1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2017, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31#include <stdlib.h>
32#include <strings.h>
33#include <errno.h>
34#include <unistd.h>
35#include <limits.h>
36#include <assert.h>
37#include <ctype.h>
38#ifdef illumos
39#include <alloca.h>
40#endif
41#include <dt_impl.h>
42#include <dt_pq.h>
43#ifndef illumos
44#include <libproc_compat.h>
45#endif
46
47#define	DT_MASK_LO 0x00000000FFFFFFFFULL
48
49/*
50 * We declare this here because (1) we need it and (2) we want to avoid a
51 * dependency on libm in libdtrace.
52 */
53static long double
54dt_fabsl(long double x)
55{
56	if (x < 0)
57		return (-x);
58
59	return (x);
60}
61
62static int
63dt_ndigits(long long val)
64{
65	int rval = 1;
66	long long cmp = 10;
67
68	if (val < 0) {
69		val = val == INT64_MIN ? INT64_MAX : -val;
70		rval++;
71	}
72
73	while (val > cmp && cmp > 0) {
74		rval++;
75		cmp *= 10;
76	}
77
78	return (rval < 4 ? 4 : rval);
79}
80
81/*
82 * 128-bit arithmetic functions needed to support the stddev() aggregating
83 * action.
84 */
85static int
86dt_gt_128(uint64_t *a, uint64_t *b)
87{
88	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89}
90
91static int
92dt_ge_128(uint64_t *a, uint64_t *b)
93{
94	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95}
96
97static int
98dt_le_128(uint64_t *a, uint64_t *b)
99{
100	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101}
102
103/*
104 * Shift the 128-bit value in a by b. If b is positive, shift left.
105 * If b is negative, shift right.
106 */
107static void
108dt_shift_128(uint64_t *a, int b)
109{
110	uint64_t mask;
111
112	if (b == 0)
113		return;
114
115	if (b < 0) {
116		b = -b;
117		if (b >= 64) {
118			a[0] = a[1] >> (b - 64);
119			a[1] = 0;
120		} else {
121			a[0] >>= b;
122			mask = 1LL << (64 - b);
123			mask -= 1;
124			a[0] |= ((a[1] & mask) << (64 - b));
125			a[1] >>= b;
126		}
127	} else {
128		if (b >= 64) {
129			a[1] = a[0] << (b - 64);
130			a[0] = 0;
131		} else {
132			a[1] <<= b;
133			mask = a[0] >> (64 - b);
134			a[1] |= mask;
135			a[0] <<= b;
136		}
137	}
138}
139
140static int
141dt_nbits_128(uint64_t *a)
142{
143	int nbits = 0;
144	uint64_t tmp[2];
145	uint64_t zero[2] = { 0, 0 };
146
147	tmp[0] = a[0];
148	tmp[1] = a[1];
149
150	dt_shift_128(tmp, -1);
151	while (dt_gt_128(tmp, zero)) {
152		dt_shift_128(tmp, -1);
153		nbits++;
154	}
155
156	return (nbits);
157}
158
159static void
160dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161{
162	uint64_t result[2];
163
164	result[0] = minuend[0] - subtrahend[0];
165	result[1] = minuend[1] - subtrahend[1] -
166	    (minuend[0] < subtrahend[0] ? 1 : 0);
167
168	difference[0] = result[0];
169	difference[1] = result[1];
170}
171
172static void
173dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174{
175	uint64_t result[2];
176
177	result[0] = addend1[0] + addend2[0];
178	result[1] = addend1[1] + addend2[1] +
179	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180
181	sum[0] = result[0];
182	sum[1] = result[1];
183}
184
185/*
186 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187 * use native multiplication on those, and then re-combine into the
188 * resulting 128-bit value.
189 *
190 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191 *     hi1 * hi2 << 64 +
192 *     hi1 * lo2 << 32 +
193 *     hi2 * lo1 << 32 +
194 *     lo1 * lo2
195 */
196static void
197dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198{
199	uint64_t hi1, hi2, lo1, lo2;
200	uint64_t tmp[2];
201
202	hi1 = factor1 >> 32;
203	hi2 = factor2 >> 32;
204
205	lo1 = factor1 & DT_MASK_LO;
206	lo2 = factor2 & DT_MASK_LO;
207
208	product[0] = lo1 * lo2;
209	product[1] = hi1 * hi2;
210
211	tmp[0] = hi1 * lo2;
212	tmp[1] = 0;
213	dt_shift_128(tmp, 32);
214	dt_add_128(product, tmp, product);
215
216	tmp[0] = hi2 * lo1;
217	tmp[1] = 0;
218	dt_shift_128(tmp, 32);
219	dt_add_128(product, tmp, product);
220}
221
222/*
223 * This is long-hand division.
224 *
225 * We initialize subtrahend by shifting divisor left as far as possible. We
226 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227 * subtract and set the appropriate bit in the result.  We then shift
228 * subtrahend right by one bit for the next comparison.
229 */
230static void
231dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232{
233	uint64_t result[2] = { 0, 0 };
234	uint64_t remainder[2];
235	uint64_t subtrahend[2];
236	uint64_t divisor_128[2];
237	uint64_t mask[2] = { 1, 0 };
238	int log = 0;
239
240	assert(divisor != 0);
241
242	divisor_128[0] = divisor;
243	divisor_128[1] = 0;
244
245	remainder[0] = dividend[0];
246	remainder[1] = dividend[1];
247
248	subtrahend[0] = divisor;
249	subtrahend[1] = 0;
250
251	while (divisor > 0) {
252		log++;
253		divisor >>= 1;
254	}
255
256	dt_shift_128(subtrahend, 128 - log);
257	dt_shift_128(mask, 128 - log);
258
259	while (dt_ge_128(remainder, divisor_128)) {
260		if (dt_ge_128(remainder, subtrahend)) {
261			dt_subtract_128(remainder, subtrahend, remainder);
262			result[0] |= mask[0];
263			result[1] |= mask[1];
264		}
265
266		dt_shift_128(subtrahend, -1);
267		dt_shift_128(mask, -1);
268	}
269
270	quotient[0] = result[0];
271	quotient[1] = result[1];
272}
273
274/*
275 * This is the long-hand method of calculating a square root.
276 * The algorithm is as follows:
277 *
278 * 1. Group the digits by 2 from the right.
279 * 2. Over the leftmost group, find the largest single-digit number
280 *    whose square is less than that group.
281 * 3. Subtract the result of the previous step (2 or 4, depending) and
282 *    bring down the next two-digit group.
283 * 4. For the result R we have so far, find the largest single-digit number
284 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285 *    (Note that this is doubling R and performing a decimal left-shift by 1
286 *    and searching for the appropriate decimal to fill the one's place.)
287 *    The value x is the next digit in the square root.
288 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289 * dealing with integers, so the above is sufficient.)
290 *
291 * In decimal, the square root of 582,734 would be calculated as so:
292 *
293 *     __7__6__3
294 *    | 58 27 34
295 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296 *      --
297 *       9 27    (Subtract and bring down the next group.)
298 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299 *      -----     the square root)
300 *         51 34 (Subtract and bring down the next group.)
301 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302 *         -----  the square root)
303 *          5 65 (remainder)
304 *
305 * The above algorithm applies similarly in binary, but note that the
306 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308 * preceding difference?
309 *
310 * In binary, the square root of 11011011 would be calculated as so:
311 *
312 *     __1__1__1__0
313 *    | 11 01 10 11
314 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315 *      --
316 *      10 01 10 11
317 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318 *      -----
319 *       1 00 10 11
320 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321 *       -------
322 *          1 01 11
323 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324 *
325 */
326static uint64_t
327dt_sqrt_128(uint64_t *square)
328{
329	uint64_t result[2] = { 0, 0 };
330	uint64_t diff[2] = { 0, 0 };
331	uint64_t one[2] = { 1, 0 };
332	uint64_t next_pair[2];
333	uint64_t next_try[2];
334	uint64_t bit_pairs, pair_shift;
335	int i;
336
337	bit_pairs = dt_nbits_128(square) / 2;
338	pair_shift = bit_pairs * 2;
339
340	for (i = 0; i <= bit_pairs; i++) {
341		/*
342		 * Bring down the next pair of bits.
343		 */
344		next_pair[0] = square[0];
345		next_pair[1] = square[1];
346		dt_shift_128(next_pair, -pair_shift);
347		next_pair[0] &= 0x3;
348		next_pair[1] = 0;
349
350		dt_shift_128(diff, 2);
351		dt_add_128(diff, next_pair, diff);
352
353		/*
354		 * next_try = R << 2 + 1
355		 */
356		next_try[0] = result[0];
357		next_try[1] = result[1];
358		dt_shift_128(next_try, 2);
359		dt_add_128(next_try, one, next_try);
360
361		if (dt_le_128(next_try, diff)) {
362			dt_subtract_128(diff, next_try, diff);
363			dt_shift_128(result, 1);
364			dt_add_128(result, one, result);
365		} else {
366			dt_shift_128(result, 1);
367		}
368
369		pair_shift -= 2;
370	}
371
372	assert(result[1] == 0);
373
374	return (result[0]);
375}
376
377uint64_t
378dt_stddev(uint64_t *data, uint64_t normal)
379{
380	uint64_t avg_of_squares[2];
381	uint64_t square_of_avg[2];
382	int64_t norm_avg;
383	uint64_t diff[2];
384
385	if (data[0] == 0)
386		return (0);
387
388	/*
389	 * The standard approximation for standard deviation is
390	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
391	 * of the average of the squares minus the square of the average.
392	 * When normalizing, we should divide the sum of x**2 by normal**2.
393	 */
394	dt_divide_128(data + 2, normal, avg_of_squares);
395	dt_divide_128(avg_of_squares, normal, avg_of_squares);
396	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
397
398	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
399
400	if (norm_avg < 0)
401		norm_avg = -norm_avg;
402
403	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
404
405	dt_subtract_128(avg_of_squares, square_of_avg, diff);
406
407	return (dt_sqrt_128(diff));
408}
409
410static int
411dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
412    dtrace_bufdesc_t *buf, size_t offs)
413{
414	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
415	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
416	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
417	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
418	const char *str = NULL;
419	static const char *e_str[2] = { " -> ", " => " };
420	static const char *r_str[2] = { " <- ", " <= " };
421	static const char *ent = "entry", *ret = "return";
422	static int entlen = 0, retlen = 0;
423	dtrace_epid_t next, id = epd->dtepd_epid;
424	int rval;
425
426	if (entlen == 0) {
427		assert(retlen == 0);
428		entlen = strlen(ent);
429		retlen = strlen(ret);
430	}
431
432	/*
433	 * If the name of the probe is "entry" or ends with "-entry", we
434	 * treat it as an entry; if it is "return" or ends with "-return",
435	 * we treat it as a return.  (This allows application-provided probes
436	 * like "method-entry" or "function-entry" to participate in flow
437	 * indentation -- without accidentally misinterpreting popular probe
438	 * names like "carpentry", "gentry" or "Coventry".)
