1/* $OpenBSD: umac.c,v 1.17 2018/04/10 00:10:49 djm Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26  *
27  * 1) This version does not work properly on messages larger than 16MB
28  *
29  * 2) If you set the switch to use SSE2, then all data must be 16-byte
30  *    aligned
31  *
32  * 3) When calling the function umac(), it is assumed that msg is in
33  * a writable buffer of length divisible by 32 bytes. The message itself
34  * does not have to fill the entire buffer, but bytes beyond msg may be
35  * zeroed.
36  *
37  * 4) Three free AES implementations are supported by this implementation of
38  * UMAC. Paulo Barreto's version is in the public domain and can be found
39  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44  * the third.
45  *
46  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47  * produced under gcc with optimizations set -O3 or higher. Dunno why.
48  *
49  /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#ifndef UMAC_OUTPUT_LEN
56#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57#endif
58
59#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60    UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62#endif
63
64/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
65/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
66/* #define SSE2                0  Is SSE2 is available?                   */
67/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
68/* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
69
70/* ---------------------------------------------------------------------- */
71/* -- Global Includes --------------------------------------------------- */
72/* ---------------------------------------------------------------------- */
73
74#include "includes.h"
75#include <sys/types.h>
76#include <string.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <stddef.h>
80
81#include "xmalloc.h"
82#include "umac.h"
83#include "misc.h"
84
85/* ---------------------------------------------------------------------- */
86/* --- Primitive Data Types ---                                           */
87/* ---------------------------------------------------------------------- */
88
89/* The following assumptions may need change on your system */
90typedef u_int8_t	UINT8;  /* 1 byte   */
91typedef u_int16_t	UINT16; /* 2 byte   */
92typedef u_int32_t	UINT32; /* 4 byte   */
93typedef u_int64_t	UINT64; /* 8 bytes  */
94typedef unsigned int	UWORD;  /* Register */
95
96/* ---------------------------------------------------------------------- */
97/* --- Constants -------------------------------------------------------- */
98/* ---------------------------------------------------------------------- */
99
100#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
101
102/* Message "words" are read from memory in an endian-specific manner.     */
103/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
104/* be set true if the host computer is little-endian.                     */
105
106#if BYTE_ORDER == LITTLE_ENDIAN
107#define __LITTLE_ENDIAN__ 1
108#else
109#define __LITTLE_ENDIAN__ 0
110#endif
111
112/* ---------------------------------------------------------------------- */
113/* ---------------------------------------------------------------------- */
114/* ----- Architecture Specific ------------------------------------------ */
115/* ---------------------------------------------------------------------- */
116/* ---------------------------------------------------------------------- */
117
118
119/* ---------------------------------------------------------------------- */
120/* ---------------------------------------------------------------------- */
121/* ----- Primitive Routines --------------------------------------------- */
122/* ---------------------------------------------------------------------- */
123/* ---------------------------------------------------------------------- */
124
125
126/* ---------------------------------------------------------------------- */
127/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
128/* ---------------------------------------------------------------------- */
129
130#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
131
132/* ---------------------------------------------------------------------- */
133/* --- Endian Conversion --- Forcing assembly on some platforms           */
134/* ---------------------------------------------------------------------- */
135
136#if (__LITTLE_ENDIAN__)
137#define LOAD_UINT32_REVERSED(p)		get_u32(p)
138#define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
139#else
140#define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
141#define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
142#endif
143
144#define LOAD_UINT32_LITTLE(p)		(get_u32_le(p))
145#define STORE_UINT32_BIG(p,v)		put_u32(p, v)
146
147/* ---------------------------------------------------------------------- */
148/* ---------------------------------------------------------------------- */
149/* ----- Begin KDF & PDF Section ---------------------------------------- */
150/* ---------------------------------------------------------------------- */
151/* ---------------------------------------------------------------------- */
152
153/* UMAC uses AES with 16 byte block and key lengths */
154#define AES_BLOCK_LEN  16
155
156/* OpenSSL's AES */
157#ifdef WITH_OPENSSL
158#include "openbsd-compat/openssl-compat.h"
159#ifndef USE_BUILTIN_RIJNDAEL
160# include <openssl/aes.h>
161#endif
162typedef AES_KEY aes_int_key[1];
163#define aes_encryption(in,out,int_key)                  \
164  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
165#define aes_key_setup(key,int_key)                      \
166  AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
167#else
168#include "rijndael.h"
169#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
170typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
171#define aes_encryption(in,out,int_key) \
172  rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
173#define aes_key_setup(key,int_key) \
174  rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
175  UMAC_KEY_LEN*8)
176#endif
177
178/* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
182 * 'ndx' causes a distinct byte stream.
