1//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements SlotIndex and related classes. The purpose of SlotIndex
10// is to describe a position at which a register can become live, or cease to
11// be live.
12//
13// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
14// is held is LiveIntervals and provides the real numbering. This allows
15// LiveIntervals to perform largely transparent renumbering.
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SLOTINDEXES_H
19#define LLVM_CODEGEN_SLOTINDEXES_H
20
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/IntervalMap.h"
23#include "llvm/ADT/PointerIntPair.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/ilist.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineInstrBundle.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/Allocator.h"
33#include <algorithm>
34#include <cassert>
35#include <iterator>
36#include <utility>
37
38namespace llvm {
39
40class raw_ostream;
41
42  /// This class represents an entry in the slot index list held in the
43  /// SlotIndexes pass. It should not be used directly. See the
44  /// SlotIndex & SlotIndexes classes for the public interface to this
45  /// information.
46  class IndexListEntry : public ilist_node<IndexListEntry> {
47    MachineInstr *mi;
48    unsigned index;
49
50  public:
51    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
52
53    MachineInstr* getInstr() const { return mi; }
54    void setInstr(MachineInstr *mi) {
55      this->mi = mi;
56    }
57
58    unsigned getIndex() const { return index; }
59    void setIndex(unsigned index) {
60      this->index = index;
61    }
62
63#ifdef EXPENSIVE_CHECKS
64    // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
65    // actually be moved to a "graveyard" list, and have their pointers
66    // poisoned, so that dangling SlotIndex access can be reliably detected.
67    void setPoison() {
68      intptr_t tmp = reinterpret_cast<intptr_t>(mi);
69      assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
70      tmp |= 0x1;
71      mi = reinterpret_cast<MachineInstr*>(tmp);
72    }
73
74    bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
75#endif // EXPENSIVE_CHECKS
76  };
77
78  template <>
79  struct ilist_alloc_traits<IndexListEntry>
80      : public ilist_noalloc_traits<IndexListEntry> {};
81
82  /// SlotIndex - An opaque wrapper around machine indexes.
83  class SlotIndex {
84    friend class SlotIndexes;
85
86    enum Slot {
87      /// Basic block boundary.  Used for live ranges entering and leaving a
88      /// block without being live in the layout neighbor.  Also used as the
89      /// def slot of PHI-defs.
90      Slot_Block,
91
92      /// Early-clobber register use/def slot.  A live range defined at
93      /// Slot_EarlyClobber interferes with normal live ranges killed at
94      /// Slot_Register.  Also used as the kill slot for live ranges tied to an
95      /// early-clobber def.
96      Slot_EarlyClobber,
97
98      /// Normal register use/def slot.  Normal instructions kill and define
99      /// register live ranges at this slot.
100      Slot_Register,
101
102      /// Dead def kill point.  Kill slot for a live range that is defined by
103      /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
104      /// used anywhere.
105      Slot_Dead,
106
107      Slot_Count
108    };
109
110    PointerIntPair<IndexListEntry*, 2, unsigned> lie;
111
112    SlotIndex(IndexListEntry *entry, unsigned slot)
113      : lie(entry, slot) {}
114
115    IndexListEntry* listEntry() const {
116      assert(isValid() && "Attempt to compare reserved index.");
117#ifdef EXPENSIVE_CHECKS
118      assert(!lie.getPointer()->isPoisoned() &&
119             "Attempt to access deleted list-entry.");
120#endif // EXPENSIVE_CHECKS
121      return lie.getPointer();
122    }
123
124    unsigned getIndex() const {
125      return listEntry()->getIndex() | getSlot();
126    }
127
128    /// Returns the slot for this SlotIndex.
129    Slot getSlot() const {
130      return static_cast<Slot>(lie.getInt());
131    }
132
133  public:
134    enum {
135      /// The default distance between instructions as returned by distance().
136      /// This may vary as instructions are inserted and removed.
137      InstrDist = 4 * Slot_Count
138    };
139
140    /// Construct an invalid index.
141    SlotIndex() = default;
142
143    // Construct a new slot index from the given one, and set the slot.
144    SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
145      assert(lie.getPointer() != nullptr &&
146             "Attempt to construct index with 0 pointer.");
147    }
148
149    /// Returns true if this is a valid index. Invalid indices do
150    /// not point into an index table, and cannot be compared.
151    bool isValid() const {
152      return lie.getPointer();
153    }
154
155    /// Return true for a valid index.
156    explicit operator bool() const { return isValid(); }
157
158    /// Print this index to the given raw_ostream.
159    void print(raw_ostream &os) const;
160
161    /// Dump this index to stderr.