439	 */
440	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
441	    (sub == n || sub[-1] == '-')) {
442		flow = DTRACEFLOW_ENTRY;
443		str = e_str[strcmp(p, "syscall") == 0];
444	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
445	    (sub == n || sub[-1] == '-')) {
446		flow = DTRACEFLOW_RETURN;
447		str = r_str[strcmp(p, "syscall") == 0];
448	}
449
450	/*
451	 * If we're going to indent this, we need to check the ID of our last
452	 * call.  If we're looking at the same probe ID but a different EPID,
453	 * we _don't_ want to indent.  (Yes, there are some minor holes in
454	 * this scheme -- it's a heuristic.)
455	 */
456	if (flow == DTRACEFLOW_ENTRY) {
457		if ((last != DTRACE_EPIDNONE && id != last &&
458		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
459			flow = DTRACEFLOW_NONE;
460	}
461
462	/*
463	 * If we're going to unindent this, it's more difficult to see if
464	 * we don't actually want to unindent it -- we need to look at the
465	 * _next_ EPID.
466	 */
467	if (flow == DTRACEFLOW_RETURN) {
468		offs += epd->dtepd_size;
469
470		do {
471			if (offs >= buf->dtbd_size)
472				goto out;
473
474			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
475
476			if (next == DTRACE_EPIDNONE)
477				offs += sizeof (id);
478		} while (next == DTRACE_EPIDNONE);
479
480		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
481			return (rval);
482
483		if (next != id && npd->dtpd_id == pd->dtpd_id)
484			flow = DTRACEFLOW_NONE;
485	}
486
487out:
488	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
489		data->dtpda_prefix = str;
490	} else {
491		data->dtpda_prefix = "| ";
492	}
493
494	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
495		data->dtpda_indent -= 2;
496
497	data->dtpda_flow = flow;
498
499	return (0);
500}
501
502static int
503dt_nullprobe()
504{
505	return (DTRACE_CONSUME_THIS);
506}
507
508static int
509dt_nullrec()
510{
511	return (DTRACE_CONSUME_NEXT);
512}
513
514static void
515dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
516{
517	long double val = dt_fabsl((long double)datum);
518
519	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
520		*total += val;
521		return;
522	}
523
524	/*
525	 * If we're zooming in on an aggregation, we want the height of the
526	 * highest value to be approximately 95% of total bar height -- so we
527	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
528	 * our highest value.
529	 */
530	val *= 1 / DTRACE_AGGZOOM_MAX;
531
532	if (*total < val)
533		*total = val;
534}
535
536static int
537dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
538{
539	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
540	    width ? width : 16, width ? "key" : "value",
541	    "------------- Distribution -------------", "count"));
542}
543
544static int
545dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
546    const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
547{
548	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
549	int minwidth, maxwidth, i;
550
551	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
552
553	if (action == DTRACEAGG_QUANTIZE) {
554		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
555			min--;
556
557		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
558			max++;
559
560		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
561		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
562	} else {
563		maxwidth = 8;
564		minwidth = maxwidth - 1;
565		max++;
566	}
567
568	if (dt_printf(dtp, fp, "\n%*s %*s .",
569	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
570		return (-1);
571
572	for (i = min; i <= max; i++) {
573		if (dt_printf(dtp, fp, "-") < 0)
574			return (-1);
575	}
576
577	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
578}
579
580/*
581 * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
582 * inclusive) to represent aggregations via UTF-8 -- which are expressed via
583 * 3-byte UTF-8 sequences.
584 */
585#define	DTRACE_AGGUTF8_FULL	0x2588
586#define	DTRACE_AGGUTF8_BASE	0x258f
587#define	DTRACE_AGGUTF8_LEVELS	8
588
589#define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
590#define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
591#define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
592
593static int
594dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
595    uint64_t normal, long double total)
596{
597	uint_t len = 40, i, whole, partial;
598	long double f = (dt_fabsl((long double)val) * len) / total;
599	const char *spaces = "                                        ";
600
601	whole = (uint_t)f;
602	partial = (uint_t)((f - (long double)(uint_t)f) *
603	    (long double)DTRACE_AGGUTF8_LEVELS);
604
605	if (dt_printf(dtp, fp, "|") < 0)
606		return (-1);
607
608	for (i = 0; i < whole; i++) {
609		if (dt_printf(dtp, fp, "%c%c%c",
610		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
611		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
612		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
613			return (-1);
614	}
615
616	if (partial != 0) {
617		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
618
619		if (dt_printf(dtp, fp, "%c%c%c",
620		    DTRACE_AGGUTF8_BYTE0(partial),
621		    DTRACE_AGGUTF8_BYTE1(partial),
622		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
623			return (-1);
624
625		i++;
626	}
627
628	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
629	    (long long)val / normal));
630}
631
632static int
633dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
634    uint64_t normal, long double total, char positives, char negatives)
635{
636	long double f;
637	uint_t depth, len = 40;
638
639	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
640	const char *spaces = "                                        ";
641
642	assert(strlen(ats) == len && strlen(spaces) == len);
643	assert(!(total == 0 && (positives || negatives)));
644	assert(!(val < 0 && !negatives));
645	assert(!(val > 0 && !positives));
646	assert(!(val != 0 && total == 0));
647
648	if (!negatives) {
649		if (positives) {
650			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
651				return (dt_print_quantline_utf8(dtp, fp, val,
652				    normal, total));
653			}
654
655			f = (dt_fabsl((long double)val) * len) / total;
656			depth = (uint_t)(f + 0.5);
657		} else {
658			depth = 0;
659		}
660
661		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
662		    spaces + depth, (long long)val / normal));
663	}
664
665	if (!positives) {
666		f = (dt_fabsl((long double)val) * len) / total;
667		depth = (uint_t)(f + 0.5);
668
669		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
670		    ats + len - depth, (long long)val / normal));
671	}
672
673	/*
674	 * If we're here, we have both positive and negative bucket values.
675	 * To express this graphically, we're going to generate both positive
676	 * and negative bars separated by a centerline.  These bars are half
677	 * the size of normal quantize()/lquantize() bars, so we divide the
678	 * length in half before calculating the bar length.
679	 */
680	len /= 2;
681	ats = &ats[len];
682	spaces = &spaces[len];
683
684	f = (dt_fabsl((long double)val) * len) / total;
685	depth = (uint_t)(f + 0.5);
686
687	if (val <= 0) {
688		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
689		    ats + len - depth, len, "", (long long)val / normal));
690	} else {
691		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
692		    ats + len - depth, spaces + depth,
693		    (long long)val / normal));
694	}
695}
696
697/*
698 * As with UTF-8 printing of aggregations, we use a subset of the Unicode
699 * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
700 * aggregation.
701 */
702#define	DTRACE_AGGPACK_BASE	0x2581
703#define	DTRACE_AGGPACK_LEVELS	8
704
705static int
706dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
707    long double datum, long double total)
708{
709	static boolean_t utf8_checked = B_FALSE;
710	static boolean_t utf8;
711	char *ascii = "__xxxxXX";
712	char *neg = "vvvvVV";
713	unsigned int len;
714	long double val;
715
716	if (!utf8_checked) {
717		char *term;
718
719		/*
720		 * We want to determine if we can reasonably emit UTF-8 for our
721		 * packed aggregation.  To do this, we will check for terminals
722		 * that are known to be primitive to emit UTF-8 on these.
723		 */
724		utf8_checked = B_TRUE;
725
726		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
727			utf8 = B_FALSE;
728		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
729			utf8 = B_TRUE;
730		} else if ((term = getenv("TERM")) != NULL &&
731		    (strcmp(term, "sun") == 0 ||
732		    strcmp(term, "sun-color") == 0 ||
733		    strcmp(term, "dumb") == 0)) {
734			utf8 = B_FALSE;
735		} else {
736			utf8 = B_TRUE;
737		}
738	}
739
740	if (datum == 0)
741		return (dt_printf(dtp, fp, " "));
742
743	if (datum < 0) {
744		len = strlen(neg);
745		val = dt_fabsl(datum * (len - 1)) / total;
746		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
747	}
748
749	if (utf8) {
750		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
751		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
752
753		return (dt_printf(dtp, fp, "%c%c%c",
754		    DTRACE_AGGUTF8_BYTE0(block),
755		    DTRACE_AGGUTF8_BYTE1(block),
756		    DTRACE_AGGUTF8_BYTE2(block)));
757	}
758
759	len = strlen(ascii);
760	val = (datum * (len - 1)) / total;
761	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
762}
763
764int
765dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
766    size_t size, uint64_t normal)
767{
768	const int64_t *data = addr;
769	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
770	long double total = 0;
771	char positives = 0, negatives = 0;
772
773	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
774		return (dt_set_errno(dtp, EDT_DMISMATCH));
775
776	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
777		first_bin++;
778
779	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
780		/*
781		 * There isn't any data.  This is possible if the aggregation
782		 * has been clear()'d or if negative increment values have been
783		 * used.  Regardless, we'll print the buckets around 0.