183 */
184static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
185{
186    UINT8 in_buf[AES_BLOCK_LEN] = {0};
187    UINT8 out_buf[AES_BLOCK_LEN];
188    UINT8 *dst_buf = (UINT8 *)bufp;
189    int i;
190
191    /* Setup the initial value */
192    in_buf[AES_BLOCK_LEN-9] = ndx;
193    in_buf[AES_BLOCK_LEN-1] = i = 1;
194
195    while (nbytes >= AES_BLOCK_LEN) {
196        aes_encryption(in_buf, out_buf, key);
197        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198        in_buf[AES_BLOCK_LEN-1] = ++i;
199        nbytes -= AES_BLOCK_LEN;
200        dst_buf += AES_BLOCK_LEN;
201    }
202    if (nbytes) {
203        aes_encryption(in_buf, out_buf, key);
204        memcpy(dst_buf,out_buf,nbytes);
205    }
206    explicit_bzero(in_buf, sizeof(in_buf));
207    explicit_bzero(out_buf, sizeof(out_buf));
208}
209
210/* The final UHASH result is XOR'd with the output of a pseudorandom
211 * function. Here, we use AES to generate random output and
212 * xor the appropriate bytes depending on the last bits of nonce.
213 * This scheme is optimized for sequential, increasing big-endian nonces.
214 */
215
216typedef struct {
217    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
218    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
219    aes_int_key prf_key;         /* Expanded AES key for PDF          */
220} pdf_ctx;
221
222static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
223{
224    UINT8 buf[UMAC_KEY_LEN];
225
226    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
227    aes_key_setup(buf, pc->prf_key);
228
229    /* Initialize pdf and cache */
230    memset(pc->nonce, 0, sizeof(pc->nonce));
231    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
232    explicit_bzero(buf, sizeof(buf));
233}
234
235static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
236{
237    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
238     * of the AES output. If last time around we returned the ndx-1st
239     * element, then we may have the result in the cache already.
240     */
241
242#if (UMAC_OUTPUT_LEN == 4)
243#define LOW_BIT_MASK 3
244#elif (UMAC_OUTPUT_LEN == 8)
245#define LOW_BIT_MASK 1
246#elif (UMAC_OUTPUT_LEN > 8)
247#define LOW_BIT_MASK 0
248#endif
249    union {
250        UINT8 tmp_nonce_lo[4];
251        UINT32 align;
252    } t;
253#if LOW_BIT_MASK != 0
254    int ndx = nonce[7] & LOW_BIT_MASK;
255#endif
256    *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
257    t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
258
259    if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
260         (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
261    {
262        ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
263        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
264        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
265    }
266
267#if (UMAC_OUTPUT_LEN == 4)
268    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
269#elif (UMAC_OUTPUT_LEN == 8)
270    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
271#elif (UMAC_OUTPUT_LEN == 12)
272    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
273    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
274#elif (UMAC_OUTPUT_LEN == 16)
275    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
276    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
277#endif
278}
279
280/* ---------------------------------------------------------------------- */
281/* ---------------------------------------------------------------------- */
282/* ----- Begin NH Hash Section ------------------------------------------ */
283/* ---------------------------------------------------------------------- */
284/* ---------------------------------------------------------------------- */
285
286/* The NH-based hash functions used in UMAC are described in the UMAC paper
287 * and specification, both of which can be found at the UMAC website.
288 * The interface to this implementation has two
289 * versions, one expects the entire message being hashed to be passed
290 * in a single buffer and returns the hash result immediately. The second
291 * allows the message to be passed in a sequence of buffers. In the
292 * muliple-buffer interface, the client calls the routine nh_update() as
293 * many times as necessary. When there is no more data to be fed to the
294 * hash, the client calls nh_final() which calculates the hash output.
295 * Before beginning another hash calculation the nh_reset() routine
296 * must be called. The single-buffer routine, nh(), is equivalent to
297 * the sequence of calls nh_update() and nh_final(); however it is
298 * optimized and should be preferred whenever the multiple-buffer interface
299 * is not necessary. When using either interface, it is the client's
300 * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
301 *
302 * The routine nh_init() initializes the nh_ctx data structure and
303 * must be called once, before any other PDF routine.
304 */
305
306 /* The "nh_aux" routines do the actual NH hashing work. They
307  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
308  * produce output for all STREAMS NH iterations in one call,
309  * allowing the parallel implementation of the streams.
310  */
311
312#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
313#define L1_KEY_LEN         1024     /* Internal key bytes                 */
314#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
315#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
316#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
317#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
318
319typedef struct {
320    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
321    UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
322    int next_data_empty;    /* Bookkeeping variable for data buffer.     */
323    int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
324    UINT64 state[STREAMS];               /* on-line state     */
325} nh_ctx;
326
327
328#if (UMAC_OUTPUT_LEN == 4)
329
330static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
331/* NH hashing primitive. Previous (partial) hash result is loaded and
332* then stored via hp pointer. The length of the data pointed at by "dp",
333* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
334* is expected to be endian compensated in memory at key setup.
