rtld.c revision 304456
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: releng/11.0/libexec/rtld-elf/rtld.c 304456 2016-08-19 08:44:37Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "paths.h"
60#include "rtld_tls.h"
61#include "rtld_printf.h"
62#include "notes.h"
63
64/* Types. */
65typedef void (*func_ptr_type)();
66typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67
68/*
69 * Function declarations.
70 */
71static const char *basename(const char *);
72static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
73    const Elf_Dyn **, const Elf_Dyn **);
74static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
75    const Elf_Dyn *);
76static void digest_dynamic(Obj_Entry *, int);
77static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
78static Obj_Entry *dlcheck(void *);
79static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
80    int lo_flags, int mode, RtldLockState *lockstate);
81static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
82static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
83static bool donelist_check(DoneList *, const Obj_Entry *);
84static void errmsg_restore(char *);
85static char *errmsg_save(void);
86static void *fill_search_info(const char *, size_t, void *);
87static char *find_library(const char *, const Obj_Entry *, int *);
88static const char *gethints(bool);
89static void init_dag(Obj_Entry *);
90static void init_pagesizes(Elf_Auxinfo **aux_info);
91static void init_rtld(caddr_t, Elf_Auxinfo **);
92static void initlist_add_neededs(Needed_Entry *, Objlist *);
93static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
94static void linkmap_add(Obj_Entry *);
95static void linkmap_delete(Obj_Entry *);
96static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
97static void unload_filtees(Obj_Entry *);
98static int load_needed_objects(Obj_Entry *, int);
99static int load_preload_objects(void);
100static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
101static void map_stacks_exec(RtldLockState *);
102static Obj_Entry *obj_from_addr(const void *);
103static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
104static void objlist_call_init(Objlist *, RtldLockState *);
105static void objlist_clear(Objlist *);
106static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
107static void objlist_init(Objlist *);
108static void objlist_push_head(Objlist *, Obj_Entry *);
109static void objlist_push_tail(Objlist *, Obj_Entry *);
110static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
111static void objlist_remove(Objlist *, Obj_Entry *);
112static int parse_libdir(const char *);
113static void *path_enumerate(const char *, path_enum_proc, void *);
114static int relocate_object_dag(Obj_Entry *root, bool bind_now,
115    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
116static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
117    int flags, RtldLockState *lockstate);
118static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
119    RtldLockState *);
120static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
121    int flags, RtldLockState *lockstate);
122static int rtld_dirname(const char *, char *);
123static int rtld_dirname_abs(const char *, char *);
124static void *rtld_dlopen(const char *name, int fd, int mode);
125static void rtld_exit(void);
126static char *search_library_path(const char *, const char *);
127static char *search_library_pathfds(const char *, const char *, int *);
128static const void **get_program_var_addr(const char *, RtldLockState *);
129static void set_program_var(const char *, const void *);
130static int symlook_default(SymLook *, const Obj_Entry *refobj);
131static int symlook_global(SymLook *, DoneList *);
132static void symlook_init_from_req(SymLook *, const SymLook *);
133static int symlook_list(SymLook *, const Objlist *, DoneList *);
134static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
136static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
137static void trace_loaded_objects(Obj_Entry *);
138static void unlink_object(Obj_Entry *);
139static void unload_object(Obj_Entry *);
140static void unref_dag(Obj_Entry *);
141static void ref_dag(Obj_Entry *);
142static char *origin_subst_one(Obj_Entry *, char *, const char *,
143    const char *, bool);
144static char *origin_subst(Obj_Entry *, char *);
145static bool obj_resolve_origin(Obj_Entry *obj);
146static void preinit_main(void);
147static int  rtld_verify_versions(const Objlist *);
148static int  rtld_verify_object_versions(Obj_Entry *);
149static void object_add_name(Obj_Entry *, const char *);
150static int  object_match_name(const Obj_Entry *, const char *);
151static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
152static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
153    struct dl_phdr_info *phdr_info);
154static uint32_t gnu_hash(const char *);
155static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
156    const unsigned long);
157
158void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
159void _r_debug_postinit(struct link_map *) __noinline __exported;
160
161int __sys_openat(int, const char *, int, ...);
162
163/*
164 * Data declarations.
165 */
166static char *error_message;	/* Message for dlerror(), or NULL */
167struct r_debug r_debug __exported;	/* for GDB; */
168static bool libmap_disable;	/* Disable libmap */
169static bool ld_loadfltr;	/* Immediate filters processing */
170static char *libmap_override;	/* Maps to use in addition to libmap.conf */
171static bool trust;		/* False for setuid and setgid programs */
172static bool dangerous_ld_env;	/* True if environment variables have been
173				   used to affect the libraries loaded */
174static char *ld_bind_now;	/* Environment variable for immediate binding */
175static char *ld_debug;		/* Environment variable for debugging */
176static char *ld_library_path;	/* Environment variable for search path */
177static char *ld_library_dirs;	/* Environment variable for library descriptors */
178static char *ld_preload;	/* Environment variable for libraries to
179				   load first */
180static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181static char *ld_tracing;	/* Called from ldd to print libs */
182static char *ld_utrace;		/* Use utrace() to log events. */
183static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
184static Obj_Entry *obj_main;	/* The main program shared object */
185static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
186static unsigned int obj_count;	/* Number of objects in obj_list */
187static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
188
189static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
190  STAILQ_HEAD_INITIALIZER(list_global);
191static Objlist list_main =	/* Objects loaded at program startup */
192  STAILQ_HEAD_INITIALIZER(list_main);
193static Objlist list_fini =	/* Objects needing fini() calls */
194  STAILQ_HEAD_INITIALIZER(list_fini);
195
196Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
197
198#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
199
200extern Elf_Dyn _DYNAMIC;
201#pragma weak _DYNAMIC
202#ifndef RTLD_IS_DYNAMIC
203#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
204#endif
205
206int dlclose(void *) __exported;
207char *dlerror(void) __exported;
208void *dlopen(const char *, int) __exported;
209void *fdlopen(int, int) __exported;
210void *dlsym(void *, const char *) __exported;
211dlfunc_t dlfunc(void *, const char *) __exported;
212void *dlvsym(void *, const char *, const char *) __exported;
213int dladdr(const void *, Dl_info *) __exported;
214void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
215    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
216int dlinfo(void *, int , void *) __exported;
217int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
218int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
219int _rtld_get_stack_prot(void) __exported;
220int _rtld_is_dlopened(void *) __exported;
221void _rtld_error(const char *, ...) __exported;
222
223int npagesizes, osreldate;
224size_t *pagesizes;
225
226long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
227
228static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
229static int max_stack_flags;
230
231/*
232 * Global declarations normally provided by crt1.  The dynamic linker is
233 * not built with crt1, so we have to provide them ourselves.
234 */
235char *__progname;
236char **environ;
237
238/*
239 * Used to pass argc, argv to init functions.
240 */
241int main_argc;
242char **main_argv;
243
244/*
245 * Globals to control TLS allocation.
246 */
247size_t tls_last_offset;		/* Static TLS offset of last module */
248size_t tls_last_size;		/* Static TLS size of last module */
249size_t tls_static_space;	/* Static TLS space allocated */
250size_t tls_static_max_align;
251int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
252int tls_max_index = 1;		/* Largest module index allocated */
253
254bool ld_library_path_rpath = false;
255
256/*
257 * Globals for path names, and such
258 */
259char *ld_elf_hints_default = _PATH_ELF_HINTS;
260char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
261char *ld_path_rtld = _PATH_RTLD;
262char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
263char *ld_env_prefix = LD_;
264
265/*
266 * Fill in a DoneList with an allocation large enough to hold all of
267 * the currently-loaded objects.  Keep this as a macro since it calls
268 * alloca and we want that to occur within the scope of the caller.
269 */
270#define donelist_init(dlp)					\
271    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
272    assert((dlp)->objs != NULL),				\
273    (dlp)->num_alloc = obj_count,				\
274    (dlp)->num_used = 0)
275
276#define	UTRACE_DLOPEN_START		1
277#define	UTRACE_DLOPEN_STOP		2
278#define	UTRACE_DLCLOSE_START		3
279#define	UTRACE_DLCLOSE_STOP		4
280#define	UTRACE_LOAD_OBJECT		5
281#define	UTRACE_UNLOAD_OBJECT		6
282#define	UTRACE_ADD_RUNDEP		7
283#define	UTRACE_PRELOAD_FINISHED		8
284#define	UTRACE_INIT_CALL		9
285#define	UTRACE_FINI_CALL		10
286#define	UTRACE_DLSYM_START		11
287#define	UTRACE_DLSYM_STOP		12
288
289struct utrace_rtld {
290	char sig[4];			/* 'RTLD' */
291	int event;
292	void *handle;
293	void *mapbase;			/* Used for 'parent' and 'init/fini' */
294	size_t mapsize;
295	int refcnt;			/* Used for 'mode' */
296	char name[MAXPATHLEN];
297};
298
299#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
300	if (ld_utrace != NULL)					\
301		ld_utrace_log(e, h, mb, ms, r, n);		\
302} while (0)
303
304static void
305ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
306    int refcnt, const char *name)
307{
308	struct utrace_rtld ut;
309
310	ut.sig[0] = 'R';
311	ut.sig[1] = 'T';
312	ut.sig[2] = 'L';
313	ut.sig[3] = 'D';
314	ut.event = event;
315	ut.handle = handle;
316	ut.mapbase = mapbase;
317	ut.mapsize = mapsize;
318	ut.refcnt = refcnt;
319	bzero(ut.name, sizeof(ut.name));
320	if (name)
321		strlcpy(ut.name, name, sizeof(ut.name));
322	utrace(&ut, sizeof(ut));
323}
324
325#ifdef RTLD_VARIANT_ENV_NAMES
326/*
327 * construct the env variable based on the type of binary that's
328 * running.
329 */
330static inline const char *
331_LD(const char *var)
332{
333	static char buffer[128];
334
335	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
336	strlcat(buffer, var, sizeof(buffer));
337	return (buffer);
338}
339#else
340#define _LD(x)	LD_ x
341#endif
342
343/*
344 * Main entry point for dynamic linking.  The first argument is the
345 * stack pointer.  The stack is expected to be laid out as described
346 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
347 * Specifically, the stack pointer points to a word containing
348 * ARGC.  Following that in the stack is a null-terminated sequence
349 * of pointers to argument strings.  Then comes a null-terminated
350 * sequence of pointers to environment strings.  Finally, there is a
351 * sequence of "auxiliary vector" entries.
352 *
353 * The second argument points to a place to store the dynamic linker's
354 * exit procedure pointer and the third to a place to store the main
355 * program's object.
356 *
357 * The return value is the main program's entry point.
358 */
359func_ptr_type
360_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
361{
362    Elf_Auxinfo *aux_info[AT_COUNT];
363    int i;
364    int argc;
365    char **argv;
366    char **env;
367    Elf_Auxinfo *aux;
368    Elf_Auxinfo *auxp;
369    const char *argv0;
370    Objlist_Entry *entry;
371    Obj_Entry *obj;
372    Obj_Entry *preload_tail;
373    Obj_Entry *last_interposer;
374    Objlist initlist;
375    RtldLockState lockstate;
376    char *library_path_rpath;
377    int mib[2];
378    size_t len;
379
380    /*
381     * On entry, the dynamic linker itself has not been relocated yet.
382     * Be very careful not to reference any global data until after
383     * init_rtld has returned.  It is OK to reference file-scope statics
384     * and string constants, and to call static and global functions.
385     */
386
387    /* Find the auxiliary vector on the stack. */
388    argc = *sp++;
389    argv = (char **) sp;
390    sp += argc + 1;	/* Skip over arguments and NULL terminator */
391    env = (char **) sp;
392    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
393	;
394    aux = (Elf_Auxinfo *) sp;
395
396    /* Digest the auxiliary vector. */
397    for (i = 0;  i < AT_COUNT;  i++)
398	aux_info[i] = NULL;
399    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
400	if (auxp->a_type < AT_COUNT)
401	    aux_info[auxp->a_type] = auxp;
402    }
403
404    /* Initialize and relocate ourselves. */
405    assert(aux_info[AT_BASE] != NULL);
406    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
407
408    __progname = obj_rtld.path;
409    argv0 = argv[0] != NULL ? argv[0] : "(null)";
410    environ = env;
411    main_argc = argc;
412    main_argv = argv;
413
414    if (aux_info[AT_CANARY] != NULL &&
415	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
416	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
417	    if (i > sizeof(__stack_chk_guard))
418		    i = sizeof(__stack_chk_guard);
419	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
420    } else {
421	mib[0] = CTL_KERN;
422	mib[1] = KERN_ARND;
423
424	len = sizeof(__stack_chk_guard);
425	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
426	    len != sizeof(__stack_chk_guard)) {
427		/* If sysctl was unsuccessful, use the "terminator canary". */
428		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
429		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
430		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
431		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
432	}
433    }
434
435    trust = !issetugid();
436
437    md_abi_variant_hook(aux_info);
438
439    ld_bind_now = getenv(_LD("BIND_NOW"));
440    /*
441     * If the process is tainted, then we un-set the dangerous environment
442     * variables.  The process will be marked as tainted until setuid(2)
443     * is called.  If any child process calls setuid(2) we do not want any
444     * future processes to honor the potentially un-safe variables.
445     */
446    if (!trust) {
447	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
448	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
449	    unsetenv(_LD("LIBMAP_DISABLE")) ||
450	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
451	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
452		_rtld_error("environment corrupt; aborting");
453		rtld_die();
454	}
455    }
456    ld_debug = getenv(_LD("DEBUG"));
457    libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
458    libmap_override = getenv(_LD("LIBMAP"));
459    ld_library_path = getenv(_LD("LIBRARY_PATH"));
460    ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
461    ld_preload = getenv(_LD("PRELOAD"));
462    ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
463    ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
464    library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
465    if (library_path_rpath != NULL) {
466	    if (library_path_rpath[0] == 'y' ||
467		library_path_rpath[0] == 'Y' ||
468		library_path_rpath[0] == '1')
469		    ld_library_path_rpath = true;
470	    else
471		    ld_library_path_rpath = false;
472    }
473    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
474	(ld_library_path != NULL) || (ld_preload != NULL) ||
475	(ld_elf_hints_path != NULL) || ld_loadfltr;
476    ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
477    ld_utrace = getenv(_LD("UTRACE"));
478
479    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
480	ld_elf_hints_path = ld_elf_hints_default;
481
482    if (ld_debug != NULL && *ld_debug != '\0')
483	debug = 1;
484    dbg("%s is initialized, base address = %p", __progname,
485	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
486    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
487    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
488
489    dbg("initializing thread locks");
490    lockdflt_init();
491
492    /*
493     * Load the main program, or process its program header if it is
494     * already loaded.
