest_func_t ztest_dmu_object_next_chunk;
390ztest_func_t ztest_dmu_commit_callbacks;
391ztest_func_t ztest_zap;
392ztest_func_t ztest_zap_parallel;
393ztest_func_t ztest_zil_commit;
394ztest_func_t ztest_zil_remount;
395ztest_func_t ztest_dmu_read_write_zcopy;
396ztest_func_t ztest_dmu_objset_create_destroy;
397ztest_func_t ztest_dmu_prealloc;
398ztest_func_t ztest_fzap;
399ztest_func_t ztest_dmu_snapshot_create_destroy;
400ztest_func_t ztest_dsl_prop_get_set;
401ztest_func_t ztest_spa_prop_get_set;
402ztest_func_t ztest_spa_create_destroy;
403ztest_func_t ztest_fault_inject;
404ztest_func_t ztest_dmu_snapshot_hold;
405ztest_func_t ztest_mmp_enable_disable;
406ztest_func_t ztest_scrub;
407ztest_func_t ztest_dsl_dataset_promote_busy;
408ztest_func_t ztest_vdev_attach_detach;
409ztest_func_t ztest_vdev_LUN_growth;
410ztest_func_t ztest_vdev_add_remove;
411ztest_func_t ztest_vdev_class_add;
412ztest_func_t ztest_vdev_aux_add_remove;
413ztest_func_t ztest_split_pool;
414ztest_func_t ztest_reguid;
415ztest_func_t ztest_spa_upgrade;
416ztest_func_t ztest_device_removal;
417ztest_func_t ztest_spa_checkpoint_create_discard;
418ztest_func_t ztest_initialize;
419ztest_func_t ztest_trim;
420ztest_func_t ztest_fletcher;
421ztest_func_t ztest_fletcher_incr;
422ztest_func_t ztest_verify_dnode_bt;
423
424uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
425uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
426uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
427uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
428uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
429
430#define	ZTI_INIT(func, iters, interval) \
431	{   .zi_func = (func), \
432	    .zi_iters = (iters), \
433	    .zi_interval = (interval), \
434	    .zi_funcname = # func }
435
436ztest_info_t ztest_info[] = {
437	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
438	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
439	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
440	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
441	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
442	ZTI_INIT(ztest_zap, 30, &zopt_always),
443	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
444	ZTI_INIT(ztest_split_pool, 1, &zopt_always),
445	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
446	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
447	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
448	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
449	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
450	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
451#if 0
452	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
453#endif
454	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
455	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
456	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
457	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
458	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
459	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
460	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
461	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
462	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
463	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
464	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
465	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
466	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
467	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
468	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
469	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
470	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
471	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
472	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
473	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
474	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
475	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
476};
477
478#define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
479
480/*
481 * The following struct is used to hold a list of uncalled commit callbacks.
482 * The callbacks are ordered by txg number.
483 */
484typedef struct ztest_cb_list {
485	kmutex_t	zcl_callbacks_lock;
486	list_t		zcl_callbacks;
487} ztest_cb_list_t;
488
489/*
490 * Stuff we need to share writably between parent and child.
491 */
492typedef struct ztest_shared {
493	boolean_t	zs_do_init;
494	hrtime_t	zs_proc_start;
495	hrtime_t	zs_proc_stop;
496	hrtime_t	zs_thread_start;
497	hrtime_t	zs_thread_stop;
498	hrtime_t	zs_thread_kill;
499	uint64_t	zs_enospc_count;
500	uint64_t	zs_vdev_next_leaf;
501	uint64_t	zs_vdev_aux;
502	uint64_t	zs_alloc;
503	uint64_t	zs_space;
504	uint64_t	zs_splits;
505	uint64_t	zs_mirrors;
506	uint64_t	zs_metaslab_sz;
507	uint64_t	zs_metaslab_df_alloc_threshold;
508	uint64_t	zs_guid;
509} ztest_shared_t;
510
511#define	ID_PARALLEL	-1ULL
512
513static char ztest_dev_template[] = "%s/%s.%llua";
514static char ztest_aux_template[] = "%s/%s.%s.%llu";
515ztest_shared_t *ztest_shared;
516
517static spa_t *ztest_spa = NULL;
518static ztest_ds_t *ztest_ds;
519
520static kmutex_t ztest_vdev_lock;
521static boolean_t ztest_device_removal_active = B_FALSE;
522static boolean_t ztest_pool_scrubbed = B_FALSE;
523static kmutex_t ztest_checkpoint_lock;
524
525/*
526 * The ztest_name_lock protects the pool and dataset namespace used by
527 * the individual tests. To modify the namespace, consumers must grab
528 * this lock as writer. Grabbing the lock as reader will ensure that the
529 * namespace does not change while the lock is held.
530 */
531static pthread_rwlock_t ztest_name_lock;
532
533static boolean_t ztest_dump_core = B_TRUE;
534static boolean_t ztest_exiting;
535
536/* Global commit callback list */
537static ztest_cb_list_t zcl;
538/* Commit cb delay */
539static uint64_t zc_min_txg_delay = UINT64_MAX;
540static int zc_cb_counter = 0;
541
542/*
543 * Minimum number of commit callbacks that need to be registered for us to check
544 * whether the minimum txg delay is acceptable.
545 */
546#define	ZTEST_COMMIT_CB_MIN_REG	100
547
548/*
549 * If a number of txgs equal to this threshold have been created after a commit
550 * callback has been registered but not called, then we assume there is an
551 * implementation bug.
552 */
553#define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
554
555enum ztest_object {
556	ZTEST_META_DNODE = 0,
557	ZTEST_DIROBJ,
558	ZTEST_OBJECTS
559};
560
561static void usage(boolean_t) __NORETURN;
562static int ztest_scrub_impl(spa_t *spa);
563
564/*
565 * These libumem hooks provide a reasonable set of defaults for the allocator's
566 * debugging facilities.
567 */
568const char *
569_umem_debug_init(void)
570{
571	return ("default,verbose"); /* $UMEM_DEBUG setting */
572}
573
574const char *
575_umem_logging_init(void)
576{
577	return ("fail,contents"); /* $UMEM_LOGGING setting */
578}
579
580static void
581dump_debug_buffer(void)
582{
583	ssize_t ret __attribute__((unused));
584
585	if (!ztest_opts.zo_dump_dbgmsg)
586		return;
587
588	/*
589	 * We use write() instead of printf() so that this function
590	 * is safe to call from a signal handler.
591	 */
592	ret = write(STDOUT_FILENO, "\n", 1);
593	zfs_dbgmsg_print("ztest");
594}
595
596#define	BACKTRACE_SZ	100
597
598static void sig_handler(int signo)
599{
600	struct sigaction action;
601#if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
602	int nptrs;
603	void *buffer[BACKTRACE_SZ];
604
605	nptrs = backtrace(buffer, BACKTRACE_SZ);
606	backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
607#endif
608	dump_debug_buffer();
609
610	/*
611	 * Restore default action and re-raise signal so SIGSEGV and
612	 * SIGABRT can trigger a core dump.
613	 */
614	action.sa_handler = SIG_DFL;
615	sigemptyset(&action.sa_mask);
616	action.sa_flags = 0;
617	(void) sigaction(signo, &action, NULL);
618	raise(signo);
619}
620
621#define	FATAL_MSG_SZ	1024
622
623char *fatal_msg;
624
625static void
626fatal(int do_perror, char *message, ...)
627{
628	va_list args;
629	int save_errno = errno;
630	char *buf;
631
632	(void) fflush(stdout);
633	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
634
635	va_start(args, message);
636	(void) sprintf(buf, "ztest: ");
637	/* LINTED */
638	(void) vsprintf(buf + strlen(buf), message, args);
639	va_end(args);
640	if (do_perror) {
641		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
642		    ": %s", strerror(save_errno));
643	}
644	(void) fprintf(stderr, "%s\n", buf);
645	fatal_msg = buf;			/* to ease debugging */
646
647	if (ztest_dump_core)
648		abort();
649	else
650		dump_debug_buffer();
651
652	exit(3);
653}
654
655static int
656str2shift(const char *buf)
657{
658	const char *ends = "BKMGTPEZ";
659	int i;
660
661	if (buf[0] == '\0')
662		return (0);
663	for (i = 0; i < strlen(ends); i++) {
664		if (toupper(buf[0]) == ends[i])
665			break;
666	}
667	if (i == strlen(ends)) {
668		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
669		    buf);
670		usage(B_FALSE);
671	}
672	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
673		return (10*i);
674	}
675	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
676	usage(B_FALSE);
677	/* NOTREACHED */
678}
679
680static uint64_t
681nicenumtoull(const char *buf)
682{
683	char *end;
684	uint64_t val;
685
686	val = strtoull(buf, &end, 0);
687	if (end == buf) {
688		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
689		usage(B_FALSE);
690	} else if (end[0] == '.') {
691		double fval = strtod(buf, &end);
692		fval *= pow(2, str2shift(end));
693		/*
694		 * UINT64_MAX is not exactly representable as a double.
695		 * The closest representation is UINT64_MAX + 1, so we
696		 * use a >= comparison instead of > for the bounds check.
697		 */
698		if (fval >= (double)UINT64_MAX) {
699			(void) fprintf(stderr, "ztest: value too large: %s\n",
700			    buf);
701			usage(B_FALSE);
702		}
703		val = (uint64_t)fval;
704	} else {
705		int shift = str2shift(end);
706		if (shift >= 64 || (val << shift) >> shift != val) {
707			(void) fprintf(stderr, "ztest: value too large: %s\n",
708			    buf);
709			usage(B_FALSE);
710		}
711		val <<= shift;
712	}
713	return (val);
714}
715
716typedef struct ztest_option {
717	const char	short_opt;
718	const char	*long_opt;
719	const char	*long_opt_param;
720	const char	*comment;
721	unsigned int	default_int;
722	char		*default_str;
723} ztest_option_t;
724
725/*
726 * The following option_table is used for generating the usage info as well as
727 * the long and short option information for calling getopt_long().
728 */
729static ztest_option_t option_table[] = {
730	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
731	    NULL},
732	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
733	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
734	{ 'a',	"alignment-shift", "INTEGER",
735	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
736	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
737	    DEFAULT_MIRRORS, NULL},
738	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
739	    DEFAULT_RAID_CHILDREN, NULL},
740	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
741	    DEFAULT_RAID_PARITY, NULL},
742	{ 'K',	"raid-kind", "raidz|draid|random", "Raid kind",
743	    NO_DEFAULT, "random"},
744	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
745	    DEFAULT_DRAID_DATA, NULL},
746	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
747	    DEFAULT_DRAID_SPARES, NULL},
748	{ 'd',	"datasets", "INTEGER", "Number of datasets",
749	    DEFAULT_DATASETS_COUNT, NULL},
750	{ 't',	"threads", "INTEGER", "Number of ztest threads",
751	    DEFAULT_THREADS, NULL},
752	{ 'g',	"gang-block-threshold", "INTEGER",
753	    "Metaslab gang block threshold",
754	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
755	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
756	    DEFAULT_INITS, NULL},
757	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
758	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
759	{ 'p',	"pool-name", "STRING", "Pool name",
760	    NO_DEFAULT, DEFAULT_POOL},
761	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
762	    NO_DEFAULT, DEFAULT_VDEV_DIR},
763	{ 'M',	"multi-host", NULL,
764	    "Multi-host; simulate pool imported on remote host",
765	    NO_DEFAULT, NULL},
766	{ 'E',	"use-existing-pool", NULL,
767	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
768	{ 'T',	"run-time", "INTEGER", "Total run time",
769	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
770	{ 'P',	"pass-time", "INTEGER", "Time per pass",
771	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
772	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
773	    DEFAULT_MAX_LOOPS, NULL},
774	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
775	    NO_DEFAULT, NULL},
776	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
777	    NO_DEFAULT, "random"},
778	{ 'o',	"option", "\"OPTION=INTEGER\"",
779	    "Set global variable to an unsigned 32-bit integer value",
780	    NO_DEFAULT, NULL},
781	{ 'G',	"dump-debug-msg", NULL,
782	    "Dump zfs_dbgmsg buffer before exiting due to an error",
783	    NO_DEFAULT, NULL},
784	{ 'V',	"verbose", NULL,
785	    "Verbose (use multiple times for ever more verbosity)",
786	    NO_DEFAULT, NULL},
787	{ 'h',	"help",	NULL, "Show this help",
788	    NO_DEFAULT, NULL},
789	{0, 0, 0, 0, 0, 0}
790};
791
792static struct option *long_opts = NULL;
793static char *short_opts = NULL;
794
795static void
796init_options(void)
797{
798	ASSERT3P(long_opts, ==, NULL);
799	ASSERT3P(short_opts, ==, NULL);
800
801	int count = sizeof (option_table) / sizeof (option_table[0]);
802	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
803
804	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
805	int short_opt_index = 0;
806
807	for (int i = 0; i < count; i++) {
808		long_opts[i].val = option_table[i].short_opt;
809		long_opts[i].name = option_table[i].long_opt;
810		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
811		    ? required_argument : no_argument;
812		long_opts[i].flag = NULL;
813		short_opts[short_opt_index++] = option_table[i].short_opt;
814		if (option_table[i].long_opt_param != NULL) {
815			short_opts[short_opt_index++] = ':';
816		}
817	}
818}
819
820static void
821fini_options(void)
822{
823	int count = sizeof (option_table) / sizeof (option_table[0]);
824
825	umem_free(long_opts, sizeof (struct option) * count);
826	umem_free(short_opts, sizeof (char) * 2 * count);
827
828	long_opts = NULL;
829	short_opts = NULL;
830}
831
832static void
833usage(boolean_t requested)
834{
835	char option[80];
836	FILE *fp = requested ? stdout : stderr;
837
838	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
839	for (int i = 0; option_table[i].short_opt != 0; i++) {
840		if (option_table[i].long_opt_param != NULL) {
841			(void) sprintf(option, "  -%c --%s=%s",
842			    option_table[i].short_opt,
843			    option_table[i].long_opt,
844			    option_table[i].long_opt_param);
845		} else {
846			(void) sprintf(option, "  -%c --%s",
847			    option_table[i].short_opt,
848			    option_table[i].long_opt);
849		}
850		(void) fprintf(fp, "  %-40s%s", option,
851		    option_table[i].comment);
852
853		if (option_table[i].long_opt_param != NULL) {
854			if (option_table[i].default_str != NULL) {
855				(void) fprintf(fp, " (default: %s)",
856				    option_table[i].default_str);
857			} else if (option_table[i].default_int != NO_DEFAULT) {
858				(void) fprintf(fp, " (default: %u)",
859				    option_table[i].default_int);
860			}
861		}
862		(void) fprintf(fp, "\n");
863	}
864	exit(requested ? 0 : 1);
865}
866
867static uint64_t
868ztest_random(uint64_t range)
869{
870	uint64_t r;
871
872	ASSERT3S(ztest_fd_rand, >=, 0);
873
874	if (range == 0)
875		return (0);
876
877	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
878		fatal(1, "short read from /dev/urandom");
879
880	return (r % range);
881}
882
883static void
884ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
885{
886	char name[32];
887	char *value;
888	int state = ZTEST_VDEV_CLASS_RND;
889
890	(void) strlcpy(name, input, sizeof (name));
891
892	value = strchr(name, '=');
893	if (value == NULL) {
894		(void) fprintf(stderr, "missing value in property=value "
895		    "'-C' argument (%s)\n", input);
896		usage(B_FALSE);
897	}
898	*(value) = '\0';
899	value++;
900
901	if (strcmp(value, "on") == 0) {
902		state = ZTEST_VDEV_CLASS_ON;
903	} else if (strcmp(value, "off") == 0) {
904		state = ZTEST_VDEV_CLASS_OFF;
905	} else if (strcmp(value, "random") == 0) {
906		state = ZTEST_VDEV_CLASS_RND;
907	} else {
908		(void) fprintf(stderr, "invalid property value '%s'\n", value);
909		usage(B_FALSE);
910	}
911
912	if (strcmp(name, "special") == 0) {
913		zo->zo_special_vdevs = state;
914	} else {
915		(void) fprintf(stderr, "invalid property name '%s'\n", name);
916		usage(B_FALSE);
917	}
918	if (zo->zo_verbose >= 3)
919		(void) printf("%s vdev state is '%s'\n", name, value);
920}
921
922static void
923process_options(int argc, char **argv)
924{
925	char *path;
926	ztest_shared_opts_t *zo = &ztest_opts;
927
928	int opt;
929	uint64_t value;
930	char altdir[MAXNAMELEN] = { 0 };
931	char raid_kind[8] = { "random" };
932
933	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
934
935	init_options();
936
937	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
938	    NULL)) != EOF) {
939		value = 0;
940		switch (opt) {
941		case 'v':
942		case 's':
943		case 'a':
944		case 'm':
945		case 'r':
946		case 'R':
947		case 'D':
948		case 'S':
949		case 'd':
950		case 't':
951		case 'g':
952		case 'i':
953		case 'k':
954		case 'T':
955		case 'P':
956		case 'F':
957			value = nicenumtoull(optarg);
958		}
959		switch (opt) {
960		case 'v':
961			zo->zo_vdevs = value;
962			break;
963		case 's':
964			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
965			break;
966		case 'a':
967			zo->zo_ashift = value;
968			break;
969		case 'm':
970			zo->zo_mirrors = value;
971			break;
972		case 'r':
973			zo->zo_raid_children = MAX(1, value);
974			break;
975		case 'R':
976			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
977			break;
978		case 'K':
979			(void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
980			break;
981		case 'D':
982			zo->zo_draid_data = MAX(1, value);
983			break;
984		case 'S':
985			zo->zo_draid_spares = MAX(1, value);
986			break;
987		case 'd':
988			zo->zo_datasets = MAX(1, value);
989			break;
990		case 't':
991			zo->zo_threads = MAX(1, value);
992			break;
993		case 'g':
994			zo->zo_metaslab_force_ganging =
995			    MAX(SPA_MINBLOCKSIZE << 1, value);
996			break;
997		case 'i':
998			zo->zo_init = value;
999			break;
1000		case 'k':
1001			zo->zo_killrate = value;
1002			break;
1003		case 'p':
1004			(void) strlcpy(zo->zo_pool, optarg,
1005			    sizeof (zo->zo_pool));
1006			break;
1007		case 'f':
1008			path = realpath(optarg, NULL);
1009			if (path == NULL) {
1010				(void) fprintf(stderr, "error: %s: %s\n",
1011				    optarg, strerror(errno));
1012				usage(B_FALSE);
1013			} else {
1014				(void) strlcpy(zo->zo_dir, path,
1015				    sizeof (zo->zo_dir));
1016				free(path);
1017			}
1018			break;
1019		case 'M':
1020			zo->zo_mmp_test = 1;
1021			break;
1022		case 'V':
1023			zo->zo_verbose++;
1024			break;
1025		case 'E':
1026			zo->zo_init = 0;
1027			break;
1028		case 'T':
1029			zo->zo_time = value;
1030			break;
1031		case 'P':
1032			zo->zo_passtime = MAX(1, value);
1033			break;
1034		case 'F':
1035			zo->zo_maxloops = MAX(1, value);
1036			break;
1037		case 'B':
1038			(void) strlcpy(altdir, optarg, sizeof (altdir));
1039			break;
1040		case 'C':
1041			ztest_parse_name_value(optarg, zo);
1042			break;
1043		case 'o':
1044			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1045				(void) fprintf(stderr,
1046				    "max global var count (%zu) exceeded\n",
1047				    ZO_GVARS_MAX_COUNT);
1048				usage(B_FALSE);
1049			}
1050			char *v = zo->zo_gvars[zo->zo_gvars_count];
1051			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1052			    ZO_GVARS_MAX_ARGLEN) {
1053				(void) fprintf(stderr,
1054				    "global var option '%s' is too long\n",
1055				    optarg);
1056				usage(B_FALSE);
1057			}
1058			zo->zo_gvars_count++;
1059			break;
1060		case 'G':
1061			zo->zo_dump_dbgmsg = 1;
1062			break;
1063		case 'h':
1064			usage(B_TRUE);
1065			break;
1066		case '?':
1067		default:
1068			usage(B_FALSE);
1069			break;
1070		}
1071	}
1072
1073	fini_options();
1074
1075	/* When raid choice is 'random' add a draid pool 50% of the time */
1076	if (strcmp(raid_kind, "random") == 0) {
1077		(void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
1078		    "draid" : "raidz", sizeof (raid_kind));
1079
1080		if (ztest_opts.zo_verbose >= 3)
1081			(void) printf("choosing RAID type '%s'\n", raid_kind);
1082	}
1083
1084	if (strcmp(raid_kind, "draid") == 0) {
1085		uint64_t min_devsize;
1086
1087		/* With fewer disk use 256M, otherwise 128M is OK */
1088		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1089		    (256ULL << 20) : (128ULL << 20);
1090
1091		/* No top-level mirrors with dRAID for now */
1092		zo->zo_mirrors = 0;
1093
1094		/* Use more appropriate defaults for dRAID */
1095		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1096			zo->zo_vdevs = 1;
1097		if (zo->zo_raid_children ==
1098		    ztest_opts_defaults.zo_raid_children)
1099			zo->zo_raid_children = 16;
1100		if (zo->zo_ashift < 12)
1101			zo->zo_ashift = 12;
1102		if (zo->zo_vdev_size < min_devsize)
1103			zo->zo_vdev_size = min_devsize;
1104
1105		if (zo->zo_draid_data + zo->zo_raid_parity >
1106		    zo->zo_raid_children - zo->zo_draid_spares) {
1107			(void) fprintf(stderr, "error: too few draid "
1108			    "children (%d) for stripe width (%d)\n",
1109			    zo->zo_raid_children,
1110			    zo->zo_draid_data + zo->zo_raid_parity);
1111			usage(B_FALSE);
1112		}
1113
1114		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1115		    sizeof (zo->zo_raid_type));
1116
1117	} else /* using raidz */ {
1118		ASSERT0(strcmp(raid_kind, "raidz"));
1119
1120		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1121		    zo->zo_raid_children - 1);
1122	}
1123
1124	zo->zo_vdevtime =
1125	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1126	    UINT64_MAX >> 2);
1127
1128	if (strlen(altdir) > 0) {
1129		char *cmd;
1130		char *realaltdir;
1131		char *bin;
1132		char *ztest;
1133		char *isa;
1134		int isalen;
1135
1136		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1137		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1138
1139		VERIFY3P(NULL, !=, realpath(getexecname(), cmd));
1140		if (0 != access(altdir, F_OK)) {
1141			ztest_dump_core = B_FALSE;
1142			fatal(B_TRUE, "invalid alternate ztest path: %s",
1143			    altdir);
1144		}
1145		VERIFY3P(NULL, !=, realpath(altdir, realaltdir));
1146
1147		/*
1148		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
1149		 * We want to extract <isa> to determine if we should use
1150		 * 32 or 64 bit binaries.
1151		 */
1152		bin = strstr(cmd, "/usr/bin/");
1153		ztest = strstr(bin, "/ztest");
1154		isa = bin + 9;
1155		isalen = ztest - isa;
1156		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
1157		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
1158		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
1159		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
1160
1161		if (0 != access(zo->zo_alt_ztest, X_OK)) {
1162			ztest_dump_core = B_FALSE;
1163			fatal(B_TRUE, "invalid alternate ztest: %s",
1164			    zo->zo_alt_ztest);
1165		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
1166			ztest_dump_core = B_FALSE;
1167			fatal(B_TRUE, "invalid alternate lib directory %s",
1168			    zo->zo_alt_libpath);
1169		}
1170
1171		umem_free(cmd, MAXPATHLEN);
1172		umem_free(realaltdir, MAXPATHLEN);
1173	}
1174}
1175
1176static void
1177ztest_kill(ztest_shared_t *zs)
1178{
1179	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1180	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1181
1182	/*
1183	 * Before we kill off ztest, make sure that the config is updated.
1184	 * See comment above spa_write_cachefile().
1185	 */
1186	mutex_enter(&spa_namespace_lock);
1187	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1188	mutex_exit(&spa_namespace_lock);
1189
1190	(void) kill(getpid(), SIGKILL);
1191}
1192
1193/* ARGSUSED */
1194static void
1195ztest_record_enospc(const char *s)
1196{
1197	ztest_shared->zs_enospc_count++;
1198}
1199
1200static uint64_t
1201ztest_get_ashift(void)
1202{
1203	if (ztest_opts.zo_ashift == 0)
1204		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1205	return (ztest_opts.zo_ashift);
1206}
1207
1208static boolean_t
1209ztest_is_draid_spare(const char *name)
1210{
1211	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1212
1213	if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
1214	    (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
1215	    (u_longlong_t *)&spare_id) == 3) {
1216		return (B_TRUE);
1217	}
1218
1219	return (B_FALSE);
1220}
1221
1222static nvlist_t *
1223make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
1224{
1225	char *pathbuf;
1226	uint64_t vdev;
1227	nvlist_t *file;
1228	boolean_t draid_spare = B_FALSE;
1229
1230	pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1231
1232	if (ashift == 0)
1233		ashift = ztest_get_ashift();
1234
1235	if (path == NULL) {
1236		path = pathbuf;
1237
1238		if (aux != NULL) {
1239			vdev = ztest_shared->zs_vdev_aux;
1240			(void) snprintf(path, MAXPATHLEN,
1241			    ztest_aux_template, ztest_opts.zo_dir,
1242			    pool == NULL ? ztest_opts.zo_pool : pool,
1243			    aux, vdev);
1244		} else {
1245			vdev = ztest_shared->zs_vdev_next_leaf++;
1246			(void) snprintf(path, MAXPATHLEN,
1247			    ztest_dev_template, ztest_opts.zo_dir,
1248			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1249		}
1250	} else {
1251		draid_spare = ztest_is_draid_spare(path);
1252	}
1253
1254	if (size != 0 && !draid_spare) {
1255		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1256		if (fd == -1)
1257			fatal(1, "can't open %s", path);
1258		if (ftruncate(fd, size) != 0)
1259			fatal(1, "can't ftruncate %s", path);
1260		(void) close(fd);
1261	}
1262
1263	file = fnvlist_alloc();
1264	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1265	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1266	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1267	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1268	umem_free(pathbuf, MAXPATHLEN);
1269
1270	return (file);
1271}
1272
1273static nvlist_t *
1274make_vdev_raid(char *path, char *aux, char *pool, size_t size,
1275    uint64_t ashift, int r)
1276{
1277	nvlist_t *raid, **child;
1278	int c;
1279
1280	if (r < 2)
1281		return (make_vdev_file(path, aux, pool, size, ashift));
1282	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1283
1284	for (c = 0; c < r; c++)
1285		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1286
1287	raid = fnvlist_alloc();
1288	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1289	    ztest_opts.zo_raid_type);
1290	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1291	    ztest_opts.zo_raid_parity);
1292	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, child, r);
1293
1294	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1295		uint64_t ndata = ztest_opts.zo_draid_data;
1296		uint64_t nparity = ztest_opts.zo_raid_parity;
1297		uint64_t nspares = ztest_opts.zo_draid_spares;
1298		uint64_t children = ztest_opts.zo_raid_children;
1299		uint64_t ngroups = 1;
1300
1301		/*
1302		 * Calculate the minimum number of groups required to fill a
1303		 * slice. This is the LCM of the stripe width (data + parity)
1304		 * and the number of data drives (children - spares).