335*/
336{
337    UINT64 h;
338    UWORD c = dlen / 32;
339    UINT32 *k = (UINT32 *)kp;
340    const UINT32 *d = (const UINT32 *)dp;
341    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
342    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
343
344    h = *((UINT64 *)hp);
345    do {
346        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
347        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
348        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
349        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
350        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
351        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
352        h += MUL64((k0 + d0), (k4 + d4));
353        h += MUL64((k1 + d1), (k5 + d5));
354        h += MUL64((k2 + d2), (k6 + d6));
355        h += MUL64((k3 + d3), (k7 + d7));
356
357        d += 8;
358        k += 8;
359    } while (--c);
360  *((UINT64 *)hp) = h;
361}
362
363#elif (UMAC_OUTPUT_LEN == 8)
364
365static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
366/* Same as previous nh_aux, but two streams are handled in one pass,
367 * reading and writing 16 bytes of hash-state per call.
368 */
369{
370  UINT64 h1,h2;
371  UWORD c = dlen / 32;
372  UINT32 *k = (UINT32 *)kp;
373  const UINT32 *d = (const UINT32 *)dp;
374  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
375  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
376        k8,k9,k10,k11;
377
378  h1 = *((UINT64 *)hp);
379  h2 = *((UINT64 *)hp + 1);
380  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
381  do {
382    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
383    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
384    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
385    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
386    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
387    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
388
389    h1 += MUL64((k0 + d0), (k4 + d4));
390    h2 += MUL64((k4 + d0), (k8 + d4));
391
392    h1 += MUL64((k1 + d1), (k5 + d5));
393    h2 += MUL64((k5 + d1), (k9 + d5));
394
395    h1 += MUL64((k2 + d2), (k6 + d6));
396    h2 += MUL64((k6 + d2), (k10 + d6));
397
398    h1 += MUL64((k3 + d3), (k7 + d7));
399    h2 += MUL64((k7 + d3), (k11 + d7));
400
401    k0 = k8; k1 = k9; k2 = k10; k3 = k11;
402
403    d += 8;
404    k += 8;
405  } while (--c);
406  ((UINT64 *)hp)[0] = h1;
407  ((UINT64 *)hp)[1] = h2;
408}
409
410#elif (UMAC_OUTPUT_LEN == 12)
411
412static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
413/* Same as previous nh_aux, but two streams are handled in one pass,
414 * reading and writing 24 bytes of hash-state per call.
415*/
416{
417    UINT64 h1,h2,h3;
418    UWORD c = dlen / 32;
419    UINT32 *k = (UINT32 *)kp;
420    const UINT32 *d = (const UINT32 *)dp;
421    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
422    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
423        k8,k9,k10,k11,k12,k13,k14,k15;
424
425    h1 = *((UINT64 *)hp);
426    h2 = *((UINT64 *)hp + 1);
427    h3 = *((UINT64 *)hp + 2);
428    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
429    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
430    do {
431        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
432        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
433        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
434        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
435        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
436        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
437
438        h1 += MUL64((k0 + d0), (k4 + d4));
439        h2 += MUL64((k4 + d0), (k8 + d4));
440        h3 += MUL64((k8 + d0), (k12 + d4));
441
442        h1 += MUL64((k1 + d1), (k5 + d5));
443        h2 += MUL64((k5 + d1), (k9 + d5));
444        h3 += MUL64((k9 + d1), (k13 + d5));
445
446        h1 += MUL64((k2 + d2), (k6 + d6));
447        h2 += MUL64((k6 + d2), (k10 + d6));
448        h3 += MUL64((k10 + d2), (k14 + d6));
449
450        h1 += MUL64((k3 + d3), (k7 + d7));
451        h2 += MUL64((k7 + d3), (k11 + d7));
452        h3 += MUL64((k11 + d3), (k15 + d7));
453
454        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
455        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
456
457        d += 8;
458        k += 8;
459    } while (--c);
460    ((UINT64 *)hp)[0] = h1;
461    ((UINT64 *)hp)[1] = h2;
462    ((UINT64 *)hp)[2] = h3;
463}
464
465#elif (UMAC_OUTPUT_LEN == 16)
466
467static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
468/* Same as previous nh_aux, but two streams are handled in one pass,
469 * reading and writing 24 bytes of hash-state per call.