784		 */
785		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
786		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
787	} else {
788		if (first_bin > 0)
789			first_bin--;
790
791		while (last_bin > 0 && data[last_bin] == 0)
792			last_bin--;
793
794		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
795			last_bin++;
796	}
797
798	for (i = first_bin; i <= last_bin; i++) {
799		positives |= (data[i] > 0);
800		negatives |= (data[i] < 0);
801		dt_quantize_total(dtp, data[i], &total);
802	}
803
804	if (dt_print_quanthdr(dtp, fp, 0) < 0)
805		return (-1);
806
807	for (i = first_bin; i <= last_bin; i++) {
808		if (dt_printf(dtp, fp, "%16lld ",
809		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
810			return (-1);
811
812		if (dt_print_quantline(dtp, fp, data[i], normal, total,
813		    positives, negatives) < 0)
814			return (-1);
815	}
816
817	return (0);
818}
819
820int
821dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
822    size_t size, const dtrace_aggdata_t *aggdata)
823{
824	const int64_t *data = addr;
825	long double total = 0, count = 0;
826	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
827	int64_t minval, maxval;
828
829	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
830		return (dt_set_errno(dtp, EDT_DMISMATCH));
831
832	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
833		min--;
834
835	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
836		max++;
837
838	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
839	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
840
841	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
842	    (long long)minval) < 0)
843		return (-1);
844
845	for (i = min; i <= max; i++) {
846		dt_quantize_total(dtp, data[i], &total);
847		count += data[i];
848	}
849
850	for (i = min; i <= max; i++) {
851		if (dt_print_packed(dtp, fp, data[i], total) < 0)
852			return (-1);
853	}
854
855	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
856	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
857		return (-1);
858
859	return (0);
860}
861
862int
863dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
864    size_t size, uint64_t normal)
865{
866	const int64_t *data = addr;
867	int i, first_bin, last_bin, base;
868	uint64_t arg;
869	long double total = 0;
870	uint16_t step, levels;
871	char positives = 0, negatives = 0;
872
873	if (size < sizeof (uint64_t))
874		return (dt_set_errno(dtp, EDT_DMISMATCH));
875
876	arg = *data++;
877	size -= sizeof (uint64_t);
878
879	base = DTRACE_LQUANTIZE_BASE(arg);
880	step = DTRACE_LQUANTIZE_STEP(arg);
881	levels = DTRACE_LQUANTIZE_LEVELS(arg);
882
883	first_bin = 0;
884	last_bin = levels + 1;
885
886	if (size != sizeof (uint64_t) * (levels + 2))
887		return (dt_set_errno(dtp, EDT_DMISMATCH));
888
889	while (first_bin <= levels + 1 && data[first_bin] == 0)
890		first_bin++;
891
892	if (first_bin > levels + 1) {
893		first_bin = 0;
894		last_bin = 2;
895	} else {
896		if (first_bin > 0)
897			first_bin--;
898
899		while (last_bin > 0 && data[last_bin] == 0)
900			last_bin--;
901
902		if (last_bin < levels + 1)
903			last_bin++;
904	}
905
906	for (i = first_bin; i <= last_bin; i++) {
907		positives |= (data[i] > 0);
908		negatives |= (data[i] < 0);
909		dt_quantize_total(dtp, data[i], &total);
910	}
911
912	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
913	    "------------- Distribution -------------", "count") < 0)
914		return (-1);
915
916	for (i = first_bin; i <= last_bin; i++) {
917		char c[32];
918		int err;
919
920		if (i == 0) {
921			(void) snprintf(c, sizeof (c), "< %d", base);
922			err = dt_printf(dtp, fp, "%16s ", c);
923		} else if (i == levels + 1) {
924			(void) snprintf(c, sizeof (c), ">= %d",
925			    base + (levels * step));
926			err = dt_printf(dtp, fp, "%16s ", c);
927		} else {
928			err = dt_printf(dtp, fp, "%16d ",
929			    base + (i - 1) * step);
930		}
931
932		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
933		    total, positives, negatives) < 0)
934			return (-1);
935	}
936
937	return (0);
938}
939
940/*ARGSUSED*/
941int
942dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
943    size_t size, const dtrace_aggdata_t *aggdata)
944{
945	const int64_t *data = addr;
946	long double total = 0, count = 0;
947	int min, max, base, err;
948	uint64_t arg;
949	uint16_t step, levels;
950	char c[32];
951	unsigned int i;
952
953	if (size < sizeof (uint64_t))
954		return (dt_set_errno(dtp, EDT_DMISMATCH));
955
956	arg = *data++;
957	size -= sizeof (uint64_t);
958
959	base = DTRACE_LQUANTIZE_BASE(arg);
960	step = DTRACE_LQUANTIZE_STEP(arg);
961	levels = DTRACE_LQUANTIZE_LEVELS(arg);
962
963	if (size != sizeof (uint64_t) * (levels + 2))
964		return (dt_set_errno(dtp, EDT_DMISMATCH));
965
966	min = 0;
967	max = levels + 1;
968
969	if (min == 0) {
970		(void) snprintf(c, sizeof (c), "< %d", base);
971		err = dt_printf(dtp, fp, "%8s :", c);
972	} else {
973		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
974	}
975
976	if (err < 0)
977		return (-1);
978
979	for (i = min; i <= max; i++) {
980		dt_quantize_total(dtp, data[i], &total);
981		count += data[i];
982	}
983
984	for (i = min; i <= max; i++) {
985		if (dt_print_packed(dtp, fp, data[i], total) < 0)
986			return (-1);
987	}
988
989	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
990	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
991}
992
993int
994dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
995    size_t size, uint64_t normal)
996{
997	int i, first_bin, last_bin, bin = 1, order, levels;
998	uint16_t factor, low, high, nsteps;
999	const int64_t *data = addr;
1000	int64_t value = 1, next, step;
1001	char positives = 0, negatives = 0;
1002	long double total = 0;
1003	uint64_t arg;
1004	char c[32];
1005
1006	if (size < sizeof (uint64_t))
1007		return (dt_set_errno(dtp, EDT_DMISMATCH));
1008
1009	arg = *data++;
1010	size -= sizeof (uint64_t);
1011
1012	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1013	low = DTRACE_LLQUANTIZE_LOW(arg);
1014	high = DTRACE_LLQUANTIZE_HIGH(arg);
1015	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1016
1017	/*
1018	 * We don't expect to be handed invalid llquantize() parameters here,
1019	 * but sanity check them (to a degree) nonetheless.
1020	 */
1021	if (size > INT32_MAX || factor < 2 || low >= high ||
1022	    nsteps == 0 || factor > nsteps)
1023		return (dt_set_errno(dtp, EDT_DMISMATCH));
1024
1025	levels = (int)size / sizeof (uint64_t);
1026
1027	first_bin = 0;
1028	last_bin = levels - 1;
1029
1030	while (first_bin < levels && data[first_bin] == 0)
1031		first_bin++;
1032
1033	if (first_bin == levels) {
1034		first_bin = 0;
1035		last_bin = 1;
1036	} else {
1037		if (first_bin > 0)
1038			first_bin--;
1039
1040		while (last_bin > 0 && data[last_bin] == 0)
1041			last_bin--;
1042
1043		if (last_bin < levels - 1)
1044			last_bin++;
1045	}
1046
1047	for (i = first_bin; i <= last_bin; i++) {
1048		positives |= (data[i] > 0);
1049		negatives |= (data[i] < 0);
1050		dt_quantize_total(dtp, data[i], &total);
1051	}
1052
1053	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1054	    "------------- Distribution -------------", "count") < 0)
1055		return (-1);
1056
1057	for (order = 0; order < low; order++)
1058		value *= factor;
1059
1060	next = value * factor;
1061	step = next > nsteps ? next / nsteps : 1;
1062
1063	if (first_bin == 0) {
1064		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1065
1066		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1067			return (-1);
1068
1069		if (dt_print_quantline(dtp, fp, data[0], normal,
1070		    total, positives, negatives) < 0)
1071			return (-1);
1072	}
1073
1074	while (order <= high) {
1075		if (bin >= first_bin && bin <= last_bin) {
1076			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1077				return (-1);
1078
1079			if (dt_print_quantline(dtp, fp, data[bin],
1080			    normal, total, positives, negatives) < 0)
1081				return (-1);
1082		}
1083
1084		assert(value < next);
1085		bin++;
1086
1087		if ((value += step) != next)
1088			continue;
1089
1090		next = value * factor;
1091		step = next > nsteps ? next / nsteps : 1;
1092		order++;
1093	}
1094
1095	if (last_bin < bin)
1096		return (0);
1097
1098	assert(last_bin == bin);
1099	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1100
1101	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1102		return (-1);
1103
1104	return (dt_print_quantline(dtp, fp, data[bin], normal,
1105	    total, positives, negatives));
1106}
1107
1108/*ARGSUSED*/
1109static int
1110dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1111    size_t size, uint64_t normal)
1112{
1113	/* LINTED - alignment */
1114	int64_t *data = (int64_t *)addr;
1115
1116	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1117	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1118}
1119
1120/*ARGSUSED*/
1121static int
1122dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1123    size_t size, uint64_t normal)
1124{
1125	/* LINTED - alignment */
1126	uint64_t *data = (uint64_t *)addr;
1127
1128	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1129	    (unsigned long long) dt_stddev(data, normal) : 0));
1130}
1131
1132/*ARGSUSED*/
1133static int
1134dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1135    size_t nbytes, int width, int quiet, int forceraw)
1136{
1137	/*
1138	 * If the byte stream is a series of printable characters, followed by
1139	 * a terminating byte, we print it out as a string.  Otherwise, we
1140	 * assume that it's something else and just print the bytes.
1141	 */
1142	int i, j, margin = 5;
1143	char *c = (char *)addr;
1144
1145	if (nbytes == 0)
1146		return (0);
1147
1148	if (forceraw)
1149		goto raw;
1150
1151	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1152		goto raw;
1153
1154	for (i = 0; i < nbytes; i++) {
1155		/*
1156		 * We define a "printable character" to be one for which
1157		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1158		 * or a character which is either backspace or the bell.
1159		 * Backspace and the bell are regrettably special because
1160		 * they fail the first two tests -- and yet they are entirely
1161		 * printable.  These are the only two control characters that
1162		 * have meaning for the terminal and for which isprint(3C) and
1163		 * isspace(3C) return 0.
1164		 */
1165		if (isprint(c[i]) || isspace(c[i]) ||
1166		    c[i] == '\b' || c[i] == '\a')
1167			continue;
1168
1169		if (c[i] == '\0' && i > 0) {
1170			/*
1171			 * This looks like it might be a string.  Before we
1172			 * assume that it is indeed a string, check the
1173			 * remainder of the byte range; if it contains
1174			 * additional non-nul characters, we'll assume that
1175			 * it's a binary stream that just happens to look like
1176			 * a string, and we'll print out the individual bytes.
1177			 */
1178			for (j = i + 1; j < nbytes; j++) {
1179				if (c[j] != '\0')
1180					break;
1181			}
1182
1183			if (j != nbytes)
1184				break;
1185
1186			if (quiet) {
1187				return (dt_printf(dtp, fp, "%s", c));
1188			} else {
1189				return (dt_printf(dtp, fp, " %s%*s",
1190				    width < 0 ? " " : "", width, c));
1191			}
1192		}
1193
1194		break;
1195	}
1196
1197	if (i == nbytes) {
1198		/*
1199		 * The byte range is all printable characters, but there is
1200		 * no trailing nul byte.  We'll assume that it's a string and
1201		 * print it as such.