495     */
496    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
497	int fd = aux_info[AT_EXECFD]->a_un.a_val;
498	dbg("loading main program");
499	obj_main = map_object(fd, argv0, NULL);
500	close(fd);
501	if (obj_main == NULL)
502	    rtld_die();
503	max_stack_flags = obj->stack_flags;
504    } else {				/* Main program already loaded. */
505	const Elf_Phdr *phdr;
506	int phnum;
507	caddr_t entry;
508
509	dbg("processing main program's program header");
510	assert(aux_info[AT_PHDR] != NULL);
511	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
512	assert(aux_info[AT_PHNUM] != NULL);
513	phnum = aux_info[AT_PHNUM]->a_un.a_val;
514	assert(aux_info[AT_PHENT] != NULL);
515	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
516	assert(aux_info[AT_ENTRY] != NULL);
517	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
518	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
519	    rtld_die();
520    }
521
522    if (aux_info[AT_EXECPATH] != NULL) {
523	    char *kexecpath;
524	    char buf[MAXPATHLEN];
525
526	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
527	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
528	    if (kexecpath[0] == '/')
529		    obj_main->path = kexecpath;
530	    else if (getcwd(buf, sizeof(buf)) == NULL ||
531		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
532		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
533		    obj_main->path = xstrdup(argv0);
534	    else
535		    obj_main->path = xstrdup(buf);
536    } else {
537	    dbg("No AT_EXECPATH");
538	    obj_main->path = xstrdup(argv0);
539    }
540    dbg("obj_main path %s", obj_main->path);
541    obj_main->mainprog = true;
542
543    if (aux_info[AT_STACKPROT] != NULL &&
544      aux_info[AT_STACKPROT]->a_un.a_val != 0)
545	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
546
547#ifndef COMPAT_32BIT
548    /*
549     * Get the actual dynamic linker pathname from the executable if
550     * possible.  (It should always be possible.)  That ensures that
551     * gdb will find the right dynamic linker even if a non-standard
552     * one is being used.
553     */
554    if (obj_main->interp != NULL &&
555      strcmp(obj_main->interp, obj_rtld.path) != 0) {
556	free(obj_rtld.path);
557	obj_rtld.path = xstrdup(obj_main->interp);
558        __progname = obj_rtld.path;
559    }
560#endif
561
562    digest_dynamic(obj_main, 0);
563    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
564	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
565	obj_main->dynsymcount);
566
567    linkmap_add(obj_main);
568    linkmap_add(&obj_rtld);
569
570    /* Link the main program into the list of objects. */
571    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
572    obj_count++;
573    obj_loads++;
574
575    /* Initialize a fake symbol for resolving undefined weak references. */
576    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
577    sym_zero.st_shndx = SHN_UNDEF;
578    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
579
580    if (!libmap_disable)
581        libmap_disable = (bool)lm_init(libmap_override);
582
583    dbg("loading LD_PRELOAD libraries");
584    if (load_preload_objects() == -1)
585	rtld_die();
586    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
587
588    dbg("loading needed objects");
589    if (load_needed_objects(obj_main, 0) == -1)
590	rtld_die();
591
592    /* Make a list of all objects loaded at startup. */
593    last_interposer = obj_main;
594    TAILQ_FOREACH(obj, &obj_list, next) {
595	if (obj->marker)
596	    continue;
597	if (obj->z_interpose && obj != obj_main) {
598	    objlist_put_after(&list_main, last_interposer, obj);
599	    last_interposer = obj;
600	} else {
601	    objlist_push_tail(&list_main, obj);
602	}
603    	obj->refcount++;
604    }
605
606    dbg("checking for required versions");
607    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
608	rtld_die();
609
610    if (ld_tracing) {		/* We're done */
611	trace_loaded_objects(obj_main);
612	exit(0);
613    }
614
615    if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
616       dump_relocations(obj_main);
617       exit (0);
618    }
619
620    /*
621     * Processing tls relocations requires having the tls offsets
622     * initialized.  Prepare offsets before starting initial
623     * relocation processing.
624     */
625    dbg("initializing initial thread local storage offsets");
626    STAILQ_FOREACH(entry, &list_main, link) {
627	/*
628	 * Allocate all the initial objects out of the static TLS
629	 * block even if they didn't ask for it.
630	 */
631	allocate_tls_offset(entry->obj);
632    }
633
634    if (relocate_objects(obj_main,
635      ld_bind_now != NULL && *ld_bind_now != '\0',
636      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
637	rtld_die();
638
639    dbg("doing copy relocations");
640    if (do_copy_relocations(obj_main) == -1)
641	rtld_die();
642
643    if (getenv(_LD("DUMP_REL_POST")) != NULL) {
644       dump_relocations(obj_main);
645       exit (0);
646    }
647
648    /*
649     * Setup TLS for main thread.  This must be done after the
650     * relocations are processed, since tls initialization section
651     * might be the subject for relocations.
652     */
653    dbg("initializing initial thread local storage");
654    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
655
656    dbg("initializing key program variables");
657    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
658    set_program_var("environ", env);
659    set_program_var("__elf_aux_vector", aux);
660
661    /* Make a list of init functions to call. */
662    objlist_init(&initlist);
663    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
664      preload_tail, &initlist);
665
666    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
667
668    map_stacks_exec(NULL);
669
670    dbg("resolving ifuncs");
671    if (resolve_objects_ifunc(obj_main,
672      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
673      NULL) == -1)
674	rtld_die();
675
676    if (!obj_main->crt_no_init) {
677	/*
678	 * Make sure we don't call the main program's init and fini
679	 * functions for binaries linked with old crt1 which calls
680	 * _init itself.
681	 */
682	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
683	obj_main->preinit_array = obj_main->init_array =
684	    obj_main->fini_array = (Elf_Addr)NULL;
685    }
686
687    wlock_acquire(rtld_bind_lock, &lockstate);
688    if (obj_main->crt_no_init)
689	preinit_main();
690    objlist_call_init(&initlist, &lockstate);
691    _r_debug_postinit(&obj_main->linkmap);
692    objlist_clear(&initlist);
693    dbg("loading filtees");
694    TAILQ_FOREACH(obj, &obj_list, next) {
695	if (obj->marker)
696	    continue;
697	if (ld_loadfltr || obj->z_loadfltr)
698	    load_filtees(obj, 0, &lockstate);
699    }
700    lock_release(rtld_bind_lock, &lockstate);
701
702    dbg("transferring control to program entry point = %p", obj_main->entry);
703
704    /* Return the exit procedure and the program entry point. */
705    *exit_proc = rtld_exit;
706    *objp = obj_main;
707    return (func_ptr_type) obj_main->entry;
708}
709
710void *
711rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
712{
713	void *ptr;
714	Elf_Addr target;
715
716	ptr = (void *)make_function_pointer(def, obj);
717	target = ((Elf_Addr (*)(void))ptr)();
718	return ((void *)target);
719}
720
721Elf_Addr
722_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
723{
724    const Elf_Rel *rel;
725    const Elf_Sym *def;
726    const Obj_Entry *defobj;
727    Elf_Addr *where;
728    Elf_Addr target;
729    RtldLockState lockstate;
730
731    rlock_acquire(rtld_bind_lock, &lockstate);
732    if (sigsetjmp(lockstate.env, 0) != 0)
733	    lock_upgrade(rtld_bind_lock, &lockstate);
734    if (obj->pltrel)
735	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
736    else
737	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
738
739    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
740    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
741	&lockstate);
742    if (def == NULL)
743	rtld_die();
744    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
745	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
746    else
747	target = (Elf_Addr)(defobj->relocbase + def->st_value);
748
749    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
750      defobj->strtab + def->st_name, basename(obj->path),
751      (void *)target, basename(defobj->path));
752
753    /*
754     * Write the new contents for the jmpslot. Note that depending on
755     * architecture, the value which we need to return back to the
756     * lazy binding trampoline may or may not be the target
757     * address. The value returned from reloc_jmpslot() is the value
758     * that the trampoline needs.
759     */
760    target = reloc_jmpslot(where, target, defobj, obj, rel);
761    lock_release(rtld_bind_lock, &lockstate);
762    return target;
763}
764
765/*
766 * Error reporting function.  Use it like printf.  If formats the message
767 * into a buffer, and sets things up so that the next call to dlerror()
768 * will return the message.
769 */
770void
771_rtld_error(const char *fmt, ...)
772{
773    static char buf[512];
774    va_list ap;
775
776    va_start(ap, fmt);
777    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
778    error_message = buf;
779    va_end(ap);
780}
781
782/*
783 * Return a dynamically-allocated copy of the current error message, if any.
784 */
785static char *
786errmsg_save(void)
787{
788    return error_message == NULL ? NULL : xstrdup(error_message);
789}
790
791/*
792 * Restore the current error message from a copy which was previously saved
793 * by errmsg_save().  The copy is freed.
794 */
795static void
796errmsg_restore(char *saved_msg)
797{
798    if (saved_msg == NULL)
799	error_message = NULL;
800    else {
801	_rtld_error("%s", saved_msg);
802	free(saved_msg);
803    }
804}
805
806static const char *
807basename(const char *name)
808{
809    const char *p = strrchr(name, '/');
810    return p != NULL ? p + 1 : name;
811}
812
813static struct utsname uts;
814
815static char *
816origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
817    const char *subst, bool may_free)
818{
819	char *p, *p1, *res, *resp;
820	int subst_len, kw_len, subst_count, old_len, new_len;
821
822	kw_len = strlen(kw);
823
824	/*
825	 * First, count the number of the keyword occurrences, to
826	 * preallocate the final string.
827	 */
828	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
829		p1 = strstr(p, kw);
830		if (p1 == NULL)
831			break;
832	}
833
834	/*
835	 * If the keyword is not found, just return.
836	 *
837	 * Return non-substituted string if resolution failed.  We
838	 * cannot do anything more reasonable, the failure mode of the
839	 * caller is unresolved library anyway.
840	 */
841	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
842		return (may_free ? real : xstrdup(real));
843	if (obj != NULL)
844		subst = obj->origin_path;
845
846	/*
847	 * There is indeed something to substitute.  Calculate the
848	 * length of the resulting string, and allocate it.
849	 */
850	subst_len = strlen(subst);
851	old_len = strlen(real);
852	new_len = old_len + (subst_len - kw_len) * subst_count;
853	res = xmalloc(new_len + 1);
854
855	/*
856	 * Now, execute the substitution loop.
857	 */
858	for (p = real, resp = res, *resp = '\0';;) {
859		p1 = strstr(p, kw);
860		if (p1 != NULL) {
861			/* Copy the prefix before keyword. */
862			memcpy(resp, p, p1 - p);
863			resp += p1 - p;
864			/* Keyword replacement. */
865			memcpy(resp, subst, subst_len);
866			resp += subst_len;
867			*resp = '\0';
868			p = p1 + kw_len;
869		} else
870			break;
871	}
872
873	/* Copy to the end of string and finish. */
874	strcat(resp, p);
875	if (may_free)
876		free(real);
877	return (res);
878}
879
880static char *
881origin_subst(Obj_Entry *obj, char *real)
882{
883	char *res1, *res2, *res3, *res4;
884
885	if (obj == NULL || !trust)
886		return (xstrdup(real));
887	if (uts.sysname[0] == '\0') {
888		if (uname(&uts) != 0) {
889			_rtld_error("utsname failed: %d", errno);
890			return (NULL);
891		}
892	}
893	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
894	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
895	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
896	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
897	return (res4);
898}
899
900void
901rtld_die(void)
902{
903    const char *msg = dlerror();
904
905    if (msg == NULL)
906	msg = "Fatal error";
907    rtld_fdputstr(STDERR_FILENO, msg);
908    rtld_fdputchar(STDERR_FILENO, '\n');
909    _exit(1);
910}
911
912/*
913 * Process a shared object's DYNAMIC section, and save the important
914 * information in its Obj_Entry structure.
915 */
916static void
917digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
918    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
919{
920    const Elf_Dyn *dynp;
921    Needed_Entry **needed_tail = &obj->needed;
922    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
923    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
924    const Elf_Hashelt *hashtab;
925    const Elf32_Word *hashval;
926    Elf32_Word bkt, nmaskwords;
927    int bloom_size32;
928    int plttype = DT_REL;
929
930    *dyn_rpath = NULL;
931    *dyn_soname = NULL;
932    *dyn_runpath = NULL;
933
934    obj->bind_now = false;
935    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
936	switch (dynp->d_tag) {
937
938	case DT_REL:
939	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
940	    break;
941
942	case DT_RELSZ:
943	    obj->relsize = dynp->d_un.d_val;
944	    break;
945
946	case DT_RELENT:
947	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
948	    break;
949
950	case DT_JMPREL:
951	    obj->pltrel = (const Elf_Rel *)
952	      (obj->relocbase + dynp->d_un.d_ptr);
953	    break;
954
955	case DT_PLTRELSZ:
956	    obj->pltrelsize = dynp->d_un.d_val;
957	    break;
958
959	case DT_RELA:
960	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
961	    break;
962
963	case DT_RELASZ:
964	    obj->relasize = dynp->d_un.d_val;
965	    break;
966
967	case DT_RELAENT:
968	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
969	    break;
970
971	case DT_PLTREL:
972	    plttype = dynp->d_un.d_val;
973	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
974	    break;
975
976	case DT_SYMTAB:
977	    obj->symtab = (const Elf_Sym *)
978	      (obj->relocbase + dynp->d_un.d_ptr);
979	    break;
980
981	case DT_SYMENT:
982	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
983	    break;
984
985	case DT_STRTAB:
986	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
987	    break;
988
989	case DT_STRSZ:
990	    obj->strsize = dynp->d_un.d_val;
991	    break;
992
993	case DT_VERNEED:
994	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
995		dynp->d_un.d_val);
996	    break;
997
998	case DT_VERNEEDNUM:
999	    obj->verneednum = dynp->d_un.d_val;
1000	    break;
1001
1002	case DT_VERDEF:
1003	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1004		dynp->d_un.d_val);
1005	    break;
1006
1007	case DT_VERDEFNUM:
1008	    obj->verdefnum = dynp->d_un.d_val;
1009	    break;
1010
1011	case DT_VERSYM:
1012	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1013		dynp->d_un.d_val);
1014	    break;
1015
1016	case DT_HASH:
1017	    {
1018		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1019		    dynp->d_un.d_ptr);
1020		obj->nbuckets = hashtab[0];
1021		obj->nchains = hashtab[1];
1022		obj->buckets = hashtab + 2;
1023		obj->chains = obj->buckets + obj->nbuckets;
1024		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1025		  obj->buckets != NULL;
1026	    }
1027	    break;
1028
1029	case DT_GNU_HASH:
1030	    {
1031		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1032		    dynp->d_un.d_ptr);
1033		obj->nbuckets_gnu = hashtab[0];
1034		obj->symndx_gnu = hashtab[1];
1035		nmaskwords = hashtab[2];
1036		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1037		obj->maskwords_bm_gnu = nmaskwords - 1;
1038		obj->shift2_gnu = hashtab[3];
1039		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1040		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1041		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1042		  obj->symndx_gnu;
1043		/* Number of bitmask words is required to be power of 2 */
1044		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1045		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1046	    }
1047	    break;
1048
1049	case DT_NEEDED:
1050	    if (!obj->rtld) {
1051		Needed_Entry *nep = NEW(Needed_Entry);
1052		nep->name = dynp->d_un.d_val;
1053		nep->obj = NULL;
1054		nep->next = NULL;
1055
1056		*needed_tail = nep;
1057		needed_tail = &nep->next;
1058	    }
1059	    break;
1060
1061	case DT_FILTER:
1062	    if (!obj->rtld) {
1063		Needed_Entry *nep = NEW(Needed_Entry);
1064		nep->name = dynp->d_un.d_val;
1065		nep->obj = NULL;
1066		nep->next = NULL;
1067
1068		*needed_filtees_tail = nep;
1069		needed_filtees_tail = &nep->next;
1070	    }
1071	    break;
1072
1073	case DT_AUXILIARY:
1074	    if (!obj->rtld) {
1075		Needed_Entry *nep = NEW(Needed_Entry);
1076		nep->name = dynp->d_un.d_val;
1077		nep->obj = NULL;
1078		nep->next = NULL;
1079
1080		*needed_aux_filtees_tail = nep;
1081		needed_aux_filtees_tail = &nep->next;
1082	    }
1083	    break;
1084
1085	case DT_PLTGOT:
1086	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1087	    break;
1088
1089	case DT_TEXTREL:
1090	    obj->textrel = true;
1091	    break;
1092
1093	case DT_SYMBOLIC:
1094	    obj->symbolic = true;
1095	    break;
1096
1097	case DT_RPATH:
1098	    /*
1099	     * We have to wait until later to process this, because we
1100	     * might not have gotten the address of the string table yet.