470*/
471{
472    UINT64 h1,h2,h3,h4;
473    UWORD c = dlen / 32;
474    UINT32 *k = (UINT32 *)kp;
475    const UINT32 *d = (const UINT32 *)dp;
476    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
477    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
478        k8,k9,k10,k11,k12,k13,k14,k15,
479        k16,k17,k18,k19;
480
481    h1 = *((UINT64 *)hp);
482    h2 = *((UINT64 *)hp + 1);
483    h3 = *((UINT64 *)hp + 2);
484    h4 = *((UINT64 *)hp + 3);
485    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
486    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
487    do {
488        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
489        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
490        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
491        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
492        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
493        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
494        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
495
496        h1 += MUL64((k0 + d0), (k4 + d4));
497        h2 += MUL64((k4 + d0), (k8 + d4));
498        h3 += MUL64((k8 + d0), (k12 + d4));
499        h4 += MUL64((k12 + d0), (k16 + d4));
500
501        h1 += MUL64((k1 + d1), (k5 + d5));
502        h2 += MUL64((k5 + d1), (k9 + d5));
503        h3 += MUL64((k9 + d1), (k13 + d5));
504        h4 += MUL64((k13 + d1), (k17 + d5));
505
506        h1 += MUL64((k2 + d2), (k6 + d6));
507        h2 += MUL64((k6 + d2), (k10 + d6));
508        h3 += MUL64((k10 + d2), (k14 + d6));
509        h4 += MUL64((k14 + d2), (k18 + d6));
510
511        h1 += MUL64((k3 + d3), (k7 + d7));
512        h2 += MUL64((k7 + d3), (k11 + d7));
513        h3 += MUL64((k11 + d3), (k15 + d7));
514        h4 += MUL64((k15 + d3), (k19 + d7));
515
516        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
517        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
518        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
519
520        d += 8;
521        k += 8;
522    } while (--c);
523    ((UINT64 *)hp)[0] = h1;
524    ((UINT64 *)hp)[1] = h2;
525    ((UINT64 *)hp)[2] = h3;
526    ((UINT64 *)hp)[3] = h4;
527}
528
529/* ---------------------------------------------------------------------- */
530#endif  /* UMAC_OUTPUT_LENGTH */
531/* ---------------------------------------------------------------------- */
532
533
534/* ---------------------------------------------------------------------- */
535
536static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
537/* This function is a wrapper for the primitive NH hash functions. It takes
538 * as argument "hc" the current hash context and a buffer which must be a
539 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
540 * appropriately according to how much message has been hashed already.
541 */
542{
543    UINT8 *key;
544
545    key = hc->nh_key + hc->bytes_hashed;
546    nh_aux(key, buf, hc->state, nbytes);
547}
548
549/* ---------------------------------------------------------------------- */
550
551#if (__LITTLE_ENDIAN__)
552static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
553/* We endian convert the keys on little-endian computers to               */
554/* compensate for the lack of big-endian memory reads during hashing.     */
555{
556    UWORD iters = num_bytes / bpw;
557    if (bpw == 4) {
558        UINT32 *p = (UINT32 *)buf;
559        do {
560            *p = LOAD_UINT32_REVERSED(p);
561            p++;
562        } while (--iters);
563    } else if (bpw == 8) {
564        UINT32 *p = (UINT32 *)buf;
565        UINT32 t;
566        do {
567            t = LOAD_UINT32_REVERSED(p+1);
568            p[1] = LOAD_UINT32_REVERSED(p);
569            p[0] = t;
570            p += 2;
571        } while (--iters);
572    }
573}
574#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
575#else
576#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
577#endif
578
579/* ---------------------------------------------------------------------- */
580
581static void nh_reset(nh_ctx *hc)
582/* Reset nh_ctx to ready for hashing of new data */
583{
584    hc->bytes_hashed = 0;
585    hc->next_data_empty = 0;
586    hc->state[0] = 0;
587#if (UMAC_OUTPUT_LEN >= 8)
588    hc->state[1] = 0;
589#endif
590#if (UMAC_OUTPUT_LEN >= 12)
591    hc->state[2] = 0;
592#endif
593#if (UMAC_OUTPUT_LEN == 16)
594    hc->state[3] = 0;
595#endif
596
597}
598
599/* ---------------------------------------------------------------------- */
600
601static void nh_init(nh_ctx *hc, aes_int_key prf_key)
602/* Generate nh_key, endian convert and reset to be ready for hashing.   */
603{
604    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
605    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
606    nh_reset(hc);
607}
608
609/* ---------------------------------------------------------------------- */
610
611static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
612/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
613/* even multiple of HASH_BUF_BYTES.                                       */
614{
615    UINT32 i,j;
616
617    j = hc->next_data_empty;
618    if ((j + nbytes) >= HASH_BUF_BYTES) {
619        if (j) {
620            i = HASH_BUF_BYTES - j;
621            memcpy(hc->data+j, buf, i);
622            nh_transform(hc,hc->data,HASH_BUF_BYTES);
623            nbytes -= i;
624            buf += i;
625            hc->bytes_hashed += HASH_BUF_BYTES;
626        }
627        if (nbytes >= HASH_BUF_BYTES) {
628            i = nbytes & ~(HASH_BUF_BYTES - 1);
629            nh_transform(hc, buf, i);
630            nbytes -= i;
631            buf += i;
632            hc->bytes_hashed += i;
633        }
634        j = 0;
635    }
636    memcpy(hc->data + j, buf, nbytes);
637    hc->next_data_empty = j + nbytes;
638}
639
640/* ---------------------------------------------------------------------- */
641
642static void zero_pad(UINT8 *p, int nbytes)
643{
644/* Write "nbytes" of zeroes, beginning at "p" */
645    if (nbytes >= (int)sizeof(UWORD)) {
646        while ((ptrdiff_t)p % sizeof(UWORD)) {
647            *p = 0;
648            nbytes--;
649            p++;
650        }
651        while (nbytes >= (int)sizeof(UWORD)) {
652            *(UWORD *)p = 0;
653            nbytes -= sizeof(UWORD);
654            p += sizeof(UWORD);
655        }
656    }
657    while (nbytes) {
658        *p = 0;
659        nbytes--;
660        p++;
661    }
662}
663
664/* ---------------------------------------------------------------------- */
665
666static void nh_final(nh_ctx *hc, UINT8 *result)
667/* After passing some number of data buffers to nh_update() for integration
668 * into an NH context, nh_final is called to produce a hash result. If any
669 * bytes are in the buffer hc->data, incorporate them into the
670 * NH context. Finally, add into the NH accumulation "state" the total number
671 * of bits hashed. The resulting numbers are written to the buffer "result".