1305		 */
1306		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1307			ngroups++;
1308
1309		/* Store the basic dRAID configuration. */
1310		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1311		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1312		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1313	}
1314
1315	for (c = 0; c < r; c++)
1316		fnvlist_free(child[c]);
1317
1318	umem_free(child, r * sizeof (nvlist_t *));
1319
1320	return (raid);
1321}
1322
1323static nvlist_t *
1324make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1325    uint64_t ashift, int r, int m)
1326{
1327	nvlist_t *mirror, **child;
1328	int c;
1329
1330	if (m < 1)
1331		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1332
1333	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1334
1335	for (c = 0; c < m; c++)
1336		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1337
1338	mirror = fnvlist_alloc();
1339	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1340	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m);
1341
1342	for (c = 0; c < m; c++)
1343		fnvlist_free(child[c]);
1344
1345	umem_free(child, m * sizeof (nvlist_t *));
1346
1347	return (mirror);
1348}
1349
1350static nvlist_t *
1351make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1352    const char *class, int r, int m, int t)
1353{
1354	nvlist_t *root, **child;
1355	int c;
1356	boolean_t log;
1357
1358	ASSERT3S(t, >, 0);
1359
1360	log = (class != NULL && strcmp(class, "log") == 0);
1361
1362	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1363
1364	for (c = 0; c < t; c++) {
1365		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1366		    r, m);
1367		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1368
1369		if (class != NULL && class[0] != '\0') {
1370			ASSERT(m > 1 || log);   /* expecting a mirror */
1371			fnvlist_add_string(child[c],
1372			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1373		}
1374	}
1375
1376	root = fnvlist_alloc();
1377	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1378	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1379	    child, t);
1380
1381	for (c = 0; c < t; c++)
1382		fnvlist_free(child[c]);
1383
1384	umem_free(child, t * sizeof (nvlist_t *));
1385
1386	return (root);
1387}
1388
1389/*
1390 * Find a random spa version. Returns back a random spa version in the
1391 * range [initial_version, SPA_VERSION_FEATURES].
1392 */
1393static uint64_t
1394ztest_random_spa_version(uint64_t initial_version)
1395{
1396	uint64_t version = initial_version;
1397
1398	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1399		version = version +
1400		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1401	}
1402
1403	if (version > SPA_VERSION_BEFORE_FEATURES)
1404		version = SPA_VERSION_FEATURES;
1405
1406	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1407	return (version);
1408}
1409
1410static int
1411ztest_random_blocksize(void)
1412{
1413	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1414
1415	/*
1416	 * Choose a block size >= the ashift.
1417	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1418	 */
1419	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1420	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1421		maxbs = 20;
1422	uint64_t block_shift =
1423	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1424	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1425}
1426
1427static int
1428ztest_random_dnodesize(void)
1429{
1430	int slots;
1431	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1432
1433	if (max_slots == DNODE_MIN_SLOTS)
1434		return (DNODE_MIN_SIZE);
1435
1436	/*
1437	 * Weight the random distribution more heavily toward smaller
1438	 * dnode sizes since that is more likely to reflect real-world
1439	 * usage.
1440	 */
1441	ASSERT3U(max_slots, >, 4);
1442	switch (ztest_random(10)) {
1443	case 0:
1444		slots = 5 + ztest_random(max_slots - 4);
1445		break;
1446	case 1 ... 4:
1447		slots = 2 + ztest_random(3);
1448		break;
1449	default:
1450		slots = 1;
1451		break;
1452	}
1453
1454	return (slots << DNODE_SHIFT);
1455}
1456
1457static int
1458ztest_random_ibshift(void)
1459{
1460	return (DN_MIN_INDBLKSHIFT +
1461	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1462}
1463
1464static uint64_t
1465ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1466{
1467	uint64_t top;
1468	vdev_t *rvd = spa->spa_root_vdev;
1469	vdev_t *tvd;
1470
1471	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1472
1473	do {
1474		top = ztest_random(rvd->vdev_children);
1475		tvd = rvd->vdev_child[top];
1476	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1477	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1478
1479	return (top);
1480}
1481
1482static uint64_t
1483ztest_random_dsl_prop(zfs_prop_t prop)
1484{
1485	uint64_t value;
1486
1487	do {
1488		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1489	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1490
1491	return (value);
1492}
1493
1494static int
1495ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1496    boolean_t inherit)
1497{
1498	const char *propname = zfs_prop_to_name(prop);
1499	const char *valname;
1500	char *setpoint;
1501	uint64_t curval;
1502	int error;
1503
1504	error = dsl_prop_set_int(osname, propname,
1505	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1506
1507	if (error == ENOSPC) {
1508		ztest_record_enospc(FTAG);
1509		return (error);
1510	}
1511	ASSERT0(error);
1512
1513	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1514	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1515
1516	if (ztest_opts.zo_verbose >= 6) {
1517		int err;
1518
1519		err = zfs_prop_index_to_string(prop, curval, &valname);
1520		if (err)
1521			(void) printf("%s %s = %llu at '%s'\n", osname,
1522			    propname, (unsigned long long)curval, setpoint);
1523		else
1524			(void) printf("%s %s = %s at '%s'\n",
1525			    osname, propname, valname, setpoint);
1526	}
1527	umem_free(setpoint, MAXPATHLEN);
1528
1529	return (error);
1530}
1531
1532static int
1533ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1534{
1535	spa_t *spa = ztest_spa;
1536	nvlist_t *props = NULL;
1537	int error;
1538
1539	props = fnvlist_alloc();
1540	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1541
1542	error = spa_prop_set(spa, props);
1543
1544	fnvlist_free(props);
1545
1546	if (error == ENOSPC) {
1547		ztest_record_enospc(FTAG);
1548		return (error);
1549	}
1550	ASSERT0(error);
1551
1552	return (error);
1553}
1554
1555static int
1556ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1557    boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1558{
1559	int err;
1560	char *cp = NULL;
1561	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1562
1563	strcpy(ddname, name);
1564	cp = strchr(ddname, '@');
1565	if (cp != NULL)
1566		*cp = '\0';
1567
1568	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1569	while (decrypt && err == EACCES) {
1570		dsl_crypto_params_t *dcp;
1571		nvlist_t *crypto_args = fnvlist_alloc();
1572
1573		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1574		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1575		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1576		    crypto_args, &dcp));
1577		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1578		/*
1579		 * Note: if there was an error loading, the wkey was not
1580		 * consumed, and needs to be freed.
1581		 */
1582		dsl_crypto_params_free(dcp, (err != 0));
1583		fnvlist_free(crypto_args);
1584
1585		if (err == EINVAL) {
1586			/*
1587			 * We couldn't load a key for this dataset so try
1588			 * the parent. This loop will eventually hit the
1589			 * encryption root since ztest only makes clones
1590			 * as children of their origin datasets.
1591			 */
1592			cp = strrchr(ddname, '/');
1593			if (cp == NULL)
1594				return (err);
1595
1596			*cp = '\0';
1597			err = EACCES;
1598			continue;
1599		} else if (err != 0) {
1600			break;
1601		}
1602
1603		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1604		break;
1605	}
1606
1607	return (err);
1608}
1609
1610static void
1611ztest_rll_init(rll_t *rll)
1612{
1613	rll->rll_writer = NULL;
1614	rll->rll_readers = 0;
1615	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1616	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1617}
1618
1619static void
1620ztest_rll_destroy(rll_t *rll)
1621{
1622	ASSERT3P(rll->rll_writer, ==, NULL);
1623	ASSERT0(rll->rll_readers);
1624	mutex_destroy(&rll->rll_lock);
1625	cv_destroy(&rll->rll_cv);
1626}
1627
1628static void
1629ztest_rll_lock(rll_t *rll, rl_type_t type)
1630{
1631	mutex_enter(&rll->rll_lock);
1632
1633	if (type == RL_READER) {
1634		while (rll->rll_writer != NULL)
1635			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1636		rll->rll_readers++;
1637	} else {
1638		while (rll->rll_writer != NULL || rll->rll_readers)
1639			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1640		rll->rll_writer = curthread;
1641	}
1642
1643	mutex_exit(&rll->rll_lock);
1644}
1645
1646static void
1647ztest_rll_unlock(rll_t *rll)
1648{
1649	mutex_enter(&rll->rll_lock);
1650
1651	if (rll->rll_writer) {
1652		ASSERT0(rll->rll_readers);
1653		rll->rll_writer = NULL;
1654	} else {
1655		ASSERT3S(rll->rll_readers, >, 0);
1656		ASSERT3P(rll->rll_writer, ==, NULL);
1657		rll->rll_readers--;
1658	}
1659
1660	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1661		cv_broadcast(&rll->rll_cv);
1662
1663	mutex_exit(&rll->rll_lock);
1664}
1665
1666static void
1667ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1668{
1669	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1670
1671	ztest_rll_lock(rll, type);
1672}
1673
1674static void
1675ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1676{
1677	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1678
1679	ztest_rll_unlock(rll);
1680}
1681
1682static rl_t *
1683ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1684    uint64_t size, rl_type_t type)
1685{
1686	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1687	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1688	rl_t *rl;
1689
1690	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1691	rl->rl_object = object;
1692	rl->rl_offset = offset;
1693	rl->rl_size = size;
1694	rl->rl_lock = rll;
1695
1696	ztest_rll_lock(rll, type);
1697
1698	return (rl);
1699}
1700
1701static void
1702ztest_range_unlock(rl_t *rl)
1703{
1704	rll_t *rll = rl->rl_lock;
1705
1706	ztest_rll_unlock(rll);
1707
1708	umem_free(rl, sizeof (*rl));
1709}
1710
1711static void
1712ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1713{
1714	zd->zd_os = os;
1715	zd->zd_zilog = dmu_objset_zil(os);
1716	zd->zd_shared = szd;
1717	dmu_objset_name(os, zd->zd_name);
1718	int l;
1719
1720	if (zd->zd_shared != NULL)
1721		zd->zd_shared->zd_seq = 0;
1722
1723	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1724	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1725
1726	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1727		ztest_rll_init(&zd->zd_object_lock[l]);
1728
1729	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1730		ztest_rll_init(&zd->zd_range_lock[l]);
1731}
1732
1733static void
1734ztest_zd_fini(ztest_ds_t *zd)
1735{
1736	int l;
1737
1738	mutex_destroy(&zd->zd_dirobj_lock);
1739	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1740
1741	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1742		ztest_rll_destroy(&zd->zd_object_lock[l]);
1743
1744	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1745		ztest_rll_destroy(&zd->zd_range_lock[l]);
1746}
1747
1748#define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1749
1750static uint64_t
1751ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1752{
1753	uint64_t txg;
1754	int error;
1755
1756	/*
1757	 * Attempt to assign tx to some transaction group.
1758	 */
1759	error = dmu_tx_assign(tx, txg_how);
1760	if (error) {
1761		if (error == ERESTART) {
1762			ASSERT3U(txg_how, ==, TXG_NOWAIT);
1763			dmu_tx_wait(tx);
1764		} else {
1765			ASSERT3U(error, ==, ENOSPC);
1766			ztest_record_enospc(tag);
1767		}
1768		dmu_tx_abort(tx);
1769		return (0);
1770	}
1771	txg = dmu_tx_get_txg(tx);
1772	ASSERT3U(txg, !=, 0);
1773	return (txg);
1774}
1775
1776static void
1777ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1778    uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1779    uint64_t crtxg)
1780{
1781	bt->bt_magic = BT_MAGIC;
1782	bt->bt_objset = dmu_objset_id(os);
1783	bt->bt_object = object;
1784	bt->bt_dnodesize = dnodesize;
1785	bt->bt_offset = offset;
1786	bt->bt_gen = gen;
1787	bt->bt_txg = txg;
1788	bt->bt_crtxg = crtxg;
1789}
1790
1791static void
1792ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1793    uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1794    uint64_t crtxg)
1795{
1796	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1797	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1798	ASSERT3U(bt->bt_object, ==, object);
1799	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1800	ASSERT3U(bt->bt_offset, ==, offset);
1801	ASSERT3U(bt->bt_gen, <=, gen);
1802	ASSERT3U(bt->bt_txg, <=, txg);
1803	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1804}
1805
1806static ztest_block_tag_t *
1807ztest_bt_bonus(dmu_buf_t *db)
1808{
1809	dmu_object_info_t doi;
1810	ztest_block_tag_t *bt;
1811
1812	dmu_object_info_from_db(db, &doi);
1813	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1814	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1815	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1816
1817	return (bt);
1818}
1819
1820/*
1821 * Generate a token to fill up unused bonus buffer space.  Try to make
1822 * it unique to the object, generation, and offset to verify that data
1823 * is not getting overwritten by data from other dnodes.
1824 */
1825#define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1826	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1827
1828/*
1829 * Fill up the unused bonus buffer region before the block tag with a
1830 * verifiable pattern. Filling the whole bonus area with non-zero data
1831 * helps ensure that all dnode traversal code properly skips the
1832 * interior regions of large dnodes.
1833 */
1834static void
1835ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1836    objset_t *os, uint64_t gen)
1837{
1838	uint64_t *bonusp;
1839
1840	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1841
1842	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1843		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1844		    gen, bonusp - (uint64_t *)db->db_data);
1845		*bonusp = token;
1846	}
1847}
1848
1849/*
1850 * Verify that the unused area of a bonus buffer is filled with the
1851 * expected tokens.
1852 */
1853static void
1854ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1855    objset_t *os, uint64_t gen)
1856{
1857	uint64_t *bonusp;
1858
1859	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1860		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1861		    gen, bonusp - (uint64_t *)db->db_data);
1862		VERIFY3U(*bonusp, ==, token);
1863	}
1864}
1865
1866/*
1867 * ZIL logging ops
1868 */
1869
1870#define	lrz_type	lr_mode
1871#define	lrz_blocksize	lr_uid
1872#define	lrz_ibshift	lr_gid
1873#define	lrz_bonustype	lr_rdev
1874#define	lrz_dnodesize	lr_crtime[1]
1875
1876static void
1877ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1878{
1879	char *name = (void *)(lr + 1);		/* name follows lr */
1880	size_t namesize = strlen(name) + 1;
1881	itx_t *itx;
1882
1883	if (zil_replaying(zd->zd_zilog, tx))
1884		return;
1885
1886	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1887	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1888	    sizeof (*lr) + namesize - sizeof (lr_t));
1889
1890	zil_itx_assign(zd->zd_zilog, itx, tx);
1891}
1892
1893static void
1894ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1895{
1896	char *name = (void *)(lr + 1);		/* name follows lr */
1897	size_t namesize = strlen(name) + 1;
1898	itx_t *itx;
1899
1900	if (zil_replaying(zd->zd_zilog, tx))
1901		return;
1902
1903	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1904	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1905	    sizeof (*lr) + namesize - sizeof (lr_t));
1906
1907	itx->itx_oid = object;
1908	zil_itx_assign(zd->zd_zilog, itx, tx);
1909}
1910
1911static void
1912ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1913{
1914	itx_t *itx;
1915	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1916
1917	if (zil_replaying(zd->zd_zilog, tx))
1918		return;
1919
1920	if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1921		write_state = WR_INDIRECT;
1922
1923	itx = zil_itx_create(TX_WRITE,
1924	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1925
1926	if (write_state == WR_COPIED &&
1927	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1928	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1929		zil_itx_destroy(itx);
1930		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1931		write_state = WR_NEED_COPY;
1932	}
1933	itx->itx_private = zd;
1934	itx->itx_wr_state = write_state;
1935	itx->itx_sync = (ztest_random(8) == 0);
1936
1937	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1938	    sizeof (*lr) - sizeof (lr_t));
1939
1940	zil_itx_assign(zd->zd_zilog, itx, tx);
1941}
1942
1943static void
1944ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1945{
1946	itx_t *itx;
1947
1948	if (zil_replaying(zd->zd_zilog, tx))
1949		return;
1950
1951	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1952	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1953	    sizeof (*lr) - sizeof (lr_t));
1954
1955	itx->itx_sync = B_FALSE;
1956	zil_itx_assign(zd->zd_zilog, itx, tx);
1957}
1958
1959static void
1960ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1961{
1962	itx_t *itx;
1963
1964	if (zil_replaying(zd->zd_zilog, tx))
1965		return;
1966
1967	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1968	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1969	    sizeof (*lr) - sizeof (lr_t));
1970
1971	itx->itx_sync = B_FALSE;
1972	zil_itx_assign(zd->zd_zilog, itx, tx);
1973}
1974
1975/*
1976 * ZIL replay ops
1977 */
1978static int
1979ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1980{
1981	ztest_ds_t *zd = arg1;
1982	lr_create_t *lr = arg2;
1983	char *name = (void *)(lr + 1);		/* name follows lr */
1984	objset_t *os = zd->zd_os;
1985	ztest_block_tag_t *bbt;
1986	dmu_buf_t *db;
1987	dmu_tx_t *tx;
1988	uint64_t txg;
1989	int error = 0;
1990	int bonuslen;
1991
1992	if (byteswap)
1993		byteswap_uint64_array(lr, sizeof (*lr));
1994
1995	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1996	ASSERT3S(name[0], !=, '\0');
1997
1998	tx = dmu_tx_create(os);
1999
2000	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2001
2002	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2003		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2004	} else {
2005		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2006	}
2007
2008	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2009	if (txg == 0)
2010		return (ENOSPC);
2011
2012	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2013	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2014
2015	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2016		if (lr->lr_foid == 0) {
2017			lr->lr_foid = zap_create_dnsize(os,
2018			    lr->lrz_type, lr->lrz_bonustype,
2019			    bonuslen, lr->lrz_dnodesize, tx);
2020		} else {
2021			error = zap_create_claim_dnsize(os, lr->lr_foid,
2022			    lr->lrz_type, lr->lrz_bonustype,
2023			    bonuslen, lr->lrz_dnodesize, tx);
2024		}
2025	} else {
2026		if (lr->lr_foid == 0) {
2027			lr->lr_foid = dmu_object_alloc_dnsize(os,
2028			    lr->lrz_type, 0, lr->lrz_bonustype,
2029			    bonuslen, lr->lrz_dnodesize, tx);
2030		} else {
2031			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2032			    lr->lrz_type, 0, lr->lrz_bonustype,
2033			    bonuslen, lr->lrz_dnodesize, tx);
2034		}
2035	}
2036
2037	if (error) {
2038		ASSERT3U(error, ==, EEXIST);
2039		ASSERT(zd->zd_zilog->zl_replay);
2040		dmu_tx_commit(tx);
2041		return (error);
2042	}
2043
2044	ASSERT3U(lr->lr_foid, !=, 0);
2045
2046	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2047		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2048		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2049
2050	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2051	bbt = ztest_bt_bonus(db);
2052	dmu_buf_will_dirty(db, tx);
2053	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2054	    lr->lr_gen, txg, txg);
2055	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2056	dmu_buf_rele(db, FTAG);
2057
2058	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2059	    &lr->lr_foid, tx));
2060
2061	(void) ztest_log_create(zd, tx, lr);
2062
2063	dmu_tx_commit(tx);
2064
2065	return (0);
2066}
2067
2068static int
2069ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2070{
2071	ztest_ds_t *zd = arg1;
2072	lr_remove_t *lr = arg2;
2073	char *name = (void *)(lr + 1);		/* name follows lr */
2074	objset_t *os = zd->zd_os;
2075	dmu_object_info_t doi;
2076	dmu_tx_t *tx;
2077	uint64_t object, txg;
2078
2079	if (byteswap)
2080		byteswap_uint64_array(lr, sizeof (*lr));
2081
2082	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2083	ASSERT3S(name[0], !=, '\0');
2084
2085	VERIFY0(
2086	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2087	ASSERT3U(object, !=, 0);
2088
2089	ztest_object_lock(zd, object, RL_WRITER);
2090
2091	VERIFY0(dmu_object_info(os, object, &doi));
2092
2093	tx = dmu_tx_create(os);
2094
2095	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2096	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2097
2098	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2099	if (txg == 0) {
2100		ztest_object_unlock(zd, object);
2101		return (ENOSPC);
2102	}
2103
2104	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2105		VERIFY0(zap_destroy(os, object, tx));
2106	} else {
2107		VERIFY0(dmu_object_free(os, object, tx));
2108	}
2109
2110	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2111
2112	(void) ztest_log_remove(zd, tx, lr, object);
2113
2114	dmu_tx_commit(tx);
2115
2116	ztest_object_unlock(zd, object);
2117
2118	return (0);
2119}
2120
2121static int
2122ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2123{
2124	ztest_ds_t *zd = arg1;
2125	lr_write_t *lr = arg2;
2126	objset_t *os = zd->zd_os;
2127	void *data = lr + 1;			/* data follows lr */
2128	uint64_t offset, length;
2129	ztest_block_tag_t *bt = data;
2130	ztest_block_tag_t *bbt;
2131	uint64_t gen, txg, lrtxg, crtxg;
2132	dmu_object_info_t doi;
2133	dmu_tx_t *tx;
2134	dmu_buf_t *db;
2135	arc_buf_t *abuf = NULL;
2136	rl_t *rl;
2137
2138	if (byteswap)
2139		byteswap_uint64_array(lr, sizeof (*lr));
2140
2141	offset = lr->lr_offset;
2142	length = lr->lr_length;
2143
2144	/* If it's a dmu_sync() block, write the whole block */
2145	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2146		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2147		if (length < blocksize) {
2148			offset -= offset % blocksize;
2149			length = blocksize;
2150		}
2151	}
2152
2153	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2154		byteswap_uint64_array(bt, sizeof (*bt));
2155
2156	if (bt->bt_magic != BT_MAGIC)
2157		bt = NULL;
2158
2159	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2160	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2161
2162	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2163
2164	dmu_object_info_from_db(db, &doi);
2165
2166	bbt = ztest_bt_bonus(db);
2167	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2168	gen = bbt->bt_gen;
2169	crtxg = bbt->bt_crtxg;
2170	lrtxg = lr->lr_common.lrc_txg;
2171
2172	tx = dmu_tx_create(os);
2173
2174	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2175
2176	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2177	    P2PHASE(offset, length) == 0)
2178		abuf = dmu_request_arcbuf(db, length);
2179
2180	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2181	if (txg == 0) {
2182		if (abuf != NULL)
2183			dmu_return_arcbuf(abuf);
2184		dmu_buf_rele(db, FTAG);
2185		ztest_range_unlock(rl);
2186		ztest_object_unlock(zd, lr->lr_foid);
2187		return (ENOSPC);
2188	}
2189
2190	if (bt != NULL) {
2191		/*
2192		 * Usually, verify the old data before writing new data --
2193		 * but not always, because we also want to verify correct
2194		 * behavior when the data was not recently read into cache.
2195		 */
2196		ASSERT0(offset % doi.doi_data_block_size);
2197		if (ztest_random(4) != 0) {
2198			int prefetch = ztest_random(2) ?
2199			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2200			ztest_block_tag_t rbt;
2201
2202			VERIFY(dmu_read(os, lr->lr_foid, offset,
2203			    sizeof (rbt), &rbt, prefetch) == 0);
2204			if (rbt.bt_magic == BT_MAGIC) {
2205				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2206				    offset, gen, txg, crtxg);
2207			}
2208		}
2209
2210		/*
2211		 * Writes can appear to be newer than the bonus buffer because
2212		 * the ztest_get_data() callback does a dmu_read() of the
2213		 * open-context data, which may be different than the data
2214		 * as it was when the write was generated.
2215		 */
2216		if (zd->zd_zilog->zl_replay) {
2217			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2218			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2219			    bt->bt_crtxg);
2220		}
2221
2222		/*
2223		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2224		 * so that all of the usual ASSERTs will work.
2225		 */
2226		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2227		    crtxg);
2228	}
2229
2230	if (abuf == NULL) {
2231		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2232	} else {
2233		bcopy(data, abuf->b_data, length);
2234		dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2235	}
2236
2237	(void) ztest_log_write(zd, tx, lr);
2238
2239	dmu_buf_rele(db, FTAG);
2240
2241	dmu_tx_commit(tx);
2242
2243	ztest_range_unlock(rl);
2244	ztest_object_unlock(zd, lr->lr_foid);
2245
2246	return (0);
2247}
2248
2249static int
2250ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2251{
2252	ztest_ds_t *zd = arg1;
2253	lr_truncate_t *lr = arg2;
2254	objset_t *os = zd->zd_os;
2255	dmu_tx_t *tx;
2256	uint64_t txg;
2257	rl_t *rl;
2258
2259	if (byteswap)
2260		byteswap_uint64_array(lr, sizeof (*lr));
2261
2262	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2263	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2264	    RL_WRITER);
2265
2266	tx = dmu_tx_create(os);
2267
2268	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2269
2270	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2271	if (txg == 0) {
2272		ztest_range_unlock(rl);
2273		ztest_object_unlock(zd, lr->lr_foid);
2274		return (ENOSPC);
2275	}
2276
2277	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2278	    lr->lr_length, tx));
2279
2280	(void) ztest_log_truncate(zd, tx, lr);
2281
2282	dmu_tx_commit(tx);
2283
2284	ztest_range_unlock(rl);
2285	ztest_object_unlock(zd, lr->lr_foid);
2286
2287	return (0);
2288}
2289
2290static int
2291ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2292{
2293	ztest_ds_t *zd = arg1;
2294	lr_setattr_t *lr = arg2;
2295	objset_t *os = zd->zd_os;
2296	dmu_tx_t *tx;
2297	dmu_buf_t *db;
2298	ztest_block_tag_t *bbt;
2299	uint64_t txg, lrtxg, crtxg, dnodesize;
2300
2301	if (byteswap)
2302		byteswap_uint64_array(lr, sizeof (*lr));
2303
2304	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2305
2306	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2307
2308	tx = dmu_tx_create(os);
2309	dmu_tx_hold_bonus(tx, lr->lr_foid);
2310
2311	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2312	if (txg == 0) {
2313		dmu_buf_rele(db, FTAG);
2314		ztest_object_unlock(zd, lr->lr_foid);
2315		return (ENOSPC);
2316	}
2317
2318	bbt = ztest_bt_bonus(db);
2319	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2320	crtxg = bbt->bt_crtxg;
2321	lrtxg = lr->lr_common.lrc_txg;
2322	dnodesize = bbt->bt_dnodesize;
2323
2324	if (zd->zd_zilog->zl_replay) {
2325		ASSERT3U(lr->lr_size, !=, 0);
2326		ASSERT3U(lr->lr_mode, !=, 0);
2327		ASSERT3U(lrtxg, !=, 0);
2328	} else {
2329		/*
2330		 * Randomly change the size and increment the generation.
2331		 */
2332		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2333		    sizeof (*bbt);
2334		lr->lr_mode = bbt->bt_gen + 1;
2335		ASSERT0(lrtxg);
2336	}
2337
2338	/*
2339	 * Verify that the current bonus buffer is not newer than our txg.