1202		 */
1203		char *s = alloca(nbytes + 1);
1204		bcopy(c, s, nbytes);
1205		s[nbytes] = '\0';
1206		return (dt_printf(dtp, fp, "  %-*s", width, s));
1207	}
1208
1209raw:
1210	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1211		return (-1);
1212
1213	for (i = 0; i < 16; i++)
1214		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1215			return (-1);
1216
1217	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1218		return (-1);
1219
1220
1221	for (i = 0; i < nbytes; i += 16) {
1222		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1223			return (-1);
1224
1225		for (j = i; j < i + 16 && j < nbytes; j++) {
1226			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1227				return (-1);
1228		}
1229
1230		while (j++ % 16) {
1231			if (dt_printf(dtp, fp, "   ") < 0)
1232				return (-1);
1233		}
1234
1235		if (dt_printf(dtp, fp, "  ") < 0)
1236			return (-1);
1237
1238		for (j = i; j < i + 16 && j < nbytes; j++) {
1239			if (dt_printf(dtp, fp, "%c",
1240			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1241				return (-1);
1242		}
1243
1244		if (dt_printf(dtp, fp, "\n") < 0)
1245			return (-1);
1246	}
1247
1248	return (0);
1249}
1250
1251int
1252dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1253    caddr_t addr, int depth, int size)
1254{
1255	dtrace_syminfo_t dts;
1256	GElf_Sym sym;
1257	int i, indent;
1258	char c[PATH_MAX * 2];
1259	uint64_t pc;
1260
1261	if (dt_printf(dtp, fp, "\n") < 0)
1262		return (-1);
1263
1264	if (format == NULL)
1265		format = "%s";
1266
1267	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1268		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1269	else
1270		indent = _dtrace_stkindent;
1271
1272	for (i = 0; i < depth; i++) {
1273		switch (size) {
1274		case sizeof (uint32_t):
1275			/* LINTED - alignment */
1276			pc = *((uint32_t *)addr);
1277			break;
1278
1279		case sizeof (uint64_t):
1280			/* LINTED - alignment */
1281			pc = *((uint64_t *)addr);
1282			break;
1283
1284		default:
1285			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1286		}
1287
1288		if (pc == 0)
1289			break;
1290
1291		addr += size;
1292
1293		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1294			return (-1);
1295
1296		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1297			if (pc > sym.st_value) {
1298				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1299				    dts.dts_object, dts.dts_name,
1300				    (u_longlong_t)(pc - sym.st_value));
1301			} else {
1302				(void) snprintf(c, sizeof (c), "%s`%s",
1303				    dts.dts_object, dts.dts_name);
1304			}
1305		} else {
1306			/*
1307			 * We'll repeat the lookup, but this time we'll specify
1308			 * a NULL GElf_Sym -- indicating that we're only
1309			 * interested in the containing module.
1310			 */
1311			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1312				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1313				    dts.dts_object, (u_longlong_t)pc);
1314			} else {
1315				(void) snprintf(c, sizeof (c), "0x%llx",
1316				    (u_longlong_t)pc);
1317			}
1318		}
1319
1320		if (dt_printf(dtp, fp, format, c) < 0)
1321			return (-1);
1322
1323		if (dt_printf(dtp, fp, "\n") < 0)
1324			return (-1);
1325	}
1326
1327	return (0);
1328}
1329
1330int
1331dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1332    caddr_t addr, uint64_t arg)
1333{
1334	/* LINTED - alignment */
1335	uint64_t *pc = (uint64_t *)addr;
1336	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1337	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1338	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1339	const char *str = strsize ? strbase : NULL;
1340	int err = 0;
1341
1342	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1343	struct ps_prochandle *P;
1344	GElf_Sym sym;
1345	int i, indent;
1346	pid_t pid;
1347
1348	if (depth == 0)
1349		return (0);
1350
1351	pid = (pid_t)*pc++;
1352
1353	if (dt_printf(dtp, fp, "\n") < 0)
1354		return (-1);
1355
1356	if (format == NULL)
1357		format = "%s";
1358
1359	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1360		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1361	else
1362		indent = _dtrace_stkindent;
1363
1364	/*
1365	 * Ultimately, we need to add an entry point in the library vector for
1366	 * determining <symbol, offset> from <pid, address>.  For now, if
1367	 * this is a vector open, we just print the raw address or string.
1368	 */
1369	if (dtp->dt_vector == NULL)
1370		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1371	else
1372		P = NULL;
1373
1374	if (P != NULL)
1375		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1376
1377	for (i = 0; i < depth && pc[i] != 0; i++) {
1378		const prmap_t *map;
1379
1380		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1381			break;
1382
1383		if (P != NULL && Plookup_by_addr(P, pc[i],
1384		    name, sizeof (name), &sym) == 0) {
1385			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1386
1387			if (pc[i] > sym.st_value) {
1388				(void) snprintf(c, sizeof (c),
1389				    "%s`%s+0x%llx", dt_basename(objname), name,
1390				    (u_longlong_t)(pc[i] - sym.st_value));
1391			} else {
1392				(void) snprintf(c, sizeof (c),
1393				    "%s`%s", dt_basename(objname), name);
1394			}
1395		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1396		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1397		    (map->pr_mflags & MA_WRITE)))) {
1398			/*
1399			 * If the current string pointer in the string table
1400			 * does not point to an empty string _and_ the program
1401			 * counter falls in a writable region, we'll use the
1402			 * string from the string table instead of the raw
1403			 * address.  This last condition is necessary because
1404			 * some (broken) ustack helpers will return a string
1405			 * even for a program counter that they can't
1406			 * identify.  If we have a string for a program
1407			 * counter that falls in a segment that isn't
1408			 * writable, we assume that we have fallen into this
1409			 * case and we refuse to use the string.
1410			 */
1411			(void) snprintf(c, sizeof (c), "%s", str);
1412		} else {
1413			if (P != NULL && Pobjname(P, pc[i], objname,
1414			    sizeof (objname)) != 0) {
1415				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1416				    dt_basename(objname), (u_longlong_t)pc[i]);
1417			} else {
1418				(void) snprintf(c, sizeof (c), "0x%llx",
1419				    (u_longlong_t)pc[i]);
1420			}
1421		}
1422
1423		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1424			break;
1425
1426		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1427			break;
1428
1429		if (str != NULL && str[0] == '@') {
1430			/*
1431			 * If the first character of the string is an "at" sign,
1432			 * then the string is inferred to be an annotation --
1433			 * and it is printed out beneath the frame and offset
1434			 * with brackets.
1435			 */
1436			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1437				break;
1438
1439			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1440
1441			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1442				break;
1443
1444			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1445				break;
1446		}
1447
1448		if (str != NULL) {
1449			str += strlen(str) + 1;
1450			if (str - strbase >= strsize)
1451				str = NULL;
1452		}
1453	}
1454
1455	if (P != NULL) {
1456		dt_proc_unlock(dtp, P);
1457		dt_proc_release(dtp, P);
1458	}
1459
1460	return (err);
1461}
1462
1463static int
1464dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1465{
1466	/* LINTED - alignment */
1467	uint64_t pid = ((uint64_t *)addr)[0];
1468	/* LINTED - alignment */
1469	uint64_t pc = ((uint64_t *)addr)[1];
1470	const char *format = "  %-50s";
1471	char *s;
1472	int n, len = 256;
1473
1474	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1475		struct ps_prochandle *P;
1476
1477		if ((P = dt_proc_grab(dtp, pid,
1478		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1479			GElf_Sym sym;
1480
1481			dt_proc_lock(dtp, P);
1482
1483			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1484				pc = sym.st_value;
1485
1486			dt_proc_unlock(dtp, P);
1487			dt_proc_release(dtp, P);
1488		}
1489	}
1490
1491	do {
1492		n = len;
1493		s = alloca(n);
1494	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1495
1496	return (dt_printf(dtp, fp, format, s));
1497}
1498
1499int
1500dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1501{
1502	/* LINTED - alignment */
1503	uint64_t pid = ((uint64_t *)addr)[0];
1504	/* LINTED - alignment */
1505	uint64_t pc = ((uint64_t *)addr)[1];
1506	int err = 0;
1507
1508	char objname[PATH_MAX], c[PATH_MAX * 2];
1509	struct ps_prochandle *P;
1510
1511	if (format == NULL)
1512		format = "  %-50s";
1513
1514	/*
1515	 * See the comment in dt_print_ustack() for the rationale for
1516	 * printing raw addresses in the vectored case.
1517	 */
1518	if (dtp->dt_vector == NULL)
1519		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1520	else
1521		P = NULL;
1522
1523	if (P != NULL)
1524		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1525
1526	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1527		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1528	} else {
1529		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1530	}
1531
1532	err = dt_printf(dtp, fp, format, c);
1533
1534	if (P != NULL) {
1535		dt_proc_unlock(dtp, P);
1536		dt_proc_release(dtp, P);
1537	}
1538
1539	return (err);
1540}
1541
1542static int
1543dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1544{
1545	/* LINTED - alignment */
1546	uint64_t pc = *((uint64_t *)addr);
1547	dtrace_syminfo_t dts;
1548	GElf_Sym sym;
1549	char c[PATH_MAX * 2];
1550
1551	if (format == NULL)
1552		format = "  %-50s";
1553
1554	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1555		(void) snprintf(c, sizeof (c), "%s`%s",
1556		    dts.dts_object, dts.dts_name);
1557	} else {
1558		/*
1559		 * We'll repeat the lookup, but this time we'll specify a
1560		 * NULL GElf_Sym -- indicating that we're only interested in
1561		 * the containing module.
1562		 */
1563		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1564			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1565			    dts.dts_object, (u_longlong_t)pc);
1566		} else {
1567			(void) snprintf(c, sizeof (c), "0x%llx",
1568			    (u_longlong_t)pc);
1569		}
1570	}
1571
1572	if (dt_printf(dtp, fp, format, c) < 0)
1573		return (-1);
1574
1575	return (0);
1576}
1577
1578int
1579dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1580{
1581	/* LINTED - alignment */
1582	uint64_t pc = *((uint64_t *)addr);
1583	dtrace_syminfo_t dts;
1584	char c[PATH_MAX * 2];
1585
1586	if (format == NULL)
1587		format = "  %-50s";
1588
1589	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1590		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1591	} else {
1592		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1593	}
1594
1595	if (dt_printf(dtp, fp, format, c) < 0)
1596		return (-1);
1597
1598	return (0);
1599}
1600
1601static int
1602dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1603{
1604	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1605	size_t nbytes = *((uintptr_t *) addr);
1606
1607	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1608	    nbytes, 50, quiet, 1));
1609}
1610
1611typedef struct dt_normal {
1612	dtrace_aggvarid_t dtnd_id;
1613	uint64_t dtnd_normal;
1614} dt_normal_t;
1615
1616static int
1617dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1618{
1619	dt_normal_t *normal = arg;
1620	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1621	dtrace_aggvarid_t id = normal->dtnd_id;
1622
1623	if (agg->dtagd_nrecs == 0)
1624		return (DTRACE_AGGWALK_NEXT);
1625
1626	if (agg->dtagd_varid != id)
1627		return (DTRACE_AGGWALK_NEXT);
1628
1629	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1630	return (DTRACE_AGGWALK_NORMALIZE);
1631}
1632
1633static int
1634dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1635{
1636	dt_normal_t normal;
1637	caddr_t addr;
1638
1639	/*
1640	 * We (should) have two records:  the aggregation ID followed by the
1641	 * normalization value.