672 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
673 */
674{
675    int nh_len, nbits;
676
677    if (hc->next_data_empty != 0) {
678        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
679                                                ~(L1_PAD_BOUNDARY - 1));
680        zero_pad(hc->data + hc->next_data_empty,
681                                          nh_len - hc->next_data_empty);
682        nh_transform(hc, hc->data, nh_len);
683        hc->bytes_hashed += hc->next_data_empty;
684    } else if (hc->bytes_hashed == 0) {
685	nh_len = L1_PAD_BOUNDARY;
686        zero_pad(hc->data, L1_PAD_BOUNDARY);
687        nh_transform(hc, hc->data, nh_len);
688    }
689
690    nbits = (hc->bytes_hashed << 3);
691    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
692#if (UMAC_OUTPUT_LEN >= 8)
693    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
694#endif
695#if (UMAC_OUTPUT_LEN >= 12)
696    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
697#endif
698#if (UMAC_OUTPUT_LEN == 16)
699    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
700#endif
701    nh_reset(hc);
702}
703
704/* ---------------------------------------------------------------------- */
705
706static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
707               UINT32 unpadded_len, UINT8 *result)
708/* All-in-one nh_update() and nh_final() equivalent.
709 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
710 * well aligned
711 */
712{
713    UINT32 nbits;
714
715    /* Initialize the hash state */
716    nbits = (unpadded_len << 3);
717
718    ((UINT64 *)result)[0] = nbits;
719#if (UMAC_OUTPUT_LEN >= 8)
720    ((UINT64 *)result)[1] = nbits;
721#endif
722#if (UMAC_OUTPUT_LEN >= 12)
723    ((UINT64 *)result)[2] = nbits;
724#endif
725#if (UMAC_OUTPUT_LEN == 16)
726    ((UINT64 *)result)[3] = nbits;
727#endif
728
729    nh_aux(hc->nh_key, buf, result, padded_len);
730}
731
732/* ---------------------------------------------------------------------- */
733/* ---------------------------------------------------------------------- */
734/* ----- Begin UHASH Section -------------------------------------------- */
735/* ---------------------------------------------------------------------- */
736/* ---------------------------------------------------------------------- */
737
738/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
739 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
740 * unless the initial data to be hashed is short. After the polynomial-
741 * layer, an inner-product hash is used to produce the final UHASH output.
742 *
743 * UHASH provides two interfaces, one all-at-once and another where data
744 * buffers are presented sequentially. In the sequential interface, the
745 * UHASH client calls the routine uhash_update() as many times as necessary.
746 * When there is no more data to be fed to UHASH, the client calls
747 * uhash_final() which
748 * calculates the UHASH output. Before beginning another UHASH calculation
749 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
750 * uhash(), is equivalent to the sequence of calls uhash_update() and
751 * uhash_final(); however it is optimized and should be
752 * used whenever the sequential interface is not necessary.
753 *
754 * The routine uhash_init() initializes the uhash_ctx data structure and
755 * must be called once, before any other UHASH routine.
756 */
757
758/* ---------------------------------------------------------------------- */
759/* ----- Constants and uhash_ctx ---------------------------------------- */
760/* ---------------------------------------------------------------------- */
761
762/* ---------------------------------------------------------------------- */
763/* ----- Poly hash and Inner-Product hash Constants --------------------- */
764/* ---------------------------------------------------------------------- */
765
766/* Primes and masks */
767#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
768#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
769#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
770
771
772/* ---------------------------------------------------------------------- */
773
774typedef struct uhash_ctx {
775    nh_ctx hash;                          /* Hash context for L1 NH hash  */
776    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
777    UINT64 poly_accum[STREAMS];           /* poly hash result             */
778    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
779    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
780    UINT32 msg_len;                       /* Total length of data passed  */
781                                          /* to uhash */
782} uhash_ctx;
783typedef struct uhash_ctx *uhash_ctx_t;
784
785/* ---------------------------------------------------------------------- */
786
787
788/* The polynomial hashes use Horner's rule to evaluate a polynomial one
789 * word at a time. As described in the specification, poly32 and poly64
790 * require keys from special domains. The following implementations exploit
791 * the special domains to avoid overflow. The results are not guaranteed to
792 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
793 * patches any errant values.