2340	 */
2341	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2342	    MAX(txg, lrtxg), crtxg);
2343
2344	dmu_buf_will_dirty(db, tx);
2345
2346	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2347	ASSERT3U(lr->lr_size, <=, db->db_size);
2348	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2349	bbt = ztest_bt_bonus(db);
2350
2351	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2352	    txg, crtxg);
2353	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2354	dmu_buf_rele(db, FTAG);
2355
2356	(void) ztest_log_setattr(zd, tx, lr);
2357
2358	dmu_tx_commit(tx);
2359
2360	ztest_object_unlock(zd, lr->lr_foid);
2361
2362	return (0);
2363}
2364
2365zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2366	NULL,			/* 0 no such transaction type */
2367	ztest_replay_create,	/* TX_CREATE */
2368	NULL,			/* TX_MKDIR */
2369	NULL,			/* TX_MKXATTR */
2370	NULL,			/* TX_SYMLINK */
2371	ztest_replay_remove,	/* TX_REMOVE */
2372	NULL,			/* TX_RMDIR */
2373	NULL,			/* TX_LINK */
2374	NULL,			/* TX_RENAME */
2375	ztest_replay_write,	/* TX_WRITE */
2376	ztest_replay_truncate,	/* TX_TRUNCATE */
2377	ztest_replay_setattr,	/* TX_SETATTR */
2378	NULL,			/* TX_ACL */
2379	NULL,			/* TX_CREATE_ACL */
2380	NULL,			/* TX_CREATE_ATTR */
2381	NULL,			/* TX_CREATE_ACL_ATTR */
2382	NULL,			/* TX_MKDIR_ACL */
2383	NULL,			/* TX_MKDIR_ATTR */
2384	NULL,			/* TX_MKDIR_ACL_ATTR */
2385	NULL,			/* TX_WRITE2 */
2386};
2387
2388/*
2389 * ZIL get_data callbacks
2390 */
2391
2392/* ARGSUSED */
2393static void
2394ztest_get_done(zgd_t *zgd, int error)
2395{
2396	ztest_ds_t *zd = zgd->zgd_private;
2397	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2398
2399	if (zgd->zgd_db)
2400		dmu_buf_rele(zgd->zgd_db, zgd);
2401
2402	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2403	ztest_object_unlock(zd, object);
2404
2405	umem_free(zgd, sizeof (*zgd));
2406}
2407
2408static int
2409ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2410    struct lwb *lwb, zio_t *zio)
2411{
2412	ztest_ds_t *zd = arg;
2413	objset_t *os = zd->zd_os;
2414	uint64_t object = lr->lr_foid;
2415	uint64_t offset = lr->lr_offset;
2416	uint64_t size = lr->lr_length;
2417	uint64_t txg = lr->lr_common.lrc_txg;
2418	uint64_t crtxg;
2419	dmu_object_info_t doi;
2420	dmu_buf_t *db;
2421	zgd_t *zgd;
2422	int error;
2423
2424	ASSERT3P(lwb, !=, NULL);
2425	ASSERT3P(zio, !=, NULL);
2426	ASSERT3U(size, !=, 0);
2427
2428	ztest_object_lock(zd, object, RL_READER);
2429	error = dmu_bonus_hold(os, object, FTAG, &db);
2430	if (error) {
2431		ztest_object_unlock(zd, object);
2432		return (error);
2433	}
2434
2435	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2436
2437	if (crtxg == 0 || crtxg > txg) {
2438		dmu_buf_rele(db, FTAG);
2439		ztest_object_unlock(zd, object);
2440		return (ENOENT);
2441	}
2442
2443	dmu_object_info_from_db(db, &doi);
2444	dmu_buf_rele(db, FTAG);
2445	db = NULL;
2446
2447	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2448	zgd->zgd_lwb = lwb;
2449	zgd->zgd_private = zd;
2450
2451	if (buf != NULL) {	/* immediate write */
2452		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2453		    object, offset, size, RL_READER);
2454
2455		error = dmu_read(os, object, offset, size, buf,
2456		    DMU_READ_NO_PREFETCH);
2457		ASSERT0(error);
2458	} else {
2459		size = doi.doi_data_block_size;
2460		if (ISP2(size)) {
2461			offset = P2ALIGN(offset, size);
2462		} else {
2463			ASSERT3U(offset, <, size);
2464			offset = 0;
2465		}
2466
2467		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2468		    object, offset, size, RL_READER);
2469
2470		error = dmu_buf_hold(os, object, offset, zgd, &db,
2471		    DMU_READ_NO_PREFETCH);
2472
2473		if (error == 0) {
2474			blkptr_t *bp = &lr->lr_blkptr;
2475
2476			zgd->zgd_db = db;
2477			zgd->zgd_bp = bp;
2478
2479			ASSERT3U(db->db_offset, ==, offset);
2480			ASSERT3U(db->db_size, ==, size);
2481
2482			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2483			    ztest_get_done, zgd);
2484
2485			if (error == 0)
2486				return (0);
2487		}
2488	}
2489
2490	ztest_get_done(zgd, error);
2491
2492	return (error);
2493}
2494
2495static void *
2496ztest_lr_alloc(size_t lrsize, char *name)
2497{
2498	char *lr;
2499	size_t namesize = name ? strlen(name) + 1 : 0;
2500
2501	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2502
2503	if (name)
2504		bcopy(name, lr + lrsize, namesize);
2505
2506	return (lr);
2507}
2508
2509static void
2510ztest_lr_free(void *lr, size_t lrsize, char *name)
2511{
2512	size_t namesize = name ? strlen(name) + 1 : 0;
2513
2514	umem_free(lr, lrsize + namesize);
2515}
2516
2517/*
2518 * Lookup a bunch of objects.  Returns the number of objects not found.
2519 */
2520static int
2521ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2522{
2523	int missing = 0;
2524	int error;
2525	int i;
2526
2527	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2528
2529	for (i = 0; i < count; i++, od++) {
2530		od->od_object = 0;
2531		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2532		    sizeof (uint64_t), 1, &od->od_object);
2533		if (error) {
2534			ASSERT3S(error, ==, ENOENT);
2535			ASSERT0(od->od_object);
2536			missing++;
2537		} else {
2538			dmu_buf_t *db;
2539			ztest_block_tag_t *bbt;
2540			dmu_object_info_t doi;
2541
2542			ASSERT3U(od->od_object, !=, 0);
2543			ASSERT0(missing);	/* there should be no gaps */
2544
2545			ztest_object_lock(zd, od->od_object, RL_READER);
2546			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2547			    FTAG, &db));
2548			dmu_object_info_from_db(db, &doi);
2549			bbt = ztest_bt_bonus(db);
2550			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2551			od->od_type = doi.doi_type;
2552			od->od_blocksize = doi.doi_data_block_size;
2553			od->od_gen = bbt->bt_gen;
2554			dmu_buf_rele(db, FTAG);
2555			ztest_object_unlock(zd, od->od_object);
2556		}
2557	}
2558
2559	return (missing);
2560}
2561
2562static int
2563ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2564{
2565	int missing = 0;
2566	int i;
2567
2568	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2569
2570	for (i = 0; i < count; i++, od++) {
2571		if (missing) {
2572			od->od_object = 0;
2573			missing++;
2574			continue;
2575		}
2576
2577		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2578
2579		lr->lr_doid = od->od_dir;
2580		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2581		lr->lrz_type = od->od_crtype;
2582		lr->lrz_blocksize = od->od_crblocksize;
2583		lr->lrz_ibshift = ztest_random_ibshift();
2584		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2585		lr->lrz_dnodesize = od->od_crdnodesize;
2586		lr->lr_gen = od->od_crgen;
2587		lr->lr_crtime[0] = time(NULL);
2588
2589		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2590			ASSERT0(missing);
2591			od->od_object = 0;
2592			missing++;
2593		} else {
2594			od->od_object = lr->lr_foid;
2595			od->od_type = od->od_crtype;
2596			od->od_blocksize = od->od_crblocksize;
2597			od->od_gen = od->od_crgen;
2598			ASSERT3U(od->od_object, !=, 0);
2599		}
2600
2601		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2602	}
2603
2604	return (missing);
2605}
2606
2607static int
2608ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2609{
2610	int missing = 0;
2611	int error;
2612	int i;
2613
2614	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2615
2616	od += count - 1;
2617
2618	for (i = count - 1; i >= 0; i--, od--) {
2619		if (missing) {
2620			missing++;
2621			continue;
2622		}
2623
2624		/*
2625		 * No object was found.
2626		 */
2627		if (od->od_object == 0)
2628			continue;
2629
2630		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2631
2632		lr->lr_doid = od->od_dir;
2633
2634		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2635			ASSERT3U(error, ==, ENOSPC);
2636			missing++;
2637		} else {
2638			od->od_object = 0;
2639		}
2640		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2641	}
2642
2643	return (missing);
2644}
2645
2646static int
2647ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2648    void *data)
2649{
2650	lr_write_t *lr;
2651	int error;
2652
2653	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2654
2655	lr->lr_foid = object;
2656	lr->lr_offset = offset;
2657	lr->lr_length = size;
2658	lr->lr_blkoff = 0;
2659	BP_ZERO(&lr->lr_blkptr);
2660
2661	bcopy(data, lr + 1, size);
2662
2663	error = ztest_replay_write(zd, lr, B_FALSE);
2664
2665	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2666
2667	return (error);
2668}
2669
2670static int
2671ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2672{
2673	lr_truncate_t *lr;
2674	int error;
2675
2676	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2677
2678	lr->lr_foid = object;
2679	lr->lr_offset = offset;
2680	lr->lr_length = size;
2681
2682	error = ztest_replay_truncate(zd, lr, B_FALSE);
2683
2684	ztest_lr_free(lr, sizeof (*lr), NULL);
2685
2686	return (error);
2687}
2688
2689static int
2690ztest_setattr(ztest_ds_t *zd, uint64_t object)
2691{
2692	lr_setattr_t *lr;
2693	int error;
2694
2695	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2696
2697	lr->lr_foid = object;
2698	lr->lr_size = 0;
2699	lr->lr_mode = 0;
2700
2701	error = ztest_replay_setattr(zd, lr, B_FALSE);
2702
2703	ztest_lr_free(lr, sizeof (*lr), NULL);
2704
2705	return (error);
2706}
2707
2708static void
2709ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2710{
2711	objset_t *os = zd->zd_os;
2712	dmu_tx_t *tx;
2713	uint64_t txg;
2714	rl_t *rl;
2715
2716	txg_wait_synced(dmu_objset_pool(os), 0);
2717
2718	ztest_object_lock(zd, object, RL_READER);
2719	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2720
2721	tx = dmu_tx_create(os);
2722
2723	dmu_tx_hold_write(tx, object, offset, size);
2724
2725	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2726
2727	if (txg != 0) {
2728		dmu_prealloc(os, object, offset, size, tx);
2729		dmu_tx_commit(tx);
2730		txg_wait_synced(dmu_objset_pool(os), txg);
2731	} else {
2732		(void) dmu_free_long_range(os, object, offset, size);
2733	}
2734
2735	ztest_range_unlock(rl);
2736	ztest_object_unlock(zd, object);
2737}
2738
2739static void
2740ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2741{
2742	int err;
2743	ztest_block_tag_t wbt;
2744	dmu_object_info_t doi;
2745	enum ztest_io_type io_type;
2746	uint64_t blocksize;
2747	void *data;
2748
2749	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2750	blocksize = doi.doi_data_block_size;
2751	data = umem_alloc(blocksize, UMEM_NOFAIL);
2752
2753	/*
2754	 * Pick an i/o type at random, biased toward writing block tags.
2755	 */
2756	io_type = ztest_random(ZTEST_IO_TYPES);
2757	if (ztest_random(2) == 0)
2758		io_type = ZTEST_IO_WRITE_TAG;
2759
2760	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2761
2762	switch (io_type) {
2763
2764	case ZTEST_IO_WRITE_TAG:
2765		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2766		    offset, 0, 0, 0);
2767		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2768		break;
2769
2770	case ZTEST_IO_WRITE_PATTERN:
2771		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2772		if (ztest_random(2) == 0) {
2773			/*
2774			 * Induce fletcher2 collisions to ensure that
2775			 * zio_ddt_collision() detects and resolves them
2776			 * when using fletcher2-verify for deduplication.
2777			 */
2778			((uint64_t *)data)[0] ^= 1ULL << 63;
2779			((uint64_t *)data)[4] ^= 1ULL << 63;
2780		}
2781		(void) ztest_write(zd, object, offset, blocksize, data);
2782		break;
2783
2784	case ZTEST_IO_WRITE_ZEROES:
2785		bzero(data, blocksize);
2786		(void) ztest_write(zd, object, offset, blocksize, data);
2787		break;
2788
2789	case ZTEST_IO_TRUNCATE:
2790		(void) ztest_truncate(zd, object, offset, blocksize);
2791		break;
2792
2793	case ZTEST_IO_SETATTR:
2794		(void) ztest_setattr(zd, object);
2795		break;
2796	default:
2797		break;
2798
2799	case ZTEST_IO_REWRITE:
2800		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2801		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2802		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2803		    B_FALSE);
2804		VERIFY(err == 0 || err == ENOSPC);
2805		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2806		    ZFS_PROP_COMPRESSION,
2807		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2808		    B_FALSE);
2809		VERIFY(err == 0 || err == ENOSPC);
2810		(void) pthread_rwlock_unlock(&ztest_name_lock);
2811
2812		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2813		    DMU_READ_NO_PREFETCH));
2814
2815		(void) ztest_write(zd, object, offset, blocksize, data);
2816		break;
2817	}
2818
2819	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2820
2821	umem_free(data, blocksize);
2822}
2823
2824/*
2825 * Initialize an object description template.
2826 */
2827static void
2828ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2829    dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2830    uint64_t gen)
2831{
2832	od->od_dir = ZTEST_DIROBJ;
2833	od->od_object = 0;
2834
2835	od->od_crtype = type;
2836	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2837	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2838	od->od_crgen = gen;
2839
2840	od->od_type = DMU_OT_NONE;
2841	od->od_blocksize = 0;
2842	od->od_gen = 0;
2843
2844	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2845	    tag, (longlong_t)id, (u_longlong_t)index);
2846}
2847
2848/*
2849 * Lookup or create the objects for a test using the od template.
2850 * If the objects do not all exist, or if 'remove' is specified,
2851 * remove any existing objects and create new ones.  Otherwise,
2852 * use the existing objects.
2853 */
2854static int
2855ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2856{
2857	int count = size / sizeof (*od);
2858	int rv = 0;
2859
2860	mutex_enter(&zd->zd_dirobj_lock);
2861	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2862	    (ztest_remove(zd, od, count) != 0 ||
2863	    ztest_create(zd, od, count) != 0))
2864		rv = -1;
2865	zd->zd_od = od;
2866	mutex_exit(&zd->zd_dirobj_lock);
2867
2868	return (rv);
2869}
2870
2871/* ARGSUSED */
2872void
2873ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2874{
2875	zilog_t *zilog = zd->zd_zilog;
2876
2877	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2878
2879	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2880
2881	/*
2882	 * Remember the committed values in zd, which is in parent/child
2883	 * shared memory.  If we die, the next iteration of ztest_run()
2884	 * will verify that the log really does contain this record.
2885	 */
2886	mutex_enter(&zilog->zl_lock);
2887	ASSERT3P(zd->zd_shared, !=, NULL);
2888	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2889	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2890	mutex_exit(&zilog->zl_lock);
2891
2892	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2893}
2894
2895/*
2896 * This function is designed to simulate the operations that occur during a
2897 * mount/unmount operation.  We hold the dataset across these operations in an
2898 * attempt to expose any implicit assumptions about ZIL management.
2899 */
2900/* ARGSUSED */
2901void
2902ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2903{
2904	objset_t *os = zd->zd_os;
2905
2906	/*
2907	 * We hold the ztest_vdev_lock so we don't cause problems with
2908	 * other threads that wish to remove a log device, such as
2909	 * ztest_device_removal().
2910	 */
2911	mutex_enter(&ztest_vdev_lock);
2912
2913	/*
2914	 * We grab the zd_dirobj_lock to ensure that no other thread is
2915	 * updating the zil (i.e. adding in-memory log records) and the
2916	 * zd_zilog_lock to block any I/O.
2917	 */
2918	mutex_enter(&zd->zd_dirobj_lock);
2919	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2920
2921	/* zfsvfs_teardown() */
2922	zil_close(zd->zd_zilog);
2923
2924	/* zfsvfs_setup() */
2925	VERIFY3P(zil_open(os, ztest_get_data), ==, zd->zd_zilog);
2926	zil_replay(os, zd, ztest_replay_vector);
2927
2928	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2929	mutex_exit(&zd->zd_dirobj_lock);
2930	mutex_exit(&ztest_vdev_lock);
2931}
2932
2933/*
2934 * Verify that we can't destroy an active pool, create an existing pool,
2935 * or create a pool with a bad vdev spec.
2936 */
2937/* ARGSUSED */
2938void
2939ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2940{
2941	ztest_shared_opts_t *zo = &ztest_opts;
2942	spa_t *spa;
2943	nvlist_t *nvroot;
2944
2945	if (zo->zo_mmp_test)
2946		return;
2947
2948	/*
2949	 * Attempt to create using a bad file.
2950	 */
2951	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2952	VERIFY3U(ENOENT, ==,
2953	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2954	fnvlist_free(nvroot);
2955
2956	/*
2957	 * Attempt to create using a bad mirror.
2958	 */
2959	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2960	VERIFY3U(ENOENT, ==,
2961	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2962	fnvlist_free(nvroot);
2963
2964	/*
2965	 * Attempt to create an existing pool.  It shouldn't matter
2966	 * what's in the nvroot; we should fail with EEXIST.
2967	 */
2968	(void) pthread_rwlock_rdlock(&ztest_name_lock);
2969	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2970	VERIFY3U(EEXIST, ==,
2971	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2972	fnvlist_free(nvroot);
2973
2974	/*
2975	 * We open a reference to the spa and then we try to export it
2976	 * expecting one of the following errors:
2977	 *
2978	 * EBUSY
2979	 *	Because of the reference we just opened.
2980	 *
2981	 * ZFS_ERR_EXPORT_IN_PROGRESS
2982	 *	For the case that there is another ztest thread doing
2983	 *	an export concurrently.
2984	 */
2985	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2986	int error = spa_destroy(zo->zo_pool);
2987	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2988		fatal(0, "spa_destroy(%s) returned unexpected value %d",
2989		    spa->spa_name, error);
2990	}
2991	spa_close(spa, FTAG);
2992
2993	(void) pthread_rwlock_unlock(&ztest_name_lock);
2994}
2995
2996/*
2997 * Start and then stop the MMP threads to ensure the startup and shutdown code
2998 * works properly.  Actual protection and property-related code tested via ZTS.
2999 */
3000/* ARGSUSED */
3001void
3002ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3003{
3004	ztest_shared_opts_t *zo = &ztest_opts;
3005	spa_t *spa = ztest_spa;
3006
3007	if (zo->zo_mmp_test)
3008		return;
3009
3010	/*
3011	 * Since enabling MMP involves setting a property, it could not be done
3012	 * while the pool is suspended.
3013	 */
3014	if (spa_suspended(spa))
3015		return;
3016
3017	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3018	mutex_enter(&spa->spa_props_lock);
3019
3020	zfs_multihost_fail_intervals = 0;
3021
3022	if (!spa_multihost(spa)) {
3023		spa->spa_multihost = B_TRUE;
3024		mmp_thread_start(spa);
3025	}
3026
3027	mutex_exit(&spa->spa_props_lock);
3028	spa_config_exit(spa, SCL_CONFIG, FTAG);
3029
3030	txg_wait_synced(spa_get_dsl(spa), 0);
3031	mmp_signal_all_threads();
3032	txg_wait_synced(spa_get_dsl(spa), 0);
3033
3034	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3035	mutex_enter(&spa->spa_props_lock);
3036
3037	if (spa_multihost(spa)) {
3038		mmp_thread_stop(spa);
3039		spa->spa_multihost = B_FALSE;
3040	}
3041
3042	mutex_exit(&spa->spa_props_lock);
3043	spa_config_exit(spa, SCL_CONFIG, FTAG);
3044}
3045
3046/* ARGSUSED */
3047void
3048ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3049{
3050	spa_t *spa;
3051	uint64_t initial_version = SPA_VERSION_INITIAL;
3052	uint64_t version, newversion;
3053	nvlist_t *nvroot, *props;
3054	char *name;
3055
3056	if (ztest_opts.zo_mmp_test)
3057		return;
3058
3059	/* dRAID added after feature flags, skip upgrade test. */
3060	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3061		return;
3062
3063	mutex_enter(&ztest_vdev_lock);
3064	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3065
3066	/*
3067	 * Clean up from previous runs.
3068	 */
3069	(void) spa_destroy(name);
3070
3071	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3072	    NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3073
3074	/*
3075	 * If we're configuring a RAIDZ device then make sure that the
3076	 * initial version is capable of supporting that feature.
3077	 */
3078	switch (ztest_opts.zo_raid_parity) {
3079	case 0:
3080	case 1:
3081		initial_version = SPA_VERSION_INITIAL;
3082		break;
3083	case 2:
3084		initial_version = SPA_VERSION_RAIDZ2;
3085		break;
3086	case 3:
3087		initial_version = SPA_VERSION_RAIDZ3;
3088		break;
3089	}
3090
3091	/*
3092	 * Create a pool with a spa version that can be upgraded. Pick
3093	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3094	 */
3095	do {
3096		version = ztest_random_spa_version(initial_version);
3097	} while (version > SPA_VERSION_BEFORE_FEATURES);
3098
3099	props = fnvlist_alloc();
3100	fnvlist_add_uint64(props,
3101	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3102	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3103	fnvlist_free(nvroot);
3104	fnvlist_free(props);
3105
3106	VERIFY0(spa_open(name, &spa, FTAG));
3107	VERIFY3U(spa_version(spa), ==, version);
3108	newversion = ztest_random_spa_version(version + 1);
3109
3110	if (ztest_opts.zo_verbose >= 4) {
3111		(void) printf("upgrading spa version from %llu to %llu\n",
3112		    (u_longlong_t)version, (u_longlong_t)newversion);
3113	}
3114
3115	spa_upgrade(spa, newversion);
3116	VERIFY3U(spa_version(spa), >, version);
3117	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3118	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3119	spa_close(spa, FTAG);
3120
3121	kmem_strfree(name);
3122	mutex_exit(&ztest_vdev_lock);
3123}
3124
3125static void
3126ztest_spa_checkpoint(spa_t *spa)
3127{
3128	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3129
3130	int error = spa_checkpoint(spa->spa_name);
3131
3132	switch (error) {
3133	case 0:
3134	case ZFS_ERR_DEVRM_IN_PROGRESS:
3135	case ZFS_ERR_DISCARDING_CHECKPOINT:
3136	case ZFS_ERR_CHECKPOINT_EXISTS:
3137		break;
3138	case ENOSPC:
3139		ztest_record_enospc(FTAG);
3140		break;
3141	default:
3142		fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3143	}
3144}
3145
3146static void
3147ztest_spa_discard_checkpoint(spa_t *spa)
3148{
3149	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3150
3151	int error = spa_checkpoint_discard(spa->spa_name);
3152
3153	switch (error) {
3154	case 0:
3155	case ZFS_ERR_DISCARDING_CHECKPOINT:
3156	case ZFS_ERR_NO_CHECKPOINT:
3157		break;
3158	default:
3159		fatal(0, "spa_discard_checkpoint(%s) = %d",
3160		    spa->spa_name, error);
3161	}
3162
3163}
3164
3165/* ARGSUSED */
3166void
3167ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3168{
3169	spa_t *spa = ztest_spa;
3170
3171	mutex_enter(&ztest_checkpoint_lock);
3172	if (ztest_random(2) == 0) {
3173		ztest_spa_checkpoint(spa);
3174	} else {
3175		ztest_spa_discard_checkpoint(spa);
3176	}
3177	mutex_exit(&ztest_checkpoint_lock);
3178}
3179
3180
3181static vdev_t *
3182vdev_lookup_by_path(vdev_t *vd, const char *path)
3183{
3184	vdev_t *mvd;
3185	int c;
3186
3187	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3188		return (vd);
3189
3190	for (c = 0; c < vd->vdev_children; c++)
3191		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3192		    NULL)
3193			return (mvd);
3194
3195	return (NULL);
3196}
3197
3198static int
3199spa_num_top_vdevs(spa_t *spa)
3200{
3201	vdev_t *rvd = spa->spa_root_vdev;
3202	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3203	return (rvd->vdev_children);
3204}
3205
3206/*
3207 * Verify that vdev_add() works as expected.
3208 */
3209/* ARGSUSED */
3210void
3211ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3212{
3213	ztest_shared_t *zs = ztest_shared;
3214	spa_t *spa = ztest_spa;
3215	uint64_t leaves;
3216	uint64_t guid;
3217	nvlist_t *nvroot;
3218	int error;
3219
3220	if (ztest_opts.zo_mmp_test)
3221		return;
3222
3223	mutex_enter(&ztest_vdev_lock);
3224	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3225	    ztest_opts.zo_raid_children;
3226
3227	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3228
3229	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3230
3231	/*
3232	 * If we have slogs then remove them 1/4 of the time.
3233	 */
3234	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3235		metaslab_group_t *mg;
3236
3237		/*
3238		 * find the first real slog in log allocation class
3239		 */
3240		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3241		while (!mg->mg_vd->vdev_islog)
3242			mg = mg->mg_next;
3243
3244		guid = mg->mg_vd->vdev_guid;
3245
3246		spa_config_exit(spa, SCL_VDEV, FTAG);
3247
3248		/*
3249		 * We have to grab the zs_name_lock as writer to
3250		 * prevent a race between removing a slog (dmu_objset_find)
3251		 * and destroying a dataset. Removing the slog will
3252		 * grab a reference on the dataset which may cause
3253		 * dsl_destroy_head() to fail with EBUSY thus
3254		 * leaving the dataset in an inconsistent state.
3255		 */
3256		pthread_rwlock_wrlock(&ztest_name_lock);
3257		error = spa_vdev_remove(spa, guid, B_FALSE);
3258		pthread_rwlock_unlock(&ztest_name_lock);
3259
3260		switch (error) {
3261		case 0:
3262		case EEXIST:	/* Generic zil_reset() error */
3263		case EBUSY:	/* Replay required */
3264		case EACCES:	/* Crypto key not loaded */
3265		case ZFS_ERR_CHECKPOINT_EXISTS:
3266		case ZFS_ERR_DISCARDING_CHECKPOINT:
3267			break;
3268		default:
3269			fatal(0, "spa_vdev_remove() = %d", error);
3270		}
3271	} else {
3272		spa_config_exit(spa, SCL_VDEV, FTAG);
3273
3274		/*
3275		 * Make 1/4 of the devices be log devices
3276		 */
3277		nvroot = make_vdev_root(NULL, NULL, NULL,
3278		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3279		    "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3280		    1);
3281
3282		error = spa_vdev_add(spa, nvroot);
3283		fnvlist_free(nvroot);
3284
3285		switch (error) {
3286		case 0:
3287			break;
3288		case ENOSPC:
3289			ztest_record_enospc("spa_vdev_add");
3290			break;
3291		default:
3292			fatal(0, "spa_vdev_add() = %d", error);
3293		}
3294	}
3295
3296	mutex_exit(&ztest_vdev_lock);
3297}
3298
3299/* ARGSUSED */
3300void
3301ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3302{
3303	ztest_shared_t *zs = ztest_shared;
3304	spa_t *spa = ztest_spa;
3305	uint64_t leaves;
3306	nvlist_t *nvroot;
3307	const char *class = (ztest_random(2) == 0) ?
3308	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3309	int error;
3310
3311	/*
3312	 * By default add a special vdev 50% of the time
3313	 */
3314	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3315	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3316	    ztest_random(2) == 0)) {
3317		return;
3318	}
3319
3320	mutex_enter(&ztest_vdev_lock);
3321
3322	/* Only test with mirrors */
3323	if (zs->zs_mirrors < 2) {
3324		mutex_exit(&ztest_vdev_lock);
3325		return;
3326	}
3327
3328	/* requires feature@allocation_classes */
3329	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3330		mutex_exit(&ztest_vdev_lock);
3331		return;
3332	}
3333
3334	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3335	    ztest_opts.zo_raid_children;
3336
3337	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3338	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3339	spa_config_exit(spa, SCL_VDEV, FTAG);
3340
3341	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3342	    class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3343
3344	error = spa_vdev_add(spa, nvroot);
3345	fnvlist_free(nvroot);
3346
3347	if (error == ENOSPC)
3348		ztest_record_enospc("spa_vdev_add");
3349	else if (error != 0)
3350		fatal(0, "spa_vdev_add() = %d", error);
3351
3352	/*
3353	 * 50% of the time allow small blocks in the special class
3354	 */
3355	if (error == 0 &&
3356	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3357		if (ztest_opts.zo_verbose >= 3)
3358			(void) printf("Enabling special VDEV small blocks\n");
3359		(void) ztest_dsl_prop_set_uint64(zd->zd_name,
3360		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3361	}
3362
3363	mutex_exit(&ztest_vdev_lock);
3364
3365	if (ztest_opts.zo_verbose >= 3) {
3366		metaslab_class_t *mc;
3367
3368		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3369			mc = spa_special_class(spa);
3370		else
3371			mc = spa_dedup_class(spa);
3372		(void) printf("Added a %s mirrored vdev (of %d)\n",
3373		    class, (int)mc->mc_groups);
3374	}
3375}
3376
3377/*
3378 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3379 */
3380/* ARGSUSED */
3381void
3382ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3383{
3384	ztest_shared_t *zs = ztest_shared;
3385	spa_t *spa = ztest_spa;
3386	vdev_t *rvd = spa->spa_root_vdev;
3387	spa_aux_vdev_t *sav;
3388	char *aux;
3389	char *path;
3390	uint64_t guid = 0;
3391	int error, ignore_err = 0;
3392
3393	if (ztest_opts.zo_mmp_test)
3394		return;
3395
3396	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3397
3398	if (ztest_random(2) == 0) {
3399		sav = &spa->spa_spares;
3400		aux = ZPOOL_CONFIG_SPARES;
3401	} else {
3402		sav = &spa->spa_l2cache;
3403		aux = ZPOOL_CONFIG_L2CACHE;
3404	}
3405
3406	mutex_enter(&ztest_vdev_lock);
3407
3408	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3409
3410	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3411		/*
3412		 * Pick a random device to remove.
3413		 */
3414		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3415
3416		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3417		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3418			ignore_err = ENOTSUP;
3419
3420		guid = svd->vdev_guid;
3421	} else {
3422		/*
3423		 * Find an unused device we can add.