1101	     */
1102	    *dyn_rpath = dynp;
1103	    break;
1104
1105	case DT_SONAME:
1106	    *dyn_soname = dynp;
1107	    break;
1108
1109	case DT_RUNPATH:
1110	    *dyn_runpath = dynp;
1111	    break;
1112
1113	case DT_INIT:
1114	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1115	    break;
1116
1117	case DT_PREINIT_ARRAY:
1118	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1119	    break;
1120
1121	case DT_PREINIT_ARRAYSZ:
1122	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1123	    break;
1124
1125	case DT_INIT_ARRAY:
1126	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1127	    break;
1128
1129	case DT_INIT_ARRAYSZ:
1130	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1131	    break;
1132
1133	case DT_FINI:
1134	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1135	    break;
1136
1137	case DT_FINI_ARRAY:
1138	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1139	    break;
1140
1141	case DT_FINI_ARRAYSZ:
1142	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1143	    break;
1144
1145	/*
1146	 * Don't process DT_DEBUG on MIPS as the dynamic section
1147	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1148	 */
1149
1150#ifndef __mips__
1151	case DT_DEBUG:
1152	    if (!early)
1153		dbg("Filling in DT_DEBUG entry");
1154	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1155	    break;
1156#endif
1157
1158	case DT_FLAGS:
1159		if (dynp->d_un.d_val & DF_ORIGIN)
1160		    obj->z_origin = true;
1161		if (dynp->d_un.d_val & DF_SYMBOLIC)
1162		    obj->symbolic = true;
1163		if (dynp->d_un.d_val & DF_TEXTREL)
1164		    obj->textrel = true;
1165		if (dynp->d_un.d_val & DF_BIND_NOW)
1166		    obj->bind_now = true;
1167		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1168		    ;*/
1169	    break;
1170#ifdef __mips__
1171	case DT_MIPS_LOCAL_GOTNO:
1172		obj->local_gotno = dynp->d_un.d_val;
1173		break;
1174
1175	case DT_MIPS_SYMTABNO:
1176		obj->symtabno = dynp->d_un.d_val;
1177		break;
1178
1179	case DT_MIPS_GOTSYM:
1180		obj->gotsym = dynp->d_un.d_val;
1181		break;
1182
1183	case DT_MIPS_RLD_MAP:
1184		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1185		break;
1186#endif
1187
1188#ifdef __powerpc64__
1189	case DT_PPC64_GLINK:
1190		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1191		break;
1192#endif
1193
1194	case DT_FLAGS_1:
1195		if (dynp->d_un.d_val & DF_1_NOOPEN)
1196		    obj->z_noopen = true;
1197		if (dynp->d_un.d_val & DF_1_ORIGIN)
1198		    obj->z_origin = true;
1199		if (dynp->d_un.d_val & DF_1_GLOBAL)
1200		    obj->z_global = true;
1201		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1202		    obj->bind_now = true;
1203		if (dynp->d_un.d_val & DF_1_NODELETE)
1204		    obj->z_nodelete = true;
1205		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1206		    obj->z_loadfltr = true;
1207		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1208		    obj->z_interpose = true;
1209		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1210		    obj->z_nodeflib = true;
1211	    break;
1212
1213	default:
1214	    if (!early) {
1215		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1216		    (long)dynp->d_tag);
1217	    }
1218	    break;
1219	}
1220    }
1221
1222    obj->traced = false;
1223
1224    if (plttype == DT_RELA) {
1225	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1226	obj->pltrel = NULL;
1227	obj->pltrelasize = obj->pltrelsize;
1228	obj->pltrelsize = 0;
1229    }
1230
1231    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1232    if (obj->valid_hash_sysv)
1233	obj->dynsymcount = obj->nchains;
1234    else if (obj->valid_hash_gnu) {
1235	obj->dynsymcount = 0;
1236	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1237	    if (obj->buckets_gnu[bkt] == 0)
1238		continue;
1239	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1240	    do
1241		obj->dynsymcount++;
1242	    while ((*hashval++ & 1u) == 0);
1243	}
1244	obj->dynsymcount += obj->symndx_gnu;
1245    }
1246}
1247
1248static bool
1249obj_resolve_origin(Obj_Entry *obj)
1250{
1251
1252	if (obj->origin_path != NULL)
1253		return (true);
1254	obj->origin_path = xmalloc(PATH_MAX);
1255	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1256}
1257
1258static void
1259digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1260    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1261{
1262
1263	if (obj->z_origin && !obj_resolve_origin(obj))
1264		rtld_die();
1265
1266	if (dyn_runpath != NULL) {
1267		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1268		obj->runpath = origin_subst(obj, obj->runpath);
1269	} else if (dyn_rpath != NULL) {
1270		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1271		obj->rpath = origin_subst(obj, obj->rpath);
1272	}
1273	if (dyn_soname != NULL)
1274		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1275}
1276
1277static void
1278digest_dynamic(Obj_Entry *obj, int early)
1279{
1280	const Elf_Dyn *dyn_rpath;
1281	const Elf_Dyn *dyn_soname;
1282	const Elf_Dyn *dyn_runpath;
1283
1284	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1285	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1286}
1287
1288/*
1289 * Process a shared object's program header.  This is used only for the
1290 * main program, when the kernel has already loaded the main program
1291 * into memory before calling the dynamic linker.  It creates and
1292 * returns an Obj_Entry structure.
1293 */
1294static Obj_Entry *
1295digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1296{
1297    Obj_Entry *obj;
1298    const Elf_Phdr *phlimit = phdr + phnum;
1299    const Elf_Phdr *ph;
1300    Elf_Addr note_start, note_end;
1301    int nsegs = 0;
1302
1303    obj = obj_new();
1304    for (ph = phdr;  ph < phlimit;  ph++) {
1305	if (ph->p_type != PT_PHDR)
1306	    continue;
1307
1308	obj->phdr = phdr;
1309	obj->phsize = ph->p_memsz;
1310	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1311	break;
1312    }
1313
1314    obj->stack_flags = PF_X | PF_R | PF_W;
1315
1316    for (ph = phdr;  ph < phlimit;  ph++) {
1317	switch (ph->p_type) {
1318
1319	case PT_INTERP:
1320	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1321	    break;
1322
1323	case PT_LOAD:
1324	    if (nsegs == 0) {	/* First load segment */
1325		obj->vaddrbase = trunc_page(ph->p_vaddr);
1326		obj->mapbase = obj->vaddrbase + obj->relocbase;
1327		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1328		  obj->vaddrbase;
1329	    } else {		/* Last load segment */
1330		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1331		  obj->vaddrbase;
1332	    }
1333	    nsegs++;
1334	    break;
1335
1336	case PT_DYNAMIC:
1337	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1338	    break;
1339
1340	case PT_TLS:
1341	    obj->tlsindex = 1;
1342	    obj->tlssize = ph->p_memsz;
1343	    obj->tlsalign = ph->p_align;
1344	    obj->tlsinitsize = ph->p_filesz;
1345	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1346	    break;
1347
1348	case PT_GNU_STACK:
1349	    obj->stack_flags = ph->p_flags;
1350	    break;
1351
1352	case PT_GNU_RELRO:
1353	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1354	    obj->relro_size = round_page(ph->p_memsz);
1355	    break;
1356
1357	case PT_NOTE:
1358	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1359	    note_end = note_start + ph->p_filesz;
1360	    digest_notes(obj, note_start, note_end);
1361	    break;
1362	}
1363    }
1364    if (nsegs < 1) {
1365	_rtld_error("%s: too few PT_LOAD segments", path);
1366	return NULL;
1367    }
1368
1369    obj->entry = entry;
1370    return obj;
1371}
1372
1373void
1374digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1375{
1376	const Elf_Note *note;
1377	const char *note_name;
1378	uintptr_t p;
1379
1380	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1381	    note = (const Elf_Note *)((const char *)(note + 1) +
1382	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1383	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1384		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1385		    note->n_descsz != sizeof(int32_t))
1386			continue;
1387		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1388		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1389			continue;
1390		note_name = (const char *)(note + 1);
1391		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1392		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1393			continue;
1394		switch (note->n_type) {
1395		case NT_FREEBSD_ABI_TAG:
1396			/* FreeBSD osrel note */
1397			p = (uintptr_t)(note + 1);
1398			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1399			obj->osrel = *(const int32_t *)(p);
1400			dbg("note osrel %d", obj->osrel);
1401			break;
1402		case NT_FREEBSD_NOINIT_TAG:
1403			/* FreeBSD 'crt does not call init' note */
1404			obj->crt_no_init = true;
1405			dbg("note crt_no_init");
1406			break;
1407		}
1408	}
1409}
1410
1411static Obj_Entry *
1412dlcheck(void *handle)
1413{
1414    Obj_Entry *obj;
1415
1416    TAILQ_FOREACH(obj, &obj_list, next) {
1417	if (obj == (Obj_Entry *) handle)
1418	    break;
1419    }
1420
1421    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1422	_rtld_error("Invalid shared object handle %p", handle);
1423	return NULL;
1424    }
1425    return obj;
1426}
1427
1428/*
1429 * If the given object is already in the donelist, return true.  Otherwise
1430 * add the object to the list and return false.
1431 */
1432static bool
1433donelist_check(DoneList *dlp, const Obj_Entry *obj)
1434{
1435    unsigned int i;
1436
1437    for (i = 0;  i < dlp->num_used;  i++)
1438	if (dlp->objs[i] == obj)
1439	    return true;
1440    /*
1441     * Our donelist allocation should always be sufficient.  But if
1442     * our threads locking isn't working properly, more shared objects
1443     * could have been loaded since we allocated the list.  That should
1444     * never happen, but we'll handle it properly just in case it does.
1445     */
1446    if (dlp->num_used < dlp->num_alloc)
1447	dlp->objs[dlp->num_used++] = obj;
1448    return false;
1449}
1450
1451/*
1452 * Hash function for symbol table lookup.  Don't even think about changing
1453 * this.  It is specified by the System V ABI.
1454 */
1455unsigned long
1456elf_hash(const char *name)
1457{
1458    const unsigned char *p = (const unsigned char *) name;
1459    unsigned long h = 0;
1460    unsigned long g;
1461
1462    while (*p != '\0') {
1463	h = (h << 4) + *p++;
1464	if ((g = h & 0xf0000000) != 0)
1465	    h ^= g >> 24;
1466	h &= ~g;
1467    }
1468    return h;
1469}
1470
1471/*
1472 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1473 * unsigned in case it's implemented with a wider type.
1474 */
1475static uint32_t
1476gnu_hash(const char *s)
1477{
1478	uint32_t h;
1479	unsigned char c;
1480
1481	h = 5381;
1482	for (c = *s; c != '\0'; c = *++s)
1483		h = h * 33 + c;
1484	return (h & 0xffffffff);
1485}
1486
1487
1488/*
1489 * Find the library with the given name, and return its full pathname.
1490 * The returned string is dynamically allocated.  Generates an error
1491 * message and returns NULL if the library cannot be found.
1492 *
1493 * If the second argument is non-NULL, then it refers to an already-
1494 * loaded shared object, whose library search path will be searched.
1495 *
1496 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1497 * descriptor (which is close-on-exec) will be passed out via the third
1498 * argument.
1499 *
1500 * The search order is:
1501 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1502 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1503 *   LD_LIBRARY_PATH
1504 *   DT_RUNPATH in the referencing file
1505 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1506 *	 from list)
1507 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1508 *
1509 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1510 */
1511static char *
1512find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1513{
1514    char *pathname;
1515    char *name;
1516    bool nodeflib, objgiven;
1517
1518    objgiven = refobj != NULL;
1519    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1520	if (xname[0] != '/' && !trust) {
1521	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1522	      xname);
1523	    return NULL;
1524	}
1525	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1526	  __DECONST(char *, xname)));
1527    }
1528
1529    if (libmap_disable || !objgiven ||
1530	(name = lm_find(refobj->path, xname)) == NULL)
1531	name = (char *)xname;
1532
1533    dbg(" Searching for \"%s\"", name);
1534
1535    /*
1536     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1537     * back to pre-conforming behaviour if user requested so with
1538     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1539     * nodeflib.
