1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program.
12 *
13 * Copyright (c) 1980, 1989, 1993
14 *	The Regents of the University of California.  All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41#if 0
42#ifndef lint
43static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
44#endif /* not lint */
45#endif
46#include <sys/cdefs.h>
47__FBSDID("$FreeBSD$");
48
49#define	IN_RTLD			/* So we pickup the P_OSREL defines */
50#include <sys/param.h>
51#include <sys/disklabel.h>
52#include <sys/file.h>
53#include <sys/ioctl.h>
54#include <sys/mman.h>
55#include <sys/resource.h>
56#include <sys/stat.h>
57#include <sys/wait.h>
58#include <err.h>
59#include <grp.h>
60#include <limits.h>
61#include <signal.h>
62#include <stdlib.h>
63#include <string.h>
64#include <stdint.h>
65#include <stdio.h>
66#include <time.h>
67#include <unistd.h>
68#include <ufs/ufs/dinode.h>
69#include <ufs/ufs/dir.h>
70#include <ufs/ffs/fs.h>
71#include "newfs.h"
72
73/*
74 * make file system for cylinder-group style file systems
75 */
76#define UMASK		0755
77#define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
78
79static struct	csum *fscs;
80#define	sblock	disk.d_fs
81#define	acg	disk.d_cg
82
83union dinode {
84	struct ufs1_dinode dp1;
85	struct ufs2_dinode dp2;
86};
87#define DIP(dp, field) \
88	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
89	(dp)->dp1.field : (dp)->dp2.field)
90
91static caddr_t iobuf;
92static long iobufsize;
93static ufs2_daddr_t alloc(int size, int mode);
94static int charsperline(void);
95static void clrblock(struct fs *, unsigned char *, int);
96static void fsinit(time_t);
97static int ilog2(int);
98static void initcg(int, time_t);
99static int isblock(struct fs *, unsigned char *, int);
100static void iput(union dinode *, ino_t);
101static int makedir(struct direct *, int);
102static void setblock(struct fs *, unsigned char *, int);
103static void wtfs(ufs2_daddr_t, int, char *);
104static u_int32_t newfs_random(void);
105
106void
107mkfs(struct partition *pp, char *fsys)
108{
109	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
110	long i, j, csfrags;
111	uint cg;
112	time_t utime;
113	quad_t sizepb;
114	int width;
115	ino_t maxinum;
116	int minfragsperinode;	/* minimum ratio of frags to inodes */
117	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
118	struct fsrecovery *fsr;
119	char *fsrbuf;
120	union {
121		struct fs fdummy;
122		char cdummy[SBLOCKSIZE];
123	} dummy;
124#define fsdummy dummy.fdummy
125#define chdummy dummy.cdummy
126
127	/*
128	 * Our blocks == sector size, and the version of UFS we are using is
129	 * specified by Oflag.
130	 */
131	disk.d_bsize = sectorsize;
132	disk.d_ufs = Oflag;
133	if (Rflag)
134		utime = 1000000000;
135	else
136		time(&utime);
137	sblock.fs_old_flags = FS_FLAGS_UPDATED;
138	sblock.fs_flags = 0;
139	if (Uflag)
140		sblock.fs_flags |= FS_DOSOFTDEP;
141	if (Lflag)
142		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
143	if (Jflag)
144		sblock.fs_flags |= FS_GJOURNAL;
145	if (lflag)
146		sblock.fs_flags |= FS_MULTILABEL;
147	if (tflag)
148		sblock.fs_flags |= FS_TRIM;
149	/*
150	 * Validate the given file system size.
151	 * Verify that its last block can actually be accessed.
152	 * Convert to file system fragment sized units.