162    void dump() const;
163
164    /// Compare two SlotIndex objects for equality.
165    bool operator==(SlotIndex other) const {
166      return lie == other.lie;
167    }
168    /// Compare two SlotIndex objects for inequality.
169    bool operator!=(SlotIndex other) const {
170      return lie != other.lie;
171    }
172
173    /// Compare two SlotIndex objects. Return true if the first index
174    /// is strictly lower than the second.
175    bool operator<(SlotIndex other) const {
176      return getIndex() < other.getIndex();
177    }
178    /// Compare two SlotIndex objects. Return true if the first index
179    /// is lower than, or equal to, the second.
180    bool operator<=(SlotIndex other) const {
181      return getIndex() <= other.getIndex();
182    }
183
184    /// Compare two SlotIndex objects. Return true if the first index
185    /// is greater than the second.
186    bool operator>(SlotIndex other) const {
187      return getIndex() > other.getIndex();
188    }
189
190    /// Compare two SlotIndex objects. Return true if the first index
191    /// is greater than, or equal to, the second.
192    bool operator>=(SlotIndex other) const {
193      return getIndex() >= other.getIndex();
194    }
195
196    /// isSameInstr - Return true if A and B refer to the same instruction.
197    static bool isSameInstr(SlotIndex A, SlotIndex B) {
198      return A.lie.getPointer() == B.lie.getPointer();
199    }
200
201    /// isEarlierInstr - Return true if A refers to an instruction earlier than
202    /// B. This is equivalent to A < B && !isSameInstr(A, B).
203    static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
204      return A.listEntry()->getIndex() < B.listEntry()->getIndex();
205    }
206
207    /// Return true if A refers to the same instruction as B or an earlier one.
208    /// This is equivalent to !isEarlierInstr(B, A).
209    static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
210      return !isEarlierInstr(B, A);
211    }
212
213    /// Return the distance from this index to the given one.
214    int distance(SlotIndex other) const {
215      return other.getIndex() - getIndex();
216    }
217
218    /// Return the scaled distance from this index to the given one, where all
219    /// slots on the same instruction have zero distance.
220    int getInstrDistance(SlotIndex other) const {
221      return (other.listEntry()->getIndex() - listEntry()->getIndex())
222        / Slot_Count;
223    }
224
225    /// isBlock - Returns true if this is a block boundary slot.
226    bool isBlock() const { return getSlot() == Slot_Block; }
227
228    /// isEarlyClobber - Returns true if this is an early-clobber slot.
229    bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
230
231    /// isRegister - Returns true if this is a normal register use/def slot.
232    /// Note that early-clobber slots may also be used for uses and defs.
233    bool isRegister() const { return getSlot() == Slot_Register; }
234
235    /// isDead - Returns true if this is a dead def kill slot.
236    bool isDead() const { return getSlot() == Slot_Dead; }
237
238    /// Returns the base index for associated with this index. The base index
239    /// is the one associated with the Slot_Block slot for the instruction
240    /// pointed to by this index.
241    SlotIndex getBaseIndex() const {
242      return SlotIndex(listEntry(), Slot_Block);
243    }
244
245    /// Returns the boundary index for associated with this index. The boundary
246    /// index is the one associated with the Slot_Block slot for the instruction
247    /// pointed to by this index.
248    SlotIndex getBoundaryIndex() const {
249      return SlotIndex(listEntry(), Slot_Dead);
250    }
251
252    /// Returns the register use/def slot in the current instruction for a
253    /// normal or early-clobber def.
254    SlotIndex getRegSlot(bool EC = false) const {
255      return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
256    }
257
258    /// Returns the dead def kill slot for the current instruction.
259    SlotIndex getDeadSlot() const {
260      return SlotIndex(listEntry(), Slot_Dead);
261    }
262
263    /// Returns the next slot in the index list. This could be either the
264    /// next slot for the instruction pointed to by this index or, if this
265    /// index is a STORE, the first slot for the next instruction.
266    /// WARNING: This method is considerably more expensive than the methods
267    /// that return specific slots (getUseIndex(), etc). If you can - please
268    /// use one of those methods.
269    SlotIndex getNextSlot() const {
270      Slot s = getSlot();
271      if (s == Slot_Dead) {
272        return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
273      }
274      return SlotIndex(listEntry(), s + 1);
275    }
276
277    /// Returns the next index. This is the index corresponding to the this
278    /// index's slot, but for the next instruction.