1540     */
1541    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1542	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1543	  (refobj != NULL &&
1544	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1545	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1546          (pathname = search_library_path(name, gethints(false))) != NULL ||
1547	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1548	    return (pathname);
1549    } else {
1550	nodeflib = objgiven ? refobj->z_nodeflib : false;
1551	if ((objgiven &&
1552	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1553	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1554	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1555	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1556	  (objgiven &&
1557	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1558	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1559	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1560	  (objgiven && !nodeflib &&
1561	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1562	    return (pathname);
1563    }
1564
1565    if (objgiven && refobj->path != NULL) {
1566	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1567	  name, basename(refobj->path));
1568    } else {
1569	_rtld_error("Shared object \"%s\" not found", name);
1570    }
1571    return NULL;
1572}
1573
1574/*
1575 * Given a symbol number in a referencing object, find the corresponding
1576 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1577 * no definition was found.  Returns a pointer to the Obj_Entry of the
1578 * defining object via the reference parameter DEFOBJ_OUT.
1579 */
1580const Elf_Sym *
1581find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1582    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1583    RtldLockState *lockstate)
1584{
1585    const Elf_Sym *ref;
1586    const Elf_Sym *def;
1587    const Obj_Entry *defobj;
1588    SymLook req;
1589    const char *name;
1590    int res;
1591
1592    /*
1593     * If we have already found this symbol, get the information from
1594     * the cache.
1595     */
1596    if (symnum >= refobj->dynsymcount)
1597	return NULL;	/* Bad object */
1598    if (cache != NULL && cache[symnum].sym != NULL) {
1599	*defobj_out = cache[symnum].obj;
1600	return cache[symnum].sym;
1601    }
1602
1603    ref = refobj->symtab + symnum;
1604    name = refobj->strtab + ref->st_name;
1605    def = NULL;
1606    defobj = NULL;
1607
1608    /*
1609     * We don't have to do a full scale lookup if the symbol is local.
1610     * We know it will bind to the instance in this load module; to
1611     * which we already have a pointer (ie ref). By not doing a lookup,
1612     * we not only improve performance, but it also avoids unresolvable
1613     * symbols when local symbols are not in the hash table. This has
1614     * been seen with the ia64 toolchain.
1615     */
1616    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1617	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1618	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1619		symnum);
1620	}
1621	symlook_init(&req, name);
1622	req.flags = flags;
1623	req.ventry = fetch_ventry(refobj, symnum);
1624	req.lockstate = lockstate;
1625	res = symlook_default(&req, refobj);
1626	if (res == 0) {
1627	    def = req.sym_out;
1628	    defobj = req.defobj_out;
1629	}
1630    } else {
1631	def = ref;
1632	defobj = refobj;
1633    }
1634
1635    /*
1636     * If we found no definition and the reference is weak, treat the
1637     * symbol as having the value zero.
1638     */
1639    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1640	def = &sym_zero;
1641	defobj = obj_main;
1642    }
1643
1644    if (def != NULL) {
1645	*defobj_out = defobj;
1646	/* Record the information in the cache to avoid subsequent lookups. */
1647	if (cache != NULL) {
1648	    cache[symnum].sym = def;
1649	    cache[symnum].obj = defobj;
1650	}
1651    } else {
1652	if (refobj != &obj_rtld)
1653	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1654    }
1655    return def;
1656}
1657
1658/*
1659 * Return the search path from the ldconfig hints file, reading it if
1660 * necessary.  If nostdlib is true, then the default search paths are
1661 * not added to result.
1662 *
1663 * Returns NULL if there are problems with the hints file,
1664 * or if the search path there is empty.
1665 */
1666static const char *
1667gethints(bool nostdlib)
1668{
1669	static char *hints, *filtered_path;
1670	static struct elfhints_hdr hdr;
1671	struct fill_search_info_args sargs, hargs;
1672	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1673	struct dl_serpath *SLPpath, *hintpath;
1674	char *p;
1675	struct stat hint_stat;
1676	unsigned int SLPndx, hintndx, fndx, fcount;
1677	int fd;
1678	size_t flen;
1679	uint32_t dl;
1680	bool skip;
1681
1682	/* First call, read the hints file */
1683	if (hints == NULL) {
1684		/* Keep from trying again in case the hints file is bad. */
1685		hints = "";
1686
1687		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1688			return (NULL);
1689
1690		/*
1691		 * Check of hdr.dirlistlen value against type limit
1692		 * intends to pacify static analyzers.  Further
1693		 * paranoia leads to checks that dirlist is fully
1694		 * contained in the file range.
1695		 */
1696		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1697		    hdr.magic != ELFHINTS_MAGIC ||
1698		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1699		    fstat(fd, &hint_stat) == -1) {
1700cleanup1:
1701			close(fd);
1702			hdr.dirlistlen = 0;
1703			return (NULL);
1704		}
1705		dl = hdr.strtab;
1706		if (dl + hdr.dirlist < dl)
1707			goto cleanup1;
1708		dl += hdr.dirlist;
1709		if (dl + hdr.dirlistlen < dl)
1710			goto cleanup1;
1711		dl += hdr.dirlistlen;
1712		if (dl > hint_stat.st_size)
1713			goto cleanup1;
1714		p = xmalloc(hdr.dirlistlen + 1);
1715
1716		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1717		    read(fd, p, hdr.dirlistlen + 1) !=
1718		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1719			free(p);
1720			goto cleanup1;
1721		}
1722		hints = p;
1723		close(fd);
1724	}
1725
1726	/*
1727	 * If caller agreed to receive list which includes the default
1728	 * paths, we are done. Otherwise, if we still did not
1729	 * calculated filtered result, do it now.
1730	 */
1731	if (!nostdlib)
1732		return (hints[0] != '\0' ? hints : NULL);
1733	if (filtered_path != NULL)
1734		goto filt_ret;
1735
1736	/*
1737	 * Obtain the list of all configured search paths, and the
1738	 * list of the default paths.
1739	 *
1740	 * First estimate the size of the results.
1741	 */
1742	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1743	smeta.dls_cnt = 0;
1744	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1745	hmeta.dls_cnt = 0;
1746
1747	sargs.request = RTLD_DI_SERINFOSIZE;
1748	sargs.serinfo = &smeta;
1749	hargs.request = RTLD_DI_SERINFOSIZE;
1750	hargs.serinfo = &hmeta;
1751
1752	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1753	path_enumerate(hints, fill_search_info, &hargs);
1754
1755	SLPinfo = xmalloc(smeta.dls_size);
1756	hintinfo = xmalloc(hmeta.dls_size);
1757
1758	/*
1759	 * Next fetch both sets of paths.
1760	 */
1761	sargs.request = RTLD_DI_SERINFO;
1762	sargs.serinfo = SLPinfo;
1763	sargs.serpath = &SLPinfo->dls_serpath[0];
1764	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1765
1766	hargs.request = RTLD_DI_SERINFO;
1767	hargs.serinfo = hintinfo;
1768	hargs.serpath = &hintinfo->dls_serpath[0];
1769	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1770
1771	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1772	path_enumerate(hints, fill_search_info, &hargs);
1773
1774	/*
1775	 * Now calculate the difference between two sets, by excluding
1776	 * standard paths from the full set.
1777	 */
1778	fndx = 0;
1779	fcount = 0;
1780	filtered_path = xmalloc(hdr.dirlistlen + 1);
1781	hintpath = &hintinfo->dls_serpath[0];
1782	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1783		skip = false;
1784		SLPpath = &SLPinfo->dls_serpath[0];
1785		/*
1786		 * Check each standard path against current.
1787		 */
1788		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1789			/* matched, skip the path */
1790			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1791				skip = true;
1792				break;
1793			}
1794		}
1795		if (skip)
1796			continue;
1797		/*
1798		 * Not matched against any standard path, add the path
1799		 * to result. Separate consequtive paths with ':'.
1800		 */
1801		if (fcount > 0) {
1802			filtered_path[fndx] = ':';
1803			fndx++;
1804		}
1805		fcount++;
1806		flen = strlen(hintpath->dls_name);
1807		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1808		fndx += flen;
1809	}
1810	filtered_path[fndx] = '\0';
1811
1812	free(SLPinfo);
1813	free(hintinfo);
1814
1815filt_ret:
1816	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1817}
1818
1819static void
1820init_dag(Obj_Entry *root)
1821{
1822    const Needed_Entry *needed;
1823    const Objlist_Entry *elm;
1824    DoneList donelist;
1825
1826    if (root->dag_inited)
1827	return;
1828    donelist_init(&donelist);
1829
1830    /* Root object belongs to own DAG. */
1831    objlist_push_tail(&root->dldags, root);
1832    objlist_push_tail(&root->dagmembers, root);
1833    donelist_check(&donelist, root);
1834
1835    /*
1836     * Add dependencies of root object to DAG in breadth order
1837     * by exploiting the fact that each new object get added
1838     * to the tail of the dagmembers list.
1839     */
1840    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1841	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1842	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1843		continue;
1844	    objlist_push_tail(&needed->obj->dldags, root);
1845	    objlist_push_tail(&root->dagmembers, needed->obj);
1846	}
1847    }
1848    root->dag_inited = true;
1849}
1850
1851Obj_Entry *
1852globallist_curr(const Obj_Entry *obj)
1853{
1854
1855	for (;;) {
1856		if (obj == NULL)
1857			return (NULL);
1858		if (!obj->marker)
1859			return (__DECONST(Obj_Entry *, obj));
1860		obj = TAILQ_PREV(obj, obj_entry_q, next);
1861	}
1862}
1863
1864Obj_Entry *
1865globallist_next(const Obj_Entry *obj)
1866{
1867
1868	for (;;) {
1869		obj = TAILQ_NEXT(obj, next);
1870		if (obj == NULL)
1871			return (NULL);
1872		if (!obj->marker)
1873			return (__DECONST(Obj_Entry *, obj));
1874	}
1875}
1876
1877static void
1878process_z(Obj_Entry *root)
1879{
1880	const Objlist_Entry *elm;
1881	Obj_Entry *obj;
1882
1883	/*
1884	 * Walk over object DAG and process every dependent object
1885	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1886	 * to grow their own DAG.
1887	 *
1888	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1889	 * symlook_global() to work.
1890	 *
1891	 * For DF_1_NODELETE, the DAG should have its reference upped.
1892	 */
1893	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1894		obj = elm->obj;
1895		if (obj == NULL)
1896			continue;
1897		if (obj->z_nodelete && !obj->ref_nodel) {
1898			dbg("obj %s -z nodelete", obj->path);
1899			init_dag(obj);
1900			ref_dag(obj);
1901			obj->ref_nodel = true;
1902		}
1903		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1904			dbg("obj %s -z global", obj->path);
1905			objlist_push_tail(&list_global, obj);
1906			init_dag(obj);
1907		}
1908	}
1909}
1910/*
1911 * Initialize the dynamic linker.  The argument is the address at which
1912 * the dynamic linker has been mapped into memory.  The primary task of
1913 * this function is to relocate the dynamic linker.
1914 */
1915static void
1916init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1917{
1918    Obj_Entry objtmp;	/* Temporary rtld object */
1919    const Elf_Ehdr *ehdr;
1920    const Elf_Dyn *dyn_rpath;
1921    const Elf_Dyn *dyn_soname;
1922    const Elf_Dyn *dyn_runpath;
1923
1924#ifdef RTLD_INIT_PAGESIZES_EARLY
1925    /* The page size is required by the dynamic memory allocator. */
1926    init_pagesizes(aux_info);
1927#endif
1928
1929    /*
1930     * Conjure up an Obj_Entry structure for the dynamic linker.
1931     *
1932     * The "path" member can't be initialized yet because string constants
1933     * cannot yet be accessed. Below we will set it correctly.
1934     */
1935    memset(&objtmp, 0, sizeof(objtmp));
1936    objtmp.path = NULL;
1937    objtmp.rtld = true;
1938    objtmp.mapbase = mapbase;
1939#ifdef PIC
1940    objtmp.relocbase = mapbase;
1941#endif
1942    if (RTLD_IS_DYNAMIC()) {
1943	objtmp.dynamic = rtld_dynamic(&objtmp);
1944	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1945	assert(objtmp.needed == NULL);
1946#if !defined(__mips__)
1947	/* MIPS has a bogus DT_TEXTREL. */
1948	assert(!objtmp.textrel);
1949#endif
1950
1951	/*
1952	 * Temporarily put the dynamic linker entry into the object list, so
1953	 * that symbols can be found.
1954	 */
1955
1956	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1957    }
1958    ehdr = (Elf_Ehdr *)mapbase;
1959    objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1960    objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1961
1962    /* Initialize the object list. */
1963    TAILQ_INIT(&obj_list);
1964
1965    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1966    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1967
1968#ifndef RTLD_INIT_PAGESIZES_EARLY
1969    /* The page size is required by the dynamic memory allocator. */
1970    init_pagesizes(aux_info);
1971#endif
1972
1973    if (aux_info[AT_OSRELDATE] != NULL)
1974	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1975
1976    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1977
1978    /* Replace the path with a dynamically allocated copy. */
1979    obj_rtld.path = xstrdup(ld_path_rtld);
1980
1981    r_debug.r_brk = r_debug_state;
1982    r_debug.r_state = RT_CONSISTENT;
1983}
1984
1985/*
1986 * Retrieve the array of supported page sizes.  The kernel provides the page
1987 * sizes in increasing order.
1988 */
1989static void
1990init_pagesizes(Elf_Auxinfo **aux_info)
1991{
1992	static size_t psa[MAXPAGESIZES];
1993	int mib[2];
1994	size_t len, size;
1995
1996	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1997	    NULL) {
1998		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1999		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2000	} else {
2001		len = 2;
2002		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2003			size = sizeof(psa);
2004		else {
2005			/* As a fallback, retrieve the base page size. */
2006			size = sizeof(psa[0]);
2007			if (aux_info[AT_PAGESZ] != NULL) {
2008				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2009				goto psa_filled;
2010			} else {
2011				mib[0] = CTL_HW;
2012				mib[1] = HW_PAGESIZE;
2013				len = 2;
2014			}
2015		}
2016		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2017			_rtld_error("sysctl for hw.pagesize(s) failed");
2018			rtld_die();
2019		}
2020psa_filled:
2021		pagesizes = psa;
2022	}
2023	npagesizes = size / sizeof(pagesizes[0]);
2024	/* Discard any invalid entries at the end of the array. */
2025	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2026		npagesizes--;
2027}
2028
2029/*
2030 * Add the init functions from a needed object list (and its recursive
2031 * needed objects) to "list".  This is not used directly; it is a helper
2032 * function for initlist_add_objects().  The write lock must be held
2033 * when this function is called.
2034 */
2035static void
2036initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2037{
2038    /* Recursively process the successor needed objects. */
2039    if (needed->next != NULL)
2040	initlist_add_neededs(needed->next, list);
2041
2042    /* Process the current needed object. */
2043    if (needed->obj != NULL)
2044	initlist_add_objects(needed->obj, needed->obj, list);
2045}
2046
2047/*
2048 * Scan all of the DAGs rooted in the range of objects from "obj" to
2049 * "tail" and add their init functions to "list".  This recurses over
2050 * the DAGs and ensure the proper init ordering such that each object's
2051 * needed libraries are initialized before the object itself.  At the
2052 * same time, this function adds the objects to the global finalization
2053 * list "list_fini" in the opposite order.  The write lock must be
2054 * held when this function is called.