153	 */
154	if (fssize <= 0) {
155		printf("preposterous size %jd\n", (intmax_t)fssize);
156		exit(13);
157	}
158	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
159	    (char *)&sblock);
160	/*
161	 * collect and verify the file system density info
162	 */
163	sblock.fs_avgfilesize = avgfilesize;
164	sblock.fs_avgfpdir = avgfilesperdir;
165	if (sblock.fs_avgfilesize <= 0)
166		printf("illegal expected average file size %d\n",
167		    sblock.fs_avgfilesize), exit(14);
168	if (sblock.fs_avgfpdir <= 0)
169		printf("illegal expected number of files per directory %d\n",
170		    sblock.fs_avgfpdir), exit(15);
171
172restart:
173	/*
174	 * collect and verify the block and fragment sizes
175	 */
176	sblock.fs_bsize = bsize;
177	sblock.fs_fsize = fsize;
178	if (!POWEROF2(sblock.fs_bsize)) {
179		printf("block size must be a power of 2, not %d\n",
180		    sblock.fs_bsize);
181		exit(16);
182	}
183	if (!POWEROF2(sblock.fs_fsize)) {
184		printf("fragment size must be a power of 2, not %d\n",
185		    sblock.fs_fsize);
186		exit(17);
187	}
188	if (sblock.fs_fsize < sectorsize) {
189		printf("increasing fragment size from %d to sector size (%d)\n",
190		    sblock.fs_fsize, sectorsize);
191		sblock.fs_fsize = sectorsize;
192	}
193	if (sblock.fs_bsize > MAXBSIZE) {
194		printf("decreasing block size from %d to maximum (%d)\n",
195		    sblock.fs_bsize, MAXBSIZE);
196		sblock.fs_bsize = MAXBSIZE;
197	}
198	if (sblock.fs_bsize < MINBSIZE) {
199		printf("increasing block size from %d to minimum (%d)\n",
200		    sblock.fs_bsize, MINBSIZE);
201		sblock.fs_bsize = MINBSIZE;
202	}
203	if (sblock.fs_fsize > MAXBSIZE) {
204		printf("decreasing fragment size from %d to maximum (%d)\n",
205		    sblock.fs_fsize, MAXBSIZE);
206		sblock.fs_fsize = MAXBSIZE;
207	}
208	if (sblock.fs_bsize < sblock.fs_fsize) {
209		printf("increasing block size from %d to fragment size (%d)\n",
210		    sblock.fs_bsize, sblock.fs_fsize);
211		sblock.fs_bsize = sblock.fs_fsize;
212	}
213	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
214		printf(
215		"increasing fragment size from %d to block size / %d (%d)\n",
216		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
217		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
218	}
219	if (maxbsize == 0)
220		maxbsize = bsize;
221	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
222		sblock.fs_maxbsize = sblock.fs_bsize;
223		printf("Extent size set to %d\n", sblock.fs_maxbsize);
224	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
225		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
226		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
227	} else {
228		sblock.fs_maxbsize = maxbsize;
229	}
230	/*
231	 * Maxcontig sets the default for the maximum number of blocks
232	 * that may be allocated sequentially. With file system clustering
233	 * it is possible to allocate contiguous blocks up to the maximum
234	 * transfer size permitted by the controller or buffering.
235	 */
236	if (maxcontig == 0)
237		maxcontig = MAX(1, MAXPHYS / bsize);
238	sblock.fs_maxcontig = maxcontig;
239	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
240		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
241		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
242	}
243	if (sblock.fs_maxcontig > 1)
244		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
245	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
246	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
247	sblock.fs_qbmask = ~sblock.fs_bmask;
248	sblock.fs_qfmask = ~sblock.fs_fmask;
249	sblock.fs_bshift = ilog2(sblock.fs_bsize);
250	sblock.fs_fshift = ilog2(sblock.fs_fsize);
251	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
252	sblock.fs_fragshift = ilog2(sblock.fs_frag);
253	if (sblock.fs_frag > MAXFRAG) {
254		printf("fragment size %d is still too small (can't happen)\n",
255		    sblock.fs_bsize / MAXFRAG);
256		exit(21);
257	}
258	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
259	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
260	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
261
262	/*
263	 * Before the filesystem is finally initialized, mark it
264	 * as incompletely initialized.
265	 */
266	sblock.fs_magic = FS_BAD_MAGIC;
267
268	if (Oflag == 1) {
269		sblock.fs_sblockloc = SBLOCK_UFS1;
270		sblock.fs_sblockactualloc = SBLOCK_UFS1;
271		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
272		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
273		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
274		    sizeof(ufs1_daddr_t));
275		sblock.fs_old_inodefmt = FS_44INODEFMT;
276		sblock.fs_old_cgoffset = 0;
277		sblock.fs_old_cgmask = 0xffffffff;
278		sblock.fs_old_size = sblock.fs_size;
279		sblock.fs_old_rotdelay = 0;
280		sblock.fs_old_rps = 60;
281		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
282		sblock.fs_old_cpg = 1;
283		sblock.fs_old_interleave = 1;
284		sblock.fs_old_trackskew = 0;
285		sblock.fs_old_cpc = 0;
286		sblock.fs_old_postblformat = 1;
287		sblock.fs_old_nrpos = 1;
288	} else {
289		sblock.fs_sblockloc = SBLOCK_UFS2;
290		sblock.fs_sblockactualloc = SBLOCK_UFS2;
291		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
292		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
293		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
294		    sizeof(ufs2_daddr_t));
295	}
296	sblock.fs_sblkno =
297	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
298		sblock.fs_frag);
299	sblock.fs_cblkno = sblock.fs_sblkno +
300	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
301	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
302	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
303	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
304		sizepb *= NINDIR(&sblock);
305		sblock.fs_maxfilesize += sizepb;
306	}
307
308	/*
309	 * It's impossible to create a snapshot in case that fs_maxfilesize
310	 * is smaller than the fssize.