279    SlotIndex getNextIndex() const {
280      return SlotIndex(&*++listEntry()->getIterator(), getSlot());
281    }
282
283    /// Returns the previous slot in the index list. This could be either the
284    /// previous slot for the instruction pointed to by this index or, if this
285    /// index is a Slot_Block, the last slot for the previous instruction.
286    /// WARNING: This method is considerably more expensive than the methods
287    /// that return specific slots (getUseIndex(), etc). If you can - please
288    /// use one of those methods.
289    SlotIndex getPrevSlot() const {
290      Slot s = getSlot();
291      if (s == Slot_Block) {
292        return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
293      }
294      return SlotIndex(listEntry(), s - 1);
295    }
296
297    /// Returns the previous index. This is the index corresponding to this
298    /// index's slot, but for the previous instruction.
299    SlotIndex getPrevIndex() const {
300      return SlotIndex(&*--listEntry()->getIterator(), getSlot());
301    }
302  };
303
304  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
305    li.print(os);
306    return os;
307  }
308
309  using IdxMBBPair = std::pair<SlotIndex, MachineBasicBlock *>;
310
311  /// SlotIndexes pass.
312  ///
313  /// This pass assigns indexes to each instruction.
314  class SlotIndexes : public MachineFunctionPass {
315  private:
316    // IndexListEntry allocator.
317    BumpPtrAllocator ileAllocator;
318
319    using IndexList = ilist<IndexListEntry>;
320    IndexList indexList;
321
322    MachineFunction *mf;
323
324    using Mi2IndexMap = DenseMap<const MachineInstr *, SlotIndex>;
325    Mi2IndexMap mi2iMap;
326
327    /// MBBRanges - Map MBB number to (start, stop) indexes.
328    SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
329
330    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
331    /// and MBB id.
332    SmallVector<IdxMBBPair, 8> idx2MBBMap;
333
334    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
335      IndexListEntry *entry =
336          static_cast<IndexListEntry *>(ileAllocator.Allocate(
337              sizeof(IndexListEntry), alignof(IndexListEntry)));
338
339      new (entry) IndexListEntry(mi, index);
340
341      return entry;
342    }
343
344    /// Renumber locally after inserting curItr.
345    void renumberIndexes(IndexList::iterator curItr);
346
347  public:
348    static char ID;
349
350    SlotIndexes();
351
352    ~SlotIndexes() override;
353
354    void getAnalysisUsage(AnalysisUsage &au) const override;
355    void releaseMemory() override;
356
357    bool runOnMachineFunction(MachineFunction &fn) override;
358
359    /// Dump the indexes.
360    void dump() const;
361
362    /// Repair indexes after adding and removing instructions.
363    void repairIndexesInRange(MachineBasicBlock *MBB,
364                              MachineBasicBlock::iterator Begin,
365                              MachineBasicBlock::iterator End);
366
367    /// Returns the zero index for this analysis.
368    SlotIndex getZeroIndex() {
369      assert(indexList.front().getIndex() == 0 && "First index is not 0?");
370      return SlotIndex(&indexList.front(), 0);
371    }
372
373    /// Returns the base index of the last slot in this analysis.
374    SlotIndex getLastIndex() {
375      return SlotIndex(&indexList.back(), 0);
376    }
377
378    /// Returns true if the given machine instr is mapped to an index,
379    /// otherwise returns false.
380    bool hasIndex(const MachineInstr &instr) const {
381      return mi2iMap.count(&instr);
382    }
383
384    /// Returns the base index for the given instruction.
385    SlotIndex getInstructionIndex(const MachineInstr &MI,
386                                  bool IgnoreBundle = false) const {
387      // Instructions inside a bundle have the same number as the bundle itself.
388      auto BundleStart = getBundleStart(MI.getIterator());
389      auto BundleEnd = getBundleEnd(MI.getIterator());
390      // Use the first non-debug instruction in the bundle to get SlotIndex.
391      const MachineInstr &BundleNonDebug =
392          IgnoreBundle ? MI
393                       : *skipDebugInstructionsForward(BundleStart, BundleEnd);
394      assert(!BundleNonDebug.isDebugInstr() &&
395             "Could not use a debug instruction to query mi2iMap.");
396      Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleNonDebug);
397      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
398      return itr->second;
399    }
400
401    /// Returns the instruction for the given index, or null if the given
402    /// index has no instruction associated with it.
403    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
404      return index.isValid() ? index.listEntry()->getInstr() : nullptr;
405    }
406
407    /// Returns the next non-null index, if one exists.
408    /// Otherwise returns getLastIndex().