2055 */
2056static void
2057initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2058{
2059    Obj_Entry *nobj;
2060
2061    if (obj->init_scanned || obj->init_done)
2062	return;
2063    obj->init_scanned = true;
2064
2065    /* Recursively process the successor objects. */
2066    nobj = globallist_next(obj);
2067    if (nobj != NULL && obj != tail)
2068	initlist_add_objects(nobj, tail, list);
2069
2070    /* Recursively process the needed objects. */
2071    if (obj->needed != NULL)
2072	initlist_add_neededs(obj->needed, list);
2073    if (obj->needed_filtees != NULL)
2074	initlist_add_neededs(obj->needed_filtees, list);
2075    if (obj->needed_aux_filtees != NULL)
2076	initlist_add_neededs(obj->needed_aux_filtees, list);
2077
2078    /* Add the object to the init list. */
2079    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2080      obj->init_array != (Elf_Addr)NULL)
2081	objlist_push_tail(list, obj);
2082
2083    /* Add the object to the global fini list in the reverse order. */
2084    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2085      && !obj->on_fini_list) {
2086	objlist_push_head(&list_fini, obj);
2087	obj->on_fini_list = true;
2088    }
2089}
2090
2091#ifndef FPTR_TARGET
2092#define FPTR_TARGET(f)	((Elf_Addr) (f))
2093#endif
2094
2095static void
2096free_needed_filtees(Needed_Entry *n)
2097{
2098    Needed_Entry *needed, *needed1;
2099
2100    for (needed = n; needed != NULL; needed = needed->next) {
2101	if (needed->obj != NULL) {
2102	    dlclose(needed->obj);
2103	    needed->obj = NULL;
2104	}
2105    }
2106    for (needed = n; needed != NULL; needed = needed1) {
2107	needed1 = needed->next;
2108	free(needed);
2109    }
2110}
2111
2112static void
2113unload_filtees(Obj_Entry *obj)
2114{
2115
2116    free_needed_filtees(obj->needed_filtees);
2117    obj->needed_filtees = NULL;
2118    free_needed_filtees(obj->needed_aux_filtees);
2119    obj->needed_aux_filtees = NULL;
2120    obj->filtees_loaded = false;
2121}
2122
2123static void
2124load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2125    RtldLockState *lockstate)
2126{
2127
2128    for (; needed != NULL; needed = needed->next) {
2129	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2130	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2131	  RTLD_LOCAL, lockstate);
2132    }
2133}
2134
2135static void
2136load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2137{
2138
2139    lock_restart_for_upgrade(lockstate);
2140    if (!obj->filtees_loaded) {
2141	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2142	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2143	obj->filtees_loaded = true;
2144    }
2145}
2146
2147static int
2148process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2149{
2150    Obj_Entry *obj1;
2151
2152    for (; needed != NULL; needed = needed->next) {
2153	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2154	  flags & ~RTLD_LO_NOLOAD);
2155	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2156	    return (-1);
2157    }
2158    return (0);
2159}
2160
2161/*
2162 * Given a shared object, traverse its list of needed objects, and load
2163 * each of them.  Returns 0 on success.  Generates an error message and
2164 * returns -1 on failure.
2165 */
2166static int
2167load_needed_objects(Obj_Entry *first, int flags)
2168{
2169    Obj_Entry *obj;
2170
2171    for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2172	if (obj->marker)
2173	    continue;
2174	if (process_needed(obj, obj->needed, flags) == -1)
2175	    return (-1);
2176    }
2177    return (0);
2178}
2179
2180static int
2181load_preload_objects(void)
2182{
2183    char *p = ld_preload;
2184    Obj_Entry *obj;
2185    static const char delim[] = " \t:;";
2186
2187    if (p == NULL)
2188	return 0;
2189
2190    p += strspn(p, delim);
2191    while (*p != '\0') {
2192	size_t len = strcspn(p, delim);
2193	char savech;
2194
2195	savech = p[len];
2196	p[len] = '\0';
2197	obj = load_object(p, -1, NULL, 0);
2198	if (obj == NULL)
2199	    return -1;	/* XXX - cleanup */
2200	obj->z_interpose = true;
2201	p[len] = savech;
2202	p += len;
2203	p += strspn(p, delim);
2204    }
2205    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2206    return 0;
2207}
2208
2209static const char *
2210printable_path(const char *path)
2211{
2212
2213	return (path == NULL ? "<unknown>" : path);
2214}
2215
2216/*
2217 * Load a shared object into memory, if it is not already loaded.  The
2218 * object may be specified by name or by user-supplied file descriptor
2219 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2220 * duplicate is.
2221 *
2222 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2223 * on failure.
2224 */
2225static Obj_Entry *
2226load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2227{
2228    Obj_Entry *obj;
2229    int fd;
2230    struct stat sb;
2231    char *path;
2232
2233    fd = -1;
2234    if (name != NULL) {
2235	TAILQ_FOREACH(obj, &obj_list, next) {
2236	    if (obj->marker)
2237		continue;
2238	    if (object_match_name(obj, name))
2239		return (obj);
2240	}
2241
2242	path = find_library(name, refobj, &fd);
2243	if (path == NULL)
2244	    return (NULL);
2245    } else
2246	path = NULL;
2247
2248    if (fd >= 0) {
2249	/*
2250	 * search_library_pathfds() opens a fresh file descriptor for the
2251	 * library, so there is no need to dup().
2252	 */
2253    } else if (fd_u == -1) {
2254	/*
2255	 * If we didn't find a match by pathname, or the name is not
2256	 * supplied, open the file and check again by device and inode.
2257	 * This avoids false mismatches caused by multiple links or ".."
2258	 * in pathnames.
2259	 *
2260	 * To avoid a race, we open the file and use fstat() rather than
2261	 * using stat().
2262	 */
2263	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2264	    _rtld_error("Cannot open \"%s\"", path);
2265	    free(path);
2266	    return (NULL);
2267	}
2268    } else {
2269	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2270	if (fd == -1) {
2271	    _rtld_error("Cannot dup fd");
2272	    free(path);
2273	    return (NULL);
2274	}
2275    }
2276    if (fstat(fd, &sb) == -1) {
2277	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2278	close(fd);
2279	free(path);
2280	return NULL;
2281    }
2282    TAILQ_FOREACH(obj, &obj_list, next) {
2283	if (obj->marker)
2284	    continue;
2285	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2286	    break;
2287    }
2288    if (obj != NULL && name != NULL) {
2289	object_add_name(obj, name);
2290	free(path);
2291	close(fd);
2292	return obj;
2293    }
2294    if (flags & RTLD_LO_NOLOAD) {
2295	free(path);
2296	close(fd);
2297	return (NULL);
2298    }
2299
2300    /* First use of this object, so we must map it in */
2301    obj = do_load_object(fd, name, path, &sb, flags);
2302    if (obj == NULL)
2303	free(path);
2304    close(fd);
2305
2306    return obj;
2307}
2308
2309static Obj_Entry *
2310do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2311  int flags)
2312{
2313    Obj_Entry *obj;
2314    struct statfs fs;
2315
2316    /*
2317     * but first, make sure that environment variables haven't been
2318     * used to circumvent the noexec flag on a filesystem.
2319     */
2320    if (dangerous_ld_env) {
2321	if (fstatfs(fd, &fs) != 0) {
2322	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2323	    return NULL;
2324	}
2325	if (fs.f_flags & MNT_NOEXEC) {
2326	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2327	    return NULL;
2328	}
2329    }
2330    dbg("loading \"%s\"", printable_path(path));
2331    obj = map_object(fd, printable_path(path), sbp);
2332    if (obj == NULL)
2333        return NULL;
2334
2335    /*
2336     * If DT_SONAME is present in the object, digest_dynamic2 already
2337     * added it to the object names.
2338     */
2339    if (name != NULL)
2340	object_add_name(obj, name);
2341    obj->path = path;
2342    digest_dynamic(obj, 0);
2343    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2344	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2345    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2346      RTLD_LO_DLOPEN) {
2347	dbg("refusing to load non-loadable \"%s\"", obj->path);
2348	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2349	munmap(obj->mapbase, obj->mapsize);
2350	obj_free(obj);
2351	return (NULL);
2352    }
2353
2354    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2355    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2356    obj_count++;
2357    obj_loads++;
2358    linkmap_add(obj);	/* for GDB & dlinfo() */
2359    max_stack_flags |= obj->stack_flags;
2360
2361    dbg("  %p .. %p: %s", obj->mapbase,
2362         obj->mapbase + obj->mapsize - 1, obj->path);
2363    if (obj->textrel)
2364	dbg("  WARNING: %s has impure text", obj->path);
2365    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2366	obj->path);
2367
2368    return obj;
2369}
2370
2371static Obj_Entry *
2372obj_from_addr(const void *addr)
2373{
2374    Obj_Entry *obj;
2375
2376    TAILQ_FOREACH(obj, &obj_list, next) {
2377	if (obj->marker)
2378	    continue;
2379	if (addr < (void *) obj->mapbase)
2380	    continue;
2381	if (addr < (void *) (obj->mapbase + obj->mapsize))
2382	    return obj;
2383    }
2384    return NULL;
2385}
2386
2387static void
2388preinit_main(void)
2389{
2390    Elf_Addr *preinit_addr;
2391    int index;
2392
2393    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2394    if (preinit_addr == NULL)
2395	return;
2396
2397    for (index = 0; index < obj_main->preinit_array_num; index++) {
2398	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2399	    dbg("calling preinit function for %s at %p", obj_main->path,
2400	      (void *)preinit_addr[index]);
2401	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2402	      0, 0, obj_main->path);
2403	    call_init_pointer(obj_main, preinit_addr[index]);
2404	}
2405    }
2406}
2407
2408/*
2409 * Call the finalization functions for each of the objects in "list"
2410 * belonging to the DAG of "root" and referenced once. If NULL "root"
2411 * is specified, every finalization function will be called regardless
2412 * of the reference count and the list elements won't be freed. All of
2413 * the objects are expected to have non-NULL fini functions.
2414 */
2415static void
2416objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2417{
2418    Objlist_Entry *elm;
2419    char *saved_msg;
2420    Elf_Addr *fini_addr;
2421    int index;
2422
2423    assert(root == NULL || root->refcount == 1);
2424
2425    /*
2426     * Preserve the current error message since a fini function might
2427     * call into the dynamic linker and overwrite it.
2428     */
2429    saved_msg = errmsg_save();
2430    do {
2431	STAILQ_FOREACH(elm, list, link) {
2432	    if (root != NULL && (elm->obj->refcount != 1 ||
2433	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2434		continue;
2435	    /* Remove object from fini list to prevent recursive invocation. */
2436	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2437	    /*
2438	     * XXX: If a dlopen() call references an object while the
2439	     * fini function is in progress, we might end up trying to
2440	     * unload the referenced object in dlclose() or the object
2441	     * won't be unloaded although its fini function has been
2442	     * called.
2443	     */
2444	    lock_release(rtld_bind_lock, lockstate);
2445
2446	    /*
2447	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2448	     * When this happens, DT_FINI_ARRAY is processed first.
2449	     */
2450	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2451	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2452		for (index = elm->obj->fini_array_num - 1; index >= 0;
2453		  index--) {
2454		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2455			dbg("calling fini function for %s at %p",
2456			    elm->obj->path, (void *)fini_addr[index]);
2457			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2458			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2459			call_initfini_pointer(elm->obj, fini_addr[index]);
2460		    }
2461		}
2462	    }
2463	    if (elm->obj->fini != (Elf_Addr)NULL) {
2464		dbg("calling fini function for %s at %p", elm->obj->path,
2465		    (void *)elm->obj->fini);
2466		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2467		    0, 0, elm->obj->path);
2468		call_initfini_pointer(elm->obj, elm->obj->fini);
2469	    }
2470	    wlock_acquire(rtld_bind_lock, lockstate);
2471	    /* No need to free anything if process is going down. */
2472	    if (root != NULL)
2473	    	free(elm);
2474	    /*
2475	     * We must restart the list traversal after every fini call
2476	     * because a dlclose() call from the fini function or from
2477	     * another thread might have modified the reference counts.
2478	     */
2479	    break;
2480	}
2481    } while (elm != NULL);
2482    errmsg_restore(saved_msg);
2483}
2484
2485/*
2486 * Call the initialization functions for each of the objects in
2487 * "list".  All of the objects are expected to have non-NULL init
2488 * functions.
2489 */
2490static void
2491objlist_call_init(Objlist *list, RtldLockState *lockstate)
2492{
2493    Objlist_Entry *elm;
2494    Obj_Entry *obj;
2495    char *saved_msg;
2496    Elf_Addr *init_addr;
2497    int index;
2498
2499    /*
2500     * Clean init_scanned flag so that objects can be rechecked and
2501     * possibly initialized earlier if any of vectors called below
2502     * cause the change by using dlopen.
2503     */
2504    TAILQ_FOREACH(obj, &obj_list, next) {
2505	if (obj->marker)
2506	    continue;
2507	obj->init_scanned = false;
2508    }
2509
2510    /*
2511     * Preserve the current error message since an init function might
2512     * call into the dynamic linker and overwrite it.
2513     */
2514    saved_msg = errmsg_save();
2515    STAILQ_FOREACH(elm, list, link) {
2516	if (elm->obj->init_done) /* Initialized early. */
2517	    continue;
2518	/*
2519	 * Race: other thread might try to use this object before current
2520	 * one completes the initilization. Not much can be done here
2521	 * without better locking.
2522	 */
2523	elm->obj->init_done = true;
2524	lock_release(rtld_bind_lock, lockstate);
2525
2526        /*
2527         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2528         * When this happens, DT_INIT is processed first.