3424		 */
3425		zs->zs_vdev_aux = 0;
3426		for (;;) {
3427			int c;
3428			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3429			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3430			    zs->zs_vdev_aux);
3431			for (c = 0; c < sav->sav_count; c++)
3432				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3433				    path) == 0)
3434					break;
3435			if (c == sav->sav_count &&
3436			    vdev_lookup_by_path(rvd, path) == NULL)
3437				break;
3438			zs->zs_vdev_aux++;
3439		}
3440	}
3441
3442	spa_config_exit(spa, SCL_VDEV, FTAG);
3443
3444	if (guid == 0) {
3445		/*
3446		 * Add a new device.
3447		 */
3448		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3449		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3450		error = spa_vdev_add(spa, nvroot);
3451
3452		switch (error) {
3453		case 0:
3454			break;
3455		default:
3456			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3457		}
3458		fnvlist_free(nvroot);
3459	} else {
3460		/*
3461		 * Remove an existing device.  Sometimes, dirty its
3462		 * vdev state first to make sure we handle removal
3463		 * of devices that have pending state changes.
3464		 */
3465		if (ztest_random(2) == 0)
3466			(void) vdev_online(spa, guid, 0, NULL);
3467
3468		error = spa_vdev_remove(spa, guid, B_FALSE);
3469
3470		switch (error) {
3471		case 0:
3472		case EBUSY:
3473		case ZFS_ERR_CHECKPOINT_EXISTS:
3474		case ZFS_ERR_DISCARDING_CHECKPOINT:
3475			break;
3476		default:
3477			if (error != ignore_err)
3478				fatal(0, "spa_vdev_remove(%llu) = %d", guid,
3479				    error);
3480		}
3481	}
3482
3483	mutex_exit(&ztest_vdev_lock);
3484
3485	umem_free(path, MAXPATHLEN);
3486}
3487
3488/*
3489 * split a pool if it has mirror tlvdevs
3490 */
3491/* ARGSUSED */
3492void
3493ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3494{
3495	ztest_shared_t *zs = ztest_shared;
3496	spa_t *spa = ztest_spa;
3497	vdev_t *rvd = spa->spa_root_vdev;
3498	nvlist_t *tree, **child, *config, *split, **schild;
3499	uint_t c, children, schildren = 0, lastlogid = 0;
3500	int error = 0;
3501
3502	if (ztest_opts.zo_mmp_test)
3503		return;
3504
3505	mutex_enter(&ztest_vdev_lock);
3506
3507	/* ensure we have a usable config; mirrors of raidz aren't supported */
3508	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3509		mutex_exit(&ztest_vdev_lock);
3510		return;
3511	}
3512
3513	/* clean up the old pool, if any */
3514	(void) spa_destroy("splitp");
3515
3516	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3517
3518	/* generate a config from the existing config */
3519	mutex_enter(&spa->spa_props_lock);
3520	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3521	mutex_exit(&spa->spa_props_lock);
3522
3523	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3524	    &child, &children));
3525
3526	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3527	for (c = 0; c < children; c++) {
3528		vdev_t *tvd = rvd->vdev_child[c];
3529		nvlist_t **mchild;
3530		uint_t mchildren;
3531
3532		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3533			schild[schildren] = fnvlist_alloc();
3534			fnvlist_add_string(schild[schildren],
3535			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3536			fnvlist_add_uint64(schild[schildren],
3537			    ZPOOL_CONFIG_IS_HOLE, 1);
3538			if (lastlogid == 0)
3539				lastlogid = schildren;
3540			++schildren;
3541			continue;
3542		}
3543		lastlogid = 0;
3544		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3545		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3546		schild[schildren++] = fnvlist_dup(mchild[0]);
3547	}
3548
3549	/* OK, create a config that can be used to split */
3550	split = fnvlist_alloc();
3551	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3552	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3553	    lastlogid != 0 ? lastlogid : schildren);
3554
3555	config = fnvlist_alloc();
3556	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3557
3558	for (c = 0; c < schildren; c++)
3559		fnvlist_free(schild[c]);
3560	free(schild);
3561	fnvlist_free(split);
3562
3563	spa_config_exit(spa, SCL_VDEV, FTAG);
3564
3565	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3566	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3567	(void) pthread_rwlock_unlock(&ztest_name_lock);
3568
3569	fnvlist_free(config);
3570
3571	if (error == 0) {
3572		(void) printf("successful split - results:\n");
3573		mutex_enter(&spa_namespace_lock);
3574		show_pool_stats(spa);
3575		show_pool_stats(spa_lookup("splitp"));
3576		mutex_exit(&spa_namespace_lock);
3577		++zs->zs_splits;
3578		--zs->zs_mirrors;
3579	}
3580	mutex_exit(&ztest_vdev_lock);
3581}
3582
3583/*
3584 * Verify that we can attach and detach devices.
3585 */
3586/* ARGSUSED */
3587void
3588ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3589{
3590	ztest_shared_t *zs = ztest_shared;
3591	spa_t *spa = ztest_spa;
3592	spa_aux_vdev_t *sav = &spa->spa_spares;
3593	vdev_t *rvd = spa->spa_root_vdev;
3594	vdev_t *oldvd, *newvd, *pvd;
3595	nvlist_t *root;
3596	uint64_t leaves;
3597	uint64_t leaf, top;
3598	uint64_t ashift = ztest_get_ashift();
3599	uint64_t oldguid, pguid;
3600	uint64_t oldsize, newsize;
3601	char *oldpath, *newpath;
3602	int replacing;
3603	int oldvd_has_siblings = B_FALSE;
3604	int newvd_is_spare = B_FALSE;
3605	int newvd_is_dspare = B_FALSE;
3606	int oldvd_is_log;
3607	int error, expected_error;
3608
3609	if (ztest_opts.zo_mmp_test)
3610		return;
3611
3612	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3613	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3614
3615	mutex_enter(&ztest_vdev_lock);
3616	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3617
3618	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3619
3620	/*
3621	 * If a vdev is in the process of being removed, its removal may
3622	 * finish while we are in progress, leading to an unexpected error
3623	 * value.  Don't bother trying to attach while we are in the middle
3624	 * of removal.
3625	 */
3626	if (ztest_device_removal_active) {
3627		spa_config_exit(spa, SCL_ALL, FTAG);
3628		goto out;
3629	}
3630
3631	/*
3632	 * Decide whether to do an attach or a replace.
3633	 */
3634	replacing = ztest_random(2);
3635
3636	/*
3637	 * Pick a random top-level vdev.
3638	 */
3639	top = ztest_random_vdev_top(spa, B_TRUE);
3640
3641	/*
3642	 * Pick a random leaf within it.
3643	 */
3644	leaf = ztest_random(leaves);
3645
3646	/*
3647	 * Locate this vdev.
3648	 */
3649	oldvd = rvd->vdev_child[top];
3650
3651	/* pick a child from the mirror */
3652	if (zs->zs_mirrors >= 1) {
3653		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3654		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3655		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3656	}
3657
3658	/* pick a child out of the raidz group */
3659	if (ztest_opts.zo_raid_children > 1) {
3660		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3661			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3662		else
3663			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3664		ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3665		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3666	}
3667
3668	/*
3669	 * If we're already doing an attach or replace, oldvd may be a
3670	 * mirror vdev -- in which case, pick a random child.
3671	 */
3672	while (oldvd->vdev_children != 0) {
3673		oldvd_has_siblings = B_TRUE;
3674		ASSERT3U(oldvd->vdev_children, >=, 2);
3675		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3676	}
3677
3678	oldguid = oldvd->vdev_guid;
3679	oldsize = vdev_get_min_asize(oldvd);
3680	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3681	(void) strcpy(oldpath, oldvd->vdev_path);
3682	pvd = oldvd->vdev_parent;
3683	pguid = pvd->vdev_guid;
3684
3685	/*
3686	 * If oldvd has siblings, then half of the time, detach it.  Prior
3687	 * to the detach the pool is scrubbed in order to prevent creating
3688	 * unrepairable blocks as a result of the data corruption injection.
3689	 */
3690	if (oldvd_has_siblings && ztest_random(2) == 0) {
3691		spa_config_exit(spa, SCL_ALL, FTAG);
3692
3693		error = ztest_scrub_impl(spa);
3694		if (error)
3695			goto out;
3696
3697		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3698		if (error != 0 && error != ENODEV && error != EBUSY &&
3699		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3700		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3701			fatal(0, "detach (%s) returned %d", oldpath, error);
3702		goto out;
3703	}
3704
3705	/*
3706	 * For the new vdev, choose with equal probability between the two
3707	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3708	 */
3709	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3710		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3711		newvd_is_spare = B_TRUE;
3712
3713		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3714			newvd_is_dspare = B_TRUE;
3715
3716		(void) strcpy(newpath, newvd->vdev_path);
3717	} else {
3718		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3719		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3720		    top * leaves + leaf);
3721		if (ztest_random(2) == 0)
3722			newpath[strlen(newpath) - 1] = 'b';
3723		newvd = vdev_lookup_by_path(rvd, newpath);
3724	}
3725
3726	if (newvd) {
3727		/*
3728		 * Reopen to ensure the vdev's asize field isn't stale.
3729		 */
3730		vdev_reopen(newvd);
3731		newsize = vdev_get_min_asize(newvd);
3732	} else {
3733		/*
3734		 * Make newsize a little bigger or smaller than oldsize.
3735		 * If it's smaller, the attach should fail.
3736		 * If it's larger, and we're doing a replace,
3737		 * we should get dynamic LUN growth when we're done.
3738		 */
3739		newsize = 10 * oldsize / (9 + ztest_random(3));
3740	}
3741
3742	/*
3743	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3744	 * unless it's a replace; in that case any non-replacing parent is OK.
3745	 *
3746	 * If newvd is already part of the pool, it should fail with EBUSY.
3747	 *
3748	 * If newvd is too small, it should fail with EOVERFLOW.
3749	 *
3750	 * If newvd is a distributed spare and it's being attached to a
3751	 * dRAID which is not its parent it should fail with EINVAL.
3752	 */
3753	if (pvd->vdev_ops != &vdev_mirror_ops &&
3754	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3755	    pvd->vdev_ops == &vdev_replacing_ops ||
3756	    pvd->vdev_ops == &vdev_spare_ops))
3757		expected_error = ENOTSUP;
3758	else if (newvd_is_spare && (!replacing || oldvd_is_log))
3759		expected_error = ENOTSUP;
3760	else if (newvd == oldvd)
3761		expected_error = replacing ? 0 : EBUSY;
3762	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3763		expected_error = EBUSY;
3764	else if (!newvd_is_dspare && newsize < oldsize)
3765		expected_error = EOVERFLOW;
3766	else if (ashift > oldvd->vdev_top->vdev_ashift)
3767		expected_error = EDOM;
3768	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3769		expected_error = ENOTSUP;
3770	else
3771		expected_error = 0;
3772
3773	spa_config_exit(spa, SCL_ALL, FTAG);
3774
3775	/*
3776	 * Build the nvlist describing newpath.
3777	 */
3778	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3779	    ashift, NULL, 0, 0, 1);
3780
3781	/*
3782	 * When supported select either a healing or sequential resilver.
3783	 */
3784	boolean_t rebuilding = B_FALSE;
3785	if (pvd->vdev_ops == &vdev_mirror_ops ||
3786	    pvd->vdev_ops ==  &vdev_root_ops) {
3787		rebuilding = !!ztest_random(2);
3788	}
3789
3790	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3791
3792	fnvlist_free(root);
3793
3794	/*
3795	 * If our parent was the replacing vdev, but the replace completed,
3796	 * then instead of failing with ENOTSUP we may either succeed,
3797	 * fail with ENODEV, or fail with EOVERFLOW.
3798	 */
3799	if (expected_error == ENOTSUP &&
3800	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3801		expected_error = error;
3802
3803	/*
3804	 * If someone grew the LUN, the replacement may be too small.
3805	 */
3806	if (error == EOVERFLOW || error == EBUSY)
3807		expected_error = error;
3808
3809	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3810	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3811	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3812	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3813		expected_error = error;
3814
3815	if (error != expected_error && expected_error != EBUSY) {
3816		fatal(0, "attach (%s %llu, %s %llu, %d) "
3817		    "returned %d, expected %d",
3818		    oldpath, oldsize, newpath,
3819		    newsize, replacing, error, expected_error);
3820	}
3821out:
3822	mutex_exit(&ztest_vdev_lock);
3823
3824	umem_free(oldpath, MAXPATHLEN);
3825	umem_free(newpath, MAXPATHLEN);
3826}
3827
3828/* ARGSUSED */
3829void
3830ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3831{
3832	spa_t *spa = ztest_spa;
3833	vdev_t *vd;
3834	uint64_t guid;
3835	int error;
3836
3837	mutex_enter(&ztest_vdev_lock);
3838
3839	if (ztest_device_removal_active) {
3840		mutex_exit(&ztest_vdev_lock);
3841		return;
3842	}
3843
3844	/*
3845	 * Remove a random top-level vdev and wait for removal to finish.
3846	 */
3847	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3848	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3849	guid = vd->vdev_guid;
3850	spa_config_exit(spa, SCL_VDEV, FTAG);
3851
3852	error = spa_vdev_remove(spa, guid, B_FALSE);
3853	if (error == 0) {
3854		ztest_device_removal_active = B_TRUE;
3855		mutex_exit(&ztest_vdev_lock);
3856
3857		/*
3858		 * spa->spa_vdev_removal is created in a sync task that
3859		 * is initiated via dsl_sync_task_nowait(). Since the
3860		 * task may not run before spa_vdev_remove() returns, we
3861		 * must wait at least 1 txg to ensure that the removal
3862		 * struct has been created.
3863		 */
3864		txg_wait_synced(spa_get_dsl(spa), 0);
3865
3866		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3867			txg_wait_synced(spa_get_dsl(spa), 0);
3868	} else {
3869		mutex_exit(&ztest_vdev_lock);
3870		return;
3871	}
3872
3873	/*
3874	 * The pool needs to be scrubbed after completing device removal.
3875	 * Failure to do so may result in checksum errors due to the
3876	 * strategy employed by ztest_fault_inject() when selecting which
3877	 * offset are redundant and can be damaged.
3878	 */
3879	error = spa_scan(spa, POOL_SCAN_SCRUB);
3880	if (error == 0) {
3881		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3882			txg_wait_synced(spa_get_dsl(spa), 0);
3883	}
3884
3885	mutex_enter(&ztest_vdev_lock);
3886	ztest_device_removal_active = B_FALSE;
3887	mutex_exit(&ztest_vdev_lock);
3888}
3889
3890/*
3891 * Callback function which expands the physical size of the vdev.
3892 */
3893static vdev_t *
3894grow_vdev(vdev_t *vd, void *arg)
3895{
3896	spa_t *spa __maybe_unused = vd->vdev_spa;
3897	size_t *newsize = arg;
3898	size_t fsize;
3899	int fd;
3900
3901	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3902	ASSERT(vd->vdev_ops->vdev_op_leaf);
3903
3904	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3905		return (vd);
3906
3907	fsize = lseek(fd, 0, SEEK_END);
3908	VERIFY0(ftruncate(fd, *newsize));
3909
3910	if (ztest_opts.zo_verbose >= 6) {
3911		(void) printf("%s grew from %lu to %lu bytes\n",
3912		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3913	}
3914	(void) close(fd);
3915	return (NULL);
3916}
3917
3918/*
3919 * Callback function which expands a given vdev by calling vdev_online().
3920 */
3921/* ARGSUSED */
3922static vdev_t *
3923online_vdev(vdev_t *vd, void *arg)
3924{
3925	spa_t *spa = vd->vdev_spa;
3926	vdev_t *tvd = vd->vdev_top;
3927	uint64_t guid = vd->vdev_guid;
3928	uint64_t generation = spa->spa_config_generation + 1;
3929	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3930	int error;
3931
3932	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3933	ASSERT(vd->vdev_ops->vdev_op_leaf);
3934
3935	/* Calling vdev_online will initialize the new metaslabs */
3936	spa_config_exit(spa, SCL_STATE, spa);
3937	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3938	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3939
3940	/*
3941	 * If vdev_online returned an error or the underlying vdev_open
3942	 * failed then we abort the expand. The only way to know that
3943	 * vdev_open fails is by checking the returned newstate.
3944	 */
3945	if (error || newstate != VDEV_STATE_HEALTHY) {
3946		if (ztest_opts.zo_verbose >= 5) {
3947			(void) printf("Unable to expand vdev, state %llu, "
3948			    "error %d\n", (u_longlong_t)newstate, error);
3949		}
3950		return (vd);
3951	}
3952	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3953
3954	/*
3955	 * Since we dropped the lock we need to ensure that we're
3956	 * still talking to the original vdev. It's possible this
3957	 * vdev may have been detached/replaced while we were
3958	 * trying to online it.
3959	 */
3960	if (generation != spa->spa_config_generation) {
3961		if (ztest_opts.zo_verbose >= 5) {
3962			(void) printf("vdev configuration has changed, "
3963			    "guid %llu, state %llu, expected gen %llu, "
3964			    "got gen %llu\n",
3965			    (u_longlong_t)guid,
3966			    (u_longlong_t)tvd->vdev_state,
3967			    (u_longlong_t)generation,
3968			    (u_longlong_t)spa->spa_config_generation);
3969		}
3970		return (vd);
3971	}
3972	return (NULL);
3973}
3974
3975/*
3976 * Traverse the vdev tree calling the supplied function.
3977 * We continue to walk the tree until we either have walked all
3978 * children or we receive a non-NULL return from the callback.
3979 * If a NULL callback is passed, then we just return back the first
3980 * leaf vdev we encounter.
3981 */
3982static vdev_t *
3983vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3984{
3985	uint_t c;
3986
3987	if (vd->vdev_ops->vdev_op_leaf) {
3988		if (func == NULL)
3989			return (vd);
3990		else
3991			return (func(vd, arg));
3992	}
3993
3994	for (c = 0; c < vd->vdev_children; c++) {
3995		vdev_t *cvd = vd->vdev_child[c];
3996		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3997			return (cvd);
3998	}
3999	return (NULL);
4000}
4001
4002/*
4003 * Verify that dynamic LUN growth works as expected.
4004 */
4005/* ARGSUSED */
4006void
4007ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4008{
4009	spa_t *spa = ztest_spa;
4010	vdev_t *vd, *tvd;
4011	metaslab_class_t *mc;
4012	metaslab_group_t *mg;
4013	size_t psize, newsize;
4014	uint64_t top;
4015	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4016
4017	mutex_enter(&ztest_checkpoint_lock);
4018	mutex_enter(&ztest_vdev_lock);
4019	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4020
4021	/*
4022	 * If there is a vdev removal in progress, it could complete while
4023	 * we are running, in which case we would not be able to verify
4024	 * that the metaslab_class space increased (because it decreases
4025	 * when the device removal completes).
4026	 */
4027	if (ztest_device_removal_active) {
4028		spa_config_exit(spa, SCL_STATE, spa);
4029		mutex_exit(&ztest_vdev_lock);
4030		mutex_exit(&ztest_checkpoint_lock);
4031		return;
4032	}
4033
4034	top = ztest_random_vdev_top(spa, B_TRUE);
4035
4036	tvd = spa->spa_root_vdev->vdev_child[top];
4037	mg = tvd->vdev_mg;
4038	mc = mg->mg_class;
4039	old_ms_count = tvd->vdev_ms_count;
4040	old_class_space = metaslab_class_get_space(mc);
4041
4042	/*
4043	 * Determine the size of the first leaf vdev associated with
4044	 * our top-level device.
4045	 */
4046	vd = vdev_walk_tree(tvd, NULL, NULL);
4047	ASSERT3P(vd, !=, NULL);
4048	ASSERT(vd->vdev_ops->vdev_op_leaf);
4049
4050	psize = vd->vdev_psize;
4051
4052	/*
4053	 * We only try to expand the vdev if it's healthy, less than 4x its
4054	 * original size, and it has a valid psize.
4055	 */
4056	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4057	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4058		spa_config_exit(spa, SCL_STATE, spa);
4059		mutex_exit(&ztest_vdev_lock);
4060		mutex_exit(&ztest_checkpoint_lock);
4061		return;
4062	}
4063	ASSERT3U(psize, >, 0);
4064	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4065	ASSERT3U(newsize, >, psize);
4066
4067	if (ztest_opts.zo_verbose >= 6) {
4068		(void) printf("Expanding LUN %s from %lu to %lu\n",
4069		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4070	}
4071
4072	/*
4073	 * Growing the vdev is a two step process:
4074	 *	1). expand the physical size (i.e. relabel)
4075	 *	2). online the vdev to create the new metaslabs
4076	 */
4077	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4078	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4079	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4080		if (ztest_opts.zo_verbose >= 5) {
4081			(void) printf("Could not expand LUN because "
4082			    "the vdev configuration changed.\n");
4083		}
4084		spa_config_exit(spa, SCL_STATE, spa);
4085		mutex_exit(&ztest_vdev_lock);
4086		mutex_exit(&ztest_checkpoint_lock);
4087		return;
4088	}
4089
4090	spa_config_exit(spa, SCL_STATE, spa);
4091
4092	/*
4093	 * Expanding the LUN will update the config asynchronously,
4094	 * thus we must wait for the async thread to complete any
4095	 * pending tasks before proceeding.
4096	 */
4097	for (;;) {
4098		boolean_t done;
4099		mutex_enter(&spa->spa_async_lock);
4100		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4101		mutex_exit(&spa->spa_async_lock);
4102		if (done)
4103			break;
4104		txg_wait_synced(spa_get_dsl(spa), 0);
4105		(void) poll(NULL, 0, 100);
4106	}
4107
4108	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4109
4110	tvd = spa->spa_root_vdev->vdev_child[top];
4111	new_ms_count = tvd->vdev_ms_count;
4112	new_class_space = metaslab_class_get_space(mc);
4113
4114	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4115		if (ztest_opts.zo_verbose >= 5) {
4116			(void) printf("Could not verify LUN expansion due to "
4117			    "intervening vdev offline or remove.\n");
4118		}
4119		spa_config_exit(spa, SCL_STATE, spa);
4120		mutex_exit(&ztest_vdev_lock);
4121		mutex_exit(&ztest_checkpoint_lock);
4122		return;
4123	}
4124
4125	/*
4126	 * Make sure we were able to grow the vdev.
4127	 */
4128	if (new_ms_count <= old_ms_count) {
4129		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
4130		    old_ms_count, new_ms_count);
4131	}
4132
4133	/*
4134	 * Make sure we were able to grow the pool.
4135	 */
4136	if (new_class_space <= old_class_space) {
4137		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
4138		    old_class_space, new_class_space);
4139	}
4140
4141	if (ztest_opts.zo_verbose >= 5) {
4142		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4143
4144		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4145		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4146		(void) printf("%s grew from %s to %s\n",
4147		    spa->spa_name, oldnumbuf, newnumbuf);
4148	}
4149
4150	spa_config_exit(spa, SCL_STATE, spa);
4151	mutex_exit(&ztest_vdev_lock);
4152	mutex_exit(&ztest_checkpoint_lock);
4153}
4154
4155/*
4156 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4157 */
4158/* ARGSUSED */
4159static void
4160ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4161{
4162	/*
4163	 * Create the objects common to all ztest datasets.
4164	 */
4165	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4166	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4167}
4168
4169static int
4170ztest_dataset_create(char *dsname)
4171{
4172	int err;
4173	uint64_t rand;
4174	dsl_crypto_params_t *dcp = NULL;
4175
4176	/*
4177	 * 50% of the time, we create encrypted datasets
4178	 * using a random cipher suite and a hard-coded
4179	 * wrapping key.
4180	 */
4181	rand = ztest_random(2);
4182	if (rand != 0) {
4183		nvlist_t *crypto_args = fnvlist_alloc();
4184		nvlist_t *props = fnvlist_alloc();
4185
4186		/* slight bias towards the default cipher suite */
4187		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4188		if (rand < ZIO_CRYPT_AES_128_CCM)
4189			rand = ZIO_CRYPT_ON;
4190
4191		fnvlist_add_uint64(props,
4192		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4193		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4194		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4195
4196		/*
4197		 * These parameters aren't really used by the kernel. They
4198		 * are simply stored so that userspace knows how to load
4199		 * the wrapping key.
4200		 */
4201		fnvlist_add_uint64(props,
4202		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4203		fnvlist_add_string(props,
4204		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4205		fnvlist_add_uint64(props,
4206		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4207		fnvlist_add_uint64(props,
4208		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4209
4210		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4211		    crypto_args, &dcp));
4212
4213		/*
4214		 * Cycle through all available encryption implementations
4215		 * to verify interoperability.
4216		 */
4217		VERIFY0(gcm_impl_set("cycle"));
4218		VERIFY0(aes_impl_set("cycle"));
4219
4220		fnvlist_free(crypto_args);
4221		fnvlist_free(props);
4222	}
4223
4224	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4225	    ztest_objset_create_cb, NULL);
4226	dsl_crypto_params_free(dcp, !!err);
4227
4228	rand = ztest_random(100);
4229	if (err || rand < 80)
4230		return (err);
4231
4232	if (ztest_opts.zo_verbose >= 5)
4233		(void) printf("Setting dataset %s to sync always\n", dsname);
4234	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4235	    ZFS_SYNC_ALWAYS, B_FALSE));
4236}
4237
4238/* ARGSUSED */
4239static int
4240ztest_objset_destroy_cb(const char *name, void *arg)
4241{
4242	objset_t *os;
4243	dmu_object_info_t doi;
4244	int error;
4245
4246	/*
4247	 * Verify that the dataset contains a directory object.
4248	 */
4249	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4250	    B_TRUE, FTAG, &os));
4251	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4252	if (error != ENOENT) {
4253		/* We could have crashed in the middle of destroying it */
4254		ASSERT0(error);
4255		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4256		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4257	}
4258	dmu_objset_disown(os, B_TRUE, FTAG);
4259
4260	/*
4261	 * Destroy the dataset.
4262	 */
4263	if (strchr(name, '@') != NULL) {
4264		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
4265	} else {
4266		error = dsl_destroy_head(name);
4267		if (error == ENOSPC) {
4268			/* There could be checkpoint or insufficient slop */
4269			ztest_record_enospc(FTAG);
4270		} else if (error != EBUSY) {
4271			/* There could be a hold on this dataset */
4272			ASSERT0(error);
4273		}
4274	}
4275	return (0);
4276}
4277
4278static boolean_t
4279ztest_snapshot_create(char *osname, uint64_t id)
4280{
4281	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4282	int error;
4283
4284	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
4285
4286	error = dmu_objset_snapshot_one(osname, snapname);
4287	if (error == ENOSPC) {
4288		ztest_record_enospc(FTAG);
4289		return (B_FALSE);
4290	}
4291	if (error != 0 && error != EEXIST) {
4292		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
4293		    snapname, error);
4294	}
4295	return (B_TRUE);
4296}
4297
4298static boolean_t
4299ztest_snapshot_destroy(char *osname, uint64_t id)
4300{
4301	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4302	int error;
4303
4304	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
4305	    (u_longlong_t)id);
4306
4307	error = dsl_destroy_snapshot(snapname, B_FALSE);
4308	if (error != 0 && error != ENOENT)
4309		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
4310	return (B_TRUE);
4311}
4312
4313/* ARGSUSED */
4314void
4315ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4316{
4317	ztest_ds_t *zdtmp;
4318	int iters;
4319	int error;
4320	objset_t *os, *os2;
4321	char name[ZFS_MAX_DATASET_NAME_LEN];
4322	zilog_t *zilog;
4323	int i;
4324
4325	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4326
4327	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4328
4329	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
4330	    ztest_opts.zo_pool, (u_longlong_t)id);
4331
4332	/*
4333	 * If this dataset exists from a previous run, process its replay log
4334	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4335	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4336	 */
4337	if (ztest_random(2) == 0 &&
4338	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4339	    B_TRUE, FTAG, &os) == 0) {
4340		ztest_zd_init(zdtmp, NULL, os);
4341		zil_replay(os, zdtmp, ztest_replay_vector);
4342		ztest_zd_fini(zdtmp);
4343		dmu_objset_disown(os, B_TRUE, FTAG);
4344	}
4345
4346	/*
4347	 * There may be an old instance of the dataset we're about to
4348	 * create lying around from a previous run.  If so, destroy it
4349	 * and all of its snapshots.