794 */
795
796static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
797{
798    UINT32 key_hi = (UINT32)(key >> 32),
799           key_lo = (UINT32)key,
800           cur_hi = (UINT32)(cur >> 32),
801           cur_lo = (UINT32)cur,
802           x_lo,
803           x_hi;
804    UINT64 X,T,res;
805
806    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
807    x_lo = (UINT32)X;
808    x_hi = (UINT32)(X >> 32);
809
810    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
811
812    T = ((UINT64)x_lo << 32);
813    res += T;
814    if (res < T)
815        res += 59;
816
817    res += data;
818    if (res < data)
819        res += 59;
820
821    return res;
822}
823
824
825/* Although UMAC is specified to use a ramped polynomial hash scheme, this
826 * implementation does not handle all ramp levels. Because we don't handle
827 * the ramp up to p128 modulus in this implementation, we are limited to
828 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
829 * bytes input to UMAC per tag, ie. 16MB).
830 */
831static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
832{
833    int i;
834    UINT64 *data=(UINT64*)data_in;
835
836    for (i = 0; i < STREAMS; i++) {
837        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
838            hc->poly_accum[i] = poly64(hc->poly_accum[i],
839                                       hc->poly_key_8[i], p64 - 1);
840            hc->poly_accum[i] = poly64(hc->poly_accum[i],
841                                       hc->poly_key_8[i], (data[i] - 59));
842        } else {
843            hc->poly_accum[i] = poly64(hc->poly_accum[i],
844                                       hc->poly_key_8[i], data[i]);
845        }
846    }
847}
848
849
850/* ---------------------------------------------------------------------- */
851
852
853/* The final step in UHASH is an inner-product hash. The poly hash
854 * produces a result not necessarily WORD_LEN bytes long. The inner-
855 * product hash breaks the polyhash output into 16-bit chunks and
856 * multiplies each with a 36 bit key.
857 */
858
859static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
860{
861    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
862    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
863    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
864    t = t + ipkp[3] * (UINT64)(UINT16)(data);
865
866    return t;
867}
868
869static UINT32 ip_reduce_p36(UINT64 t)
870{
871/* Divisionless modular reduction */
872    UINT64 ret;
873
874    ret = (t & m36) + 5 * (t >> 36);
875    if (ret >= p36)
876        ret -= p36;
877
878    /* return least significant 32 bits */
879    return (UINT32)(ret);
880}
881
882
883/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
884 * the polyhash stage is skipped and ip_short is applied directly to the
885 * NH output.
886 */
887static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
888{
889    UINT64 t;
890    UINT64 *nhp = (UINT64 *)nh_res;
891
892    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
893    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
894#if (UMAC_OUTPUT_LEN >= 8)
895    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
896    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
897#endif
898#if (UMAC_OUTPUT_LEN >= 12)
899    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
900    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
901#endif
902#if (UMAC_OUTPUT_LEN == 16)
903    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
904    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
905#endif
906}
907
908/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
909 * the polyhash stage is not skipped and ip_long is applied to the
910 * polyhash output.
911 */
912static void ip_long(uhash_ctx_t ahc, u_char *res)
913{
914    int i;
915    UINT64 t;
916
917    for (i = 0; i < STREAMS; i++) {
918        /* fix polyhash output not in Z_p64 */
919        if (ahc->poly_accum[i] >= p64)
920            ahc->poly_accum[i] -= p64;
921        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
922        STORE_UINT32_BIG((UINT32 *)res+i,
923                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
924    }
925}
926
927
928/* ---------------------------------------------------------------------- */
929
930/* ---------------------------------------------------------------------- */
931
932/* Reset uhash context for next hash session */
933static int uhash_reset(uhash_ctx_t pc)
934{
935    nh_reset(&pc->hash);
936    pc->msg_len = 0;
937    pc->poly_accum[0] = 1;
938#if (UMAC_OUTPUT_LEN >= 8)
939    pc->poly_accum[1] = 1;
940#endif
941#if (UMAC_OUTPUT_LEN >= 12)
942    pc->poly_accum[2] = 1;
943#endif
944#if (UMAC_OUTPUT_LEN == 16)
945    pc->poly_accum[3] = 1;
946#endif
947    return 1;
948}
949
950/* ---------------------------------------------------------------------- */
951
952/* Given a pointer to the internal key needed by kdf() and a uhash context,
953 * initialize the NH context and generate keys needed for poly and inner-
954 * product hashing. All keys are endian adjusted in memory so that native
955 * loads cause correct keys to be in registers during calculation.
956 */
957static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
958{
959    int i;
960    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
961
962    /* Zero the entire uhash context */
963    memset(ahc, 0, sizeof(uhash_ctx));
964
965    /* Initialize the L1 hash */
966    nh_init(&ahc->hash, prf_key);
967
968    /* Setup L2 hash variables */
969    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
970    for (i = 0; i < STREAMS; i++) {
971        /* Fill keys from the buffer, skipping bytes in the buffer not
972         * used by this implementation. Endian reverse the keys if on a
973         * little-endian computer.