311	 */
312	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
313		warnx("WARNING: You will be unable to create snapshots on this "
314		      "file system.  Correct by using a larger blocksize.");
315	}
316
317	/*
318	 * Calculate the number of blocks to put into each cylinder group.
319	 *
320	 * This algorithm selects the number of blocks per cylinder
321	 * group. The first goal is to have at least enough data blocks
322	 * in each cylinder group to meet the density requirement. Once
323	 * this goal is achieved we try to expand to have at least
324	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
325	 * pack as many blocks into each cylinder group map as will fit.
326	 *
327	 * We start by calculating the smallest number of blocks that we
328	 * can put into each cylinder group. If this is too big, we reduce
329	 * the density until it fits.
330	 */
331	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
332	minfragsperinode = 1 + fssize / maxinum;
333	if (density == 0) {
334		density = MAX(NFPI, minfragsperinode) * fsize;
335	} else if (density < minfragsperinode * fsize) {
336		origdensity = density;
337		density = minfragsperinode * fsize;
338		fprintf(stderr, "density increased from %d to %d\n",
339		    origdensity, density);
340	}
341	origdensity = density;
342	for (;;) {
343		fragsperinode = MAX(numfrags(&sblock, density), 1);
344		if (fragsperinode < minfragsperinode) {
345			bsize <<= 1;
346			fsize <<= 1;
347			printf("Block size too small for a file system %s %d\n",
348			     "of this size. Increasing blocksize to", bsize);
349			goto restart;
350		}
351		minfpg = fragsperinode * INOPB(&sblock);
352		if (minfpg > sblock.fs_size)
353			minfpg = sblock.fs_size;
354		sblock.fs_ipg = INOPB(&sblock);
355		sblock.fs_fpg = roundup(sblock.fs_iblkno +
356		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
357		if (sblock.fs_fpg < minfpg)
358			sblock.fs_fpg = minfpg;
359		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
360		    INOPB(&sblock));
361		sblock.fs_fpg = roundup(sblock.fs_iblkno +
362		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
363		if (sblock.fs_fpg < minfpg)
364			sblock.fs_fpg = minfpg;
365		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
366		    INOPB(&sblock));
367		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
368			break;
369		density -= sblock.fs_fsize;
370	}
371	if (density != origdensity)
372		printf("density reduced from %d to %d\n", origdensity, density);
373	/*
374	 * Start packing more blocks into the cylinder group until
375	 * it cannot grow any larger, the number of cylinder groups
376	 * drops below MINCYLGRPS, or we reach the size requested.
377	 * For UFS1 inodes per cylinder group are stored in an int16_t
378	 * so fs_ipg is limited to 2^15 - 1.
379	 */
380	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
381		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
382		    INOPB(&sblock));
383		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
384			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
385				break;
386			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
387				continue;
388			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
389				break;
390		}
391		sblock.fs_fpg -= sblock.fs_frag;
392		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
393		    INOPB(&sblock));
394		break;
395	}
396	/*
397	 * Check to be sure that the last cylinder group has enough blocks
398	 * to be viable. If it is too small, reduce the number of blocks
399	 * per cylinder group which will have the effect of moving more
400	 * blocks into the last cylinder group.
401	 */
402	optimalfpg = sblock.fs_fpg;
403	for (;;) {
404		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
405		lastminfpg = roundup(sblock.fs_iblkno +
406		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
407		if (sblock.fs_size < lastminfpg) {
408			printf("Filesystem size %jd < minimum size of %d\n",
409			    (intmax_t)sblock.fs_size, lastminfpg);
410			exit(28);
411		}
412		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
413		    sblock.fs_size % sblock.fs_fpg == 0)
414			break;
415		sblock.fs_fpg -= sblock.fs_frag;
416		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
417		    INOPB(&sblock));
418	}
419	if (optimalfpg != sblock.fs_fpg)
420		printf("Reduced frags per cylinder group from %d to %d %s\n",
421		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
422	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
423	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
424	if (Oflag == 1) {
425		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
426		sblock.fs_old_nsect = sblock.fs_old_spc;
427		sblock.fs_old_npsect = sblock.fs_old_spc;
428		sblock.fs_old_ncyl = sblock.fs_ncg;
429	}
430	/*
431	 * fill in remaining fields of the super block
432	 */
433	sblock.fs_csaddr = cgdmin(&sblock, 0);
434	sblock.fs_cssize =
435	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
436	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
437	if (fscs == NULL)
438		errx(31, "calloc failed");
439	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
440	if (sblock.fs_sbsize > SBLOCKSIZE)
441		sblock.fs_sbsize = SBLOCKSIZE;
442	if (sblock.fs_sbsize < realsectorsize)
443		sblock.fs_sbsize = realsectorsize;
444	sblock.fs_minfree = minfree;
445	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
446		sblock.fs_metaspace = blknum(&sblock, metaspace);
447	else if (metaspace != -1)
448		/* reserve half of minfree for metadata blocks */
449		sblock.fs_metaspace = blknum(&sblock,
450		    (sblock.fs_fpg * minfree) / 200);
451	if (maxbpg == 0)
452		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
453	else
454		sblock.fs_maxbpg = maxbpg;
455	sblock.fs_optim = opt;
456	sblock.fs_cgrotor = 0;
457	sblock.fs_pendingblocks = 0;
458	sblock.fs_pendinginodes = 0;
459	sblock.fs_fmod = 0;
460	sblock.fs_ronly = 0;
461	sblock.fs_state = 0;
462	sblock.fs_clean = 1;
463	sblock.fs_id[0] = (long)utime;
464	sblock.fs_id[1] = newfs_random();
465	sblock.fs_fsmnt[0] = '\0';
466	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
467	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
468	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
469	sblock.fs_cstotal.cs_nbfree =
470	    fragstoblks(&sblock, sblock.fs_dsize) -
471	    howmany(csfrags, sblock.fs_frag);
472	sblock.fs_cstotal.cs_nffree =
473	    fragnum(&sblock, sblock.fs_size) +
474	    (fragnum(&sblock, csfrags) > 0 ?