4350	 */
4351	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4352	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4353
4354	/*
4355	 * Verify that the destroyed dataset is no longer in the namespace.
4356	 */
4357	VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4358	    B_TRUE, FTAG, &os));
4359
4360	/*
4361	 * Verify that we can create a new dataset.
4362	 */
4363	error = ztest_dataset_create(name);
4364	if (error) {
4365		if (error == ENOSPC) {
4366			ztest_record_enospc(FTAG);
4367			goto out;
4368		}
4369		fatal(0, "dmu_objset_create(%s) = %d", name, error);
4370	}
4371
4372	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4373	    FTAG, &os));
4374
4375	ztest_zd_init(zdtmp, NULL, os);
4376
4377	/*
4378	 * Open the intent log for it.
4379	 */
4380	zilog = zil_open(os, ztest_get_data);
4381
4382	/*
4383	 * Put some objects in there, do a little I/O to them,
4384	 * and randomly take a couple of snapshots along the way.
4385	 */
4386	iters = ztest_random(5);
4387	for (i = 0; i < iters; i++) {
4388		ztest_dmu_object_alloc_free(zdtmp, id);
4389		if (ztest_random(iters) == 0)
4390			(void) ztest_snapshot_create(name, i);
4391	}
4392
4393	/*
4394	 * Verify that we cannot create an existing dataset.
4395	 */
4396	VERIFY3U(EEXIST, ==,
4397	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4398
4399	/*
4400	 * Verify that we can hold an objset that is also owned.
4401	 */
4402	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4403	dmu_objset_rele(os2, FTAG);
4404
4405	/*
4406	 * Verify that we cannot own an objset that is already owned.
4407	 */
4408	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4409	    B_FALSE, B_TRUE, FTAG, &os2));
4410
4411	zil_close(zilog);
4412	dmu_objset_disown(os, B_TRUE, FTAG);
4413	ztest_zd_fini(zdtmp);
4414out:
4415	(void) pthread_rwlock_unlock(&ztest_name_lock);
4416
4417	umem_free(zdtmp, sizeof (ztest_ds_t));
4418}
4419
4420/*
4421 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4422 */
4423void
4424ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4425{
4426	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4427	(void) ztest_snapshot_destroy(zd->zd_name, id);
4428	(void) ztest_snapshot_create(zd->zd_name, id);
4429	(void) pthread_rwlock_unlock(&ztest_name_lock);
4430}
4431
4432/*
4433 * Cleanup non-standard snapshots and clones.
4434 */
4435static void
4436ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4437{
4438	char *snap1name;
4439	char *clone1name;
4440	char *snap2name;
4441	char *clone2name;
4442	char *snap3name;
4443	int error;
4444
4445	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4446	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4447	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4448	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4449	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4450
4451	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4452	    "%s@s1_%llu", osname, (u_longlong_t)id);
4453	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4454	    "%s/c1_%llu", osname, (u_longlong_t)id);
4455	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4456	    "%s@s2_%llu", clone1name, (u_longlong_t)id);
4457	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4458	    "%s/c2_%llu", osname, (u_longlong_t)id);
4459	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4460	    "%s@s3_%llu", clone1name, (u_longlong_t)id);
4461
4462	error = dsl_destroy_head(clone2name);
4463	if (error && error != ENOENT)
4464		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4465	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4466	if (error && error != ENOENT)
4467		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4468	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4469	if (error && error != ENOENT)
4470		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4471	error = dsl_destroy_head(clone1name);
4472	if (error && error != ENOENT)
4473		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4474	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4475	if (error && error != ENOENT)
4476		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4477
4478	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4479	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4480	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4481	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4482	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4483}
4484
4485/*
4486 * Verify dsl_dataset_promote handles EBUSY
4487 */
4488void
4489ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4490{
4491	objset_t *os;
4492	char *snap1name;
4493	char *clone1name;
4494	char *snap2name;
4495	char *clone2name;
4496	char *snap3name;
4497	char *osname = zd->zd_name;
4498	int error;
4499
4500	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4501	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4502	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4503	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4504	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4505
4506	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4507
4508	ztest_dsl_dataset_cleanup(osname, id);
4509
4510	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4511	    "%s@s1_%llu", osname, (u_longlong_t)id);
4512	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4513	    "%s/c1_%llu", osname, (u_longlong_t)id);
4514	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4515	    "%s@s2_%llu", clone1name, (u_longlong_t)id);
4516	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4517	    "%s/c2_%llu", osname, (u_longlong_t)id);
4518	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4519	    "%s@s3_%llu", clone1name, (u_longlong_t)id);
4520
4521	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4522	if (error && error != EEXIST) {
4523		if (error == ENOSPC) {
4524			ztest_record_enospc(FTAG);
4525			goto out;
4526		}
4527		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4528	}
4529
4530	error = dmu_objset_clone(clone1name, snap1name);
4531	if (error) {
4532		if (error == ENOSPC) {
4533			ztest_record_enospc(FTAG);
4534			goto out;
4535		}
4536		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4537	}
4538
4539	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4540	if (error && error != EEXIST) {
4541		if (error == ENOSPC) {
4542			ztest_record_enospc(FTAG);
4543			goto out;
4544		}
4545		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4546	}
4547
4548	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4549	if (error && error != EEXIST) {
4550		if (error == ENOSPC) {
4551			ztest_record_enospc(FTAG);
4552			goto out;
4553		}
4554		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4555	}
4556
4557	error = dmu_objset_clone(clone2name, snap3name);
4558	if (error) {
4559		if (error == ENOSPC) {
4560			ztest_record_enospc(FTAG);
4561			goto out;
4562		}
4563		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4564	}
4565
4566	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4567	    FTAG, &os);
4568	if (error)
4569		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4570	error = dsl_dataset_promote(clone2name, NULL);
4571	if (error == ENOSPC) {
4572		dmu_objset_disown(os, B_TRUE, FTAG);
4573		ztest_record_enospc(FTAG);
4574		goto out;
4575	}
4576	if (error != EBUSY)
4577		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4578		    error);
4579	dmu_objset_disown(os, B_TRUE, FTAG);
4580
4581out:
4582	ztest_dsl_dataset_cleanup(osname, id);
4583
4584	(void) pthread_rwlock_unlock(&ztest_name_lock);
4585
4586	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4587	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4588	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4589	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4590	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4591}
4592
4593#undef OD_ARRAY_SIZE
4594#define	OD_ARRAY_SIZE	4
4595
4596/*
4597 * Verify that dmu_object_{alloc,free} work as expected.
4598 */
4599void
4600ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4601{
4602	ztest_od_t *od;
4603	int batchsize;
4604	int size;
4605	int b;
4606
4607	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4608	od = umem_alloc(size, UMEM_NOFAIL);
4609	batchsize = OD_ARRAY_SIZE;
4610
4611	for (b = 0; b < batchsize; b++)
4612		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4613		    0, 0, 0);
4614
4615	/*
4616	 * Destroy the previous batch of objects, create a new batch,
4617	 * and do some I/O on the new objects.
4618	 */
4619	if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4620		return;
4621
4622	while (ztest_random(4 * batchsize) != 0)
4623		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4624		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4625
4626	umem_free(od, size);
4627}
4628
4629/*
4630 * Rewind the global allocator to verify object allocation backfilling.
4631 */
4632void
4633ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4634{
4635	objset_t *os = zd->zd_os;
4636	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4637	uint64_t object;
4638
4639	/*
4640	 * Rewind the global allocator randomly back to a lower object number
4641	 * to force backfilling and reclamation of recently freed dnodes.
4642	 */
4643	mutex_enter(&os->os_obj_lock);
4644	object = ztest_random(os->os_obj_next_chunk);
4645	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4646	mutex_exit(&os->os_obj_lock);
4647}
4648
4649#undef OD_ARRAY_SIZE
4650#define	OD_ARRAY_SIZE	2
4651
4652/*
4653 * Verify that dmu_{read,write} work as expected.
4654 */
4655void
4656ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4657{
4658	int size;
4659	ztest_od_t *od;
4660
4661	objset_t *os = zd->zd_os;
4662	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4663	od = umem_alloc(size, UMEM_NOFAIL);
4664	dmu_tx_t *tx;
4665	int i, freeit, error;
4666	uint64_t n, s, txg;
4667	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4668	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4669	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4670	uint64_t regions = 997;
4671	uint64_t stride = 123456789ULL;
4672	uint64_t width = 40;
4673	int free_percent = 5;
4674
4675	/*
4676	 * This test uses two objects, packobj and bigobj, that are always
4677	 * updated together (i.e. in the same tx) so that their contents are
4678	 * in sync and can be compared.  Their contents relate to each other
4679	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4680	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4681	 * for any index n, there are three bufwads that should be identical:
4682	 *
4683	 *	packobj, at offset n * sizeof (bufwad_t)
4684	 *	bigobj, at the head of the nth chunk
4685	 *	bigobj, at the tail of the nth chunk
4686	 *
4687	 * The chunk size is arbitrary. It doesn't have to be a power of two,
4688	 * and it doesn't have any relation to the object blocksize.
4689	 * The only requirement is that it can hold at least two bufwads.
4690	 *
4691	 * Normally, we write the bufwad to each of these locations.
4692	 * However, free_percent of the time we instead write zeroes to
4693	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
4694	 * bigobj to packobj, we can verify that the DMU is correctly
4695	 * tracking which parts of an object are allocated and free,
4696	 * and that the contents of the allocated blocks are correct.
4697	 */
4698
4699	/*
4700	 * Read the directory info.  If it's the first time, set things up.
4701	 */
4702	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4703	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4704	    chunksize);
4705
4706	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4707		umem_free(od, size);
4708		return;
4709	}
4710
4711	bigobj = od[0].od_object;
4712	packobj = od[1].od_object;
4713	chunksize = od[0].od_gen;
4714	ASSERT3U(chunksize, ==, od[1].od_gen);
4715
4716	/*
4717	 * Prefetch a random chunk of the big object.
4718	 * Our aim here is to get some async reads in flight
4719	 * for blocks that we may free below; the DMU should
4720	 * handle this race correctly.
4721	 */
4722	n = ztest_random(regions) * stride + ztest_random(width);
4723	s = 1 + ztest_random(2 * width - 1);
4724	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4725	    ZIO_PRIORITY_SYNC_READ);
4726
4727	/*
4728	 * Pick a random index and compute the offsets into packobj and bigobj.
4729	 */
4730	n = ztest_random(regions) * stride + ztest_random(width);
4731	s = 1 + ztest_random(width - 1);
4732
4733	packoff = n * sizeof (bufwad_t);
4734	packsize = s * sizeof (bufwad_t);
4735
4736	bigoff = n * chunksize;
4737	bigsize = s * chunksize;
4738
4739	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4740	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4741
4742	/*
4743	 * free_percent of the time, free a range of bigobj rather than
4744	 * overwriting it.
4745	 */
4746	freeit = (ztest_random(100) < free_percent);
4747
4748	/*
4749	 * Read the current contents of our objects.
4750	 */
4751	error = dmu_read(os, packobj, packoff, packsize, packbuf,
4752	    DMU_READ_PREFETCH);
4753	ASSERT0(error);
4754	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4755	    DMU_READ_PREFETCH);
4756	ASSERT0(error);
4757
4758	/*
4759	 * Get a tx for the mods to both packobj and bigobj.
4760	 */
4761	tx = dmu_tx_create(os);
4762
4763	dmu_tx_hold_write(tx, packobj, packoff, packsize);
4764
4765	if (freeit)
4766		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4767	else
4768		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4769
4770	/* This accounts for setting the checksum/compression. */
4771	dmu_tx_hold_bonus(tx, bigobj);
4772
4773	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4774	if (txg == 0) {
4775		umem_free(packbuf, packsize);
4776		umem_free(bigbuf, bigsize);
4777		umem_free(od, size);
4778		return;
4779	}
4780
4781	enum zio_checksum cksum;
4782	do {
4783		cksum = (enum zio_checksum)
4784		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4785	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4786	dmu_object_set_checksum(os, bigobj, cksum, tx);
4787
4788	enum zio_compress comp;
4789	do {
4790		comp = (enum zio_compress)
4791		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4792	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4793	dmu_object_set_compress(os, bigobj, comp, tx);
4794
4795	/*
4796	 * For each index from n to n + s, verify that the existing bufwad
4797	 * in packobj matches the bufwads at the head and tail of the
4798	 * corresponding chunk in bigobj.  Then update all three bufwads
4799	 * with the new values we want to write out.
4800	 */
4801	for (i = 0; i < s; i++) {
4802		/* LINTED */
4803		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4804		/* LINTED */
4805		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4806		/* LINTED */
4807		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4808
4809		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4810		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4811
4812		if (pack->bw_txg > txg)
4813			fatal(0, "future leak: got %llx, open txg is %llx",
4814			    pack->bw_txg, txg);
4815
4816		if (pack->bw_data != 0 && pack->bw_index != n + i)
4817			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4818			    pack->bw_index, n, i);
4819
4820		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4821			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4822
4823		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4824			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4825
4826		if (freeit) {
4827			bzero(pack, sizeof (bufwad_t));
4828		} else {
4829			pack->bw_index = n + i;
4830			pack->bw_txg = txg;
4831			pack->bw_data = 1 + ztest_random(-2ULL);
4832		}
4833		*bigH = *pack;
4834		*bigT = *pack;
4835	}
4836
4837	/*
4838	 * We've verified all the old bufwads, and made new ones.
4839	 * Now write them out.
4840	 */
4841	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4842
4843	if (freeit) {
4844		if (ztest_opts.zo_verbose >= 7) {
4845			(void) printf("freeing offset %llx size %llx"
4846			    " txg %llx\n",
4847			    (u_longlong_t)bigoff,
4848			    (u_longlong_t)bigsize,
4849			    (u_longlong_t)txg);
4850		}
4851		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4852	} else {
4853		if (ztest_opts.zo_verbose >= 7) {
4854			(void) printf("writing offset %llx size %llx"
4855			    " txg %llx\n",
4856			    (u_longlong_t)bigoff,
4857			    (u_longlong_t)bigsize,
4858			    (u_longlong_t)txg);
4859		}
4860		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4861	}
4862
4863	dmu_tx_commit(tx);
4864
4865	/*
4866	 * Sanity check the stuff we just wrote.
4867	 */
4868	{
4869		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4870		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4871
4872		VERIFY0(dmu_read(os, packobj, packoff,
4873		    packsize, packcheck, DMU_READ_PREFETCH));
4874		VERIFY0(dmu_read(os, bigobj, bigoff,
4875		    bigsize, bigcheck, DMU_READ_PREFETCH));
4876
4877		ASSERT0(bcmp(packbuf, packcheck, packsize));
4878		ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
4879
4880		umem_free(packcheck, packsize);
4881		umem_free(bigcheck, bigsize);
4882	}
4883
4884	umem_free(packbuf, packsize);
4885	umem_free(bigbuf, bigsize);
4886	umem_free(od, size);
4887}
4888
4889static void
4890compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4891    uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4892{
4893	uint64_t i;
4894	bufwad_t *pack;
4895	bufwad_t *bigH;
4896	bufwad_t *bigT;
4897
4898	/*
4899	 * For each index from n to n + s, verify that the existing bufwad
4900	 * in packobj matches the bufwads at the head and tail of the
4901	 * corresponding chunk in bigobj.  Then update all three bufwads
4902	 * with the new values we want to write out.
4903	 */
4904	for (i = 0; i < s; i++) {
4905		/* LINTED */
4906		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4907		/* LINTED */
4908		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4909		/* LINTED */
4910		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4911
4912		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4913		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4914
4915		if (pack->bw_txg > txg)
4916			fatal(0, "future leak: got %llx, open txg is %llx",
4917			    pack->bw_txg, txg);
4918
4919		if (pack->bw_data != 0 && pack->bw_index != n + i)
4920			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4921			    pack->bw_index, n, i);
4922
4923		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4924			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4925
4926		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4927			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4928
4929		pack->bw_index = n + i;
4930		pack->bw_txg = txg;
4931		pack->bw_data = 1 + ztest_random(-2ULL);
4932
4933		*bigH = *pack;
4934		*bigT = *pack;
4935	}
4936}
4937
4938#undef OD_ARRAY_SIZE
4939#define	OD_ARRAY_SIZE	2
4940
4941void
4942ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4943{
4944	objset_t *os = zd->zd_os;
4945	ztest_od_t *od;
4946	dmu_tx_t *tx;
4947	uint64_t i;
4948	int error;
4949	int size;
4950	uint64_t n, s, txg;
4951	bufwad_t *packbuf, *bigbuf;
4952	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4953	uint64_t blocksize = ztest_random_blocksize();
4954	uint64_t chunksize = blocksize;
4955	uint64_t regions = 997;
4956	uint64_t stride = 123456789ULL;
4957	uint64_t width = 9;
4958	dmu_buf_t *bonus_db;
4959	arc_buf_t **bigbuf_arcbufs;
4960	dmu_object_info_t doi;
4961
4962	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4963	od = umem_alloc(size, UMEM_NOFAIL);
4964
4965	/*
4966	 * This test uses two objects, packobj and bigobj, that are always
4967	 * updated together (i.e. in the same tx) so that their contents are
4968	 * in sync and can be compared.  Their contents relate to each other
4969	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4970	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4971	 * for any index n, there are three bufwads that should be identical:
4972	 *
4973	 *	packobj, at offset n * sizeof (bufwad_t)
4974	 *	bigobj, at the head of the nth chunk
4975	 *	bigobj, at the tail of the nth chunk
4976	 *
4977	 * The chunk size is set equal to bigobj block size so that
4978	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4979	 */
4980
4981	/*
4982	 * Read the directory info.  If it's the first time, set things up.
4983	 */
4984	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4985	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4986	    chunksize);
4987
4988
4989	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4990		umem_free(od, size);
4991		return;
4992	}
4993
4994	bigobj = od[0].od_object;
4995	packobj = od[1].od_object;
4996	blocksize = od[0].od_blocksize;
4997	chunksize = blocksize;
4998	ASSERT3U(chunksize, ==, od[1].od_gen);
4999
5000	VERIFY0(dmu_object_info(os, bigobj, &doi));
5001	VERIFY(ISP2(doi.doi_data_block_size));
5002	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5003	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5004
5005	/*
5006	 * Pick a random index and compute the offsets into packobj and bigobj.
5007	 */
5008	n = ztest_random(regions) * stride + ztest_random(width);
5009	s = 1 + ztest_random(width - 1);
5010
5011	packoff = n * sizeof (bufwad_t);
5012	packsize = s * sizeof (bufwad_t);
5013
5014	bigoff = n * chunksize;
5015	bigsize = s * chunksize;
5016
5017	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5018	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5019
5020	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5021
5022	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5023
5024	/*
5025	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5026	 * Iteration 1 test zcopy to already referenced dbufs.
5027	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5028	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5029	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5030	 * Iteration 5 test zcopy when it can't be done.
5031	 * Iteration 6 one more zcopy write.
5032	 */
5033	for (i = 0; i < 7; i++) {
5034		uint64_t j;
5035		uint64_t off;
5036
5037		/*
5038		 * In iteration 5 (i == 5) use arcbufs
5039		 * that don't match bigobj blksz to test
5040		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5041		 * assign an arcbuf to a dbuf.
5042		 */
5043		for (j = 0; j < s; j++) {
5044			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5045				bigbuf_arcbufs[j] =
5046				    dmu_request_arcbuf(bonus_db, chunksize);
5047			} else {
5048				bigbuf_arcbufs[2 * j] =
5049				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5050				bigbuf_arcbufs[2 * j + 1] =
5051				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5052			}
5053		}
5054
5055		/*
5056		 * Get a tx for the mods to both packobj and bigobj.
5057		 */
5058		tx = dmu_tx_create(os);
5059
5060		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5061		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5062
5063		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5064		if (txg == 0) {
5065			umem_free(packbuf, packsize);
5066			umem_free(bigbuf, bigsize);
5067			for (j = 0; j < s; j++) {
5068				if (i != 5 ||
5069				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5070					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5071				} else {
5072					dmu_return_arcbuf(
5073					    bigbuf_arcbufs[2 * j]);
5074					dmu_return_arcbuf(
5075					    bigbuf_arcbufs[2 * j + 1]);
5076				}
5077			}
5078			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5079			umem_free(od, size);
5080			dmu_buf_rele(bonus_db, FTAG);
5081			return;
5082		}
5083
5084		/*
5085		 * 50% of the time don't read objects in the 1st iteration to
5086		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5087		 * no existing dbufs for the specified offsets.
5088		 */
5089		if (i != 0 || ztest_random(2) != 0) {
5090			error = dmu_read(os, packobj, packoff,
5091			    packsize, packbuf, DMU_READ_PREFETCH);
5092			ASSERT0(error);
5093			error = dmu_read(os, bigobj, bigoff, bigsize,
5094			    bigbuf, DMU_READ_PREFETCH);
5095			ASSERT0(error);
5096		}
5097		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5098		    n, chunksize, txg);
5099
5100		/*
5101		 * We've verified all the old bufwads, and made new ones.
5102		 * Now write them out.
5103		 */
5104		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5105		if (ztest_opts.zo_verbose >= 7) {
5106			(void) printf("writing offset %llx size %llx"
5107			    " txg %llx\n",
5108			    (u_longlong_t)bigoff,
5109			    (u_longlong_t)bigsize,
5110			    (u_longlong_t)txg);
5111		}
5112		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5113			dmu_buf_t *dbt;
5114			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5115				bcopy((caddr_t)bigbuf + (off - bigoff),
5116				    bigbuf_arcbufs[j]->b_data, chunksize);
5117			} else {
5118				bcopy((caddr_t)bigbuf + (off - bigoff),
5119				    bigbuf_arcbufs[2 * j]->b_data,
5120				    chunksize / 2);
5121				bcopy((caddr_t)bigbuf + (off - bigoff) +
5122				    chunksize / 2,
5123				    bigbuf_arcbufs[2 * j + 1]->b_data,
5124				    chunksize / 2);
5125			}
5126
5127			if (i == 1) {
5128				VERIFY(dmu_buf_hold(os, bigobj, off,
5129				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5130			}
5131			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5132				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5133				    off, bigbuf_arcbufs[j], tx));
5134			} else {
5135				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5136				    off, bigbuf_arcbufs[2 * j], tx));
5137				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5138				    off + chunksize / 2,
5139				    bigbuf_arcbufs[2 * j + 1], tx));
5140			}
5141			if (i == 1) {
5142				dmu_buf_rele(dbt, FTAG);
5143			}
5144		}
5145		dmu_tx_commit(tx);
5146
5147		/*
5148		 * Sanity check the stuff we just wrote.
5149		 */
5150		{
5151			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5152			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5153
5154			VERIFY0(dmu_read(os, packobj, packoff,
5155			    packsize, packcheck, DMU_READ_PREFETCH));
5156			VERIFY0(dmu_read(os, bigobj, bigoff,
5157			    bigsize, bigcheck, DMU_READ_PREFETCH));
5158
5159			ASSERT0(bcmp(packbuf, packcheck, packsize));
5160			ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
5161
5162			umem_free(packcheck, packsize);
5163			umem_free(bigcheck, bigsize);
5164		}
5165		if (i == 2) {
5166			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5167		} else if (i == 3) {
5168			txg_wait_synced(dmu_objset_pool(os), 0);
5169		}
5170	}
5171
5172	dmu_buf_rele(bonus_db, FTAG);
5173	umem_free(packbuf, packsize);
5174	umem_free(bigbuf, bigsize);
5175	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5176	umem_free(od, size);
5177}
5178
5179/* ARGSUSED */
5180void
5181ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5182{
5183	ztest_od_t *od;
5184
5185	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5186	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5187	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5188
5189	/*
5190	 * Have multiple threads write to large offsets in an object
5191	 * to verify that parallel writes to an object -- even to the
5192	 * same blocks within the object -- doesn't cause any trouble.
5193	 */
5194	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5195
5196	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5197		return;
5198
5199	while (ztest_random(10) != 0)
5200		ztest_io(zd, od->od_object, offset);
5201
5202	umem_free(od, sizeof (ztest_od_t));
5203}
5204
5205void
5206ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5207{
5208	ztest_od_t *od;
5209	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5210	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5211	uint64_t count = ztest_random(20) + 1;
5212	uint64_t blocksize = ztest_random_blocksize();
5213	void *data;
5214
5215	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5216
5217	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5218
5219	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5220	    !ztest_random(2)) != 0) {
5221		umem_free(od, sizeof (ztest_od_t));
5222		return;
5223	}
5224
5225	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5226		umem_free(od, sizeof (ztest_od_t));
5227		return;
5228	}
5229
5230	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5231
5232	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5233
5234	while (ztest_random(count) != 0) {
5235		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5236		if (ztest_write(zd, od->od_object, randoff, blocksize,
5237		    data) != 0)
5238			break;
5239		while (ztest_random(4) != 0)
5240			ztest_io(zd, od->od_object, randoff);
5241	}
5242
5243	umem_free(data, blocksize);
5244	umem_free(od, sizeof (ztest_od_t));
5245}
5246
5247/*
5248 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5249 */
5250#define	ZTEST_ZAP_MIN_INTS	1
5251#define	ZTEST_ZAP_MAX_INTS	4
5252#define	ZTEST_ZAP_MAX_PROPS	1000
5253
5254void
5255ztest_zap(ztest_ds_t *zd, uint64_t id)
5256{
5257	objset_t *os = zd->zd_os;
5258	ztest_od_t *od;
5259	uint64_t object;
5260	uint64_t txg, last_txg;
5261	uint64_t value[ZTEST_ZAP_MAX_INTS];
5262	uint64_t zl_ints, zl_intsize, prop;
5263	int i, ints;
5264	dmu_tx_t *tx;
5265	char propname[100], txgname[100];
5266	int error;
5267	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5268
5269	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5270	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5271
5272	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5273	    !ztest_random(2)) != 0)
5274		goto out;
5275
5276	object = od->od_object;
5277
5278	/*
5279	 * Generate a known hash collision, and verify that
5280	 * we can lookup and remove both entries.
5281	 */
5282	tx = dmu_tx_create(os);
5283	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5284	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5285	if (txg == 0)
5286		goto out;
5287	for (i = 0; i < 2; i++) {
5288		value[i] = i;
5289		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5290		    1, &value[i], tx));
5291	}
5292	for (i = 0; i < 2; i++) {
5293		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5294		    sizeof (uint64_t), 1, &value[i], tx));
5295		VERIFY0(
5296		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5297		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5298		ASSERT3U(zl_ints, ==, 1);
5299	}
5300	for (i = 0; i < 2; i++) {
5301		VERIFY0(zap_remove(os, object, hc[i], tx));
5302	}
5303	dmu_tx_commit(tx);
5304
5305	/*
5306	 * Generate a bunch of random entries.
5307	 */
5308	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5309
5310	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5311	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5312	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5313	bzero(value, sizeof (value));
5314	last_txg = 0;
5315
5316	/*
5317	 * If these zap entries already exist, validate their contents.
5318	 */
5319	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5320	if (error == 0) {
5321		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5322		ASSERT3U(zl_ints, ==, 1);
5323
5324		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5325		    zl_ints, &last_txg));
5326
5327		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5328		    &zl_ints));
5329
5330		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5331		ASSERT3U(zl_ints, ==, ints);
5332
5333		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5334		    zl_ints, value));
5335
5336		for (i = 0; i < ints; i++) {
5337			ASSERT3U(value[i], ==, last_txg + object + i);
5338		}
5339	} else {
5340		ASSERT3U(error, ==, ENOENT);
5341	}
5342
5343	/*
5344	 * Atomically update two entries in our zap object.
5345	 * The first is named txg_%llu, and contains the txg
5346	 * in which the property was last updated.  The second
5347	 * is named prop_%llu, and the nth element of its value
5348	 * should be txg + object + n.
5349	 */
5350	tx = dmu_tx_create(os);
5351	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5352	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5353	if (txg == 0)
5354		goto out;
5355
5356	if (last_txg > txg)
5357		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
5358
5359	for (i = 0; i < ints; i++)
5360		value[i] = txg + object + i;
5361
5362	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5363	    1, &txg, tx));
5364	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5365	    ints, value, tx));
5366
5367	dmu_tx_commit(tx);
5368
5369	/*
5370	 * Remove a random pair of entries.