974         */
975        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
976        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
977        /* Mask the 64-bit keys to their special domain */
978        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
979        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
980    }
981
982    /* Setup L3-1 hash variables */
983    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
984    for (i = 0; i < STREAMS; i++)
985          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
986                                                 4*sizeof(UINT64));
987    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
988                                                  sizeof(ahc->ip_keys));
989    for (i = 0; i < STREAMS*4; i++)
990        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
991
992    /* Setup L3-2 hash variables    */
993    /* Fill buffer with index 4 key */
994    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
995    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
996                         STREAMS * sizeof(UINT32));
997    explicit_bzero(buf, sizeof(buf));
998}
999
1000/* ---------------------------------------------------------------------- */
1001
1002#if 0
1003static uhash_ctx_t uhash_alloc(u_char key[])
1004{
1005/* Allocate memory and force to a 16-byte boundary. */
1006    uhash_ctx_t ctx;
1007    u_char bytes_to_add;
1008    aes_int_key prf_key;
1009
1010    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1011    if (ctx) {
1012        if (ALLOC_BOUNDARY) {
1013            bytes_to_add = ALLOC_BOUNDARY -
1014                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1015            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1016            *((u_char *)ctx - 1) = bytes_to_add;
1017        }
1018        aes_key_setup(key,prf_key);
1019        uhash_init(ctx, prf_key);
1020    }
1021    return (ctx);
1022}
1023#endif
1024
1025/* ---------------------------------------------------------------------- */
1026
1027#if 0
1028static int uhash_free(uhash_ctx_t ctx)
1029{
1030/* Free memory allocated by uhash_alloc */
1031    u_char bytes_to_sub;
1032
1033    if (ctx) {
1034        if (ALLOC_BOUNDARY) {
1035            bytes_to_sub = *((u_char *)ctx - 1);
1036            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1037        }
1038        free(ctx);
1039    }
1040    return (1);
1041}
1042#endif
1043/* ---------------------------------------------------------------------- */
1044
1045static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1046/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1047 * hash each one with NH, calling the polyhash on each NH output.
1048 */
1049{
1050    UWORD bytes_hashed, bytes_remaining;
1051    UINT64 result_buf[STREAMS];
1052    UINT8 *nh_result = (UINT8 *)&result_buf;
1053
1054    if (ctx->msg_len + len <= L1_KEY_LEN) {
1055        nh_update(&ctx->hash, (const UINT8 *)input, len);
1056        ctx->msg_len += len;
1057    } else {
1058
1059         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1060         if (ctx->msg_len == L1_KEY_LEN)
1061             bytes_hashed = L1_KEY_LEN;
1062
1063         if (bytes_hashed + len >= L1_KEY_LEN) {
1064
1065             /* If some bytes have been passed to the hash function      */
1066             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1067             /* bytes to complete the current nh_block.                  */
1068             if (bytes_hashed) {
1069                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1070                 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1071                 nh_final(&ctx->hash, nh_result);
1072                 ctx->msg_len += bytes_remaining;
1073                 poly_hash(ctx,(UINT32 *)nh_result);
1074                 len -= bytes_remaining;
1075                 input += bytes_remaining;
1076             }
1077
1078             /* Hash directly from input stream if enough bytes */
1079             while (len >= L1_KEY_LEN) {
1080                 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1081                                   L1_KEY_LEN, nh_result);
1082                 ctx->msg_len += L1_KEY_LEN;
1083                 len -= L1_KEY_LEN;
1084                 input += L1_KEY_LEN;
1085                 poly_hash(ctx,(UINT32 *)nh_result);
1086             }
1087         }
1088
1089         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1090         if (len) {
1091             nh_update(&ctx->hash, (const UINT8 *)input, len);
1092             ctx->msg_len += len;
1093         }
1094     }
1095
1096    return (1);
1097}
1098
1099/* ---------------------------------------------------------------------- */
1100
1101static int uhash_final(uhash_ctx_t ctx, u_char *res)
1102/* Incorporate any pending data, pad, and generate tag */
1103{
1104    UINT64 result_buf[STREAMS];
1105    UINT8 *nh_result = (UINT8 *)&result_buf;
1106
1107    if (ctx->msg_len > L1_KEY_LEN) {
1108        if (ctx->msg_len % L1_KEY_LEN) {
1109            nh_final(&ctx->hash, nh_result);
1110            poly_hash(ctx,(UINT32 *)nh_result);
1111        }
1112        ip_long(ctx, res);
1113    } else {
1114        nh_final(&ctx->hash, nh_result);
1115        ip_short(ctx,nh_result, res);
1116    }
1117    uhash_reset(ctx);
1118    return (1);
1119}
1120
1121/* ---------------------------------------------------------------------- */
1122
1123#if 0
1124static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1125/* assumes that msg is in a writable buffer of length divisible by */
1126/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1127{
1128    UINT8 nh_result[STREAMS*sizeof(UINT64)];
1129    UINT32 nh_len;
1130    int extra_zeroes_needed;
1131
1132    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1133     * the polyhash.