475	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
476	sblock.fs_cstotal.cs_nifree =
477	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
478	sblock.fs_cstotal.cs_ndir = 0;
479	sblock.fs_dsize -= csfrags;
480	sblock.fs_time = utime;
481	if (Oflag == 1) {
482		sblock.fs_old_time = utime;
483		sblock.fs_old_dsize = sblock.fs_dsize;
484		sblock.fs_old_csaddr = sblock.fs_csaddr;
485		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
486		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
487		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
488		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
489	}
490	/*
491	 * Set flags for metadata that is being check-hashed.
492	 *
493	 * Metadata check hashes are not supported in the UFS version 1
494	 * filesystem to keep it as small and simple as possible.
495	 */
496	if (Oflag > 1) {
497		sblock.fs_flags |= FS_METACKHASH;
498		if (getosreldate() >= P_OSREL_CK_CYLGRP)
499			sblock.fs_metackhash = CK_CYLGRP;
500	}
501
502	/*
503	 * Dump out summary information about file system.
504	 */
505#	define B2MBFACTOR (1 / (1024.0 * 1024.0))
506	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
507	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
508	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
509	    sblock.fs_fsize);
510	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
511	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
512	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
513	if (sblock.fs_flags & FS_DOSOFTDEP)
514		printf("\twith soft updates\n");
515#	undef B2MBFACTOR
516
517	if (Eflag && !Nflag) {
518		printf("Erasing sectors [%jd...%jd]\n",
519		    sblock.fs_sblockloc / disk.d_bsize,
520		    fsbtodb(&sblock, sblock.fs_size) - 1);
521		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
522		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
523	}
524	/*
525	 * Wipe out old UFS1 superblock(s) if necessary.
526	 */
527	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
528		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy,
529		    SBLOCKSIZE);
530		if (i == -1)
531			err(1, "can't read old UFS1 superblock: %s",
532			    disk.d_error);
533
534		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
535			fsdummy.fs_magic = 0;
536			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
537			    chdummy, SBLOCKSIZE);
538			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
539				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) >
540				    fssize)
541					break;
542				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
543				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
544			}
545		}
546	}
547	if (!Nflag && sbwrite(&disk, 0) != 0)
548		err(1, "sbwrite: %s", disk.d_error);
549	if (Xflag == 1) {
550		printf("** Exiting on Xflag 1\n");
551		exit(0);
552	}
553	if (Xflag == 2)
554		printf("** Leaving BAD MAGIC on Xflag 2\n");
555	else
556		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
557
558	/*
559	 * Now build the cylinders group blocks and
560	 * then print out indices of cylinder groups.
561	 */
562	printf("super-block backups (for fsck_ffs -b #) at:\n");
563	i = 0;
564	width = charsperline();
565	/*
566	 * Allocate space for two sets of inode blocks.
567	 */
568	iobufsize = 2 * sblock.fs_bsize;
569	if ((iobuf = calloc(1, iobufsize)) == 0) {
570		printf("Cannot allocate I/O buffer\n");
571		exit(38);
572	}
573	/*
574	 * Write out all the cylinder groups and backup superblocks.
575	 */
576	for (cg = 0; cg < sblock.fs_ncg; cg++) {
577		if (!Nflag)
578			initcg(cg, utime);
579		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
580		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
581		    cg < (sblock.fs_ncg-1) ? "," : "");
582		if (j < 0)
583			tmpbuf[j = 0] = '\0';
584		if (i + j >= width) {
585			printf("\n");
586			i = 0;
587		}
588		i += j;
589		printf("%s", tmpbuf);
590		fflush(stdout);
591	}
592	printf("\n");
593	if (Nflag)
594		exit(0);
595	/*
596	 * Now construct the initial file system,
597	 * then write out the super-block.