5371	 */
5372	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5373	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5374	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5375
5376	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5377
5378	if (error == ENOENT)
5379		goto out;
5380
5381	ASSERT0(error);
5382
5383	tx = dmu_tx_create(os);
5384	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5385	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5386	if (txg == 0)
5387		goto out;
5388	VERIFY0(zap_remove(os, object, txgname, tx));
5389	VERIFY0(zap_remove(os, object, propname, tx));
5390	dmu_tx_commit(tx);
5391out:
5392	umem_free(od, sizeof (ztest_od_t));
5393}
5394
5395/*
5396 * Test case to test the upgrading of a microzap to fatzap.
5397 */
5398void
5399ztest_fzap(ztest_ds_t *zd, uint64_t id)
5400{
5401	objset_t *os = zd->zd_os;
5402	ztest_od_t *od;
5403	uint64_t object, txg;
5404	int i;
5405
5406	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5407	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5408
5409	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5410	    !ztest_random(2)) != 0)
5411		goto out;
5412	object = od->od_object;
5413
5414	/*
5415	 * Add entries to this ZAP and make sure it spills over
5416	 * and gets upgraded to a fatzap. Also, since we are adding
5417	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5418	 */
5419	for (i = 0; i < 2050; i++) {
5420		char name[ZFS_MAX_DATASET_NAME_LEN];
5421		uint64_t value = i;
5422		dmu_tx_t *tx;
5423		int error;
5424
5425		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
5426		    (u_longlong_t)id, (u_longlong_t)value);
5427
5428		tx = dmu_tx_create(os);
5429		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5430		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5431		if (txg == 0)
5432			goto out;
5433		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5434		    &value, tx);
5435		ASSERT(error == 0 || error == EEXIST);
5436		dmu_tx_commit(tx);
5437	}
5438out:
5439	umem_free(od, sizeof (ztest_od_t));
5440}
5441
5442/* ARGSUSED */
5443void
5444ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5445{
5446	objset_t *os = zd->zd_os;
5447	ztest_od_t *od;
5448	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5449	dmu_tx_t *tx;
5450	int i, namelen, error;
5451	int micro = ztest_random(2);
5452	char name[20], string_value[20];
5453	void *data;
5454
5455	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5456	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5457
5458	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5459		umem_free(od, sizeof (ztest_od_t));
5460		return;
5461	}
5462
5463	object = od->od_object;
5464
5465	/*
5466	 * Generate a random name of the form 'xxx.....' where each
5467	 * x is a random printable character and the dots are dots.
5468	 * There are 94 such characters, and the name length goes from
5469	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5470	 */
5471	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5472
5473	for (i = 0; i < 3; i++)
5474		name[i] = '!' + ztest_random('~' - '!' + 1);
5475	for (; i < namelen - 1; i++)
5476		name[i] = '.';
5477	name[i] = '\0';
5478
5479	if ((namelen & 1) || micro) {
5480		wsize = sizeof (txg);
5481		wc = 1;
5482		data = &txg;
5483	} else {
5484		wsize = 1;
5485		wc = namelen;
5486		data = string_value;
5487	}
5488
5489	count = -1ULL;
5490	VERIFY0(zap_count(os, object, &count));
5491	ASSERT3S(count, !=, -1ULL);
5492
5493	/*
5494	 * Select an operation: length, lookup, add, update, remove.
5495	 */
5496	i = ztest_random(5);
5497
5498	if (i >= 2) {
5499		tx = dmu_tx_create(os);
5500		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5501		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5502		if (txg == 0) {
5503			umem_free(od, sizeof (ztest_od_t));
5504			return;
5505		}
5506		bcopy(name, string_value, namelen);
5507	} else {
5508		tx = NULL;
5509		txg = 0;
5510		bzero(string_value, namelen);
5511	}
5512
5513	switch (i) {
5514
5515	case 0:
5516		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5517		if (error == 0) {
5518			ASSERT3U(wsize, ==, zl_wsize);
5519			ASSERT3U(wc, ==, zl_wc);
5520		} else {
5521			ASSERT3U(error, ==, ENOENT);
5522		}
5523		break;
5524
5525	case 1:
5526		error = zap_lookup(os, object, name, wsize, wc, data);
5527		if (error == 0) {
5528			if (data == string_value &&
5529			    bcmp(name, data, namelen) != 0)
5530				fatal(0, "name '%s' != val '%s' len %d",
5531				    name, data, namelen);
5532		} else {
5533			ASSERT3U(error, ==, ENOENT);
5534		}
5535		break;
5536
5537	case 2:
5538		error = zap_add(os, object, name, wsize, wc, data, tx);
5539		ASSERT(error == 0 || error == EEXIST);
5540		break;
5541
5542	case 3:
5543		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5544		break;
5545
5546	case 4:
5547		error = zap_remove(os, object, name, tx);
5548		ASSERT(error == 0 || error == ENOENT);
5549		break;
5550	}
5551
5552	if (tx != NULL)
5553		dmu_tx_commit(tx);
5554
5555	umem_free(od, sizeof (ztest_od_t));
5556}
5557
5558/*
5559 * Commit callback data.
5560 */
5561typedef struct ztest_cb_data {
5562	list_node_t		zcd_node;
5563	uint64_t		zcd_txg;
5564	int			zcd_expected_err;
5565	boolean_t		zcd_added;
5566	boolean_t		zcd_called;
5567	spa_t			*zcd_spa;
5568} ztest_cb_data_t;
5569
5570/* This is the actual commit callback function */
5571static void
5572ztest_commit_callback(void *arg, int error)
5573{
5574	ztest_cb_data_t *data = arg;
5575	uint64_t synced_txg;
5576
5577	VERIFY3P(data, !=, NULL);
5578	VERIFY3S(data->zcd_expected_err, ==, error);
5579	VERIFY(!data->zcd_called);
5580
5581	synced_txg = spa_last_synced_txg(data->zcd_spa);
5582	if (data->zcd_txg > synced_txg)
5583		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5584		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5585		    synced_txg);
5586
5587	data->zcd_called = B_TRUE;
5588
5589	if (error == ECANCELED) {
5590		ASSERT0(data->zcd_txg);
5591		ASSERT(!data->zcd_added);
5592
5593		/*
5594		 * The private callback data should be destroyed here, but
5595		 * since we are going to check the zcd_called field after
5596		 * dmu_tx_abort(), we will destroy it there.
5597		 */
5598		return;
5599	}
5600
5601	ASSERT(data->zcd_added);
5602	ASSERT3U(data->zcd_txg, !=, 0);
5603
5604	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5605
5606	/* See if this cb was called more quickly */
5607	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5608		zc_min_txg_delay = synced_txg - data->zcd_txg;
5609
5610	/* Remove our callback from the list */
5611	list_remove(&zcl.zcl_callbacks, data);
5612
5613	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5614
5615	umem_free(data, sizeof (ztest_cb_data_t));
5616}
5617
5618/* Allocate and initialize callback data structure */
5619static ztest_cb_data_t *
5620ztest_create_cb_data(objset_t *os, uint64_t txg)
5621{
5622	ztest_cb_data_t *cb_data;
5623
5624	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5625
5626	cb_data->zcd_txg = txg;
5627	cb_data->zcd_spa = dmu_objset_spa(os);
5628	list_link_init(&cb_data->zcd_node);
5629
5630	return (cb_data);
5631}
5632
5633/*
5634 * Commit callback test.
5635 */
5636void
5637ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5638{
5639	objset_t *os = zd->zd_os;
5640	ztest_od_t *od;
5641	dmu_tx_t *tx;
5642	ztest_cb_data_t *cb_data[3], *tmp_cb;
5643	uint64_t old_txg, txg;
5644	int i, error = 0;
5645
5646	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5647	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5648
5649	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5650		umem_free(od, sizeof (ztest_od_t));
5651		return;
5652	}
5653
5654	tx = dmu_tx_create(os);
5655
5656	cb_data[0] = ztest_create_cb_data(os, 0);
5657	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5658
5659	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5660
5661	/* Every once in a while, abort the transaction on purpose */
5662	if (ztest_random(100) == 0)
5663		error = -1;
5664
5665	if (!error)
5666		error = dmu_tx_assign(tx, TXG_NOWAIT);
5667
5668	txg = error ? 0 : dmu_tx_get_txg(tx);
5669
5670	cb_data[0]->zcd_txg = txg;
5671	cb_data[1] = ztest_create_cb_data(os, txg);
5672	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5673
5674	if (error) {
5675		/*
5676		 * It's not a strict requirement to call the registered
5677		 * callbacks from inside dmu_tx_abort(), but that's what
5678		 * it's supposed to happen in the current implementation
5679		 * so we will check for that.
5680		 */
5681		for (i = 0; i < 2; i++) {
5682			cb_data[i]->zcd_expected_err = ECANCELED;
5683			VERIFY(!cb_data[i]->zcd_called);
5684		}
5685
5686		dmu_tx_abort(tx);
5687
5688		for (i = 0; i < 2; i++) {
5689			VERIFY(cb_data[i]->zcd_called);
5690			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5691		}
5692
5693		umem_free(od, sizeof (ztest_od_t));
5694		return;
5695	}
5696
5697	cb_data[2] = ztest_create_cb_data(os, txg);
5698	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5699
5700	/*
5701	 * Read existing data to make sure there isn't a future leak.
5702	 */
5703	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5704	    &old_txg, DMU_READ_PREFETCH));
5705
5706	if (old_txg > txg)
5707		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5708		    old_txg, txg);
5709
5710	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5711
5712	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5713
5714	/*
5715	 * Since commit callbacks don't have any ordering requirement and since
5716	 * it is theoretically possible for a commit callback to be called
5717	 * after an arbitrary amount of time has elapsed since its txg has been
5718	 * synced, it is difficult to reliably determine whether a commit
5719	 * callback hasn't been called due to high load or due to a flawed
5720	 * implementation.
5721	 *
5722	 * In practice, we will assume that if after a certain number of txgs a
5723	 * commit callback hasn't been called, then most likely there's an
5724	 * implementation bug..
5725	 */
5726	tmp_cb = list_head(&zcl.zcl_callbacks);
5727	if (tmp_cb != NULL &&
5728	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5729		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5730		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5731	}
5732
5733	/*
5734	 * Let's find the place to insert our callbacks.
5735	 *
5736	 * Even though the list is ordered by txg, it is possible for the
5737	 * insertion point to not be the end because our txg may already be
5738	 * quiescing at this point and other callbacks in the open txg
5739	 * (from other objsets) may have sneaked in.
5740	 */
5741	tmp_cb = list_tail(&zcl.zcl_callbacks);
5742	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5743		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5744
5745	/* Add the 3 callbacks to the list */
5746	for (i = 0; i < 3; i++) {
5747		if (tmp_cb == NULL)
5748			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5749		else
5750			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5751			    cb_data[i]);
5752
5753		cb_data[i]->zcd_added = B_TRUE;
5754		VERIFY(!cb_data[i]->zcd_called);
5755
5756		tmp_cb = cb_data[i];
5757	}
5758
5759	zc_cb_counter += 3;
5760
5761	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5762
5763	dmu_tx_commit(tx);
5764
5765	umem_free(od, sizeof (ztest_od_t));
5766}
5767
5768/*
5769 * Visit each object in the dataset. Verify that its properties
5770 * are consistent what was stored in the block tag when it was created,
5771 * and that its unused bonus buffer space has not been overwritten.
5772 */
5773/* ARGSUSED */
5774void
5775ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5776{
5777	objset_t *os = zd->zd_os;
5778	uint64_t obj;
5779	int err = 0;
5780
5781	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5782		ztest_block_tag_t *bt = NULL;
5783		dmu_object_info_t doi;
5784		dmu_buf_t *db;
5785
5786		ztest_object_lock(zd, obj, RL_READER);
5787		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5788			ztest_object_unlock(zd, obj);
5789			continue;
5790		}
5791
5792		dmu_object_info_from_db(db, &doi);
5793		if (doi.doi_bonus_size >= sizeof (*bt))
5794			bt = ztest_bt_bonus(db);
5795
5796		if (bt && bt->bt_magic == BT_MAGIC) {
5797			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5798			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
5799			    bt->bt_crtxg);
5800			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5801		}
5802
5803		dmu_buf_rele(db, FTAG);
5804		ztest_object_unlock(zd, obj);
5805	}
5806}
5807
5808/* ARGSUSED */
5809void
5810ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5811{
5812	zfs_prop_t proplist[] = {
5813		ZFS_PROP_CHECKSUM,
5814		ZFS_PROP_COMPRESSION,
5815		ZFS_PROP_COPIES,
5816		ZFS_PROP_DEDUP
5817	};
5818	int p;
5819
5820	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5821
5822	for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5823		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5824		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5825
5826	VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5827	    ztest_random_blocksize(), (int)ztest_random(2)));
5828
5829	(void) pthread_rwlock_unlock(&ztest_name_lock);
5830}
5831
5832/* ARGSUSED */
5833void
5834ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5835{
5836	nvlist_t *props = NULL;
5837
5838	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5839
5840	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5841
5842	VERIFY0(spa_prop_get(ztest_spa, &props));
5843
5844	if (ztest_opts.zo_verbose >= 6)
5845		dump_nvlist(props, 4);
5846
5847	fnvlist_free(props);
5848
5849	(void) pthread_rwlock_unlock(&ztest_name_lock);
5850}
5851
5852static int
5853user_release_one(const char *snapname, const char *holdname)
5854{
5855	nvlist_t *snaps, *holds;
5856	int error;
5857
5858	snaps = fnvlist_alloc();
5859	holds = fnvlist_alloc();
5860	fnvlist_add_boolean(holds, holdname);
5861	fnvlist_add_nvlist(snaps, snapname, holds);
5862	fnvlist_free(holds);
5863	error = dsl_dataset_user_release(snaps, NULL);
5864	fnvlist_free(snaps);
5865	return (error);
5866}
5867
5868/*
5869 * Test snapshot hold/release and deferred destroy.
5870 */
5871void
5872ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5873{
5874	int error;
5875	objset_t *os = zd->zd_os;
5876	objset_t *origin;
5877	char snapname[100];
5878	char fullname[100];
5879	char clonename[100];
5880	char tag[100];
5881	char osname[ZFS_MAX_DATASET_NAME_LEN];
5882	nvlist_t *holds;
5883
5884	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5885
5886	dmu_objset_name(os, osname);
5887
5888	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5889	    (u_longlong_t)id);
5890	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5891	(void) snprintf(clonename, sizeof (clonename),
5892	    "%s/ch1_%llu", osname, (u_longlong_t)id);
5893	(void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5894
5895	/*
5896	 * Clean up from any previous run.
5897	 */
5898	error = dsl_destroy_head(clonename);
5899	if (error != ENOENT)
5900		ASSERT0(error);
5901	error = user_release_one(fullname, tag);
5902	if (error != ESRCH && error != ENOENT)
5903		ASSERT0(error);
5904	error = dsl_destroy_snapshot(fullname, B_FALSE);
5905	if (error != ENOENT)
5906		ASSERT0(error);
5907
5908	/*
5909	 * Create snapshot, clone it, mark snap for deferred destroy,
5910	 * destroy clone, verify snap was also destroyed.
5911	 */
5912	error = dmu_objset_snapshot_one(osname, snapname);
5913	if (error) {
5914		if (error == ENOSPC) {
5915			ztest_record_enospc("dmu_objset_snapshot");
5916			goto out;
5917		}
5918		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5919	}
5920
5921	error = dmu_objset_clone(clonename, fullname);
5922	if (error) {
5923		if (error == ENOSPC) {
5924			ztest_record_enospc("dmu_objset_clone");
5925			goto out;
5926		}
5927		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5928	}
5929
5930	error = dsl_destroy_snapshot(fullname, B_TRUE);
5931	if (error) {
5932		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5933		    fullname, error);
5934	}
5935
5936	error = dsl_destroy_head(clonename);
5937	if (error)
5938		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5939
5940	error = dmu_objset_hold(fullname, FTAG, &origin);
5941	if (error != ENOENT)
5942		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5943
5944	/*
5945	 * Create snapshot, add temporary hold, verify that we can't
5946	 * destroy a held snapshot, mark for deferred destroy,
5947	 * release hold, verify snapshot was destroyed.
5948	 */
5949	error = dmu_objset_snapshot_one(osname, snapname);
5950	if (error) {
5951		if (error == ENOSPC) {
5952			ztest_record_enospc("dmu_objset_snapshot");
5953			goto out;
5954		}
5955		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5956	}
5957
5958	holds = fnvlist_alloc();
5959	fnvlist_add_string(holds, fullname, tag);
5960	error = dsl_dataset_user_hold(holds, 0, NULL);
5961	fnvlist_free(holds);
5962
5963	if (error == ENOSPC) {
5964		ztest_record_enospc("dsl_dataset_user_hold");
5965		goto out;
5966	} else if (error) {
5967		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5968		    fullname, tag, error);
5969	}
5970
5971	error = dsl_destroy_snapshot(fullname, B_FALSE);
5972	if (error != EBUSY) {
5973		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5974		    fullname, error);
5975	}
5976
5977	error = dsl_destroy_snapshot(fullname, B_TRUE);
5978	if (error) {
5979		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5980		    fullname, error);
5981	}
5982
5983	error = user_release_one(fullname, tag);
5984	if (error)
5985		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5986
5987	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5988
5989out:
5990	(void) pthread_rwlock_unlock(&ztest_name_lock);
5991}
5992
5993/*
5994 * Inject random faults into the on-disk data.
5995 */
5996/* ARGSUSED */
5997void
5998ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5999{
6000	ztest_shared_t *zs = ztest_shared;
6001	spa_t *spa = ztest_spa;
6002	int fd;
6003	uint64_t offset;
6004	uint64_t leaves;
6005	uint64_t bad = 0x1990c0ffeedecadeull;
6006	uint64_t top, leaf;
6007	char *path0;
6008	char *pathrand;
6009	size_t fsize;
6010	int bshift = SPA_MAXBLOCKSHIFT + 2;
6011	int iters = 1000;
6012	int maxfaults;
6013	int mirror_save;
6014	vdev_t *vd0 = NULL;
6015	uint64_t guid0 = 0;
6016	boolean_t islog = B_FALSE;
6017
6018	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6019	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6020
6021	mutex_enter(&ztest_vdev_lock);
6022
6023	/*
6024	 * Device removal is in progress, fault injection must be disabled
6025	 * until it completes and the pool is scrubbed.  The fault injection
6026	 * strategy for damaging blocks does not take in to account evacuated
6027	 * blocks which may have already been damaged.
6028	 */
6029	if (ztest_device_removal_active) {
6030		mutex_exit(&ztest_vdev_lock);
6031		goto out;
6032	}
6033
6034	maxfaults = MAXFAULTS(zs);
6035	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6036	mirror_save = zs->zs_mirrors;
6037	mutex_exit(&ztest_vdev_lock);
6038
6039	ASSERT3U(leaves, >=, 1);
6040
6041	/*
6042	 * While ztest is running the number of leaves will not change.  This
6043	 * is critical for the fault injection logic as it determines where
6044	 * errors can be safely injected such that they are always repairable.
6045	 *
6046	 * When restarting ztest a different number of leaves may be requested
6047	 * which will shift the regions to be damaged.  This is fine as long
6048	 * as the pool has been scrubbed prior to using the new mapping.
6049	 * Failure to do can result in non-repairable damage being injected.
6050	 */
6051	if (ztest_pool_scrubbed == B_FALSE)
6052		goto out;
6053
6054	/*
6055	 * Grab the name lock as reader. There are some operations
6056	 * which don't like to have their vdevs changed while
6057	 * they are in progress (i.e. spa_change_guid). Those
6058	 * operations will have grabbed the name lock as writer.
6059	 */
6060	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6061
6062	/*
6063	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6064	 */
6065	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6066
6067	if (ztest_random(2) == 0) {
6068		/*
6069		 * Inject errors on a normal data device or slog device.
6070		 */
6071		top = ztest_random_vdev_top(spa, B_TRUE);
6072		leaf = ztest_random(leaves) + zs->zs_splits;
6073
6074		/*
6075		 * Generate paths to the first leaf in this top-level vdev,
6076		 * and to the random leaf we selected.  We'll induce transient
6077		 * write failures and random online/offline activity on leaf 0,
6078		 * and we'll write random garbage to the randomly chosen leaf.
6079		 */
6080		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6081		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6082		    top * leaves + zs->zs_splits);
6083		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6084		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6085		    top * leaves + leaf);
6086
6087		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6088		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6089			islog = B_TRUE;
6090
6091		/*
6092		 * If the top-level vdev needs to be resilvered
6093		 * then we only allow faults on the device that is
6094		 * resilvering.
6095		 */
6096		if (vd0 != NULL && maxfaults != 1 &&
6097		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6098		    vd0->vdev_resilver_txg != 0)) {
6099			/*
6100			 * Make vd0 explicitly claim to be unreadable,
6101			 * or unwritable, or reach behind its back
6102			 * and close the underlying fd.  We can do this if
6103			 * maxfaults == 0 because we'll fail and reexecute,
6104			 * and we can do it if maxfaults >= 2 because we'll
6105			 * have enough redundancy.  If maxfaults == 1, the
6106			 * combination of this with injection of random data
6107			 * corruption below exceeds the pool's fault tolerance.
6108			 */
6109			vdev_file_t *vf = vd0->vdev_tsd;
6110
6111			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6112			    (long long)vd0->vdev_id, (int)maxfaults);
6113
6114			if (vf != NULL && ztest_random(3) == 0) {
6115				(void) close(vf->vf_file->f_fd);
6116				vf->vf_file->f_fd = -1;
6117			} else if (ztest_random(2) == 0) {
6118				vd0->vdev_cant_read = B_TRUE;
6119			} else {
6120				vd0->vdev_cant_write = B_TRUE;
6121			}
6122			guid0 = vd0->vdev_guid;
6123		}
6124	} else {
6125		/*
6126		 * Inject errors on an l2cache device.
6127		 */
6128		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6129
6130		if (sav->sav_count == 0) {
6131			spa_config_exit(spa, SCL_STATE, FTAG);
6132			(void) pthread_rwlock_unlock(&ztest_name_lock);
6133			goto out;
6134		}
6135		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6136		guid0 = vd0->vdev_guid;
6137		(void) strcpy(path0, vd0->vdev_path);
6138		(void) strcpy(pathrand, vd0->vdev_path);
6139
6140		leaf = 0;
6141		leaves = 1;
6142		maxfaults = INT_MAX;	/* no limit on cache devices */
6143	}
6144
6145	spa_config_exit(spa, SCL_STATE, FTAG);
6146	(void) pthread_rwlock_unlock(&ztest_name_lock);
6147
6148	/*
6149	 * If we can tolerate two or more faults, or we're dealing
6150	 * with a slog, randomly online/offline vd0.
6151	 */
6152	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6153		if (ztest_random(10) < 6) {
6154			int flags = (ztest_random(2) == 0 ?
6155			    ZFS_OFFLINE_TEMPORARY : 0);
6156
6157			/*
6158			 * We have to grab the zs_name_lock as writer to
6159			 * prevent a race between offlining a slog and
6160			 * destroying a dataset. Offlining the slog will
6161			 * grab a reference on the dataset which may cause
6162			 * dsl_destroy_head() to fail with EBUSY thus
6163			 * leaving the dataset in an inconsistent state.
6164			 */
6165			if (islog)
6166				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6167
6168			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6169
6170			if (islog)
6171				(void) pthread_rwlock_unlock(&ztest_name_lock);
6172		} else {
6173			/*
6174			 * Ideally we would like to be able to randomly
6175			 * call vdev_[on|off]line without holding locks
6176			 * to force unpredictable failures but the side
6177			 * effects of vdev_[on|off]line prevent us from
6178			 * doing so. We grab the ztest_vdev_lock here to
6179			 * prevent a race between injection testing and
6180			 * aux_vdev removal.
6181			 */
6182			mutex_enter(&ztest_vdev_lock);
6183			(void) vdev_online(spa, guid0, 0, NULL);
6184			mutex_exit(&ztest_vdev_lock);
6185		}
6186	}
6187
6188	if (maxfaults == 0)
6189		goto out;
6190
6191	/*
6192	 * We have at least single-fault tolerance, so inject data corruption.
6193	 */
6194	fd = open(pathrand, O_RDWR);
6195
6196	if (fd == -1) /* we hit a gap in the device namespace */
6197		goto out;
6198
6199	fsize = lseek(fd, 0, SEEK_END);
6200
6201	while (--iters != 0) {
6202		/*
6203		 * The offset must be chosen carefully to ensure that
6204		 * we do not inject a given logical block with errors
6205		 * on two different leaf devices, because ZFS can not
6206		 * tolerate that (if maxfaults==1).
6207		 *
6208		 * To achieve this we divide each leaf device into
6209		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6210		 * Each chunk is further divided into error-injection
6211		 * ranges (can accept errors) and clear ranges (we do
6212		 * not inject errors in those). Each error-injection
6213		 * range can accept errors only for a single leaf vdev.
6214		 * Error-injection ranges are separated by clear ranges.
6215		 *
6216		 * For example, with 3 leaves, each chunk looks like:
6217		 *    0 to  32M: injection range for leaf 0
6218		 *  32M to  64M: clear range - no injection allowed
6219		 *  64M to  96M: injection range for leaf 1
6220		 *  96M to 128M: clear range - no injection allowed
6221		 * 128M to 160M: injection range for leaf 2
6222		 * 160M to 192M: clear range - no injection allowed
6223		 *
6224		 * Each clear range must be large enough such that a
6225		 * single block cannot straddle it. This way a block
6226		 * can't be a target in two different injection ranges
6227		 * (on different leaf vdevs).
6228		 */
6229		offset = ztest_random(fsize / (leaves << bshift)) *
6230		    (leaves << bshift) + (leaf << bshift) +
6231		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6232
6233		/*
6234		 * Only allow damage to the labels at one end of the vdev.
6235		 *
6236		 * If all labels are damaged, the device will be totally
6237		 * inaccessible, which will result in loss of data,
6238		 * because we also damage (parts of) the other side of
6239		 * the mirror/raidz.
6240		 *
6241		 * Additionally, we will always have both an even and an
6242		 * odd label, so that we can handle crashes in the
6243		 * middle of vdev_config_sync().
6244		 */
6245		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6246			continue;
6247
6248		/*
6249		 * The two end labels are stored at the "end" of the disk, but
6250		 * the end of the disk (vdev_psize) is aligned to
6251		 * sizeof (vdev_label_t).
6252		 */
6253		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6254		if ((leaf & 1) == 1 &&
6255		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6256			continue;
6257
6258		mutex_enter(&ztest_vdev_lock);
6259		if (mirror_save != zs->zs_mirrors) {
6260			mutex_exit(&ztest_vdev_lock);
6261			(void) close(fd);
6262			goto out;
6263		}
6264
6265		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6266			fatal(1, "can't inject bad word at 0x%llx in %s",
6267			    offset, pathrand);
6268
6269		mutex_exit(&ztest_vdev_lock);
6270
6271		if (ztest_opts.zo_verbose >= 7)
6272			(void) printf("injected bad word into %s,"
6273			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
6274	}
6275
6276	(void) close(fd);
6277out:
6278	umem_free(path0, MAXPATHLEN);
6279	umem_free(pathrand, MAXPATHLEN);
6280}
6281
6282/*
6283 * By design ztest will never inject uncorrectable damage in to the pool.
6284 * Issue a scrub, wait for it to complete, and verify there is never any
6285 * persistent damage.
6286 *
6287 * Only after a full scrub has been completed is it safe to start injecting
6288 * data corruption.  See the comment in zfs_fault_inject().
6289 */
6290static int
6291ztest_scrub_impl(spa_t *spa)
6292{
6293	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6294	if (error)
6295		return (error);
6296
6297	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6298		txg_wait_synced(spa_get_dsl(spa), 0);
6299
6300	if (spa_get_errlog_size(spa) > 0)
6301		return (ECKSUM);
6302
6303	ztest_pool_scrubbed = B_TRUE;
6304
6305	return (0);
6306}
6307
6308/*
6309 * Scrub the pool.
6310 */
6311/* ARGSUSED */
6312void
6313ztest_scrub(ztest_ds_t *zd, uint64_t id)
6314{
6315	spa_t *spa = ztest_spa;
6316	int error;
6317
6318	/*
6319	 * Scrub in progress by device removal.