409    SlotIndex getNextNonNullIndex(SlotIndex Index) {
410      IndexList::iterator I = Index.listEntry()->getIterator();
411      IndexList::iterator E = indexList.end();
412      while (++I != E)
413        if (I->getInstr())
414          return SlotIndex(&*I, Index.getSlot());
415      // We reached the end of the function.
416      return getLastIndex();
417    }
418
419    /// getIndexBefore - Returns the index of the last indexed instruction
420    /// before MI, or the start index of its basic block.
421    /// MI is not required to have an index.
422    SlotIndex getIndexBefore(const MachineInstr &MI) const {
423      const MachineBasicBlock *MBB = MI.getParent();
424      assert(MBB && "MI must be inserted in a basic block");
425      MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
426      while (true) {
427        if (I == B)
428          return getMBBStartIdx(MBB);
429        --I;
430        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
431        if (MapItr != mi2iMap.end())
432          return MapItr->second;
433      }
434    }
435
436    /// getIndexAfter - Returns the index of the first indexed instruction
437    /// after MI, or the end index of its basic block.
438    /// MI is not required to have an index.
439    SlotIndex getIndexAfter(const MachineInstr &MI) const {
440      const MachineBasicBlock *MBB = MI.getParent();
441      assert(MBB && "MI must be inserted in a basic block");
442      MachineBasicBlock::const_iterator I = MI, E = MBB->end();
443      while (true) {
444        ++I;
445        if (I == E)
446          return getMBBEndIdx(MBB);
447        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
448        if (MapItr != mi2iMap.end())
449          return MapItr->second;
450      }
451    }
452
453    /// Return the (start,end) range of the given basic block number.
454    const std::pair<SlotIndex, SlotIndex> &
455    getMBBRange(unsigned Num) const {
456      return MBBRanges[Num];
457    }
458
459    /// Return the (start,end) range of the given basic block.
460    const std::pair<SlotIndex, SlotIndex> &
461    getMBBRange(const MachineBasicBlock *MBB) const {
462      return getMBBRange(MBB->getNumber());
463    }
464
465    /// Returns the first index in the given basic block number.
466    SlotIndex getMBBStartIdx(unsigned Num) const {
467      return getMBBRange(Num).first;
468    }
469
470    /// Returns the first index in the given basic block.
471    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
472      return getMBBRange(mbb).first;
473    }
474
475    /// Returns the last index in the given basic block number.
476    SlotIndex getMBBEndIdx(unsigned Num) const {
477      return getMBBRange(Num).second;
478    }
479
480    /// Returns the last index in the given basic block.
481    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
482      return getMBBRange(mbb).second;
483    }
484
485    /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
486    /// begin and basic block)
487    using MBBIndexIterator = SmallVectorImpl<IdxMBBPair>::const_iterator;
488
489    /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
490    /// equal to \p To.
491    MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
492      return std::partition_point(
493          I, idx2MBBMap.end(),
494          [=](const IdxMBBPair &IM) { return IM.first < To; });
495    }
496
497    /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
498    /// that is greater or equal to \p Idx.
499    MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
500      return advanceMBBIndex(idx2MBBMap.begin(), Idx);
501    }
502
503    /// Returns an iterator for the begin of the idx2MBBMap.
504    MBBIndexIterator MBBIndexBegin() const {
505      return idx2MBBMap.begin();
506    }
507
508    /// Return an iterator for the end of the idx2MBBMap.
509    MBBIndexIterator MBBIndexEnd() const {
510      return idx2MBBMap.end();
511    }
512
513    /// Returns the basic block which the given index falls in.
514    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
515      if (MachineInstr *MI = getInstructionFromIndex(index))
516        return MI->getParent();
517
518      MBBIndexIterator I = findMBBIndex(index);
519      // Take the pair containing the index
520      MBBIndexIterator J =
521        ((I != MBBIndexEnd() && I->first > index) ||
522         (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
523
524      assert(J != MBBIndexEnd() && J->first <= index &&
525             index < getMBBEndIdx(J->second) &&
526             "index does not correspond to an MBB");
527      return J->second;
528    }
529
530    /// Insert the given machine instruction into the mapping. Returns the
531    /// assigned index.
532    /// If Late is set and there are null indexes between mi's neighboring
533    /// instructions, create the new index after the null indexes instead of
534    /// before them.
535    SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
536      assert(!MI.isInsideBundle() &&
537             "Instructions inside bundles should use bundle start's slot.");
538      assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.");
539      // Numbering debug instructions could cause code generation to be
540      // affected by debug information.
541      assert(!MI.isDebugInstr() && "Cannot number debug instructions.");
542
543      assert(MI.getParent() != nullptr && "Instr must be added to function.");
544
545      // Get the entries where MI should be inserted.