598	 */
599	fsinit(utime);
600	if (Oflag == 1) {
601		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
602		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
603		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
604		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
605	}
606	if (Xflag == 3) {
607		printf("** Exiting on Xflag 3\n");
608		exit(0);
609	}
610	/*
611	 * Reference the summary information so it will also be written.
612	 */
613	sblock.fs_csp = fscs;
614	if (sbwrite(&disk, 0) != 0)
615		err(1, "sbwrite: %s", disk.d_error);
616	/*
617	 * For UFS1 filesystems with a blocksize of 64K, the first
618	 * alternate superblock resides at the location used for
619	 * the default UFS2 superblock. As there is a valid
620	 * superblock at this location, the boot code will use
621	 * it as its first choice. Thus we have to ensure that
622	 * all of its statistcs on usage are correct.
623	 */
624	if (Oflag == 1 && sblock.fs_bsize == 65536)
625		wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
626		    sblock.fs_bsize, (char *)&sblock);
627	/*
628	 * Read the last sector of the boot block, replace the last
629	 * 20 bytes with the recovery information, then write it back.
630	 * The recovery information only works for UFS2 filesystems.
631	 */
632	if (sblock.fs_magic == FS_UFS2_MAGIC) {
633		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
634		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
635		    fsrbuf, realsectorsize) == -1)
636			err(1, "can't read recovery area: %s", disk.d_error);
637		fsr =
638		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
639		fsr->fsr_magic = sblock.fs_magic;
640		fsr->fsr_fpg = sblock.fs_fpg;
641		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
642		fsr->fsr_sblkno = sblock.fs_sblkno;
643		fsr->fsr_ncg = sblock.fs_ncg;
644		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
645		    realsectorsize, fsrbuf);
646		free(fsrbuf);
647	}
648	/*
649	 * Update information about this partition in pack
650	 * label, to that it may be updated on disk.
651	 */
652	if (pp != NULL) {
653		pp->p_fstype = FS_BSDFFS;
654		pp->p_fsize = sblock.fs_fsize;
655		pp->p_frag = sblock.fs_frag;
656		pp->p_cpg = sblock.fs_fpg;
657	}
658}
659
660/*
661 * Initialize a cylinder group.
662 */
663void
664initcg(int cylno, time_t utime)
665{
666	long blkno, start;
667	off_t savedactualloc;
668	uint i, j, d, dlower, dupper;
669	ufs2_daddr_t cbase, dmax;
670	struct ufs1_dinode *dp1;
671	struct ufs2_dinode *dp2;
672	struct csum *cs;
673
674	/*
675	 * Determine block bounds for cylinder group.
676	 * Allow space for super block summary information in first
677	 * cylinder group.
678	 */
679	cbase = cgbase(&sblock, cylno);
680	dmax = cbase + sblock.fs_fpg;
681	if (dmax > sblock.fs_size)
682		dmax = sblock.fs_size;
683	dlower = cgsblock(&sblock, cylno) - cbase;
684	dupper = cgdmin(&sblock, cylno) - cbase;
685	if (cylno == 0)
686		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
687	cs = &fscs[cylno];
688	memset(&acg, 0, sblock.fs_cgsize);
689	acg.cg_time = utime;
690	acg.cg_magic = CG_MAGIC;
691	acg.cg_cgx = cylno;
692	acg.cg_niblk = sblock.fs_ipg;
693	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
694	acg.cg_ndblk = dmax - cbase;
695	if (sblock.fs_contigsumsize > 0)
696		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
697	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
698	if (Oflag == 2) {
699		acg.cg_iusedoff = start;
700	} else {
701		acg.cg_old_ncyl = sblock.fs_old_cpg;
702		acg.cg_old_time = acg.cg_time;
703		acg.cg_time = 0;
704		acg.cg_old_niblk = acg.cg_niblk;
705		acg.cg_niblk = 0;
706		acg.cg_initediblk = 0;
707		acg.cg_old_btotoff = start;
708		acg.cg_old_boff = acg.cg_old_btotoff +
709		    sblock.fs_old_cpg * sizeof(int32_t);
710		acg.cg_iusedoff = acg.cg_old_boff +
711		    sblock.fs_old_cpg * sizeof(u_int16_t);
712	}
713	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
714	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
715	if (sblock.fs_contigsumsize > 0) {
716		acg.cg_clustersumoff =
717		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
718		acg.cg_clustersumoff -= sizeof(u_int32_t);
719		acg.cg_clusteroff = acg.cg_clustersumoff +
720		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
721		acg.cg_nextfreeoff = acg.cg_clusteroff +
722		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
723	}
724	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
725		printf("Panic: cylinder group too big\n");
726		exit(37);
727	}
728	acg.cg_cs.cs_nifree += sblock.fs_ipg;
729	if (cylno == 0)
730		for (i = 0; i < (long)UFS_ROOTINO; i++) {
731			setbit(cg_inosused(&acg), i);
732			acg.cg_cs.cs_nifree--;
733		}
734	if (cylno > 0) {
735		/*
736		 * In cylno 0, beginning space is reserved
737		 * for boot and super blocks.