6320	 */
6321	if (ztest_device_removal_active)
6322		return;
6323
6324	/*
6325	 * Start a scrub, wait a moment, then force a restart.
6326	 */
6327	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6328	(void) poll(NULL, 0, 100);
6329
6330	error = ztest_scrub_impl(spa);
6331	if (error == EBUSY)
6332		error = 0;
6333	ASSERT0(error);
6334}
6335
6336/*
6337 * Change the guid for the pool.
6338 */
6339/* ARGSUSED */
6340void
6341ztest_reguid(ztest_ds_t *zd, uint64_t id)
6342{
6343	spa_t *spa = ztest_spa;
6344	uint64_t orig, load;
6345	int error;
6346
6347	if (ztest_opts.zo_mmp_test)
6348		return;
6349
6350	orig = spa_guid(spa);
6351	load = spa_load_guid(spa);
6352
6353	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6354	error = spa_change_guid(spa);
6355	(void) pthread_rwlock_unlock(&ztest_name_lock);
6356
6357	if (error != 0)
6358		return;
6359
6360	if (ztest_opts.zo_verbose >= 4) {
6361		(void) printf("Changed guid old %llu -> %llu\n",
6362		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6363	}
6364
6365	VERIFY3U(orig, !=, spa_guid(spa));
6366	VERIFY3U(load, ==, spa_load_guid(spa));
6367}
6368
6369void
6370ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6371{
6372	hrtime_t end = gethrtime() + NANOSEC;
6373
6374	while (gethrtime() <= end) {
6375		int run_count = 100;
6376		void *buf;
6377		struct abd *abd_data, *abd_meta;
6378		uint32_t size;
6379		int *ptr;
6380		int i;
6381		zio_cksum_t zc_ref;
6382		zio_cksum_t zc_ref_byteswap;
6383
6384		size = ztest_random_blocksize();
6385
6386		buf = umem_alloc(size, UMEM_NOFAIL);
6387		abd_data = abd_alloc(size, B_FALSE);
6388		abd_meta = abd_alloc(size, B_TRUE);
6389
6390		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6391			*ptr = ztest_random(UINT_MAX);
6392
6393		abd_copy_from_buf_off(abd_data, buf, 0, size);
6394		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6395
6396		VERIFY0(fletcher_4_impl_set("scalar"));
6397		fletcher_4_native(buf, size, NULL, &zc_ref);
6398		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6399
6400		VERIFY0(fletcher_4_impl_set("cycle"));
6401		while (run_count-- > 0) {
6402			zio_cksum_t zc;
6403			zio_cksum_t zc_byteswap;
6404
6405			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6406			fletcher_4_native(buf, size, NULL, &zc);
6407
6408			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6409			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6410			    sizeof (zc_byteswap)));
6411
6412			/* Test ABD - data */
6413			abd_fletcher_4_byteswap(abd_data, size, NULL,
6414			    &zc_byteswap);
6415			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6416
6417			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6418			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6419			    sizeof (zc_byteswap)));
6420
6421			/* Test ABD - metadata */
6422			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6423			    &zc_byteswap);
6424			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6425
6426			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6427			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6428			    sizeof (zc_byteswap)));
6429
6430		}
6431
6432		umem_free(buf, size);
6433		abd_free(abd_data);
6434		abd_free(abd_meta);
6435	}
6436}
6437
6438void
6439ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6440{
6441	void *buf;
6442	size_t size;
6443	int *ptr;
6444	int i;
6445	zio_cksum_t zc_ref;
6446	zio_cksum_t zc_ref_bswap;
6447
6448	hrtime_t end = gethrtime() + NANOSEC;
6449
6450	while (gethrtime() <= end) {
6451		int run_count = 100;
6452
6453		size = ztest_random_blocksize();
6454		buf = umem_alloc(size, UMEM_NOFAIL);
6455
6456		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6457			*ptr = ztest_random(UINT_MAX);
6458
6459		VERIFY0(fletcher_4_impl_set("scalar"));
6460		fletcher_4_native(buf, size, NULL, &zc_ref);
6461		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6462
6463		VERIFY0(fletcher_4_impl_set("cycle"));
6464
6465		while (run_count-- > 0) {
6466			zio_cksum_t zc;
6467			zio_cksum_t zc_bswap;
6468			size_t pos = 0;
6469
6470			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6471			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6472
6473			while (pos < size) {
6474				size_t inc = 64 * ztest_random(size / 67);
6475				/* sometimes add few bytes to test non-simd */
6476				if (ztest_random(100) < 10)
6477					inc += P2ALIGN(ztest_random(64),
6478					    sizeof (uint32_t));
6479
6480				if (inc > (size - pos))
6481					inc = size - pos;
6482
6483				fletcher_4_incremental_native(buf + pos, inc,
6484				    &zc);
6485				fletcher_4_incremental_byteswap(buf + pos, inc,
6486				    &zc_bswap);
6487
6488				pos += inc;
6489			}
6490
6491			VERIFY3U(pos, ==, size);
6492
6493			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6494			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6495
6496			/*
6497			 * verify if incremental on the whole buffer is
6498			 * equivalent to non-incremental version
6499			 */
6500			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6501			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6502
6503			fletcher_4_incremental_native(buf, size, &zc);
6504			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6505
6506			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6507			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6508		}
6509
6510		umem_free(buf, size);
6511	}
6512}
6513
6514static int
6515ztest_set_global_vars(void)
6516{
6517	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6518		char *kv = ztest_opts.zo_gvars[i];
6519		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6520		VERIFY3U(strlen(kv), >, 0);
6521		int err = set_global_var(kv);
6522		if (ztest_opts.zo_verbose > 0) {
6523			(void) printf("setting global var %s ... %s\n", kv,
6524			    err ? "failed" : "ok");
6525		}
6526		if (err != 0) {
6527			(void) fprintf(stderr,
6528			    "failed to set global var '%s'\n", kv);
6529			return (err);
6530		}
6531	}
6532	return (0);
6533}
6534
6535static char **
6536ztest_global_vars_to_zdb_args(void)
6537{
6538	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6539	char **cur = args;
6540	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6541		char *kv = ztest_opts.zo_gvars[i];
6542		*cur = "-o";
6543		cur++;
6544		*cur = strdup(kv);
6545		cur++;
6546	}
6547	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6548	*cur = NULL;
6549	return (args);
6550}
6551
6552/* The end of strings is indicated by a NULL element */
6553static char *
6554join_strings(char **strings, const char *sep)
6555{
6556	size_t totallen = 0;
6557	for (char **sp = strings; *sp != NULL; sp++) {
6558		totallen += strlen(*sp);
6559		totallen += strlen(sep);
6560	}
6561	if (totallen > 0) {
6562		ASSERT(totallen >= strlen(sep));
6563		totallen -= strlen(sep);
6564	}
6565
6566	size_t buflen = totallen + 1;
6567	char *o = malloc(buflen); /* trailing 0 byte */
6568	o[0] = '\0';
6569	for (char **sp = strings; *sp != NULL; sp++) {
6570		size_t would;
6571		would = strlcat(o, *sp, buflen);
6572		VERIFY3U(would, <, buflen);
6573		if (*(sp+1) == NULL) {
6574			break;
6575		}
6576		would = strlcat(o, sep, buflen);
6577		VERIFY3U(would, <, buflen);
6578	}
6579	ASSERT3S(strlen(o), ==, totallen);
6580	return (o);
6581}
6582
6583static int
6584ztest_check_path(char *path)
6585{
6586	struct stat s;
6587	/* return true on success */
6588	return (!stat(path, &s));
6589}
6590
6591static void
6592ztest_get_zdb_bin(char *bin, int len)
6593{
6594	char *zdb_path;
6595	/*
6596	 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6597	 * let popen to search through PATH.
6598	 */
6599	if ((zdb_path = getenv("ZDB_PATH"))) {
6600		strlcpy(bin, zdb_path, len); /* In env */
6601		if (!ztest_check_path(bin)) {
6602			ztest_dump_core = 0;
6603			fatal(1, "invalid ZDB_PATH '%s'", bin);
6604		}
6605		return;
6606	}
6607
6608	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6609	if (strstr(bin, "/ztest/")) {
6610		strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6611		strcat(bin, "/zdb/zdb");
6612		if (ztest_check_path(bin))
6613			return;
6614	}
6615	strcpy(bin, "zdb");
6616}
6617
6618static vdev_t *
6619ztest_random_concrete_vdev_leaf(vdev_t *vd)
6620{
6621	if (vd == NULL)
6622		return (NULL);
6623
6624	if (vd->vdev_children == 0)
6625		return (vd);
6626
6627	vdev_t *eligible[vd->vdev_children];
6628	int eligible_idx = 0, i;
6629	for (i = 0; i < vd->vdev_children; i++) {
6630		vdev_t *cvd = vd->vdev_child[i];
6631		if (cvd->vdev_top->vdev_removing)
6632			continue;
6633		if (cvd->vdev_children > 0 ||
6634		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6635			eligible[eligible_idx++] = cvd;
6636		}
6637	}
6638	VERIFY3S(eligible_idx, >, 0);
6639
6640	uint64_t child_no = ztest_random(eligible_idx);
6641	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6642}
6643
6644/* ARGSUSED */
6645void
6646ztest_initialize(ztest_ds_t *zd, uint64_t id)
6647{
6648	spa_t *spa = ztest_spa;
6649	int error = 0;
6650
6651	mutex_enter(&ztest_vdev_lock);
6652
6653	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6654
6655	/* Random leaf vdev */
6656	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6657	if (rand_vd == NULL) {
6658		spa_config_exit(spa, SCL_VDEV, FTAG);
6659		mutex_exit(&ztest_vdev_lock);
6660		return;
6661	}
6662
6663	/*
6664	 * The random vdev we've selected may change as soon as we
6665	 * drop the spa_config_lock. We create local copies of things
6666	 * we're interested in.
6667	 */
6668	uint64_t guid = rand_vd->vdev_guid;
6669	char *path = strdup(rand_vd->vdev_path);
6670	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6671
6672	zfs_dbgmsg("vd %px, guid %llu", rand_vd, guid);
6673	spa_config_exit(spa, SCL_VDEV, FTAG);
6674
6675	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6676
6677	nvlist_t *vdev_guids = fnvlist_alloc();
6678	nvlist_t *vdev_errlist = fnvlist_alloc();
6679	fnvlist_add_uint64(vdev_guids, path, guid);
6680	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6681	fnvlist_free(vdev_guids);
6682	fnvlist_free(vdev_errlist);
6683
6684	switch (cmd) {
6685	case POOL_INITIALIZE_CANCEL:
6686		if (ztest_opts.zo_verbose >= 4) {
6687			(void) printf("Cancel initialize %s", path);
6688			if (!active)
6689				(void) printf(" failed (no initialize active)");
6690			(void) printf("\n");
6691		}
6692		break;
6693	case POOL_INITIALIZE_START:
6694		if (ztest_opts.zo_verbose >= 4) {
6695			(void) printf("Start initialize %s", path);
6696			if (active && error == 0)
6697				(void) printf(" failed (already active)");
6698			else if (error != 0)
6699				(void) printf(" failed (error %d)", error);
6700			(void) printf("\n");
6701		}
6702		break;
6703	case POOL_INITIALIZE_SUSPEND:
6704		if (ztest_opts.zo_verbose >= 4) {
6705			(void) printf("Suspend initialize %s", path);
6706			if (!active)
6707				(void) printf(" failed (no initialize active)");
6708			(void) printf("\n");
6709		}
6710		break;
6711	}
6712	free(path);
6713	mutex_exit(&ztest_vdev_lock);
6714}
6715
6716/* ARGSUSED */
6717void
6718ztest_trim(ztest_ds_t *zd, uint64_t id)
6719{
6720	spa_t *spa = ztest_spa;
6721	int error = 0;
6722
6723	mutex_enter(&ztest_vdev_lock);
6724
6725	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6726
6727	/* Random leaf vdev */
6728	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6729	if (rand_vd == NULL) {
6730		spa_config_exit(spa, SCL_VDEV, FTAG);
6731		mutex_exit(&ztest_vdev_lock);
6732		return;
6733	}
6734
6735	/*
6736	 * The random vdev we've selected may change as soon as we
6737	 * drop the spa_config_lock. We create local copies of things
6738	 * we're interested in.
6739	 */
6740	uint64_t guid = rand_vd->vdev_guid;
6741	char *path = strdup(rand_vd->vdev_path);
6742	boolean_t active = rand_vd->vdev_trim_thread != NULL;
6743
6744	zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
6745	spa_config_exit(spa, SCL_VDEV, FTAG);
6746
6747	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6748	uint64_t rate = 1 << ztest_random(30);
6749	boolean_t partial = (ztest_random(5) > 0);
6750	boolean_t secure = (ztest_random(5) > 0);
6751
6752	nvlist_t *vdev_guids = fnvlist_alloc();
6753	nvlist_t *vdev_errlist = fnvlist_alloc();
6754	fnvlist_add_uint64(vdev_guids, path, guid);
6755	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6756	    secure, vdev_errlist);
6757	fnvlist_free(vdev_guids);
6758	fnvlist_free(vdev_errlist);
6759
6760	switch (cmd) {
6761	case POOL_TRIM_CANCEL:
6762		if (ztest_opts.zo_verbose >= 4) {
6763			(void) printf("Cancel TRIM %s", path);
6764			if (!active)
6765				(void) printf(" failed (no TRIM active)");
6766			(void) printf("\n");
6767		}
6768		break;
6769	case POOL_TRIM_START:
6770		if (ztest_opts.zo_verbose >= 4) {
6771			(void) printf("Start TRIM %s", path);
6772			if (active && error == 0)
6773				(void) printf(" failed (already active)");
6774			else if (error != 0)
6775				(void) printf(" failed (error %d)", error);
6776			(void) printf("\n");
6777		}
6778		break;
6779	case POOL_TRIM_SUSPEND:
6780		if (ztest_opts.zo_verbose >= 4) {
6781			(void) printf("Suspend TRIM %s", path);
6782			if (!active)
6783				(void) printf(" failed (no TRIM active)");
6784			(void) printf("\n");
6785		}
6786		break;
6787	}
6788	free(path);
6789	mutex_exit(&ztest_vdev_lock);
6790}
6791
6792/*
6793 * Verify pool integrity by running zdb.
6794 */
6795static void
6796ztest_run_zdb(char *pool)
6797{
6798	int status;
6799	char *bin;
6800	char *zdb;
6801	char *zbuf;
6802	const int len = MAXPATHLEN + MAXNAMELEN + 20;
6803	FILE *fp;
6804
6805	bin = umem_alloc(len, UMEM_NOFAIL);
6806	zdb = umem_alloc(len, UMEM_NOFAIL);
6807	zbuf = umem_alloc(1024, UMEM_NOFAIL);
6808
6809	ztest_get_zdb_bin(bin, len);
6810
6811	char **set_gvars_args = ztest_global_vars_to_zdb_args();
6812	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6813	free(set_gvars_args);
6814
6815	size_t would = snprintf(zdb, len,
6816	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6817	    bin,
6818	    ztest_opts.zo_verbose >= 3 ? "s" : "",
6819	    ztest_opts.zo_verbose >= 4 ? "v" : "",
6820	    set_gvars_args_joined,
6821	    ztest_opts.zo_dir,
6822	    pool);
6823	ASSERT3U(would, <, len);
6824
6825	free(set_gvars_args_joined);
6826
6827	if (ztest_opts.zo_verbose >= 5)
6828		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
6829
6830	fp = popen(zdb, "r");
6831
6832	while (fgets(zbuf, 1024, fp) != NULL)
6833		if (ztest_opts.zo_verbose >= 3)
6834			(void) printf("%s", zbuf);
6835
6836	status = pclose(fp);
6837
6838	if (status == 0)
6839		goto out;
6840
6841	ztest_dump_core = 0;
6842	if (WIFEXITED(status))
6843		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6844	else
6845		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6846out:
6847	umem_free(bin, len);
6848	umem_free(zdb, len);
6849	umem_free(zbuf, 1024);
6850}
6851
6852static void
6853ztest_walk_pool_directory(char *header)
6854{
6855	spa_t *spa = NULL;
6856
6857	if (ztest_opts.zo_verbose >= 6)
6858		(void) printf("%s\n", header);
6859
6860	mutex_enter(&spa_namespace_lock);
6861	while ((spa = spa_next(spa)) != NULL)
6862		if (ztest_opts.zo_verbose >= 6)
6863			(void) printf("\t%s\n", spa_name(spa));
6864	mutex_exit(&spa_namespace_lock);
6865}
6866
6867static void
6868ztest_spa_import_export(char *oldname, char *newname)
6869{
6870	nvlist_t *config, *newconfig;
6871	uint64_t pool_guid;
6872	spa_t *spa;
6873	int error;
6874
6875	if (ztest_opts.zo_verbose >= 4) {
6876		(void) printf("import/export: old = %s, new = %s\n",
6877		    oldname, newname);
6878	}
6879
6880	/*
6881	 * Clean up from previous runs.
6882	 */
6883	(void) spa_destroy(newname);
6884
6885	/*
6886	 * Get the pool's configuration and guid.
6887	 */
6888	VERIFY0(spa_open(oldname, &spa, FTAG));
6889
6890	/*
6891	 * Kick off a scrub to tickle scrub/export races.
6892	 */
6893	if (ztest_random(2) == 0)
6894		(void) spa_scan(spa, POOL_SCAN_SCRUB);
6895
6896	pool_guid = spa_guid(spa);
6897	spa_close(spa, FTAG);
6898
6899	ztest_walk_pool_directory("pools before export");
6900
6901	/*
6902	 * Export it.
6903	 */
6904	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
6905
6906	ztest_walk_pool_directory("pools after export");
6907
6908	/*
6909	 * Try to import it.
6910	 */
6911	newconfig = spa_tryimport(config);
6912	ASSERT3P(newconfig, !=, NULL);
6913	fnvlist_free(newconfig);
6914
6915	/*
6916	 * Import it under the new name.
6917	 */
6918	error = spa_import(newname, config, NULL, 0);
6919	if (error != 0) {
6920		dump_nvlist(config, 0);
6921		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6922		    oldname, newname, error);
6923	}
6924
6925	ztest_walk_pool_directory("pools after import");
6926
6927	/*
6928	 * Try to import it again -- should fail with EEXIST.
6929	 */
6930	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6931
6932	/*
6933	 * Try to import it under a different name -- should fail with EEXIST.
6934	 */
6935	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6936
6937	/*
6938	 * Verify that the pool is no longer visible under the old name.
6939	 */
6940	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6941
6942	/*
6943	 * Verify that we can open and close the pool using the new name.
6944	 */
6945	VERIFY0(spa_open(newname, &spa, FTAG));
6946	ASSERT3U(pool_guid, ==, spa_guid(spa));
6947	spa_close(spa, FTAG);
6948
6949	fnvlist_free(config);
6950}
6951
6952static void
6953ztest_resume(spa_t *spa)
6954{
6955	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6956		(void) printf("resuming from suspended state\n");
6957	spa_vdev_state_enter(spa, SCL_NONE);
6958	vdev_clear(spa, NULL);
6959	(void) spa_vdev_state_exit(spa, NULL, 0);
6960	(void) zio_resume(spa);
6961}
6962
6963static void
6964ztest_resume_thread(void *arg)
6965{
6966	spa_t *spa = arg;
6967
6968	while (!ztest_exiting) {
6969		if (spa_suspended(spa))
6970			ztest_resume(spa);
6971		(void) poll(NULL, 0, 100);
6972
6973		/*
6974		 * Periodically change the zfs_compressed_arc_enabled setting.
6975		 */
6976		if (ztest_random(10) == 0)
6977			zfs_compressed_arc_enabled = ztest_random(2);
6978
6979		/*
6980		 * Periodically change the zfs_abd_scatter_enabled setting.
6981		 */
6982		if (ztest_random(10) == 0)
6983			zfs_abd_scatter_enabled = ztest_random(2);
6984	}
6985
6986	thread_exit();
6987}
6988
6989static void
6990ztest_deadman_thread(void *arg)
6991{
6992	ztest_shared_t *zs = arg;
6993	spa_t *spa = ztest_spa;
6994	hrtime_t delay, overdue, last_run = gethrtime();
6995
6996	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
6997	    MSEC2NSEC(zfs_deadman_synctime_ms);
6998
6999	while (!ztest_exiting) {
7000		/*
7001		 * Wait for the delay timer while checking occasionally
7002		 * if we should stop.
7003		 */
7004		if (gethrtime() < last_run + delay) {
7005			(void) poll(NULL, 0, 1000);
7006			continue;
7007		}
7008
7009		/*
7010		 * If the pool is suspended then fail immediately. Otherwise,
7011		 * check to see if the pool is making any progress. If
7012		 * vdev_deadman() discovers that there hasn't been any recent
7013		 * I/Os then it will end up aborting the tests.
7014		 */
7015		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7016			fatal(0, "aborting test after %llu seconds because "
7017			    "pool has transitioned to a suspended state.",
7018			    zfs_deadman_synctime_ms / 1000);
7019		}
7020		vdev_deadman(spa->spa_root_vdev, FTAG);
7021
7022		/*
7023		 * If the process doesn't complete within a grace period of
7024		 * zfs_deadman_synctime_ms over the expected finish time,
7025		 * then it may be hung and is terminated.
7026		 */
7027		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7028		if (gethrtime() > overdue) {
7029			fatal(0, "aborting test after %llu seconds because "
7030			    "the process is overdue for termination.",
7031			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7032		}
7033
7034		(void) printf("ztest has been running for %lld seconds\n",
7035		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7036
7037		last_run = gethrtime();
7038		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7039	}
7040
7041	thread_exit();
7042}
7043
7044static void
7045ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7046{
7047	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7048	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7049	hrtime_t functime = gethrtime();
7050	int i;
7051
7052	for (i = 0; i < zi->zi_iters; i++)
7053		zi->zi_func(zd, id);
7054
7055	functime = gethrtime() - functime;
7056
7057	atomic_add_64(&zc->zc_count, 1);
7058	atomic_add_64(&zc->zc_time, functime);
7059
7060	if (ztest_opts.zo_verbose >= 4)
7061		(void) printf("%6.2f sec in %s\n",
7062		    (double)functime / NANOSEC, zi->zi_funcname);
7063}
7064
7065static void
7066ztest_thread(void *arg)
7067{
7068	int rand;
7069	uint64_t id = (uintptr_t)arg;
7070	ztest_shared_t *zs = ztest_shared;
7071	uint64_t call_next;
7072	hrtime_t now;
7073	ztest_info_t *zi;
7074	ztest_shared_callstate_t *zc;
7075
7076	while ((now = gethrtime()) < zs->zs_thread_stop) {
7077		/*
7078		 * See if it's time to force a crash.
7079		 */
7080		if (now > zs->zs_thread_kill)
7081			ztest_kill(zs);
7082
7083		/*
7084		 * If we're getting ENOSPC with some regularity, stop.
7085		 */
7086		if (zs->zs_enospc_count > 10)
7087			break;
7088
7089		/*
7090		 * Pick a random function to execute.
7091		 */
7092		rand = ztest_random(ZTEST_FUNCS);
7093		zi = &ztest_info[rand];
7094		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7095		call_next = zc->zc_next;
7096
7097		if (now >= call_next &&
7098		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7099		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7100			ztest_execute(rand, zi, id);
7101		}
7102	}
7103
7104	thread_exit();
7105}
7106
7107static void
7108ztest_dataset_name(char *dsname, char *pool, int d)
7109{
7110	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7111}
7112
7113static void
7114ztest_dataset_destroy(int d)
7115{
7116	char name[ZFS_MAX_DATASET_NAME_LEN];
7117	int t;
7118
7119	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7120
7121	if (ztest_opts.zo_verbose >= 3)
7122		(void) printf("Destroying %s to free up space\n", name);
7123
7124	/*
7125	 * Cleanup any non-standard clones and snapshots.  In general,
7126	 * ztest thread t operates on dataset (t % zopt_datasets),
7127	 * so there may be more than one thing to clean up.
7128	 */
7129	for (t = d; t < ztest_opts.zo_threads;
7130	    t += ztest_opts.zo_datasets)
7131		ztest_dsl_dataset_cleanup(name, t);
7132
7133	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7134	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7135}
7136
7137static void
7138ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7139{
7140	uint64_t usedobjs, dirobjs, scratch;
7141
7142	/*
7143	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7144	 * Therefore, the number of objects in use should equal the
7145	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7146	 * If not, we have an object leak.
7147	 *
7148	 * Note that we can only check this in ztest_dataset_open(),
7149	 * when the open-context and syncing-context values agree.
7150	 * That's because zap_count() returns the open-context value,
7151	 * while dmu_objset_space() returns the rootbp fill count.
7152	 */
7153	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7154	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7155	ASSERT3U(dirobjs + 1, ==, usedobjs);
7156}
7157
7158static int
7159ztest_dataset_open(int d)
7160{
7161	ztest_ds_t *zd = &ztest_ds[d];
7162	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7163	objset_t *os;
7164	zilog_t *zilog;
7165	char name[ZFS_MAX_DATASET_NAME_LEN];
7166	int error;
7167
7168	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7169
7170	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7171
7172	error = ztest_dataset_create(name);
7173	if (error == ENOSPC) {
7174		(void) pthread_rwlock_unlock(&ztest_name_lock);
7175		ztest_record_enospc(FTAG);
7176		return (error);
7177	}
7178	ASSERT(error == 0 || error == EEXIST);
7179
7180	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7181	    B_TRUE, zd, &os));
7182	(void) pthread_rwlock_unlock(&ztest_name_lock);
7183
7184	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7185
7186	zilog = zd->zd_zilog;
7187
7188	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7189	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7190		fatal(0, "missing log records: claimed %llu < committed %llu",
7191		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7192
7193	ztest_dataset_dirobj_verify(zd);
7194
7195	zil_replay(os, zd, ztest_replay_vector);
7196
7197	ztest_dataset_dirobj_verify(zd);
7198
7199	if (ztest_opts.zo_verbose >= 6)
7200		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7201		    zd->zd_name,
7202		    (u_longlong_t)zilog->zl_parse_blk_count,
7203		    (u_longlong_t)zilog->zl_parse_lr_count,
7204		    (u_longlong_t)zilog->zl_replaying_seq);
7205
7206	zilog = zil_open(os, ztest_get_data);
7207
7208	if (zilog->zl_replaying_seq != 0 &&
7209	    zilog->zl_replaying_seq < committed_seq)
7210		fatal(0, "missing log records: replayed %llu < committed %llu",
7211		    zilog->zl_replaying_seq, committed_seq);
7212
7213	return (0);
7214}
7215
7216static void
7217ztest_dataset_close(int d)
7218{
7219	ztest_ds_t *zd = &ztest_ds[d];
7220
7221	zil_close(zd->zd_zilog);
7222	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7223
7224	ztest_zd_fini(zd);
7225}
7226
7227/* ARGSUSED */
7228static int
7229ztest_replay_zil_cb(const char *name, void *arg)
7230{
7231	objset_t *os;
7232	ztest_ds_t *zdtmp;
7233
7234	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7235	    B_TRUE, FTAG, &os));
7236
7237	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7238
7239	ztest_zd_init(zdtmp, NULL, os);
7240	zil_replay(os, zdtmp, ztest_replay_vector);
7241	ztest_zd_fini(zdtmp);
7242
7243	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7244	    ztest_opts.zo_verbose >= 6) {
7245		zilog_t *zilog = dmu_objset_zil(os);
7246
7247		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7248		    name,
7249		    (u_longlong_t)zilog->zl_parse_blk_count,
7250		    (u_longlong_t)zilog->zl_parse_lr_count,
7251		    (u_longlong_t)zilog->zl_replaying_seq);
7252	}
7253
7254	umem_free(zdtmp, sizeof (ztest_ds_t));
7255
7256	dmu_objset_disown(os, B_TRUE, FTAG);
7257	return (0);
7258}
7259
7260static void
7261ztest_freeze(void)
7262{
7263	ztest_ds_t *zd = &ztest_ds[0];
7264	spa_t *spa;
7265	int numloops = 0;
7266
7267	if (ztest_opts.zo_verbose >= 3)
7268		(void) printf("testing spa_freeze()...\n");
7269
7270	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7271	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7272	VERIFY0(ztest_dataset_open(0));
7273	ztest_spa = spa;
7274
7275	/*
7276	 * Force the first log block to be transactionally allocated.