1642	 */
1643	addr = base + rec->dtrd_offset;
1644
1645	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1646		return (dt_set_errno(dtp, EDT_BADNORMAL));
1647
1648	/* LINTED - alignment */
1649	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1650	rec++;
1651
1652	if (rec->dtrd_action != DTRACEACT_LIBACT)
1653		return (dt_set_errno(dtp, EDT_BADNORMAL));
1654
1655	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1656		return (dt_set_errno(dtp, EDT_BADNORMAL));
1657
1658	addr = base + rec->dtrd_offset;
1659
1660	switch (rec->dtrd_size) {
1661	case sizeof (uint64_t):
1662		/* LINTED - alignment */
1663		normal.dtnd_normal = *((uint64_t *)addr);
1664		break;
1665	case sizeof (uint32_t):
1666		/* LINTED - alignment */
1667		normal.dtnd_normal = *((uint32_t *)addr);
1668		break;
1669	case sizeof (uint16_t):
1670		/* LINTED - alignment */
1671		normal.dtnd_normal = *((uint16_t *)addr);
1672		break;
1673	case sizeof (uint8_t):
1674		normal.dtnd_normal = *((uint8_t *)addr);
1675		break;
1676	default:
1677		return (dt_set_errno(dtp, EDT_BADNORMAL));
1678	}
1679
1680	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1681
1682	return (0);
1683}
1684
1685static int
1686dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1687{
1688	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1689	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1690
1691	if (agg->dtagd_nrecs == 0)
1692		return (DTRACE_AGGWALK_NEXT);
1693
1694	if (agg->dtagd_varid != id)
1695		return (DTRACE_AGGWALK_NEXT);
1696
1697	return (DTRACE_AGGWALK_DENORMALIZE);
1698}
1699
1700static int
1701dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1702{
1703	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1704	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1705
1706	if (agg->dtagd_nrecs == 0)
1707		return (DTRACE_AGGWALK_NEXT);
1708
1709	if (agg->dtagd_varid != id)
1710		return (DTRACE_AGGWALK_NEXT);
1711
1712	return (DTRACE_AGGWALK_CLEAR);
1713}
1714
1715typedef struct dt_trunc {
1716	dtrace_aggvarid_t dttd_id;
1717	uint64_t dttd_remaining;
1718} dt_trunc_t;
1719
1720static int
1721dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1722{
1723	dt_trunc_t *trunc = arg;
1724	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1725	dtrace_aggvarid_t id = trunc->dttd_id;
1726
1727	if (agg->dtagd_nrecs == 0)
1728		return (DTRACE_AGGWALK_NEXT);
1729
1730	if (agg->dtagd_varid != id)
1731		return (DTRACE_AGGWALK_NEXT);
1732
1733	if (trunc->dttd_remaining == 0)
1734		return (DTRACE_AGGWALK_REMOVE);
1735
1736	trunc->dttd_remaining--;
1737	return (DTRACE_AGGWALK_NEXT);
1738}
1739
1740static int
1741dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1742{
1743	dt_trunc_t trunc;
1744	caddr_t addr;
1745	int64_t remaining;
1746	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1747
1748	/*
1749	 * We (should) have two records:  the aggregation ID followed by the
1750	 * number of aggregation entries after which the aggregation is to be
1751	 * truncated.
1752	 */
1753	addr = base + rec->dtrd_offset;
1754
1755	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1756		return (dt_set_errno(dtp, EDT_BADTRUNC));
1757
1758	/* LINTED - alignment */
1759	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1760	rec++;
1761
1762	if (rec->dtrd_action != DTRACEACT_LIBACT)
1763		return (dt_set_errno(dtp, EDT_BADTRUNC));
1764
1765	if (rec->dtrd_arg != DT_ACT_TRUNC)
1766		return (dt_set_errno(dtp, EDT_BADTRUNC));
1767
1768	addr = base + rec->dtrd_offset;
1769
1770	switch (rec->dtrd_size) {
1771	case sizeof (uint64_t):
1772		/* LINTED - alignment */
1773		remaining = *((int64_t *)addr);
1774		break;
1775	case sizeof (uint32_t):
1776		/* LINTED - alignment */
1777		remaining = *((int32_t *)addr);
1778		break;
1779	case sizeof (uint16_t):
1780		/* LINTED - alignment */
1781		remaining = *((int16_t *)addr);
1782		break;
1783	case sizeof (uint8_t):
1784		remaining = *((int8_t *)addr);
1785		break;
1786	default:
1787		return (dt_set_errno(dtp, EDT_BADNORMAL));
1788	}
1789
1790	if (remaining < 0) {
1791		func = dtrace_aggregate_walk_valsorted;
1792		remaining = -remaining;
1793	} else {
1794		func = dtrace_aggregate_walk_valrevsorted;
1795	}
1796
1797	assert(remaining >= 0);
1798	trunc.dttd_remaining = remaining;
1799
1800	(void) func(dtp, dt_trunc_agg, &trunc);
1801
1802	return (0);
1803}
1804
1805static int
1806dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1807    caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1808    uint64_t normal, dt_print_aggdata_t *pd)
1809{
1810	int err, width;
1811	dtrace_actkind_t act = rec->dtrd_action;
1812	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1813	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1814
1815	static struct {
1816		size_t size;
1817		int width;
1818		int packedwidth;
1819	} *fmt, fmttab[] = {
1820		{ sizeof (uint8_t),	3,	3 },
1821		{ sizeof (uint16_t),	5,	5 },
1822		{ sizeof (uint32_t),	8,	8 },
1823		{ sizeof (uint64_t),	16,	16 },
1824		{ 0,			-50,	16 }
1825	};
1826
1827	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1828		dtrace_recdesc_t *r;
1829
1830		width = 0;
1831
1832		/*
1833		 * To print our quantization header for either an agghist or
1834		 * aggpack aggregation, we need to iterate through all of our
1835		 * of our records to determine their width.
1836		 */
1837		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1838			for (fmt = fmttab; fmt->size &&
1839			    fmt->size != r->dtrd_size; fmt++)
1840				continue;
1841
1842			width += fmt->packedwidth + 1;
1843		}
1844
1845		if (pd->dtpa_agghist) {
1846			if (dt_print_quanthdr(dtp, fp, width) < 0)
1847				return (-1);
1848		} else {
1849			if (dt_print_quanthdr_packed(dtp, fp,
1850			    width, aggdata, r->dtrd_action) < 0)
1851				return (-1);
1852		}
1853
1854		pd->dtpa_agghisthdr = agg->dtagd_varid;
1855	}
1856
1857	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1858		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1859		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1860		int64_t val;
1861
1862		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1863		val = (long long)*((uint64_t *)addr);
1864
1865		if (dt_printf(dtp, fp, " ") < 0)
1866			return (-1);
1867
1868		return (dt_print_quantline(dtp, fp, val, normal,
1869		    aggdata->dtada_total, positives, negatives));
1870	}
1871
1872	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1873		switch (act) {
1874		case DTRACEAGG_QUANTIZE:
1875			return (dt_print_quantize_packed(dtp,
1876			    fp, addr, size, aggdata));
1877		case DTRACEAGG_LQUANTIZE:
1878			return (dt_print_lquantize_packed(dtp,
1879			    fp, addr, size, aggdata));
1880		default:
1881			break;
1882		}
1883	}
1884
1885	switch (act) {
1886	case DTRACEACT_STACK:
1887		return (dt_print_stack(dtp, fp, NULL, addr,
1888		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1889
1890	case DTRACEACT_USTACK:
1891	case DTRACEACT_JSTACK:
1892		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1893
1894	case DTRACEACT_USYM:
1895	case DTRACEACT_UADDR:
1896		return (dt_print_usym(dtp, fp, addr, act));
1897
1898	case DTRACEACT_UMOD:
1899		return (dt_print_umod(dtp, fp, NULL, addr));
1900
1901	case DTRACEACT_SYM:
1902		return (dt_print_sym(dtp, fp, NULL, addr));
1903
1904	case DTRACEACT_MOD:
1905		return (dt_print_mod(dtp, fp, NULL, addr));
1906
1907	case DTRACEAGG_QUANTIZE:
1908		return (dt_print_quantize(dtp, fp, addr, size, normal));
1909
1910	case DTRACEAGG_LQUANTIZE:
1911		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1912
1913	case DTRACEAGG_LLQUANTIZE:
1914		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1915
1916	case DTRACEAGG_AVG:
1917		return (dt_print_average(dtp, fp, addr, size, normal));
1918
1919	case DTRACEAGG_STDDEV:
1920		return (dt_print_stddev(dtp, fp, addr, size, normal));
1921
1922	default:
1923		break;
1924	}
1925
1926	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1927		continue;
1928
1929	width = packed ? fmt->packedwidth : fmt->width;
1930
1931	switch (size) {
1932	case sizeof (uint64_t):
1933		err = dt_printf(dtp, fp, " %*lld", width,
1934		    /* LINTED - alignment */
1935		    (long long)*((uint64_t *)addr) / normal);
1936		break;
1937	case sizeof (uint32_t):
1938		/* LINTED - alignment */
1939		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1940		    (uint32_t)normal);
1941		break;
1942	case sizeof (uint16_t):
1943		/* LINTED - alignment */
1944		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1945		    (uint32_t)normal);
1946		break;
1947	case sizeof (uint8_t):
1948		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1949		    (uint32_t)normal);
1950		break;
1951	default:
1952		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1953		break;
1954	}
1955
1956	return (err);
1957}
1958
1959int
1960dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1961{
1962	int i, aggact = 0;
1963	dt_print_aggdata_t *pd = arg;
1964	const dtrace_aggdata_t *aggdata = aggsdata[0];
1965	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1966	FILE *fp = pd->dtpa_fp;
1967	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1968	dtrace_recdesc_t *rec;
1969	dtrace_actkind_t act;
1970	caddr_t addr;
1971	size_t size;
1972
1973	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1974	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1975
1976	/*
1977	 * Iterate over each record description in the key, printing the traced
1978	 * data, skipping the first datum (the tuple member created by the
1979	 * compiler).