1134     */
1135    if (len <= L1_KEY_LEN) {
1136	if (len == 0)                  /* If zero length messages will not */
1137		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1138	else
1139		nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1140        extra_zeroes_needed = nh_len - len;
1141        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1142        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1143        ip_short(ahc,nh_result, res);
1144    } else {
1145        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1146         * output to poly_hash().
1147         */
1148        do {
1149            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1150            poly_hash(ahc,(UINT32 *)nh_result);
1151            len -= L1_KEY_LEN;
1152            msg += L1_KEY_LEN;
1153        } while (len >= L1_KEY_LEN);
1154        if (len) {
1155            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1156            extra_zeroes_needed = nh_len - len;
1157            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1158            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1159            poly_hash(ahc,(UINT32 *)nh_result);
1160        }
1161
1162        ip_long(ahc, res);
1163    }
1164
1165    uhash_reset(ahc);
1166    return 1;
1167}
1168#endif
1169
1170/* ---------------------------------------------------------------------- */
1171/* ---------------------------------------------------------------------- */
1172/* ----- Begin UMAC Section --------------------------------------------- */
1173/* ---------------------------------------------------------------------- */
1174/* ---------------------------------------------------------------------- */
1175
1176/* The UMAC interface has two interfaces, an all-at-once interface where
1177 * the entire message to be authenticated is passed to UMAC in one buffer,
1178 * and a sequential interface where the message is presented a little at a
1179 * time. The all-at-once is more optimaized than the sequential version and
1180 * should be preferred when the sequential interface is not required.
1181 */
1182struct umac_ctx {
1183    uhash_ctx hash;          /* Hash function for message compression    */
1184    pdf_ctx pdf;             /* PDF for hashed output                    */
1185    void *free_ptr;          /* Address to free this struct via          */
1186} umac_ctx;
1187
1188/* ---------------------------------------------------------------------- */
1189
1190#if 0
1191int umac_reset(struct umac_ctx *ctx)
1192/* Reset the hash function to begin a new authentication.        */
1193{
1194    uhash_reset(&ctx->hash);
1195    return (1);
1196}
1197#endif
1198
1199/* ---------------------------------------------------------------------- */
1200
1201int umac_delete(struct umac_ctx *ctx)
1202/* Deallocate the ctx structure */
1203{
1204    if (ctx) {
1205        if (ALLOC_BOUNDARY)
1206            ctx = (struct umac_ctx *)ctx->free_ptr;
1207        explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1208        free(ctx);
1209    }
1210    return (1);
1211}
1212
1213/* ---------------------------------------------------------------------- */
1214
1215struct umac_ctx *umac_new(const u_char key[])
1216/* Dynamically allocate a umac_ctx struct, initialize variables,
1217 * generate subkeys from key. Align to 16-byte boundary.
1218 */
1219{
1220    struct umac_ctx *ctx, *octx;
1221    size_t bytes_to_add;
1222    aes_int_key prf_key;
1223
1224    octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1225    if (ctx) {
1226        if (ALLOC_BOUNDARY) {
1227            bytes_to_add = ALLOC_BOUNDARY -
1228                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1229            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1230        }
1231        ctx->free_ptr = octx;
1232        aes_key_setup(key, prf_key);
1233        pdf_init(&ctx->pdf, prf_key);
1234        uhash_init(&ctx->hash, prf_key);
1235        explicit_bzero(prf_key, sizeof(prf_key));
1236    }
1237
1238    return (ctx);
1239}
1240
1241/* ---------------------------------------------------------------------- */
1242
1243int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1244/* Incorporate any pending data, pad, and generate tag */
1245{
1246    uhash_final(&ctx->hash, (u_char *)tag);
1247    pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1248
1249    return (1);
1250}
1251
1252/* ---------------------------------------------------------------------- */
1253
1254int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1255/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1256/* hash each one, calling the PDF on the hashed output whenever the hash- */
1257/* output buffer is full.                                                 */
1258{
1259    uhash_update(&ctx->hash, input, len);
1260    return (1);
1261}
1262
1263/* ---------------------------------------------------------------------- */
1264
1265#if 0
1266int umac(struct umac_ctx *ctx, u_char *input,
1267         long len, u_char tag[],
1268         u_char nonce[8])
1269/* All-in-one version simply calls umac_update() and umac_final().        */
1270{
1271    uhash(&ctx->hash, input, len, (u_char *)tag);
1272    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1273
1274    return (1);
1275}
1276#endif
1277
1278/* ---------------------------------------------------------------------- */
1279/* ---------------------------------------------------------------------- */
1280/* ----- End UMAC Section ----------------------------------------------- */
1281/* ---------------------------------------------------------------------- */
1282/* ---------------------------------------------------------------------- */
1283