7277	 * We have to do this before we freeze the pool -- otherwise
7278	 * the log chain won't be anchored.
7279	 */
7280	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7281		ztest_dmu_object_alloc_free(zd, 0);
7282		zil_commit(zd->zd_zilog, 0);
7283	}
7284
7285	txg_wait_synced(spa_get_dsl(spa), 0);
7286
7287	/*
7288	 * Freeze the pool.  This stops spa_sync() from doing anything,
7289	 * so that the only way to record changes from now on is the ZIL.
7290	 */
7291	spa_freeze(spa);
7292
7293	/*
7294	 * Because it is hard to predict how much space a write will actually
7295	 * require beforehand, we leave ourselves some fudge space to write over
7296	 * capacity.
7297	 */
7298	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7299
7300	/*
7301	 * Run tests that generate log records but don't alter the pool config
7302	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7303	 * We do a txg_wait_synced() after each iteration to force the txg
7304	 * to increase well beyond the last synced value in the uberblock.
7305	 * The ZIL should be OK with that.
7306	 *
7307	 * Run a random number of times less than zo_maxloops and ensure we do
7308	 * not run out of space on the pool.
7309	 */
7310	while (ztest_random(10) != 0 &&
7311	    numloops++ < ztest_opts.zo_maxloops &&
7312	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7313		ztest_od_t od;
7314		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7315		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7316		ztest_io(zd, od.od_object,
7317		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7318		txg_wait_synced(spa_get_dsl(spa), 0);
7319	}
7320
7321	/*
7322	 * Commit all of the changes we just generated.
7323	 */
7324	zil_commit(zd->zd_zilog, 0);
7325	txg_wait_synced(spa_get_dsl(spa), 0);
7326
7327	/*
7328	 * Close our dataset and close the pool.
7329	 */
7330	ztest_dataset_close(0);
7331	spa_close(spa, FTAG);
7332	kernel_fini();
7333
7334	/*
7335	 * Open and close the pool and dataset to induce log replay.
7336	 */
7337	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7338	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7339	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7340	VERIFY0(ztest_dataset_open(0));
7341	ztest_spa = spa;
7342	txg_wait_synced(spa_get_dsl(spa), 0);
7343	ztest_dataset_close(0);
7344	ztest_reguid(NULL, 0);
7345
7346	spa_close(spa, FTAG);
7347	kernel_fini();
7348}
7349
7350static void
7351ztest_import_impl(ztest_shared_t *zs)
7352{
7353	importargs_t args = { 0 };
7354	nvlist_t *cfg = NULL;
7355	int nsearch = 1;
7356	char *searchdirs[nsearch];
7357	int flags = ZFS_IMPORT_MISSING_LOG;
7358
7359	searchdirs[0] = ztest_opts.zo_dir;
7360	args.paths = nsearch;
7361	args.path = searchdirs;
7362	args.can_be_active = B_FALSE;
7363
7364	VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7365	    &libzpool_config_ops));
7366	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7367	fnvlist_free(cfg);
7368}
7369
7370/*
7371 * Import a storage pool with the given name.
7372 */
7373static void
7374ztest_import(ztest_shared_t *zs)
7375{
7376	spa_t *spa;
7377
7378	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7379	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7380	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7381
7382	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7383
7384	ztest_import_impl(zs);
7385
7386	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7387	zs->zs_metaslab_sz =
7388	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7389	spa_close(spa, FTAG);
7390
7391	kernel_fini();
7392
7393	if (!ztest_opts.zo_mmp_test) {
7394		ztest_run_zdb(ztest_opts.zo_pool);
7395		ztest_freeze();
7396		ztest_run_zdb(ztest_opts.zo_pool);
7397	}
7398
7399	(void) pthread_rwlock_destroy(&ztest_name_lock);
7400	mutex_destroy(&ztest_vdev_lock);
7401	mutex_destroy(&ztest_checkpoint_lock);
7402}
7403
7404/*
7405 * Kick off threads to run tests on all datasets in parallel.
7406 */
7407static void
7408ztest_run(ztest_shared_t *zs)
7409{
7410	spa_t *spa;
7411	objset_t *os;
7412	kthread_t *resume_thread, *deadman_thread;
7413	kthread_t **run_threads;
7414	uint64_t object;
7415	int error;
7416	int t, d;
7417
7418	ztest_exiting = B_FALSE;
7419
7420	/*
7421	 * Initialize parent/child shared state.
7422	 */
7423	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7424	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7425	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7426
7427	zs->zs_thread_start = gethrtime();
7428	zs->zs_thread_stop =
7429	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7430	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7431	zs->zs_thread_kill = zs->zs_thread_stop;
7432	if (ztest_random(100) < ztest_opts.zo_killrate) {
7433		zs->zs_thread_kill -=
7434		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
7435	}
7436
7437	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7438
7439	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7440	    offsetof(ztest_cb_data_t, zcd_node));
7441
7442	/*
7443	 * Open our pool.  It may need to be imported first depending on
7444	 * what tests were running when the previous pass was terminated.
7445	 */
7446	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7447	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7448	if (error) {
7449		VERIFY3S(error, ==, ENOENT);
7450		ztest_import_impl(zs);
7451		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7452		zs->zs_metaslab_sz =
7453		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7454	}
7455
7456	metaslab_preload_limit = ztest_random(20) + 1;
7457	ztest_spa = spa;
7458
7459	VERIFY0(vdev_raidz_impl_set("cycle"));
7460
7461	dmu_objset_stats_t dds;
7462	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7463	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7464	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7465	dmu_objset_fast_stat(os, &dds);
7466	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7467	zs->zs_guid = dds.dds_guid;
7468	dmu_objset_disown(os, B_TRUE, FTAG);
7469
7470	/*
7471	 * Create a thread to periodically resume suspended I/O.
7472	 */
7473	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7474	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7475
7476	/*
7477	 * Create a deadman thread and set to panic if we hang.
7478	 */
7479	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7480	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7481
7482	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7483
7484	/*
7485	 * Verify that we can safely inquire about any object,
7486	 * whether it's allocated or not.  To make it interesting,
7487	 * we probe a 5-wide window around each power of two.
7488	 * This hits all edge cases, including zero and the max.
7489	 */
7490	for (t = 0; t < 64; t++) {
7491		for (d = -5; d <= 5; d++) {
7492			error = dmu_object_info(spa->spa_meta_objset,
7493			    (1ULL << t) + d, NULL);
7494			ASSERT(error == 0 || error == ENOENT ||
7495			    error == EINVAL);
7496		}
7497	}
7498
7499	/*
7500	 * If we got any ENOSPC errors on the previous run, destroy something.
7501	 */
7502	if (zs->zs_enospc_count != 0) {
7503		int d = ztest_random(ztest_opts.zo_datasets);
7504		ztest_dataset_destroy(d);
7505	}
7506	zs->zs_enospc_count = 0;
7507
7508	/*
7509	 * If we were in the middle of ztest_device_removal() and were killed
7510	 * we need to ensure the removal and scrub complete before running
7511	 * any tests that check ztest_device_removal_active. The removal will
7512	 * be restarted automatically when the spa is opened, but we need to
7513	 * initiate the scrub manually if it is not already in progress. Note
7514	 * that we always run the scrub whenever an indirect vdev exists
7515	 * because we have no way of knowing for sure if ztest_device_removal()
7516	 * fully completed its scrub before the pool was reimported.
7517	 */
7518	if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7519	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7520		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7521			txg_wait_synced(spa_get_dsl(spa), 0);
7522
7523		error = ztest_scrub_impl(spa);
7524		if (error == EBUSY)
7525			error = 0;
7526		ASSERT0(error);
7527	}
7528
7529	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7530	    UMEM_NOFAIL);
7531
7532	if (ztest_opts.zo_verbose >= 4)
7533		(void) printf("starting main threads...\n");
7534
7535	/*
7536	 * Replay all logs of all datasets in the pool. This is primarily for
7537	 * temporary datasets which wouldn't otherwise get replayed, which
7538	 * can trigger failures when attempting to offline a SLOG in
7539	 * ztest_fault_inject().
7540	 */
7541	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7542	    NULL, DS_FIND_CHILDREN);
7543
7544	/*
7545	 * Kick off all the tests that run in parallel.
7546	 */
7547	for (t = 0; t < ztest_opts.zo_threads; t++) {
7548		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7549			umem_free(run_threads, ztest_opts.zo_threads *
7550			    sizeof (kthread_t *));
7551			return;
7552		}
7553
7554		run_threads[t] = thread_create(NULL, 0, ztest_thread,
7555		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7556		    defclsyspri);
7557	}
7558
7559	/*
7560	 * Wait for all of the tests to complete.
7561	 */
7562	for (t = 0; t < ztest_opts.zo_threads; t++)
7563		VERIFY0(thread_join(run_threads[t]));
7564
7565	/*
7566	 * Close all datasets. This must be done after all the threads
7567	 * are joined so we can be sure none of the datasets are in-use
7568	 * by any of the threads.
7569	 */
7570	for (t = 0; t < ztest_opts.zo_threads; t++) {
7571		if (t < ztest_opts.zo_datasets)
7572			ztest_dataset_close(t);
7573	}
7574
7575	txg_wait_synced(spa_get_dsl(spa), 0);
7576
7577	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7578	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7579
7580	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7581
7582	/* Kill the resume and deadman threads */
7583	ztest_exiting = B_TRUE;
7584	VERIFY0(thread_join(resume_thread));
7585	VERIFY0(thread_join(deadman_thread));
7586	ztest_resume(spa);
7587
7588	/*
7589	 * Right before closing the pool, kick off a bunch of async I/O;
7590	 * spa_close() should wait for it to complete.
7591	 */
7592	for (object = 1; object < 50; object++) {
7593		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7594		    ZIO_PRIORITY_SYNC_READ);
7595	}
7596
7597	/* Verify that at least one commit cb was called in a timely fashion */
7598	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7599		VERIFY0(zc_min_txg_delay);
7600
7601	spa_close(spa, FTAG);
7602
7603	/*
7604	 * Verify that we can loop over all pools.
7605	 */
7606	mutex_enter(&spa_namespace_lock);
7607	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7608		if (ztest_opts.zo_verbose > 3)
7609			(void) printf("spa_next: found %s\n", spa_name(spa));
7610	mutex_exit(&spa_namespace_lock);
7611
7612	/*
7613	 * Verify that we can export the pool and reimport it under a
7614	 * different name.
7615	 */
7616	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7617		char name[ZFS_MAX_DATASET_NAME_LEN];
7618		(void) snprintf(name, sizeof (name), "%s_import",
7619		    ztest_opts.zo_pool);
7620		ztest_spa_import_export(ztest_opts.zo_pool, name);
7621		ztest_spa_import_export(name, ztest_opts.zo_pool);
7622	}
7623
7624	kernel_fini();
7625
7626	list_destroy(&zcl.zcl_callbacks);
7627	mutex_destroy(&zcl.zcl_callbacks_lock);
7628	(void) pthread_rwlock_destroy(&ztest_name_lock);
7629	mutex_destroy(&ztest_vdev_lock);
7630	mutex_destroy(&ztest_checkpoint_lock);
7631}
7632
7633static void
7634print_time(hrtime_t t, char *timebuf)
7635{
7636	hrtime_t s = t / NANOSEC;
7637	hrtime_t m = s / 60;
7638	hrtime_t h = m / 60;
7639	hrtime_t d = h / 24;
7640
7641	s -= m * 60;
7642	m -= h * 60;
7643	h -= d * 24;
7644
7645	timebuf[0] = '\0';
7646
7647	if (d)
7648		(void) sprintf(timebuf,
7649		    "%llud%02lluh%02llum%02llus", d, h, m, s);
7650	else if (h)
7651		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7652	else if (m)
7653		(void) sprintf(timebuf, "%llum%02llus", m, s);
7654	else
7655		(void) sprintf(timebuf, "%llus", s);
7656}
7657
7658static nvlist_t *
7659make_random_props(void)
7660{
7661	nvlist_t *props;
7662
7663	props = fnvlist_alloc();
7664
7665	if (ztest_random(2) == 0)
7666		return (props);
7667
7668	fnvlist_add_uint64(props,
7669	    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7670
7671	return (props);
7672}
7673
7674/*
7675 * Create a storage pool with the given name and initial vdev size.
7676 * Then test spa_freeze() functionality.
7677 */
7678static void
7679ztest_init(ztest_shared_t *zs)
7680{
7681	spa_t *spa;
7682	nvlist_t *nvroot, *props;
7683	int i;
7684
7685	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7686	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7687	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7688
7689	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7690
7691	/*
7692	 * Create the storage pool.
7693	 */
7694	(void) spa_destroy(ztest_opts.zo_pool);
7695	ztest_shared->zs_vdev_next_leaf = 0;
7696	zs->zs_splits = 0;
7697	zs->zs_mirrors = ztest_opts.zo_mirrors;
7698	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7699	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7700	props = make_random_props();
7701
7702	/*
7703	 * We don't expect the pool to suspend unless maxfaults == 0,
7704	 * in which case ztest_fault_inject() temporarily takes away
7705	 * the only valid replica.
7706	 */
7707	fnvlist_add_uint64(props,
7708	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7709	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7710
7711	for (i = 0; i < SPA_FEATURES; i++) {
7712		char *buf;
7713
7714		if (!spa_feature_table[i].fi_zfs_mod_supported)
7715			continue;
7716
7717		/*
7718		 * 75% chance of using the log space map feature. We want ztest
7719		 * to exercise both the code paths that use the log space map
7720		 * feature and the ones that don't.
7721		 */
7722		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7723			continue;
7724
7725		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7726		    spa_feature_table[i].fi_uname));
7727		fnvlist_add_uint64(props, buf, 0);
7728		free(buf);
7729	}
7730
7731	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7732	fnvlist_free(nvroot);
7733	fnvlist_free(props);
7734
7735	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7736	zs->zs_metaslab_sz =
7737	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7738	spa_close(spa, FTAG);
7739
7740	kernel_fini();
7741
7742	if (!ztest_opts.zo_mmp_test) {
7743		ztest_run_zdb(ztest_opts.zo_pool);
7744		ztest_freeze();
7745		ztest_run_zdb(ztest_opts.zo_pool);
7746	}
7747
7748	(void) pthread_rwlock_destroy(&ztest_name_lock);
7749	mutex_destroy(&ztest_vdev_lock);
7750	mutex_destroy(&ztest_checkpoint_lock);
7751}
7752
7753static void
7754setup_data_fd(void)
7755{
7756	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7757
7758	ztest_fd_data = mkstemp(ztest_name_data);
7759	ASSERT3S(ztest_fd_data, >=, 0);
7760	(void) unlink(ztest_name_data);
7761}
7762
7763static int
7764shared_data_size(ztest_shared_hdr_t *hdr)
7765{
7766	int size;
7767
7768	size = hdr->zh_hdr_size;
7769	size += hdr->zh_opts_size;
7770	size += hdr->zh_size;
7771	size += hdr->zh_stats_size * hdr->zh_stats_count;
7772	size += hdr->zh_ds_size * hdr->zh_ds_count;
7773
7774	return (size);
7775}
7776
7777static void
7778setup_hdr(void)
7779{
7780	int size;
7781	ztest_shared_hdr_t *hdr;
7782
7783	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7784	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7785	ASSERT3P(hdr, !=, MAP_FAILED);
7786
7787	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7788
7789	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7790	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7791	hdr->zh_size = sizeof (ztest_shared_t);
7792	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7793	hdr->zh_stats_count = ZTEST_FUNCS;
7794	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7795	hdr->zh_ds_count = ztest_opts.zo_datasets;
7796
7797	size = shared_data_size(hdr);
7798	VERIFY0(ftruncate(ztest_fd_data, size));
7799
7800	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7801}
7802
7803static void
7804setup_data(void)
7805{
7806	int size, offset;
7807	ztest_shared_hdr_t *hdr;
7808	uint8_t *buf;
7809
7810	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7811	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7812	ASSERT3P(hdr, !=, MAP_FAILED);
7813
7814	size = shared_data_size(hdr);
7815
7816	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7817	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7818	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7819	ASSERT3P(hdr, !=, MAP_FAILED);
7820	buf = (uint8_t *)hdr;
7821
7822	offset = hdr->zh_hdr_size;
7823	ztest_shared_opts = (void *)&buf[offset];
7824	offset += hdr->zh_opts_size;
7825	ztest_shared = (void *)&buf[offset];
7826	offset += hdr->zh_size;
7827	ztest_shared_callstate = (void *)&buf[offset];
7828	offset += hdr->zh_stats_size * hdr->zh_stats_count;
7829	ztest_shared_ds = (void *)&buf[offset];
7830}
7831
7832static boolean_t
7833exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7834{
7835	pid_t pid;
7836	int status;
7837	char *cmdbuf = NULL;
7838
7839	pid = fork();
7840
7841	if (cmd == NULL) {
7842		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7843		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7844		cmd = cmdbuf;
7845	}
7846
7847	if (pid == -1)
7848		fatal(1, "fork failed");
7849
7850	if (pid == 0) {	/* child */
7851		char *emptyargv[2] = { cmd, NULL };
7852		char fd_data_str[12];
7853
7854		struct rlimit rl = { 1024, 1024 };
7855		(void) setrlimit(RLIMIT_NOFILE, &rl);
7856
7857		(void) close(ztest_fd_rand);
7858		VERIFY3S(11, >=,
7859		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7860		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7861
7862		(void) enable_extended_FILE_stdio(-1, -1);
7863		if (libpath != NULL)
7864			VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7865		(void) execv(cmd, emptyargv);
7866		ztest_dump_core = B_FALSE;
7867		fatal(B_TRUE, "exec failed: %s", cmd);
7868	}
7869
7870	if (cmdbuf != NULL) {
7871		umem_free(cmdbuf, MAXPATHLEN);
7872		cmd = NULL;
7873	}
7874
7875	while (waitpid(pid, &status, 0) != pid)
7876		continue;
7877	if (statusp != NULL)
7878		*statusp = status;
7879
7880	if (WIFEXITED(status)) {
7881		if (WEXITSTATUS(status) != 0) {
7882			(void) fprintf(stderr, "child exited with code %d\n",
7883			    WEXITSTATUS(status));
7884			exit(2);
7885		}
7886		return (B_FALSE);
7887	} else if (WIFSIGNALED(status)) {
7888		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7889			(void) fprintf(stderr, "child died with signal %d\n",
7890			    WTERMSIG(status));
7891			exit(3);
7892		}
7893		return (B_TRUE);
7894	} else {
7895		(void) fprintf(stderr, "something strange happened to child\n");
7896		exit(4);
7897		/* NOTREACHED */
7898	}
7899}
7900
7901static void
7902ztest_run_init(void)
7903{
7904	int i;
7905
7906	ztest_shared_t *zs = ztest_shared;
7907
7908	/*
7909	 * Blow away any existing copy of zpool.cache
7910	 */
7911	(void) remove(spa_config_path);
7912
7913	if (ztest_opts.zo_init == 0) {
7914		if (ztest_opts.zo_verbose >= 1)
7915			(void) printf("Importing pool %s\n",
7916			    ztest_opts.zo_pool);
7917		ztest_import(zs);
7918		return;
7919	}
7920
7921	/*
7922	 * Create and initialize our storage pool.
7923	 */
7924	for (i = 1; i <= ztest_opts.zo_init; i++) {
7925		bzero(zs, sizeof (ztest_shared_t));
7926		if (ztest_opts.zo_verbose >= 3 &&
7927		    ztest_opts.zo_init != 1) {
7928			(void) printf("ztest_init(), pass %d\n", i);
7929		}
7930		ztest_init(zs);
7931	}
7932}
7933
7934int
7935main(int argc, char **argv)
7936{
7937	int kills = 0;
7938	int iters = 0;
7939	int older = 0;
7940	int newer = 0;
7941	ztest_shared_t *zs;
7942	ztest_info_t *zi;
7943	ztest_shared_callstate_t *zc;
7944	char timebuf[100];
7945	char numbuf[NN_NUMBUF_SZ];
7946	char *cmd;
7947	boolean_t hasalt;
7948	int f, err;
7949	char *fd_data_str = getenv("ZTEST_FD_DATA");
7950	struct sigaction action;
7951
7952	(void) setvbuf(stdout, NULL, _IOLBF, 0);
7953
7954	dprintf_setup(&argc, argv);
7955	zfs_deadman_synctime_ms = 300000;
7956	zfs_deadman_checktime_ms = 30000;
7957	/*
7958	 * As two-word space map entries may not come up often (especially
7959	 * if pool and vdev sizes are small) we want to force at least some
7960	 * of them so the feature get tested.
7961	 */
7962	zfs_force_some_double_word_sm_entries = B_TRUE;
7963
7964	/*
7965	 * Verify that even extensively damaged split blocks with many
7966	 * segments can be reconstructed in a reasonable amount of time
7967	 * when reconstruction is known to be possible.
7968	 *
7969	 * Note: the lower this value is, the more damage we inflict, and
7970	 * the more time ztest spends in recovering that damage. We chose
7971	 * to induce damage 1/100th of the time so recovery is tested but
7972	 * not so frequently that ztest doesn't get to test other code paths.
7973	 */
7974	zfs_reconstruct_indirect_damage_fraction = 100;
7975
7976	action.sa_handler = sig_handler;
7977	sigemptyset(&action.sa_mask);
7978	action.sa_flags = 0;
7979
7980	if (sigaction(SIGSEGV, &action, NULL) < 0) {
7981		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7982		    strerror(errno));
7983		exit(EXIT_FAILURE);
7984	}
7985
7986	if (sigaction(SIGABRT, &action, NULL) < 0) {
7987		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7988		    strerror(errno));
7989		exit(EXIT_FAILURE);
7990	}
7991
7992	/*
7993	 * Force random_get_bytes() to use /dev/urandom in order to prevent
7994	 * ztest from needlessly depleting the system entropy pool.
7995	 */
7996	random_path = "/dev/urandom";
7997	ztest_fd_rand = open(random_path, O_RDONLY);
7998	ASSERT3S(ztest_fd_rand, >=, 0);
7999
8000	if (!fd_data_str) {
8001		process_options(argc, argv);
8002
8003		setup_data_fd();
8004		setup_hdr();
8005		setup_data();
8006		bcopy(&ztest_opts, ztest_shared_opts,
8007		    sizeof (*ztest_shared_opts));
8008	} else {
8009		ztest_fd_data = atoi(fd_data_str);
8010		setup_data();
8011		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
8012	}
8013	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8014
8015	err = ztest_set_global_vars();
8016	if (err != 0 && !fd_data_str) {
8017		/* error message done by ztest_set_global_vars */
8018		exit(EXIT_FAILURE);
8019	} else {
8020		/* children should not be spawned if setting gvars fails */
8021		VERIFY3S(err, ==, 0);
8022	}
8023
8024	/* Override location of zpool.cache */
8025	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8026	    ztest_opts.zo_dir), !=, -1);
8027
8028	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8029	    UMEM_NOFAIL);
8030	zs = ztest_shared;
8031
8032	if (fd_data_str) {
8033		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8034		metaslab_df_alloc_threshold =
8035		    zs->zs_metaslab_df_alloc_threshold;
8036
8037		if (zs->zs_do_init)
8038			ztest_run_init();
8039		else
8040			ztest_run(zs);
8041		exit(0);
8042	}
8043
8044	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8045
8046	if (ztest_opts.zo_verbose >= 1) {
8047		(void) printf("%llu vdevs, %d datasets, %d threads,"
8048		    "%d %s disks, %llu seconds...\n\n",
8049		    (u_longlong_t)ztest_opts.zo_vdevs,
8050		    ztest_opts.zo_datasets,
8051		    ztest_opts.zo_threads,
8052		    ztest_opts.zo_raid_children,
8053		    ztest_opts.zo_raid_type,
8054		    (u_longlong_t)ztest_opts.zo_time);
8055	}
8056
8057	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8058	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8059
8060	zs->zs_do_init = B_TRUE;
8061	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8062		if (ztest_opts.zo_verbose >= 1) {
8063			(void) printf("Executing older ztest for "
8064			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
8065		}
8066		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8067		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8068	} else {
8069		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8070	}
8071	zs->zs_do_init = B_FALSE;
8072
8073	zs->zs_proc_start = gethrtime();
8074	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8075
8076	for (f = 0; f < ZTEST_FUNCS; f++) {
8077		zi = &ztest_info[f];
8078		zc = ZTEST_GET_SHARED_CALLSTATE(f);
8079		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8080			zc->zc_next = UINT64_MAX;
8081		else
8082			zc->zc_next = zs->zs_proc_start +
8083			    ztest_random(2 * zi->zi_interval[0] + 1);
8084	}
8085
8086	/*
8087	 * Run the tests in a loop.  These tests include fault injection
8088	 * to verify that self-healing data works, and forced crashes
8089	 * to verify that we never lose on-disk consistency.
8090	 */
8091	while (gethrtime() < zs->zs_proc_stop) {
8092		int status;
8093		boolean_t killed;
8094
8095		/*
8096		 * Initialize the workload counters for each function.
8097		 */
8098		for (f = 0; f < ZTEST_FUNCS; f++) {
8099			zc = ZTEST_GET_SHARED_CALLSTATE(f);
8100			zc->zc_count = 0;
8101			zc->zc_time = 0;
8102		}
8103
8104		/* Set the allocation switch size */
8105		zs->zs_metaslab_df_alloc_threshold =
8106		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
8107
8108		if (!hasalt || ztest_random(2) == 0) {
8109			if (hasalt && ztest_opts.zo_verbose >= 1) {
8110				(void) printf("Executing newer ztest: %s\n",
8111				    cmd);
8112			}
8113			newer++;
8114			killed = exec_child(cmd, NULL, B_TRUE, &status);
8115		} else {
8116			if (hasalt && ztest_opts.zo_verbose >= 1) {
8117				(void) printf("Executing older ztest: %s\n",
8118				    ztest_opts.zo_alt_ztest);
8119			}
8120			older++;
8121			killed = exec_child(ztest_opts.zo_alt_ztest,
8122			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
8123		}
8124
8125		if (killed)
8126			kills++;
8127		iters++;
8128
8129		if (ztest_opts.zo_verbose >= 1) {
8130			hrtime_t now = gethrtime();
8131
8132			now = MIN(now, zs->zs_proc_stop);
8133			print_time(zs->zs_proc_stop - now, timebuf);
8134			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8135
8136			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
8137			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8138			    iters,
8139			    WIFEXITED(status) ? "Complete" : "SIGKILL",
8140			    (u_longlong_t)zs->zs_enospc_count,
8141			    100.0 * zs->zs_alloc / zs->zs_space,
8142			    numbuf,
8143			    100.0 * (now - zs->zs_proc_start) /
8144			    (ztest_opts.zo_time * NANOSEC), timebuf);
8145		}
8146
8147		if (ztest_opts.zo_verbose >= 2) {
8148			(void) printf("\nWorkload summary:\n\n");
8149			(void) printf("%7s %9s   %s\n",
8150			    "Calls", "Time", "Function");
8151			(void) printf("%7s %9s   %s\n",
8152			    "-----", "----", "--------");
8153			for (f = 0; f < ZTEST_FUNCS; f++) {
8154				zi = &ztest_info[f];
8155				zc = ZTEST_GET_SHARED_CALLSTATE(f);
8156				print_time(zc->zc_time, timebuf);
8157				(void) printf("%7llu %9s   %s\n",
8158				    (u_longlong_t)zc->zc_count, timebuf,
8159				    zi->zi_funcname);
8160			}
8161			(void) printf("\n");
8162		}
8163
8164		if (!ztest_opts.zo_mmp_test)
8165			ztest_run_zdb(ztest_opts.zo_pool);
8166	}
8167
8168	if (ztest_opts.zo_verbose >= 1) {
8169		if (hasalt) {
8170			(void) printf("%d runs of older ztest: %s\n", older,
8171			    ztest_opts.zo_alt_ztest);
8172			(void) printf("%d runs of newer ztest: %s\n", newer,
8173			    cmd);
8174		}
8175		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8176		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8177	}
8178
8179	umem_free(cmd, MAXNAMELEN);
8180
8181	return (0);
8182}
8183