1980	 */
1981	for (i = 1; i < agg->dtagd_nrecs; i++) {
1982		rec = &agg->dtagd_rec[i];
1983		act = rec->dtrd_action;
1984		addr = aggdata->dtada_data + rec->dtrd_offset;
1985		size = rec->dtrd_size;
1986
1987		if (DTRACEACT_ISAGG(act)) {
1988			aggact = i;
1989			break;
1990		}
1991
1992		if (dt_print_datum(dtp, fp, rec, addr,
1993		    size, aggdata, 1, pd) < 0)
1994			return (-1);
1995
1996		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1997		    DTRACE_BUFDATA_AGGKEY) < 0)
1998			return (-1);
1999	}
2000
2001	assert(aggact != 0);
2002
2003	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2004		uint64_t normal;
2005
2006		aggdata = aggsdata[i];
2007		agg = aggdata->dtada_desc;
2008		rec = &agg->dtagd_rec[aggact];
2009		act = rec->dtrd_action;
2010		addr = aggdata->dtada_data + rec->dtrd_offset;
2011		size = rec->dtrd_size;
2012
2013		assert(DTRACEACT_ISAGG(act));
2014		normal = aggdata->dtada_normal;
2015
2016		if (dt_print_datum(dtp, fp, rec, addr,
2017		    size, aggdata, normal, pd) < 0)
2018			return (-1);
2019
2020		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2021		    DTRACE_BUFDATA_AGGVAL) < 0)
2022			return (-1);
2023
2024		if (!pd->dtpa_allunprint)
2025			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2026	}
2027
2028	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2029		if (dt_printf(dtp, fp, "\n") < 0)
2030			return (-1);
2031	}
2032
2033	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2034	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2035		return (-1);
2036
2037	return (0);
2038}
2039
2040int
2041dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2042{
2043	dt_print_aggdata_t *pd = arg;
2044	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2045	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2046
2047	if (pd->dtpa_allunprint) {
2048		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2049			return (0);
2050	} else {
2051		/*
2052		 * If we're not printing all unprinted aggregations, then the
2053		 * aggregation variable ID denotes a specific aggregation
2054		 * variable that we should print -- skip any other aggregations
2055		 * that we encounter.
2056		 */
2057		if (agg->dtagd_nrecs == 0)
2058			return (0);
2059
2060		if (aggvarid != agg->dtagd_varid)
2061			return (0);
2062	}
2063
2064	return (dt_print_aggs(&aggdata, 1, arg));
2065}
2066
2067int
2068dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2069    const char *option, const char *value)
2070{
2071	int len, rval;
2072	char *msg;
2073	const char *errstr;
2074	dtrace_setoptdata_t optdata;
2075
2076	bzero(&optdata, sizeof (optdata));
2077	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2078
2079	if (dtrace_setopt(dtp, option, value) == 0) {
2080		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2081		optdata.dtsda_probe = data;
2082		optdata.dtsda_option = option;
2083		optdata.dtsda_handle = dtp;
2084
2085		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2086			return (rval);
2087
2088		return (0);
2089	}
2090
2091	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2092	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2093	msg = alloca(len);
2094
2095	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2096	    option, value, errstr);
2097
2098	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2099		return (0);
2100
2101	return (rval);
2102}
2103
2104static int
2105dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2106    dtrace_bufdesc_t *buf, boolean_t just_one,
2107    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2108{
2109	dtrace_epid_t id;
2110	size_t offs;
2111	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2112	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2113	int rval, i, n;
2114	uint64_t tracememsize = 0;
2115	dtrace_probedata_t data;
2116	uint64_t drops;
2117
2118	bzero(&data, sizeof (data));
2119	data.dtpda_handle = dtp;
2120	data.dtpda_cpu = cpu;
2121	data.dtpda_flow = dtp->dt_flow;
2122	data.dtpda_indent = dtp->dt_indent;
2123	data.dtpda_prefix = dtp->dt_prefix;
2124
2125	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2126		dtrace_eprobedesc_t *epd;
2127
2128		/*
2129		 * We're guaranteed to have an ID.
2130		 */
2131		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2132
2133		if (id == DTRACE_EPIDNONE) {
2134			/*
2135			 * This is filler to assure proper alignment of the
2136			 * next record; we simply ignore it.
2137			 */
2138			offs += sizeof (id);
2139			continue;
2140		}
2141
2142		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2143		    &data.dtpda_pdesc)) != 0)
2144			return (rval);
2145
2146		epd = data.dtpda_edesc;
2147		data.dtpda_data = buf->dtbd_data + offs;
2148
2149		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2150			rval = dt_handle(dtp, &data);
2151
2152			if (rval == DTRACE_CONSUME_NEXT)
2153				goto nextepid;
2154
2155			if (rval == DTRACE_CONSUME_ERROR)
2156				return (-1);
2157		}
2158
2159		if (flow)
2160			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2161			    buf, offs);
2162
2163		rval = (*efunc)(&data, arg);
2164
2165		if (flow) {
2166			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2167				data.dtpda_indent += 2;
2168		}
2169
2170		if (rval == DTRACE_CONSUME_NEXT)
2171			goto nextepid;
2172
2173		if (rval == DTRACE_CONSUME_ABORT)
2174			return (dt_set_errno(dtp, EDT_DIRABORT));
2175
2176		if (rval != DTRACE_CONSUME_THIS)
2177			return (dt_set_errno(dtp, EDT_BADRVAL));
2178
2179		for (i = 0; i < epd->dtepd_nrecs; i++) {
2180			caddr_t addr;
2181			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2182			dtrace_actkind_t act = rec->dtrd_action;
2183
2184			data.dtpda_data = buf->dtbd_data + offs +
2185			    rec->dtrd_offset;
2186			addr = data.dtpda_data;
2187
2188			if (act == DTRACEACT_LIBACT) {
2189				uint64_t arg = rec->dtrd_arg;
2190				dtrace_aggvarid_t id;
2191
2192				switch (arg) {
2193				case DT_ACT_CLEAR:
2194					/* LINTED - alignment */
2195					id = *((dtrace_aggvarid_t *)addr);
2196					(void) dtrace_aggregate_walk(dtp,
2197					    dt_clear_agg, &id);
2198					continue;
2199
2200				case DT_ACT_DENORMALIZE:
2201					/* LINTED - alignment */
2202					id = *((dtrace_aggvarid_t *)addr);
2203					(void) dtrace_aggregate_walk(dtp,
2204					    dt_denormalize_agg, &id);
2205					continue;
2206
2207				case DT_ACT_FTRUNCATE:
2208					if (fp == NULL)
2209						continue;
2210
2211					(void) fflush(fp);
2212					(void) ftruncate(fileno(fp), 0);
2213					(void) fseeko(fp, 0, SEEK_SET);
2214					continue;
2215
2216				case DT_ACT_NORMALIZE:
2217					if (i == epd->dtepd_nrecs - 1)
2218						return (dt_set_errno(dtp,
2219						    EDT_BADNORMAL));
2220
2221					if (dt_normalize(dtp,
2222					    buf->dtbd_data + offs, rec) != 0)
2223						return (-1);
2224
2225					i++;
2226					continue;
2227
2228				case DT_ACT_SETOPT: {
2229					uint64_t *opts = dtp->dt_options;
2230					dtrace_recdesc_t *valrec;
2231					uint32_t valsize;
2232					caddr_t val;
2233					int rv;
2234
2235					if (i == epd->dtepd_nrecs - 1) {
2236						return (dt_set_errno(dtp,
2237						    EDT_BADSETOPT));
2238					}
2239
2240					valrec = &epd->dtepd_rec[++i];
2241					valsize = valrec->dtrd_size;
2242
2243					if (valrec->dtrd_action != act ||
2244					    valrec->dtrd_arg != arg) {
2245						return (dt_set_errno(dtp,
2246						    EDT_BADSETOPT));
2247					}
2248
2249					if (valsize > sizeof (uint64_t)) {
2250						val = buf->dtbd_data + offs +
2251						    valrec->dtrd_offset;
2252					} else {
2253						val = "1";
2254					}
2255
2256					rv = dt_setopt(dtp, &data, addr, val);
2257
2258					if (rv != 0)
2259						return (-1);
2260
2261					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2262					    DTRACEOPT_UNSET);
2263					quiet = (opts[DTRACEOPT_QUIET] !=
2264					    DTRACEOPT_UNSET);
2265
2266					continue;
2267				}
2268
2269				case DT_ACT_TRUNC:
2270					if (i == epd->dtepd_nrecs - 1)
2271						return (dt_set_errno(dtp,
2272						    EDT_BADTRUNC));
2273
2274					if (dt_trunc(dtp,
2275					    buf->dtbd_data + offs, rec) != 0)
2276						return (-1);
2277
2278					i++;
2279					continue;
2280
2281				default:
2282					continue;
2283				}
2284			}
2285
2286			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2287			    rec->dtrd_size == sizeof (uint64_t)) {
2288			    	/* LINTED - alignment */
2289				tracememsize = *((unsigned long long *)addr);
2290				continue;
2291			}
2292
2293			rval = (*rfunc)(&data, rec, arg);
2294
2295			if (rval == DTRACE_CONSUME_NEXT)
2296				continue;
2297
2298			if (rval == DTRACE_CONSUME_ABORT)
2299				return (dt_set_errno(dtp, EDT_DIRABORT));
2300
2301			if (rval != DTRACE_CONSUME_THIS)
2302				return (dt_set_errno(dtp, EDT_BADRVAL));
2303
2304			if (act == DTRACEACT_STACK) {
2305				int depth = rec->dtrd_arg;
2306
2307				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2308				    rec->dtrd_size / depth) < 0)
2309					return (-1);
2310				goto nextrec;
2311			}
2312
2313			if (act == DTRACEACT_USTACK ||
2314			    act == DTRACEACT_JSTACK) {
2315				if (dt_print_ustack(dtp, fp, NULL,
2316				    addr, rec->dtrd_arg) < 0)
2317					return (-1);
2318				goto nextrec;
2319			}
2320
2321			if (act == DTRACEACT_SYM) {
2322				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2323					return (-1);
2324				goto nextrec;
2325			}
2326
2327			if (act == DTRACEACT_MOD) {
2328				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2329					return (-1);
2330				goto nextrec;
2331			}
2332
2333			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2334				if (dt_print_usym(dtp, fp, addr, act) < 0)
2335					return (-1);
2336				goto nextrec;
2337			}
2338
2339			if (act == DTRACEACT_UMOD) {
2340				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2341					return (-1);
2342				goto nextrec;
2343			}
2344
2345			if (act == DTRACEACT_PRINTM) {
2346				if (dt_print_memory(dtp, fp, addr) < 0)
2347					return (-1);
2348				goto nextrec;
2349			}
2350
2351			if (DTRACEACT_ISPRINTFLIKE(act)) {
2352				void *fmtdata;
2353				int (*func)(dtrace_hdl_t *, FILE *, void *,
2354				    const dtrace_probedata_t *,
2355				    const dtrace_recdesc_t *, uint_t,
2356				    const void *buf, size_t);
2357
2358				if ((fmtdata = dt_format_lookup(dtp,
2359				    rec->dtrd_format)) == NULL)
2360					goto nofmt;
2361
2362				switch (act) {
2363				case DTRACEACT_PRINTF:
2364					func = dtrace_fprintf;
2365					break;
2366				case DTRACEACT_PRINTA:
2367					func = dtrace_fprinta;
2368					break;
2369				case DTRACEACT_SYSTEM:
2370					func = dtrace_system;
2371					break;
2372				case DTRACEACT_FREOPEN:
2373					func = dtrace_freopen;
2374					break;
2375				}
2376
2377				n = (*func)(dtp, fp, fmtdata, &data,
2378				    rec, epd->dtepd_nrecs - i,
2379				    (uchar_t *)buf->dtbd_data + offs,
2380				    buf->dtbd_size - offs);
2381
2382				if (n < 0)
2383					return (-1); /* errno is set for us */
2384
2385				if (n > 0)
2386					i += n - 1;
2387				goto nextrec;
2388			}
2389
2390			/*
2391			 * If this is a DIF expression, and the record has a
2392			 * format set, this indicates we have a CTF type name
2393			 * associated with the data and we should try to print
2394			 * it out by type.