738		 */
739		for (d = 0; d < dlower; d += sblock.fs_frag) {
740			blkno = d / sblock.fs_frag;
741			setblock(&sblock, cg_blksfree(&acg), blkno);
742			if (sblock.fs_contigsumsize > 0)
743				setbit(cg_clustersfree(&acg), blkno);
744			acg.cg_cs.cs_nbfree++;
745		}
746	}
747	if ((i = dupper % sblock.fs_frag)) {
748		acg.cg_frsum[sblock.fs_frag - i]++;
749		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
750			setbit(cg_blksfree(&acg), dupper);
751			acg.cg_cs.cs_nffree++;
752		}
753	}
754	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
755	     d += sblock.fs_frag) {
756		blkno = d / sblock.fs_frag;
757		setblock(&sblock, cg_blksfree(&acg), blkno);
758		if (sblock.fs_contigsumsize > 0)
759			setbit(cg_clustersfree(&acg), blkno);
760		acg.cg_cs.cs_nbfree++;
761	}
762	if (d < acg.cg_ndblk) {
763		acg.cg_frsum[acg.cg_ndblk - d]++;
764		for (; d < acg.cg_ndblk; d++) {
765			setbit(cg_blksfree(&acg), d);
766			acg.cg_cs.cs_nffree++;
767		}
768	}
769	if (sblock.fs_contigsumsize > 0) {
770		int32_t *sump = cg_clustersum(&acg);
771		u_char *mapp = cg_clustersfree(&acg);
772		int map = *mapp++;
773		int bit = 1;
774		int run = 0;
775
776		for (i = 0; i < acg.cg_nclusterblks; i++) {
777			if ((map & bit) != 0)
778				run++;
779			else if (run != 0) {
780				if (run > sblock.fs_contigsumsize)
781					run = sblock.fs_contigsumsize;
782				sump[run]++;
783				run = 0;
784			}
785			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
786				bit <<= 1;
787			else {
788				map = *mapp++;
789				bit = 1;
790			}
791		}
792		if (run != 0) {
793			if (run > sblock.fs_contigsumsize)
794				run = sblock.fs_contigsumsize;
795			sump[run]++;
796		}
797	}
798	*cs = acg.cg_cs;
799	/*
800	 * Write out the duplicate super block. Then write the cylinder
801	 * group map and two blocks worth of inodes in a single write.
802	 */
803	savedactualloc = sblock.fs_sblockactualloc;
804	sblock.fs_sblockactualloc =
805	    dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno)));
806	if (sbwrite(&disk, 0) != 0)
807		err(1, "sbwrite: %s", disk.d_error);
808	sblock.fs_sblockactualloc = savedactualloc;
809	if (cgwrite(&disk) != 0)
810		err(1, "initcg: cgwrite: %s", disk.d_error);
811	start = 0;
812	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
813	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
814	for (i = 0; i < acg.cg_initediblk; i++) {
815		if (sblock.fs_magic == FS_UFS1_MAGIC) {
816			dp1->di_gen = newfs_random();
817			dp1++;
818		} else {
819			dp2->di_gen = newfs_random();
820			dp2++;
821		}
822	}
823	wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf);
824	/*
825	 * For the old file system, we have to initialize all the inodes.