2529         */
2530	if (elm->obj->init != (Elf_Addr)NULL) {
2531	    dbg("calling init function for %s at %p", elm->obj->path,
2532	        (void *)elm->obj->init);
2533	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2534	        0, 0, elm->obj->path);
2535	    call_initfini_pointer(elm->obj, elm->obj->init);
2536	}
2537	init_addr = (Elf_Addr *)elm->obj->init_array;
2538	if (init_addr != NULL) {
2539	    for (index = 0; index < elm->obj->init_array_num; index++) {
2540		if (init_addr[index] != 0 && init_addr[index] != 1) {
2541		    dbg("calling init function for %s at %p", elm->obj->path,
2542			(void *)init_addr[index]);
2543		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2544			(void *)init_addr[index], 0, 0, elm->obj->path);
2545		    call_init_pointer(elm->obj, init_addr[index]);
2546		}
2547	    }
2548	}
2549	wlock_acquire(rtld_bind_lock, lockstate);
2550    }
2551    errmsg_restore(saved_msg);
2552}
2553
2554static void
2555objlist_clear(Objlist *list)
2556{
2557    Objlist_Entry *elm;
2558
2559    while (!STAILQ_EMPTY(list)) {
2560	elm = STAILQ_FIRST(list);
2561	STAILQ_REMOVE_HEAD(list, link);
2562	free(elm);
2563    }
2564}
2565
2566static Objlist_Entry *
2567objlist_find(Objlist *list, const Obj_Entry *obj)
2568{
2569    Objlist_Entry *elm;
2570
2571    STAILQ_FOREACH(elm, list, link)
2572	if (elm->obj == obj)
2573	    return elm;
2574    return NULL;
2575}
2576
2577static void
2578objlist_init(Objlist *list)
2579{
2580    STAILQ_INIT(list);
2581}
2582
2583static void
2584objlist_push_head(Objlist *list, Obj_Entry *obj)
2585{
2586    Objlist_Entry *elm;
2587
2588    elm = NEW(Objlist_Entry);
2589    elm->obj = obj;
2590    STAILQ_INSERT_HEAD(list, elm, link);
2591}
2592
2593static void
2594objlist_push_tail(Objlist *list, Obj_Entry *obj)
2595{
2596    Objlist_Entry *elm;
2597
2598    elm = NEW(Objlist_Entry);
2599    elm->obj = obj;
2600    STAILQ_INSERT_TAIL(list, elm, link);
2601}
2602
2603static void
2604objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2605{
2606	Objlist_Entry *elm, *listelm;
2607
2608	STAILQ_FOREACH(listelm, list, link) {
2609		if (listelm->obj == listobj)
2610			break;
2611	}
2612	elm = NEW(Objlist_Entry);
2613	elm->obj = obj;
2614	if (listelm != NULL)
2615		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2616	else
2617		STAILQ_INSERT_TAIL(list, elm, link);
2618}
2619
2620static void
2621objlist_remove(Objlist *list, Obj_Entry *obj)
2622{
2623    Objlist_Entry *elm;
2624
2625    if ((elm = objlist_find(list, obj)) != NULL) {
2626	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2627	free(elm);
2628    }
2629}
2630
2631/*
2632 * Relocate dag rooted in the specified object.
2633 * Returns 0 on success, or -1 on failure.
2634 */
2635
2636static int
2637relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2638    int flags, RtldLockState *lockstate)
2639{
2640	Objlist_Entry *elm;
2641	int error;
2642
2643	error = 0;
2644	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2645		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2646		    lockstate);
2647		if (error == -1)
2648			break;
2649	}
2650	return (error);
2651}
2652
2653/*
2654 * Prepare for, or clean after, relocating an object marked with
2655 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2656 * segments are remapped read-write.  After relocations are done, the
2657 * segment's permissions are returned back to the modes specified in
2658 * the phdrs.  If any relocation happened, or always for wired
2659 * program, COW is triggered.
2660 */
2661static int
2662reloc_textrel_prot(Obj_Entry *obj, bool before)
2663{
2664	const Elf_Phdr *ph;
2665	void *base;
2666	size_t l, sz;
2667	int prot;
2668
2669	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2670	    l--, ph++) {
2671		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2672			continue;
2673		base = obj->relocbase + trunc_page(ph->p_vaddr);
2674		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2675		    trunc_page(ph->p_vaddr);
2676		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2677		if (mprotect(base, sz, prot) == -1) {
2678			_rtld_error("%s: Cannot write-%sable text segment: %s",
2679			    obj->path, before ? "en" : "dis",
2680			    rtld_strerror(errno));
2681			return (-1);
2682		}
2683	}
2684	return (0);
2685}
2686
2687/*
2688 * Relocate single object.
2689 * Returns 0 on success, or -1 on failure.
2690 */
2691static int
2692relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2693    int flags, RtldLockState *lockstate)
2694{
2695
2696	if (obj->relocated)
2697		return (0);
2698	obj->relocated = true;
2699	if (obj != rtldobj)
2700		dbg("relocating \"%s\"", obj->path);
2701
2702	if (obj->symtab == NULL || obj->strtab == NULL ||
2703	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2704		_rtld_error("%s: Shared object has no run-time symbol table",
2705			    obj->path);
2706		return (-1);
2707	}
2708
2709	/* There are relocations to the write-protected text segment. */
2710	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2711		return (-1);
2712
2713	/* Process the non-PLT non-IFUNC relocations. */
2714	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2715		return (-1);
2716
2717	/* Re-protected the text segment. */
2718	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2719		return (-1);
2720
2721	/* Set the special PLT or GOT entries. */
2722	init_pltgot(obj);
2723
2724	/* Process the PLT relocations. */
2725	if (reloc_plt(obj) == -1)
2726		return (-1);
2727	/* Relocate the jump slots if we are doing immediate binding. */
2728	if (obj->bind_now || bind_now)
2729		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2730			return (-1);
2731
2732	/*
2733	 * Process the non-PLT IFUNC relocations.  The relocations are
2734	 * processed in two phases, because IFUNC resolvers may
2735	 * reference other symbols, which must be readily processed
2736	 * before resolvers are called.
2737	 */
2738	if (obj->non_plt_gnu_ifunc &&
2739	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2740		return (-1);
2741
2742	if (obj->relro_size > 0) {
2743		if (mprotect(obj->relro_page, obj->relro_size,
2744		    PROT_READ) == -1) {
2745			_rtld_error("%s: Cannot enforce relro protection: %s",
2746			    obj->path, rtld_strerror(errno));
2747			return (-1);
2748		}
2749	}
2750
2751	/*
2752	 * Set up the magic number and version in the Obj_Entry.  These
2753	 * were checked in the crt1.o from the original ElfKit, so we
2754	 * set them for backward compatibility.
2755	 */
2756	obj->magic = RTLD_MAGIC;
2757	obj->version = RTLD_VERSION;
2758
2759	return (0);
2760}
2761
2762/*
2763 * Relocate newly-loaded shared objects.  The argument is a pointer to
2764 * the Obj_Entry for the first such object.  All objects from the first
2765 * to the end of the list of objects are relocated.  Returns 0 on success,
2766 * or -1 on failure.
2767 */
2768static int
2769relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2770    int flags, RtldLockState *lockstate)
2771{
2772	Obj_Entry *obj;
2773	int error;
2774
2775	for (error = 0, obj = first;  obj != NULL;
2776	    obj = TAILQ_NEXT(obj, next)) {
2777		if (obj->marker)
2778			continue;
2779		error = relocate_object(obj, bind_now, rtldobj, flags,
2780		    lockstate);
2781		if (error == -1)
2782			break;
2783	}
2784	return (error);
2785}
2786
2787/*
2788 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2789 * referencing STT_GNU_IFUNC symbols is postponed till the other
2790 * relocations are done.  The indirect functions specified as
2791 * ifunc are allowed to call other symbols, so we need to have
2792 * objects relocated before asking for resolution from indirects.
2793 *
2794 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2795 * instead of the usual lazy handling of PLT slots.  It is
2796 * consistent with how GNU does it.
2797 */
2798static int
2799resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2800    RtldLockState *lockstate)
2801{
2802	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2803		return (-1);
2804	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2805	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2806		return (-1);
2807	return (0);
2808}
2809
2810static int
2811resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2812    RtldLockState *lockstate)
2813{
2814	Obj_Entry *obj;
2815
2816	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2817		if (obj->marker)
2818			continue;
2819		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2820			return (-1);
2821	}
2822	return (0);
2823}
2824
2825static int
2826initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2827    RtldLockState *lockstate)
2828{
2829	Objlist_Entry *elm;
2830
2831	STAILQ_FOREACH(elm, list, link) {
2832		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2833		    lockstate) == -1)
2834			return (-1);
2835	}
2836	return (0);
2837}
2838
2839/*
2840 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2841 * before the process exits.
2842 */
2843static void
2844rtld_exit(void)
2845{
2846    RtldLockState lockstate;
2847
2848    wlock_acquire(rtld_bind_lock, &lockstate);
2849    dbg("rtld_exit()");
2850    objlist_call_fini(&list_fini, NULL, &lockstate);
2851    /* No need to remove the items from the list, since we are exiting. */
2852    if (!libmap_disable)
2853        lm_fini();
2854    lock_release(rtld_bind_lock, &lockstate);
2855}
2856
2857/*
2858 * Iterate over a search path, translate each element, and invoke the
2859 * callback on the result.
2860 */
2861static void *
2862path_enumerate(const char *path, path_enum_proc callback, void *arg)
2863{
2864    const char *trans;
2865    if (path == NULL)
2866	return (NULL);
2867
2868    path += strspn(path, ":;");
2869    while (*path != '\0') {
2870	size_t len;
2871	char  *res;
2872
2873	len = strcspn(path, ":;");
2874	trans = lm_findn(NULL, path, len);
2875	if (trans)
2876	    res = callback(trans, strlen(trans), arg);
2877	else
2878	    res = callback(path, len, arg);
2879
2880	if (res != NULL)
2881	    return (res);
2882
2883	path += len;
2884	path += strspn(path, ":;");
2885    }
2886
2887    return (NULL);
2888}
2889
2890struct try_library_args {
2891    const char	*name;
2892    size_t	 namelen;
2893    char	*buffer;
2894    size_t	 buflen;
2895};
2896
2897static void *
2898try_library_path(const char *dir, size_t dirlen, void *param)
2899{
2900    struct try_library_args *arg;
2901
2902    arg = param;
2903    if (*dir == '/' || trust) {
2904	char *pathname;
2905
2906	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2907		return (NULL);
2908
2909	pathname = arg->buffer;
2910	strncpy(pathname, dir, dirlen);
2911	pathname[dirlen] = '/';
2912	strcpy(pathname + dirlen + 1, arg->name);
2913
2914	dbg("  Trying \"%s\"", pathname);
2915	if (access(pathname, F_OK) == 0) {		/* We found it */
2916	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2917	    strcpy(pathname, arg->buffer);
2918	    return (pathname);
2919	}
2920    }
2921    return (NULL);
2922}
2923
2924static char *
2925search_library_path(const char *name, const char *path)
2926{
2927    char *p;
2928    struct try_library_args arg;
2929
2930    if (path == NULL)
2931	return NULL;
2932
2933    arg.name = name;
2934    arg.namelen = strlen(name);
2935    arg.buffer = xmalloc(PATH_MAX);
2936    arg.buflen = PATH_MAX;
2937
2938    p = path_enumerate(path, try_library_path, &arg);
2939
2940    free(arg.buffer);
2941
2942    return (p);
2943}
2944
2945
2946/*
2947 * Finds the library with the given name using the directory descriptors
2948 * listed in the LD_LIBRARY_PATH_FDS environment variable.
2949 *
2950 * Returns a freshly-opened close-on-exec file descriptor for the library,
2951 * or -1 if the library cannot be found.
2952 */
2953static char *
2954search_library_pathfds(const char *name, const char *path, int *fdp)
2955{
2956	char *envcopy, *fdstr, *found, *last_token;
2957	size_t len;
2958	int dirfd, fd;
2959
2960	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2961
2962	/* Don't load from user-specified libdirs into setuid binaries. */
2963	if (!trust)
2964		return (NULL);
2965
2966	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2967	if (path == NULL)
2968		return (NULL);
2969
2970	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2971	if (name[0] == '/') {
2972		dbg("Absolute path (%s) passed to %s", name, __func__);
2973		return (NULL);
2974	}
2975
2976	/*
2977	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2978	 * copy of the path, as strtok_r rewrites separator tokens
2979	 * with '\0'.
2980	 */
2981	found = NULL;
2982	envcopy = xstrdup(path);
2983	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2984	    fdstr = strtok_r(NULL, ":", &last_token)) {
2985		dirfd = parse_libdir(fdstr);
2986		if (dirfd < 0)
2987			break;
2988		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2989		if (fd >= 0) {
2990			*fdp = fd;
2991			len = strlen(fdstr) + strlen(name) + 3;
2992			found = xmalloc(len);
2993			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2994				_rtld_error("error generating '%d/%s'",
2995				    dirfd, name);
2996				rtld_die();
2997			}
2998			dbg("open('%s') => %d", found, fd);
2999			break;
3000		}
3001	}
3002	free(envcopy);
3003
3004	return (found);
3005}
3006
3007
3008int
3009dlclose(void *handle)
3010{
3011    Obj_Entry *root;
3012    RtldLockState lockstate;
3013
3014    wlock_acquire(rtld_bind_lock, &lockstate);
3015    root = dlcheck(handle);
3016    if (root == NULL) {
3017	lock_release(rtld_bind_lock, &lockstate);
3018	return -1;
3019    }
3020    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3021	root->path);
3022
3023    /* Unreference the object and its dependencies. */
3024    root->dl_refcount--;
3025
3026    if (root->refcount == 1) {
3027	/*
3028	 * The object will be no longer referenced, so we must unload it.
3029	 * First, call the fini functions.
3030	 */
3031	objlist_call_fini(&list_fini, root, &lockstate);
3032
3033	unref_dag(root);
3034
3035	/* Finish cleaning up the newly-unreferenced objects. */
3036	GDB_STATE(RT_DELETE,&root->linkmap);
3037	unload_object(root);
3038	GDB_STATE(RT_CONSISTENT,NULL);
3039    } else
3040	unref_dag(root);
3041
3042    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3043    lock_release(rtld_bind_lock, &lockstate);
3044    return 0;
3045}
3046
3047char *
3048dlerror(void)
3049{
3050    char *msg = error_message;
3051    error_message = NULL;
3052    return msg;
3053}
3054
3055/*
3056 * This function is deprecated and has no effect.