2395			 */
2396			if (act == DTRACEACT_DIFEXPR) {
2397				const char *strdata = dt_strdata_lookup(dtp,
2398				    rec->dtrd_format);
2399				if (strdata != NULL) {
2400					n = dtrace_print(dtp, fp, strdata,
2401					    addr, rec->dtrd_size);
2402
2403					/*
2404					 * dtrace_print() will return -1 on
2405					 * error, or return the number of bytes
2406					 * consumed.  It will return 0 if the
2407					 * type couldn't be determined, and we
2408					 * should fall through to the normal
2409					 * trace method.
2410					 */
2411					if (n < 0)
2412						return (-1);
2413
2414					if (n > 0)
2415						goto nextrec;
2416				}
2417			}
2418
2419nofmt:
2420			if (act == DTRACEACT_PRINTA) {
2421				dt_print_aggdata_t pd;
2422				dtrace_aggvarid_t *aggvars;
2423				int j, naggvars = 0;
2424				size_t size = ((epd->dtepd_nrecs - i) *
2425				    sizeof (dtrace_aggvarid_t));
2426
2427				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2428					return (-1);
2429
2430				/*
2431				 * This might be a printa() with multiple
2432				 * aggregation variables.  We need to scan
2433				 * forward through the records until we find
2434				 * a record from a different statement.
2435				 */
2436				for (j = i; j < epd->dtepd_nrecs; j++) {
2437					dtrace_recdesc_t *nrec;
2438					caddr_t naddr;
2439
2440					nrec = &epd->dtepd_rec[j];
2441
2442					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2443						break;
2444
2445					if (nrec->dtrd_action != act) {
2446						return (dt_set_errno(dtp,
2447						    EDT_BADAGG));
2448					}
2449
2450					naddr = buf->dtbd_data + offs +
2451					    nrec->dtrd_offset;
2452
2453					aggvars[naggvars++] =
2454					    /* LINTED - alignment */
2455					    *((dtrace_aggvarid_t *)naddr);
2456				}
2457
2458				i = j - 1;
2459				bzero(&pd, sizeof (pd));
2460				pd.dtpa_dtp = dtp;
2461				pd.dtpa_fp = fp;
2462
2463				assert(naggvars >= 1);
2464
2465				if (naggvars == 1) {
2466					pd.dtpa_id = aggvars[0];
2467					dt_free(dtp, aggvars);
2468
2469					if (dt_printf(dtp, fp, "\n") < 0 ||
2470					    dtrace_aggregate_walk_sorted(dtp,
2471					    dt_print_agg, &pd) < 0)
2472						return (-1);
2473					goto nextrec;
2474				}
2475
2476				if (dt_printf(dtp, fp, "\n") < 0 ||
2477				    dtrace_aggregate_walk_joined(dtp, aggvars,
2478				    naggvars, dt_print_aggs, &pd) < 0) {
2479					dt_free(dtp, aggvars);
2480					return (-1);
2481				}
2482
2483				dt_free(dtp, aggvars);
2484				goto nextrec;
2485			}
2486
2487			if (act == DTRACEACT_TRACEMEM) {
2488				if (tracememsize == 0 ||
2489				    tracememsize > rec->dtrd_size) {
2490					tracememsize = rec->dtrd_size;
2491				}
2492
2493				n = dt_print_bytes(dtp, fp, addr,
2494				    tracememsize, -33, quiet, 1);
2495
2496				tracememsize = 0;
2497
2498				if (n < 0)
2499					return (-1);
2500
2501				goto nextrec;
2502			}
2503
2504			switch (rec->dtrd_size) {
2505			case sizeof (uint64_t):
2506				n = dt_printf(dtp, fp,
2507				    quiet ? "%lld" : " %16lld",
2508				    /* LINTED - alignment */
2509				    *((unsigned long long *)addr));
2510				break;
2511			case sizeof (uint32_t):
2512				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2513				    /* LINTED - alignment */
2514				    *((uint32_t *)addr));
2515				break;
2516			case sizeof (uint16_t):
2517				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2518				    /* LINTED - alignment */
2519				    *((uint16_t *)addr));
2520				break;
2521			case sizeof (uint8_t):
2522				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2523				    *((uint8_t *)addr));
2524				break;
2525			default:
2526				n = dt_print_bytes(dtp, fp, addr,
2527				    rec->dtrd_size, -33, quiet, 0);
2528				break;
2529			}
2530
2531			if (n < 0)
2532				return (-1); /* errno is set for us */
2533
2534nextrec:
2535			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2536				return (-1); /* errno is set for us */
2537		}
2538
2539		/*
2540		 * Call the record callback with a NULL record to indicate
2541		 * that we're done processing this EPID.
2542		 */
2543		rval = (*rfunc)(&data, NULL, arg);
2544nextepid:
2545		offs += epd->dtepd_size;
2546		dtp->dt_last_epid = id;
2547		if (just_one) {
2548			buf->dtbd_oldest = offs;
2549			break;
2550		}
2551	}
2552
2553	dtp->dt_flow = data.dtpda_flow;
2554	dtp->dt_indent = data.dtpda_indent;
2555	dtp->dt_prefix = data.dtpda_prefix;
2556
2557	if ((drops = buf->dtbd_drops) == 0)
2558		return (0);
2559
2560	/*
2561	 * Explicitly zero the drops to prevent us from processing them again.
2562	 */
2563	buf->dtbd_drops = 0;
2564
2565	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2566}
2567
2568/*
2569 * Reduce memory usage by shrinking the buffer if it's no more than half full.
2570 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2571 * only 4-byte aligned.
2572 */
2573static void
2574dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2575{
2576	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2577	if (used < cursize / 2) {
2578		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2579		char *newdata = dt_alloc(dtp, used + misalign);
2580		if (newdata == NULL)
2581			return;
2582		bzero(newdata, misalign);
2583		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2584		    newdata + misalign, used);
2585		dt_free(dtp, buf->dtbd_data);
2586		buf->dtbd_oldest = misalign;
2587		buf->dtbd_size = used + misalign;
2588		buf->dtbd_data = newdata;
2589	}
2590}
2591
2592/*
2593 * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2594 * so that it is.  Note, we need to preserve the alignment of the data at
2595 * dtbd_oldest, which is only 4-byte aligned.
2596 */
2597static int
2598dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2599{
2600	int misalign;
2601	char *newdata, *ndp;
2602
2603	if (buf->dtbd_oldest == 0)
2604		return (0);
2605
2606	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2607	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2608
2609	if (newdata == NULL)
2610		return (-1);
2611
2612	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2613
2614	bzero(ndp, misalign);
2615	ndp += misalign;
2616
2617	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2618	    buf->dtbd_size - buf->dtbd_oldest);
2619	ndp += buf->dtbd_size - buf->dtbd_oldest;
2620
2621	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2622
2623	dt_free(dtp, buf->dtbd_data);
2624	buf->dtbd_oldest = 0;
2625	buf->dtbd_data = newdata;
2626	buf->dtbd_size += misalign;
2627
2628	return (0);
2629}
2630
2631static void
2632dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2633{
2634	dt_free(dtp, buf->dtbd_data);
2635	dt_free(dtp, buf);
2636}
2637
2638/*
2639 * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2640 * data, or NULL if there is no data for this CPU.
2641 * Returns -1 on failure and sets dt_errno.
2642 */
2643static int
2644dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2645{
2646	dtrace_optval_t size;
2647	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2648	int error, rval;
2649
2650	if (buf == NULL)
2651		return (-1);
2652
2653	(void) dtrace_getopt(dtp, "bufsize", &size);
2654	buf->dtbd_data = dt_alloc(dtp, size);
2655	if (buf->dtbd_data == NULL) {
2656		dt_free(dtp, buf);
2657		return (-1);
2658	}
2659	buf->dtbd_size = size;
2660	buf->dtbd_cpu = cpu;
2661
2662#ifdef illumos
2663	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2664#else
2665	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2666#endif
2667		/*
2668		 * If we failed with ENOENT, it may be because the
2669		 * CPU was unconfigured -- this is okay.  Any other
2670		 * error, however, is unexpected.
2671		 */
2672		if (errno == ENOENT) {
2673			*bufp = NULL;
2674			rval = 0;
2675		} else
2676			rval = dt_set_errno(dtp, errno);
2677
2678		dt_put_buf(dtp, buf);
2679		return (rval);
2680	}
2681
2682	error = dt_unring_buf(dtp, buf);
2683	if (error != 0) {
2684		dt_put_buf(dtp, buf);
2685		return (error);
2686	}
2687	dt_realloc_buf(dtp, buf, size);
2688
2689	*bufp = buf;
2690	return (0);
2691}
2692
2693typedef struct dt_begin {
2694	dtrace_consume_probe_f *dtbgn_probefunc;
2695	dtrace_consume_rec_f *dtbgn_recfunc;
2696	void *dtbgn_arg;
2697	dtrace_handle_err_f *dtbgn_errhdlr;
2698	void *dtbgn_errarg;
2699	int dtbgn_beginonly;
2700} dt_begin_t;
2701
2702static int
2703dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2704{
2705	dt_begin_t *begin = arg;
2706	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2707
2708	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2709	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2710
2711	if (begin->dtbgn_beginonly) {
2712		if (!(r1 && r2))
2713			return (DTRACE_CONSUME_NEXT);
2714	} else {
2715		if (r1 && r2)
2716			return (DTRACE_CONSUME_NEXT);
2717	}
2718
2719	/*
2720	 * We have a record that we're interested in.  Now call the underlying
2721	 * probe function...