826	 */
827	if (Oflag == 1) {
828		for (i = 2 * sblock.fs_frag;
829		     i < sblock.fs_ipg / INOPF(&sblock);
830		     i += sblock.fs_frag) {
831			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
832			for (j = 0; j < INOPB(&sblock); j++) {
833				dp1->di_gen = newfs_random();
834				dp1++;
835			}
836			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
837			    sblock.fs_bsize, &iobuf[start]);
838		}
839	}
840}
841
842/*
843 * initialize the file system
844 */
845#define ROOTLINKCNT 3
846
847static struct direct root_dir[] = {
848	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
849	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
850	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
851};
852
853#define SNAPLINKCNT 2
854
855static struct direct snap_dir[] = {
856	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
857	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
858};
859
860void
861fsinit(time_t utime)
862{
863	union dinode node;
864	struct group *grp;
865	gid_t gid;
866	int entries;
867
868	memset(&node, 0, sizeof node);
869	if ((grp = getgrnam("operator")) != NULL) {
870		gid = grp->gr_gid;
871	} else {
872		warnx("Cannot retrieve operator gid, using gid 0.");
873		gid = 0;
874	}
875	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
876	if (sblock.fs_magic == FS_UFS1_MAGIC) {
877		/*
878		 * initialize the node
879		 */
880		node.dp1.di_atime = utime;
881		node.dp1.di_mtime = utime;
882		node.dp1.di_ctime = utime;
883		/*
884		 * create the root directory
885		 */
886		node.dp1.di_mode = IFDIR | UMASK;
887		node.dp1.di_nlink = entries;
888		node.dp1.di_size = makedir(root_dir, entries);
889		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
890		node.dp1.di_blocks =
891		    btodb(fragroundup(&sblock, node.dp1.di_size));
892		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
893		    iobuf);
894		iput(&node, UFS_ROOTINO);
895		if (!nflag) {
896			/*
897			 * create the .snap directory
898			 */
899			node.dp1.di_mode |= 020;
900			node.dp1.di_gid = gid;
901			node.dp1.di_nlink = SNAPLINKCNT;
902			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
903				node.dp1.di_db[0] =
904				    alloc(sblock.fs_fsize, node.dp1.di_mode);
905			node.dp1.di_blocks =
906			    btodb(fragroundup(&sblock, node.dp1.di_size));
907				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
908				    sblock.fs_fsize, iobuf);
909			iput(&node, UFS_ROOTINO + 1);
910		}
911	} else {
912		/*
913		 * initialize the node
914		 */
915		node.dp2.di_atime = utime;
916		node.dp2.di_mtime = utime;
917		node.dp2.di_ctime = utime;
918		node.dp2.di_birthtime = utime;
919		/*
920		 * create the root directory
921		 */
922		node.dp2.di_mode = IFDIR | UMASK;
923		node.dp2.di_nlink = entries;
924		node.dp2.di_size = makedir(root_dir, entries);
925		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
926		node.dp2.di_blocks =
927		    btodb(fragroundup(&sblock, node.dp2.di_size));
928		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
929		    iobuf);
930		iput(&node, UFS_ROOTINO);
931		if (!nflag) {
932			/*
933			 * create the .snap directory
934			 */
935			node.dp2.di_mode |= 020;
936			node.dp2.di_gid = gid;
937			node.dp2.di_nlink = SNAPLINKCNT;
938			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
939				node.dp2.di_db[0] =
940				    alloc(sblock.fs_fsize, node.dp2.di_mode);
941			node.dp2.di_blocks =
942			    btodb(fragroundup(&sblock, node.dp2.di_size));
943				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
944				    sblock.fs_fsize, iobuf);
945			iput(&node, UFS_ROOTINO + 1);
946		}
947	}
948}
949
950/*
951 * construct a set of directory entries in "iobuf".
952 * return size of directory.
953 */
954int
955makedir(struct direct *protodir, int entries)
956{
957	char *cp;
958	int i, spcleft;
959
960	spcleft = DIRBLKSIZ;
961	memset(iobuf, 0, DIRBLKSIZ);
962	for (cp = iobuf, i = 0; i < entries - 1; i++) {
963		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
964		memmove(cp, &protodir[i], protodir[i].d_reclen);
965		cp += protodir[i].d_reclen;
966		spcleft -= protodir[i].d_reclen;
967	}
968	protodir[i].d_reclen = spcleft;
969	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
970	return (DIRBLKSIZ);
971}
972
973/*
974 * allocate a block or frag
975 */
976ufs2_daddr_t
977alloc(int size, int mode)
978{
979	int i, blkno, frag;
980	uint d;
981
982	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
983	    sblock.fs_cgsize);
984	if (acg.cg_magic != CG_MAGIC) {
985		printf("cg 0: bad magic number\n");
986		exit(38);
987	}
988	if (acg.cg_cs.cs_nbfree == 0) {
989		printf("first cylinder group ran out of space\n");
990		exit(39);
991	}
992	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
993		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
994			goto goth;
995	printf("internal error: can't find block in cyl 0\n");
996	exit(40);
997goth:
998	blkno = fragstoblks(&sblock, d);