3057 */
3058void
3059dllockinit(void *context,
3060	   void *(*lock_create)(void *context),
3061           void (*rlock_acquire)(void *lock),
3062           void (*wlock_acquire)(void *lock),
3063           void (*lock_release)(void *lock),
3064           void (*lock_destroy)(void *lock),
3065	   void (*context_destroy)(void *context))
3066{
3067    static void *cur_context;
3068    static void (*cur_context_destroy)(void *);
3069
3070    /* Just destroy the context from the previous call, if necessary. */
3071    if (cur_context_destroy != NULL)
3072	cur_context_destroy(cur_context);
3073    cur_context = context;
3074    cur_context_destroy = context_destroy;
3075}
3076
3077void *
3078dlopen(const char *name, int mode)
3079{
3080
3081	return (rtld_dlopen(name, -1, mode));
3082}
3083
3084void *
3085fdlopen(int fd, int mode)
3086{
3087
3088	return (rtld_dlopen(NULL, fd, mode));
3089}
3090
3091static void *
3092rtld_dlopen(const char *name, int fd, int mode)
3093{
3094    RtldLockState lockstate;
3095    int lo_flags;
3096
3097    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3098    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3099    if (ld_tracing != NULL) {
3100	rlock_acquire(rtld_bind_lock, &lockstate);
3101	if (sigsetjmp(lockstate.env, 0) != 0)
3102	    lock_upgrade(rtld_bind_lock, &lockstate);
3103	environ = (char **)*get_program_var_addr("environ", &lockstate);
3104	lock_release(rtld_bind_lock, &lockstate);
3105    }
3106    lo_flags = RTLD_LO_DLOPEN;
3107    if (mode & RTLD_NODELETE)
3108	    lo_flags |= RTLD_LO_NODELETE;
3109    if (mode & RTLD_NOLOAD)
3110	    lo_flags |= RTLD_LO_NOLOAD;
3111    if (ld_tracing != NULL)
3112	    lo_flags |= RTLD_LO_TRACE;
3113
3114    return (dlopen_object(name, fd, obj_main, lo_flags,
3115      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3116}
3117
3118static void
3119dlopen_cleanup(Obj_Entry *obj)
3120{
3121
3122	obj->dl_refcount--;
3123	unref_dag(obj);
3124	if (obj->refcount == 0)
3125		unload_object(obj);
3126}
3127
3128static Obj_Entry *
3129dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3130    int mode, RtldLockState *lockstate)
3131{
3132    Obj_Entry *old_obj_tail;
3133    Obj_Entry *obj;
3134    Objlist initlist;
3135    RtldLockState mlockstate;
3136    int result;
3137
3138    objlist_init(&initlist);
3139
3140    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3141	wlock_acquire(rtld_bind_lock, &mlockstate);
3142	lockstate = &mlockstate;
3143    }
3144    GDB_STATE(RT_ADD,NULL);
3145
3146    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3147    obj = NULL;
3148    if (name == NULL && fd == -1) {
3149	obj = obj_main;
3150	obj->refcount++;
3151    } else {
3152	obj = load_object(name, fd, refobj, lo_flags);
3153    }
3154
3155    if (obj) {
3156	obj->dl_refcount++;
3157	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3158	    objlist_push_tail(&list_global, obj);
3159	if (globallist_next(old_obj_tail) != NULL) {
3160	    /* We loaded something new. */
3161	    assert(globallist_next(old_obj_tail) == obj);
3162	    result = load_needed_objects(obj,
3163		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3164	    init_dag(obj);
3165	    ref_dag(obj);
3166	    if (result != -1)
3167		result = rtld_verify_versions(&obj->dagmembers);
3168	    if (result != -1 && ld_tracing)
3169		goto trace;
3170	    if (result == -1 || relocate_object_dag(obj,
3171	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3172	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3173	      lockstate) == -1) {
3174		dlopen_cleanup(obj);
3175		obj = NULL;
3176	    } else if (lo_flags & RTLD_LO_EARLY) {
3177		/*
3178		 * Do not call the init functions for early loaded
3179		 * filtees.  The image is still not initialized enough
3180		 * for them to work.
3181		 *
3182		 * Our object is found by the global object list and
3183		 * will be ordered among all init calls done right
3184		 * before transferring control to main.
3185		 */
3186	    } else {
3187		/* Make list of init functions to call. */
3188		initlist_add_objects(obj, obj, &initlist);
3189	    }
3190	    /*
3191	     * Process all no_delete or global objects here, given
3192	     * them own DAGs to prevent their dependencies from being
3193	     * unloaded.  This has to be done after we have loaded all
3194	     * of the dependencies, so that we do not miss any.
3195	     */
3196	    if (obj != NULL)
3197		process_z(obj);
3198	} else {
3199	    /*
3200	     * Bump the reference counts for objects on this DAG.  If
3201	     * this is the first dlopen() call for the object that was
3202	     * already loaded as a dependency, initialize the dag
3203	     * starting at it.
3204	     */
3205	    init_dag(obj);
3206	    ref_dag(obj);
3207
3208	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3209		goto trace;
3210	}
3211	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3212	  obj->z_nodelete) && !obj->ref_nodel) {
3213	    dbg("obj %s nodelete", obj->path);
3214	    ref_dag(obj);
3215	    obj->z_nodelete = obj->ref_nodel = true;
3216	}
3217    }
3218
3219    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3220	name);
3221    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3222
3223    if (!(lo_flags & RTLD_LO_EARLY)) {
3224	map_stacks_exec(lockstate);
3225    }
3226
3227    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3228      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3229      lockstate) == -1) {
3230	objlist_clear(&initlist);
3231	dlopen_cleanup(obj);
3232	if (lockstate == &mlockstate)
3233	    lock_release(rtld_bind_lock, lockstate);
3234	return (NULL);
3235    }
3236
3237    if (!(lo_flags & RTLD_LO_EARLY)) {
3238	/* Call the init functions. */
3239	objlist_call_init(&initlist, lockstate);
3240    }
3241    objlist_clear(&initlist);
3242    if (lockstate == &mlockstate)
3243	lock_release(rtld_bind_lock, lockstate);
3244    return obj;
3245trace:
3246    trace_loaded_objects(obj);
3247    if (lockstate == &mlockstate)
3248	lock_release(rtld_bind_lock, lockstate);
3249    exit(0);
3250}
3251
3252static void *
3253do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3254    int flags)
3255{
3256    DoneList donelist;
3257    const Obj_Entry *obj, *defobj;
3258    const Elf_Sym *def;
3259    SymLook req;
3260    RtldLockState lockstate;
3261    tls_index ti;
3262    void *sym;
3263    int res;
3264
3265    def = NULL;
3266    defobj = NULL;
3267    symlook_init(&req, name);
3268    req.ventry = ve;
3269    req.flags = flags | SYMLOOK_IN_PLT;
3270    req.lockstate = &lockstate;
3271
3272    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3273    rlock_acquire(rtld_bind_lock, &lockstate);
3274    if (sigsetjmp(lockstate.env, 0) != 0)
3275	    lock_upgrade(rtld_bind_lock, &lockstate);
3276    if (handle == NULL || handle == RTLD_NEXT ||
3277	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3278
3279	if ((obj = obj_from_addr(retaddr)) == NULL) {
3280	    _rtld_error("Cannot determine caller's shared object");
3281	    lock_release(rtld_bind_lock, &lockstate);
3282	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3283	    return NULL;
3284	}
3285	if (handle == NULL) {	/* Just the caller's shared object. */
3286	    res = symlook_obj(&req, obj);
3287	    if (res == 0) {
3288		def = req.sym_out;
3289		defobj = req.defobj_out;
3290	    }
3291	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3292		   handle == RTLD_SELF) { /* ... caller included */
3293	    if (handle == RTLD_NEXT)
3294		obj = globallist_next(obj);
3295	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3296		if (obj->marker)
3297		    continue;
3298		res = symlook_obj(&req, obj);
3299		if (res == 0) {
3300		    if (def == NULL ||
3301		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3302			def = req.sym_out;
3303			defobj = req.defobj_out;
3304			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3305			    break;
3306		    }
3307		}
3308	    }
3309	    /*
3310	     * Search the dynamic linker itself, and possibly resolve the
3311	     * symbol from there.  This is how the application links to
3312	     * dynamic linker services such as dlopen.
3313	     */
3314	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3315		res = symlook_obj(&req, &obj_rtld);
3316		if (res == 0) {
3317		    def = req.sym_out;
3318		    defobj = req.defobj_out;
3319		}
3320	    }
3321	} else {
3322	    assert(handle == RTLD_DEFAULT);
3323	    res = symlook_default(&req, obj);
3324	    if (res == 0) {
3325		defobj = req.defobj_out;
3326		def = req.sym_out;
3327	    }
3328	}
3329    } else {
3330	if ((obj = dlcheck(handle)) == NULL) {
3331	    lock_release(rtld_bind_lock, &lockstate);
3332	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3333	    return NULL;
3334	}
3335
3336	donelist_init(&donelist);
3337	if (obj->mainprog) {
3338            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3339	    res = symlook_global(&req, &donelist);
3340	    if (res == 0) {
3341		def = req.sym_out;
3342		defobj = req.defobj_out;
3343	    }
3344	    /*
3345	     * Search the dynamic linker itself, and possibly resolve the
3346	     * symbol from there.  This is how the application links to
3347	     * dynamic linker services such as dlopen.
3348	     */
3349	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3350		res = symlook_obj(&req, &obj_rtld);
3351		if (res == 0) {
3352		    def = req.sym_out;
3353		    defobj = req.defobj_out;
3354		}
3355	    }
3356	}
3357	else {
3358	    /* Search the whole DAG rooted at the given object. */
3359	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3360	    if (res == 0) {
3361		def = req.sym_out;
3362		defobj = req.defobj_out;
3363	    }
3364	}
3365    }
3366
3367    if (def != NULL) {
3368	lock_release(rtld_bind_lock, &lockstate);
3369
3370	/*
3371	 * The value required by the caller is derived from the value
3372	 * of the symbol. this is simply the relocated value of the
3373	 * symbol.
3374	 */
3375	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3376	    sym = make_function_pointer(def, defobj);
3377	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3378	    sym = rtld_resolve_ifunc(defobj, def);
3379	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3380	    ti.ti_module = defobj->tlsindex;
3381	    ti.ti_offset = def->st_value;
3382	    sym = __tls_get_addr(&ti);
3383	} else
3384	    sym = defobj->relocbase + def->st_value;
3385	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3386	return (sym);
3387    }
3388
3389    _rtld_error("Undefined symbol \"%s\"", name);
3390    lock_release(rtld_bind_lock, &lockstate);
3391    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3392    return NULL;
3393}
3394
3395void *
3396dlsym(void *handle, const char *name)
3397{
3398	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3399	    SYMLOOK_DLSYM);
3400}
3401
3402dlfunc_t
3403dlfunc(void *handle, const char *name)
3404{
3405	union {
3406		void *d;
3407		dlfunc_t f;
3408	} rv;
3409
3410	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3411	    SYMLOOK_DLSYM);
3412	return (rv.f);
3413}
3414
3415void *
3416dlvsym(void *handle, const char *name, const char *version)
3417{
3418	Ver_Entry ventry;
3419
3420	ventry.name = version;
3421	ventry.file = NULL;
3422	ventry.hash = elf_hash(version);
3423	ventry.flags= 0;
3424	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3425	    SYMLOOK_DLSYM);
3426}
3427
3428int
3429_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3430{
3431    const Obj_Entry *obj;
3432    RtldLockState lockstate;
3433
3434    rlock_acquire(rtld_bind_lock, &lockstate);
3435    obj = obj_from_addr(addr);
3436    if (obj == NULL) {
3437        _rtld_error("No shared object contains address");
3438	lock_release(rtld_bind_lock, &lockstate);
3439        return (0);
3440    }
3441    rtld_fill_dl_phdr_info(obj, phdr_info);
3442    lock_release(rtld_bind_lock, &lockstate);
3443    return (1);
3444}
3445
3446int
3447dladdr(const void *addr, Dl_info *info)
3448{
3449    const Obj_Entry *obj;
3450    const Elf_Sym *def;
3451    void *symbol_addr;
3452    unsigned long symoffset;
3453    RtldLockState lockstate;
3454
3455    rlock_acquire(rtld_bind_lock, &lockstate);
3456    obj = obj_from_addr(addr);
3457    if (obj == NULL) {
3458        _rtld_error("No shared object contains address");
3459	lock_release(rtld_bind_lock, &lockstate);
3460        return 0;
3461    }
3462    info->dli_fname = obj->path;
3463    info->dli_fbase = obj->mapbase;
3464    info->dli_saddr = (void *)0;
3465    info->dli_sname = NULL;
3466
3467    /*
3468     * Walk the symbol list looking for the symbol whose address is
3469     * closest to the address sent in.
3470     */
3471    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3472        def = obj->symtab + symoffset;
3473
3474        /*
3475         * For skip the symbol if st_shndx is either SHN_UNDEF or
3476         * SHN_COMMON.
3477         */
3478        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3479            continue;
3480
3481        /*
3482         * If the symbol is greater than the specified address, or if it
3483         * is further away from addr than the current nearest symbol,
3484         * then reject it.