2722	 */
2723	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2724}
2725
2726static int
2727dt_consume_begin_record(const dtrace_probedata_t *data,
2728    const dtrace_recdesc_t *rec, void *arg)
2729{
2730	dt_begin_t *begin = arg;
2731
2732	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2733}
2734
2735static int
2736dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2737{
2738	dt_begin_t *begin = (dt_begin_t *)arg;
2739	dtrace_probedesc_t *pd = data->dteda_pdesc;
2740
2741	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2742	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2743
2744	if (begin->dtbgn_beginonly) {
2745		if (!(r1 && r2))
2746			return (DTRACE_HANDLE_OK);
2747	} else {
2748		if (r1 && r2)
2749			return (DTRACE_HANDLE_OK);
2750	}
2751
2752	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2753}
2754
2755static int
2756dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2757    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2758{
2759	/*
2760	 * There's this idea that the BEGIN probe should be processed before
2761	 * everything else, and that the END probe should be processed after
2762	 * anything else.  In the common case, this is pretty easy to deal
2763	 * with.  However, a situation may arise where the BEGIN enabling and
2764	 * END enabling are on the same CPU, and some enabling in the middle
2765	 * occurred on a different CPU.  To deal with this (blech!) we need to
2766	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2767	 * then set it aside.  We will then process every other CPU, and then
2768	 * we'll return to the BEGIN CPU and process the rest of the data
2769	 * (which will inevitably include the END probe, if any).  Making this
2770	 * even more complicated (!) is the library's ERROR enabling.  Because
2771	 * this enabling is processed before we even get into the consume call
2772	 * back, any ERROR firing would result in the library's ERROR enabling
2773	 * being processed twice -- once in our first pass (for BEGIN probes),
2774	 * and again in our second pass (for everything but BEGIN probes).  To
2775	 * deal with this, we interpose on the ERROR handler to assure that we
2776	 * only process ERROR enablings induced by BEGIN enablings in the
2777	 * first pass, and that we only process ERROR enablings _not_ induced
2778	 * by BEGIN enablings in the second pass.
2779	 */
2780
2781	dt_begin_t begin;
2782	processorid_t cpu = dtp->dt_beganon;
2783	int rval, i;
2784	static int max_ncpus;
2785	dtrace_bufdesc_t *buf;
2786
2787	dtp->dt_beganon = -1;
2788
2789	if (dt_get_buf(dtp, cpu, &buf) != 0)
2790		return (-1);
2791	if (buf == NULL)
2792		return (0);
2793
2794	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2795		/*
2796		 * This is the simple case.  We're either not stopped, or if
2797		 * we are, we actually processed any END probes on another
2798		 * CPU.  We can simply consume this buffer and return.
2799		 */
2800		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2801		    pf, rf, arg);
2802		dt_put_buf(dtp, buf);
2803		return (rval);
2804	}
2805
2806	begin.dtbgn_probefunc = pf;
2807	begin.dtbgn_recfunc = rf;
2808	begin.dtbgn_arg = arg;
2809	begin.dtbgn_beginonly = 1;
2810
2811	/*
2812	 * We need to interpose on the ERROR handler to be sure that we
2813	 * only process ERRORs induced by BEGIN.
2814	 */
2815	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2816	begin.dtbgn_errarg = dtp->dt_errarg;
2817	dtp->dt_errhdlr = dt_consume_begin_error;
2818	dtp->dt_errarg = &begin;
2819
2820	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2821	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2822
2823	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2824	dtp->dt_errarg = begin.dtbgn_errarg;
2825
2826	if (rval != 0) {
2827		dt_put_buf(dtp, buf);
2828		return (rval);
2829	}
2830
2831	if (max_ncpus == 0)
2832		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2833
2834	for (i = 0; i < max_ncpus; i++) {
2835		dtrace_bufdesc_t *nbuf;
2836		if (i == cpu)
2837			continue;
2838
2839		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2840			dt_put_buf(dtp, buf);
2841			return (-1);
2842		}
2843		if (nbuf == NULL)
2844			continue;
2845
2846		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2847		    pf, rf, arg);
2848		dt_put_buf(dtp, nbuf);
2849		if (rval != 0) {
2850			dt_put_buf(dtp, buf);
2851			return (rval);
2852		}
2853	}
2854
2855	/*
2856	 * Okay -- we're done with the other buffers.  Now we want to
2857	 * reconsume the first buffer -- but this time we're looking for
2858	 * everything _but_ BEGIN.  And of course, in order to only consume
2859	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2860	 * ERROR interposition function...
2861	 */
2862	begin.dtbgn_beginonly = 0;
2863
2864	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2865	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2866	dtp->dt_errhdlr = dt_consume_begin_error;
2867	dtp->dt_errarg = &begin;
2868
2869	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2870	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2871
2872	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2873	dtp->dt_errarg = begin.dtbgn_errarg;
2874
2875	return (rval);
2876}
2877
2878/* ARGSUSED */
2879static uint64_t
2880dt_buf_oldest(void *elem, void *arg)
2881{
2882	dtrace_bufdesc_t *buf = elem;
2883	size_t offs = buf->dtbd_oldest;
2884
2885	while (offs < buf->dtbd_size) {
2886		dtrace_rechdr_t *dtrh =
2887		    /* LINTED - alignment */
2888		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2889		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2890			offs += sizeof (dtrace_epid_t);
2891		} else {
2892			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2893		}
2894	}
2895
2896	/* There are no records left; use the time the buffer was retrieved. */
2897	return (buf->dtbd_timestamp);
2898}
2899
2900int
2901dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2902    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2903{
2904	dtrace_optval_t size;
2905	static int max_ncpus;
2906	int i, rval;
2907	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2908	hrtime_t now = gethrtime();
2909
2910	if (dtp->dt_lastswitch != 0) {
2911		if (now - dtp->dt_lastswitch < interval)
2912			return (0);
2913
2914		dtp->dt_lastswitch += interval;
2915	} else {
2916		dtp->dt_lastswitch = now;
2917	}
2918
2919	if (!dtp->dt_active)
2920		return (dt_set_errno(dtp, EINVAL));
2921
2922	if (max_ncpus == 0)
2923		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2924
2925	if (pf == NULL)
2926		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2927
2928	if (rf == NULL)
2929		rf = (dtrace_consume_rec_f *)dt_nullrec;
2930
2931	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2932		/*
2933		 * The output will not be in the order it was traced.  Rather,
2934		 * we will consume all of the data from each CPU's buffer in
2935		 * turn.  We apply special handling for the records from BEGIN
2936		 * and END probes so that they are consumed first and last,
2937		 * respectively.
2938		 *
2939		 * If we have just begun, we want to first process the CPU that
2940		 * executed the BEGIN probe (if any).
2941		 */
2942		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2943		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2944			return (rval);
2945
2946		for (i = 0; i < max_ncpus; i++) {
2947			dtrace_bufdesc_t *buf;
2948
2949			/*
2950			 * If we have stopped, we want to process the CPU on
2951			 * which the END probe was processed only _after_ we
2952			 * have processed everything else.
2953			 */
2954			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2955				continue;
2956
2957			if (dt_get_buf(dtp, i, &buf) != 0)
2958				return (-1);
2959			if (buf == NULL)
2960				continue;
2961
2962			dtp->dt_flow = 0;
2963			dtp->dt_indent = 0;
2964			dtp->dt_prefix = NULL;
2965			rval = dt_consume_cpu(dtp, fp, i,
2966			    buf, B_FALSE, pf, rf, arg);
2967			dt_put_buf(dtp, buf);
2968			if (rval != 0)
2969				return (rval);
2970		}
2971		if (dtp->dt_stopped) {
2972			dtrace_bufdesc_t *buf;
2973
2974			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2975				return (-1);
2976			if (buf == NULL)
2977				return (0);
2978
2979			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2980			    buf, B_FALSE, pf, rf, arg);
2981			dt_put_buf(dtp, buf);
2982			return (rval);
2983		}
2984	} else {
2985		/*
2986		 * The output will be in the order it was traced (or for
2987		 * speculations, when it was committed).  We retrieve a buffer
2988		 * from each CPU and put it into a priority queue, which sorts
2989		 * based on the first entry in the buffer.  This is sufficient
2990		 * because entries within a buffer are already sorted.
2991		 *
2992		 * We then consume records one at a time, always consuming the
2993		 * oldest record, as determined by the priority queue.  When
2994		 * we reach the end of the time covered by these buffers,
2995		 * we need to stop and retrieve more records on the next pass.
2996		 * The kernel tells us the time covered by each buffer, in
2997		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2998		 * time covered by all buffers, as subsequently retrieved
2999		 * buffers will cover to a more recent time.
3000		 */
3001
3002		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3003		uint64_t first_timestamp = 0;
3004		uint_t cookie = 0;
3005		dtrace_bufdesc_t *buf;
3006
3007		bzero(drops, max_ncpus * sizeof (uint64_t));
3008
3009		if (dtp->dt_bufq == NULL) {
3010			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3011			    dt_buf_oldest, NULL);
3012			if (dtp->dt_bufq == NULL) /* ENOMEM */
3013				return (-1);
3014		}
3015
3016		/* Retrieve data from each CPU. */
3017		(void) dtrace_getopt(dtp, "bufsize", &size);
3018		for (i = 0; i < max_ncpus; i++) {
3019			dtrace_bufdesc_t *buf;
3020
3021			if (dt_get_buf(dtp, i, &buf) != 0)
3022				return (-1);
3023			if (buf != NULL) {
3024				if (first_timestamp == 0)
3025					first_timestamp = buf->dtbd_timestamp;
3026				assert(buf->dtbd_timestamp >= first_timestamp);
3027
3028				dt_pq_insert(dtp->dt_bufq, buf);
3029				drops[i] = buf->dtbd_drops;
3030				buf->dtbd_drops = 0;
3031			}
3032		}
3033
3034		/* Consume records. */
3035		for (;;) {
3036			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3037			uint64_t timestamp;
3038
3039			if (buf == NULL)
3040				break;
3041
3042			timestamp = dt_buf_oldest(buf, dtp);
3043			if (timestamp == buf->dtbd_timestamp) {
3044				/*
3045				 * We've reached the end of the time covered
3046				 * by this buffer.  If this is the oldest
3047				 * buffer, we must do another pass
3048				 * to retrieve more data.
3049				 */
3050				dt_put_buf(dtp, buf);
3051				if (timestamp == first_timestamp &&
3052				    !dtp->dt_stopped)
3053					break;
3054				continue;
3055			}
3056			assert(timestamp >= dtp->dt_last_timestamp);
3057			dtp->dt_last_timestamp = timestamp;
3058
3059			if ((rval = dt_consume_cpu(dtp, fp,
3060			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3061				return (rval);
3062			dt_pq_insert(dtp->dt_bufq, buf);
3063		}
3064
3065		/* Consume drops. */
3066		for (i = 0; i < max_ncpus; i++) {
3067			if (drops[i] != 0) {
3068				int error = dt_handle_cpudrop(dtp, i,
3069				    DTRACEDROP_PRINCIPAL, drops[i]);
3070				if (error != 0)
3071					return (error);
3072			}
3073		}
3074
3075		/*
3076		 * Reduce memory usage by re-allocating smaller buffers
3077		 * for the "remnants".
3078		 */
3079		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3080			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3081	}
3082
3083	return (0);
3084}
3085