546      IndexList::iterator prevItr, nextItr;
547      if (Late) {
548        // Insert MI's index immediately before the following instruction.
549        nextItr = getIndexAfter(MI).listEntry()->getIterator();
550        prevItr = std::prev(nextItr);
551      } else {
552        // Insert MI's index immediately after the preceding instruction.
553        prevItr = getIndexBefore(MI).listEntry()->getIterator();
554        nextItr = std::next(prevItr);
555      }
556
557      // Get a number for the new instr, or 0 if there's no room currently.
558      // In the latter case we'll force a renumber later.
559      unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
560      unsigned newNumber = prevItr->getIndex() + dist;
561
562      // Insert a new list entry for MI.
563      IndexList::iterator newItr =
564          indexList.insert(nextItr, createEntry(&MI, newNumber));
565
566      // Renumber locally if we need to.
567      if (dist == 0)
568        renumberIndexes(newItr);
569
570      SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
571      mi2iMap.insert(std::make_pair(&MI, newIndex));
572      return newIndex;
573    }
574
575    /// Removes machine instruction (bundle) \p MI from the mapping.
576    /// This should be called before MachineInstr::eraseFromParent() is used to
577    /// remove a whole bundle or an unbundled instruction.
578    /// If \p AllowBundled is set then this can be used on a bundled
579    /// instruction; however, this exists to support handleMoveIntoBundle,
580    /// and in general removeSingleMachineInstrFromMaps should be used instead.
581    void removeMachineInstrFromMaps(MachineInstr &MI,
582                                    bool AllowBundled = false);
583
584    /// Removes a single machine instruction \p MI from the mapping.
585    /// This should be called before MachineInstr::eraseFromBundle() is used to
586    /// remove a single instruction (out of a bundle).
587    void removeSingleMachineInstrFromMaps(MachineInstr &MI);
588
589    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
590    /// maps used by register allocator. \returns the index where the new
591    /// instruction was inserted.
592    SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
593      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
594      if (mi2iItr == mi2iMap.end())
595        return SlotIndex();
596      SlotIndex replaceBaseIndex = mi2iItr->second;
597      IndexListEntry *miEntry(replaceBaseIndex.listEntry());
598      assert(miEntry->getInstr() == &MI &&
599             "Mismatched instruction in index tables.");
600      miEntry->setInstr(&NewMI);
601      mi2iMap.erase(mi2iItr);
602      mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
603      return replaceBaseIndex;
604    }
605
606    /// Add the given MachineBasicBlock into the maps.
607    /// If \p InsertionPoint is specified then the block will be placed
608    /// before the given machine instr, otherwise it will be placed
609    /// before the next block in MachineFunction insertion order.
610    void insertMBBInMaps(MachineBasicBlock *mbb,
611                         MachineInstr *InsertionPoint = nullptr) {
612      MachineFunction::iterator nextMBB =
613        std::next(MachineFunction::iterator(mbb));
614
615      IndexListEntry *startEntry = nullptr;
616      IndexListEntry *endEntry = nullptr;
617      IndexList::iterator newItr;
618      if (InsertionPoint) {
619        startEntry = createEntry(nullptr, 0);
620        endEntry = getInstructionIndex(*InsertionPoint).listEntry();
621        newItr = indexList.insert(endEntry->getIterator(), startEntry);
622      } else if (nextMBB == mbb->getParent()->end()) {
623        startEntry = &indexList.back();
624        endEntry = createEntry(nullptr, 0);
625        newItr = indexList.insertAfter(startEntry->getIterator(), endEntry);
626      } else {
627        startEntry = createEntry(nullptr, 0);
628        endEntry = getMBBStartIdx(&*nextMBB).listEntry();
629        newItr = indexList.insert(endEntry->getIterator(), startEntry);
630      }
631
632      SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
633      SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
634
635      MachineFunction::iterator prevMBB(mbb);
636      assert(prevMBB != mbb->getParent()->end() &&
637             "Can't insert a new block at the beginning of a function.");
638      --prevMBB;
639      MBBRanges[prevMBB->getNumber()].second = startIdx;
640
641      assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
642             "Blocks must be added in order");
643      MBBRanges.push_back(std::make_pair(startIdx, endIdx));
644      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
645
646      renumberIndexes(newItr);
647      llvm::sort(idx2MBBMap, less_first());
648    }
649  };
650
651  // Specialize IntervalMapInfo for half-open slot index intervals.
652  template <>
653  struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
654  };
655
656} // end namespace llvm
657
658#endif // LLVM_CODEGEN_SLOTINDEXES_H
659