999	clrblock(&sblock, cg_blksfree(&acg), blkno);
1000	if (sblock.fs_contigsumsize > 0)
1001		clrbit(cg_clustersfree(&acg), blkno);
1002	acg.cg_cs.cs_nbfree--;
1003	sblock.fs_cstotal.cs_nbfree--;
1004	fscs[0].cs_nbfree--;
1005	if (mode & IFDIR) {
1006		acg.cg_cs.cs_ndir++;
1007		sblock.fs_cstotal.cs_ndir++;
1008		fscs[0].cs_ndir++;
1009	}
1010	if (size != sblock.fs_bsize) {
1011		frag = howmany(size, sblock.fs_fsize);
1012		fscs[0].cs_nffree += sblock.fs_frag - frag;
1013		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1014		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1015		acg.cg_frsum[sblock.fs_frag - frag]++;
1016		for (i = frag; i < sblock.fs_frag; i++)
1017			setbit(cg_blksfree(&acg), d + i);
1018	}
1019	if (cgwrite(&disk) != 0)
1020		err(1, "alloc: cgwrite: %s", disk.d_error);
1021	return ((ufs2_daddr_t)d);
1022}
1023
1024/*
1025 * Allocate an inode on the disk
1026 */
1027void
1028iput(union dinode *ip, ino_t ino)
1029{
1030	ufs2_daddr_t d;
1031
1032	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1033	    sblock.fs_cgsize);
1034	if (acg.cg_magic != CG_MAGIC) {
1035		printf("cg 0: bad magic number\n");
1036		exit(31);
1037	}
1038	acg.cg_cs.cs_nifree--;
1039	setbit(cg_inosused(&acg), ino);
1040	if (cgwrite(&disk) != 0)
1041		err(1, "iput: cgwrite: %s", disk.d_error);
1042	sblock.fs_cstotal.cs_nifree--;
1043	fscs[0].cs_nifree--;
1044	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1045		printf("fsinit: inode value out of range (%ju).\n",
1046		    (uintmax_t)ino);
1047		exit(32);
1048	}
1049	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1050	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1051	if (sblock.fs_magic == FS_UFS1_MAGIC)
1052		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1053		    ip->dp1;
1054	else
1055		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1056		    ip->dp2;
1057	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1058}
1059
1060/*
1061 * possibly write to disk
1062 */
1063static void
1064wtfs(ufs2_daddr_t bno, int size, char *bf)
1065{
1066	if (Nflag)
1067		return;
1068	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1069		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1070}
1071
1072/*
1073 * check if a block is available
1074 */
1075static int
1076isblock(struct fs *fs, unsigned char *cp, int h)
1077{
1078	unsigned char mask;
1079
1080	switch (fs->fs_frag) {
1081	case 8:
1082		return (cp[h] == 0xff);
1083	case 4:
1084		mask = 0x0f << ((h & 0x1) << 2);
1085		return ((cp[h >> 1] & mask) == mask);
1086	case 2:
1087		mask = 0x03 << ((h & 0x3) << 1);
1088		return ((cp[h >> 2] & mask) == mask);
1089	case 1:
1090		mask = 0x01 << (h & 0x7);
1091		return ((cp[h >> 3] & mask) == mask);
1092	default:
1093		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1094		return (0);
1095	}
1096}
1097
1098/*
1099 * take a block out of the map
1100 */
1101static void
1102clrblock(struct fs *fs, unsigned char *cp, int h)
1103{
1104	switch ((fs)->fs_frag) {
1105	case 8:
1106		cp[h] = 0;
1107		return;
1108	case 4:
1109		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1110		return;
1111	case 2:
1112		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1113		return;
1114	case 1:
1115		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1116		return;
1117	default:
1118		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1119		return;
1120	}
1121}
1122
1123/*
1124 * put a block into the map
1125 */
1126static void
1127setblock(struct fs *fs, unsigned char *cp, int h)
1128{
1129	switch (fs->fs_frag) {
1130	case 8:
1131		cp[h] = 0xff;
1132		return;
1133	case 4:
1134		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1135		return;
1136	case 2:
1137		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1138		return;
1139	case 1:
1140		cp[h >> 3] |= (0x01 << (h & 0x7));
1141		return;
1142	default:
1143		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1144		return;
1145	}
1146}
1147
1148/*
1149 * Determine the number of characters in a
1150 * single line.
1151 */
1152
1153static int
1154charsperline(void)
1155{
1156	int columns;
1157	char *cp;
1158	struct winsize ws;
1159
1160	columns = 0;
1161	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1162		columns = ws.ws_col;
1163	if (columns == 0 && (cp = getenv("COLUMNS")))
1164		columns = atoi(cp);
1165	if (columns == 0)
1166		columns = 80;	/* last resort */
1167	return (columns);
1168}
1169
1170static int
1171ilog2(int val)
1172{
1173	u_int n;
1174
1175	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1176		if (1 << n == val)
1177			return (n);
1178	errx(1, "ilog2: %d is not a power of 2\n", val);
1179}
1180
1181/*
1182 * For the regression test, return predictable random values.
1183 * Otherwise use a true random number generator.
1184 */
1185static u_int32_t
1186newfs_random(void)
1187{
1188	static int nextnum = 1;
1189
1190	if (Rflag)
1191		return (nextnum++);
1192	return (arc4random());
1193}
1194