3485         */
3486        symbol_addr = obj->relocbase + def->st_value;
3487        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3488            continue;
3489
3490        /* Update our idea of the nearest symbol. */
3491        info->dli_sname = obj->strtab + def->st_name;
3492        info->dli_saddr = symbol_addr;
3493
3494        /* Exact match? */
3495        if (info->dli_saddr == addr)
3496            break;
3497    }
3498    lock_release(rtld_bind_lock, &lockstate);
3499    return 1;
3500}
3501
3502int
3503dlinfo(void *handle, int request, void *p)
3504{
3505    const Obj_Entry *obj;
3506    RtldLockState lockstate;
3507    int error;
3508
3509    rlock_acquire(rtld_bind_lock, &lockstate);
3510
3511    if (handle == NULL || handle == RTLD_SELF) {
3512	void *retaddr;
3513
3514	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3515	if ((obj = obj_from_addr(retaddr)) == NULL)
3516	    _rtld_error("Cannot determine caller's shared object");
3517    } else
3518	obj = dlcheck(handle);
3519
3520    if (obj == NULL) {
3521	lock_release(rtld_bind_lock, &lockstate);
3522	return (-1);
3523    }
3524
3525    error = 0;
3526    switch (request) {
3527    case RTLD_DI_LINKMAP:
3528	*((struct link_map const **)p) = &obj->linkmap;
3529	break;
3530    case RTLD_DI_ORIGIN:
3531	error = rtld_dirname(obj->path, p);
3532	break;
3533
3534    case RTLD_DI_SERINFOSIZE:
3535    case RTLD_DI_SERINFO:
3536	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3537	break;
3538
3539    default:
3540	_rtld_error("Invalid request %d passed to dlinfo()", request);
3541	error = -1;
3542    }
3543
3544    lock_release(rtld_bind_lock, &lockstate);
3545
3546    return (error);
3547}
3548
3549static void
3550rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3551{
3552
3553	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3554	phdr_info->dlpi_name = obj->path;
3555	phdr_info->dlpi_phdr = obj->phdr;
3556	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3557	phdr_info->dlpi_tls_modid = obj->tlsindex;
3558	phdr_info->dlpi_tls_data = obj->tlsinit;
3559	phdr_info->dlpi_adds = obj_loads;
3560	phdr_info->dlpi_subs = obj_loads - obj_count;
3561}
3562
3563int
3564dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3565{
3566	struct dl_phdr_info phdr_info;
3567	Obj_Entry *obj, marker;
3568	RtldLockState bind_lockstate, phdr_lockstate;
3569	int error;
3570
3571	bzero(&marker, sizeof(marker));
3572	marker.marker = true;
3573	error = 0;
3574
3575	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3576	rlock_acquire(rtld_bind_lock, &bind_lockstate);
3577	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3578		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3579		rtld_fill_dl_phdr_info(obj, &phdr_info);
3580		lock_release(rtld_bind_lock, &bind_lockstate);
3581
3582		error = callback(&phdr_info, sizeof phdr_info, param);
3583
3584		rlock_acquire(rtld_bind_lock, &bind_lockstate);
3585		obj = globallist_next(&marker);
3586		TAILQ_REMOVE(&obj_list, &marker, next);
3587		if (error != 0) {
3588			lock_release(rtld_bind_lock, &bind_lockstate);
3589			lock_release(rtld_phdr_lock, &phdr_lockstate);
3590			return (error);
3591		}
3592	}
3593
3594	if (error == 0) {
3595		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3596		lock_release(rtld_bind_lock, &bind_lockstate);
3597		error = callback(&phdr_info, sizeof(phdr_info), param);
3598	}
3599	lock_release(rtld_phdr_lock, &phdr_lockstate);
3600	return (error);
3601}
3602
3603static void *
3604fill_search_info(const char *dir, size_t dirlen, void *param)
3605{
3606    struct fill_search_info_args *arg;
3607
3608    arg = param;
3609
3610    if (arg->request == RTLD_DI_SERINFOSIZE) {
3611	arg->serinfo->dls_cnt ++;
3612	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3613    } else {
3614	struct dl_serpath *s_entry;
3615
3616	s_entry = arg->serpath;
3617	s_entry->dls_name  = arg->strspace;
3618	s_entry->dls_flags = arg->flags;
3619
3620	strncpy(arg->strspace, dir, dirlen);
3621	arg->strspace[dirlen] = '\0';
3622
3623	arg->strspace += dirlen + 1;
3624	arg->serpath++;
3625    }
3626
3627    return (NULL);
3628}
3629
3630static int
3631do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3632{
3633    struct dl_serinfo _info;
3634    struct fill_search_info_args args;
3635
3636    args.request = RTLD_DI_SERINFOSIZE;
3637    args.serinfo = &_info;
3638
3639    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3640    _info.dls_cnt  = 0;
3641
3642    path_enumerate(obj->rpath, fill_search_info, &args);
3643    path_enumerate(ld_library_path, fill_search_info, &args);
3644    path_enumerate(obj->runpath, fill_search_info, &args);
3645    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3646    if (!obj->z_nodeflib)
3647      path_enumerate(ld_standard_library_path, fill_search_info, &args);
3648
3649
3650    if (request == RTLD_DI_SERINFOSIZE) {
3651	info->dls_size = _info.dls_size;
3652	info->dls_cnt = _info.dls_cnt;
3653	return (0);
3654    }
3655
3656    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3657	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3658	return (-1);
3659    }
3660
3661    args.request  = RTLD_DI_SERINFO;
3662    args.serinfo  = info;
3663    args.serpath  = &info->dls_serpath[0];
3664    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3665
3666    args.flags = LA_SER_RUNPATH;
3667    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3668	return (-1);
3669
3670    args.flags = LA_SER_LIBPATH;
3671    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3672	return (-1);
3673
3674    args.flags = LA_SER_RUNPATH;
3675    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3676	return (-1);
3677
3678    args.flags = LA_SER_CONFIG;
3679    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3680      != NULL)
3681	return (-1);
3682
3683    args.flags = LA_SER_DEFAULT;
3684    if (!obj->z_nodeflib &&
3685      path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3686	return (-1);
3687    return (0);
3688}
3689
3690static int
3691rtld_dirname(const char *path, char *bname)
3692{
3693    const char *endp;
3694
3695    /* Empty or NULL string gets treated as "." */
3696    if (path == NULL || *path == '\0') {
3697	bname[0] = '.';
3698	bname[1] = '\0';
3699	return (0);
3700    }
3701
3702    /* Strip trailing slashes */
3703    endp = path + strlen(path) - 1;
3704    while (endp > path && *endp == '/')
3705	endp--;
3706
3707    /* Find the start of the dir */
3708    while (endp > path && *endp != '/')
3709	endp--;
3710
3711    /* Either the dir is "/" or there are no slashes */
3712    if (endp == path) {
3713	bname[0] = *endp == '/' ? '/' : '.';
3714	bname[1] = '\0';
3715	return (0);
3716    } else {
3717	do {
3718	    endp--;
3719	} while (endp > path && *endp == '/');
3720    }
3721
3722    if (endp - path + 2 > PATH_MAX)
3723    {
3724	_rtld_error("Filename is too long: %s", path);
3725	return(-1);
3726    }
3727
3728    strncpy(bname, path, endp - path + 1);
3729    bname[endp - path + 1] = '\0';
3730    return (0);
3731}
3732
3733static int
3734rtld_dirname_abs(const char *path, char *base)
3735{
3736	char *last;
3737
3738	if (realpath(path, base) == NULL)
3739		return (-1);
3740	dbg("%s -> %s", path, base);
3741	last = strrchr(base, '/');
3742	if (last == NULL)
3743		return (-1);
3744	if (last != base)
3745		*last = '\0';
3746	return (0);
3747}
3748
3749static void
3750linkmap_add(Obj_Entry *obj)
3751{
3752    struct link_map *l = &obj->linkmap;
3753    struct link_map *prev;
3754
3755    obj->linkmap.l_name = obj->path;
3756    obj->linkmap.l_addr = obj->mapbase;
3757    obj->linkmap.l_ld = obj->dynamic;
3758#ifdef __mips__
3759    /* GDB needs load offset on MIPS to use the symbols */
3760    obj->linkmap.l_offs = obj->relocbase;
3761#endif
3762
3763    if (r_debug.r_map == NULL) {
3764	r_debug.r_map = l;
3765	return;
3766    }
3767
3768    /*
3769     * Scan to the end of the list, but not past the entry for the
3770     * dynamic linker, which we want to keep at the very end.
3771     */
3772    for (prev = r_debug.r_map;
3773      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3774      prev = prev->l_next)
3775	;
3776
3777    /* Link in the new entry. */
3778    l->l_prev = prev;
3779    l->l_next = prev->l_next;
3780    if (l->l_next != NULL)
3781	l->l_next->l_prev = l;
3782    prev->l_next = l;
3783}
3784
3785static void
3786linkmap_delete(Obj_Entry *obj)
3787{
3788    struct link_map *l = &obj->linkmap;
3789
3790    if (l->l_prev == NULL) {
3791	if ((r_debug.r_map = l->l_next) != NULL)
3792	    l->l_next->l_prev = NULL;
3793	return;
3794    }
3795
3796    if ((l->l_prev->l_next = l->l_next) != NULL)
3797	l->l_next->l_prev = l->l_prev;
3798}
3799
3800/*
3801 * Function for the debugger to set a breakpoint on to gain control.
3802 *
3803 * The two parameters allow the debugger to easily find and determine
3804 * what the runtime loader is doing and to whom it is doing it.
3805 *
3806 * When the loadhook trap is hit (r_debug_state, set at program
3807 * initialization), the arguments can be found on the stack:
3808 *
3809 *  +8   struct link_map *m
3810 *  +4   struct r_debug  *rd
3811 *  +0   RetAddr
3812 */
3813void
3814r_debug_state(struct r_debug* rd, struct link_map *m)
3815{
3816    /*
3817     * The following is a hack to force the compiler to emit calls to
3818     * this function, even when optimizing.  If the function is empty,
3819     * the compiler is not obliged to emit any code for calls to it,
3820     * even when marked __noinline.  However, gdb depends on those
3821     * calls being made.
3822     */
3823    __compiler_membar();
3824}
3825
3826/*
3827 * A function called after init routines have completed. This can be used to
3828 * break before a program's entry routine is called, and can be used when
3829 * main is not available in the symbol table.
3830 */
3831void
3832_r_debug_postinit(struct link_map *m)
3833{
3834
3835	/* See r_debug_state(). */
3836	__compiler_membar();
3837}
3838
3839/*
3840 * Get address of the pointer variable in the main program.
3841 * Prefer non-weak symbol over the weak one.
3842 */
3843static const void **
3844get_program_var_addr(const char *name, RtldLockState *lockstate)
3845{
3846    SymLook req;
3847    DoneList donelist;
3848
3849    symlook_init(&req, name);
3850    req.lockstate = lockstate;
3851    donelist_init(&donelist);
3852    if (symlook_global(&req, &donelist) != 0)
3853	return (NULL);
3854    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3855	return ((const void **)make_function_pointer(req.sym_out,
3856	  req.defobj_out));
3857    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3858	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3859    else
3860	return ((const void **)(req.defobj_out->relocbase +
3861	  req.sym_out->st_value));
3862}
3863
3864/*
3865 * Set a pointer variable in the main program to the given value.  This
3866 * is used to set key variables such as "environ" before any of the
3867 * init functions are called.
3868 */
3869static void
3870set_program_var(const char *name, const void *value)
3871{
3872    const void **addr;
3873
3874    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3875	dbg("\"%s\": *%p <-- %p", name, addr, value);
3876	*addr = value;
3877    }
3878}
3879
3880/*
3881 * Search the global objects, including dependencies and main object,
3882 * for the given symbol.
3883 */
3884static int
3885symlook_global(SymLook *req, DoneList *donelist)
3886{
3887    SymLook req1;
3888    const Objlist_Entry *elm;
3889    int res;
3890
3891    symlook_init_from_req(&req1, req);
3892
3893    /* Search all objects loaded at program start up. */
3894    if (req->defobj_out == NULL ||
3895      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3896	res = symlook_list(&req1, &list_main, donelist);
3897	if (res == 0 && (req->defobj_out == NULL ||
3898	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3899	    req->sym_out = req1.sym_out;
3900	    req->defobj_out = req1.defobj_out;
3901	    assert(req->defobj_out != NULL);
3902	}
3903    }
3904
3905    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3906    STAILQ_FOREACH(elm, &list_global, link) {
3907	if (req->defobj_out != NULL &&
3908	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3909	    break;
3910	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3911	if (res == 0 && (req->defobj_out == NULL ||
3912	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3913	    req->sym_out = req1.sym_out;
3914	    req->defobj_out = req1.defobj_out;
3915	    assert(req->defobj_out != NULL);
3916	}
3917    }
3918
3919    return (req->sym_out != NULL ? 0 : ESRCH);
3920}
3921
3922/*
3923 * Given a symbol name in a referencing object, find the corresponding
3924 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3925 * no definition was found.  Returns a pointer to the Obj_Entry of the
3926 * defining object via the reference parameter DEFOBJ_OUT.
3927 */
3928static int
3929symlook_default(SymLook *req, const Obj_Entry *refobj)
3930{
3931    DoneList donelist;
3932    const Objlist_Entry *elm;
3933    SymLook req1;
3934    int res;
3935
3936    donelist_init(&donelist);
3937    symlook_init_from_req(&req1, req);
3938
3939    /* Look first in the referencing object if linked symbolically. */
3940    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3941	res = symlook_obj(&req1, refobj);
3942	if (res == 0) {
3943	    req->sym_out = req1.sym_out;
3944	    req->defobj_out = req1.defobj_out;
3945	    assert(req->defobj_out != NULL);
3946	}
3947    }
3948
3949    symlook_global(req, &donelist);
3950
3951    /* Search all dlopened DAGs containing the referencing object. */
3952    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3953	if (req->sym_out != NULL &&
3954	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3955	    break;
3956	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3957	if (res == 0 && (req->sym_out == NULL ||
3958	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3959	    req->sym_out = req1.sym_out;
3960	    req->defobj_out = req1.defobj_out;
3961	    assert(req->defobj_out != NULL);
3962	}
3963    }
3964
3965    /*
3966     * Search the dynamic linker itself, and possibly resolve the
3967     * symbol from there.  This is how the application links to
3968     * dynamic linker services such as dlopen.
3969     */
3970    if (req->sym_out == NULL ||
3971      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3972	res = symlook_obj(&req1, &obj_rtld);
3973	if (res == 0) {
3974	    req->sym_out = req1.sym_out;
3975	    req->defobj_out = req1.defobj_out;
3976	    assert(req->defobj_out != NULL);
3977	}
3978    }
3979
3980    return (req->sym_out != NULL ? 0 : ESRCH);
3981}
3982
3983static int
3984symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3985{
3986    const Elf_Sym *def;
3987    const Obj_Entry *defobj;
3988    const Objlist_Entry *elm;
3989    SymLook req1;
3990    int res;
3991
3992    def = NULL;
3993    defobj = NULL;
3994    STAILQ_FOREACH(elm, objlist, link) {
3995	if (donelist_check(dlp, elm->obj))
3996	    continue;
3997	symlook_init_from_req(&req1, req);
3998	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3999	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4000		def = req1.sym_out;
4001		defobj = req1.defobj_out;
4002		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4003		    break;
4004	    }
4005	}
4006    }
4007    if (def != NULL) {
4008	req->sym_out = def;
4009	req->defobj_out = defobj;
4010	return (0);
4011    }
4012    return (ESRCH);
4013}
4014
4015/*
4016 * Search the chain of DAGS cointed to by the given Needed_Entry
4017 * for a symbol of the given name.  Each DAG is scanned completely
4018 * before advancing to the next one.  Returns a pointer to the symbol,
4019 * or NULL if no definition was found.
4020 */
4021static int
4022symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4023{
4024    const Elf_Sym *def;
4025    const Needed_Entry *n;
4026    const Obj_Entry *defobj;
4027    SymLook req1;
4028    int res;
4029
4030    def = NULL;
4031    defobj = NULL;
4032    symlook_init_from_req(&req1, req);
4033    for (n = needed; n != NULL; n = n->next) {
4034	if (n->obj == NULL ||
4035	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4036	    continue;
4037	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4038	    def = req1.sym_out;
4039	    defobj = req1.defobj_out;
4040	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4041		break;
4042	}
4043    }
4044    if (def != NULL) {
4045	req->sym_out = def;
4046	req->defobj_out = defobj;
4047	return (0);
4048    }
4049    return (ESRCH);
4050}
4051
4052/*
4053 * Search the symbol table of a single shared object for a symbol of
4054 * the given name and version, if requested.  Returns a pointer to the
4055 * symbol, or NULL if no definition was found.  If the object is
4056 * filter, return filtered symbol from filtee.
4057 *
4058 * The symbol's hash value is passed in for efficiency reasons; that
4059 * eliminates many recomputations of the hash value.
4060 */
4061int
4062symlook_obj(SymLook *req, const Obj_Entry *obj)
4063{
4064    DoneList donelist;
4065    SymLook req1;
4066    int flags, res, mres;
4067
4068    /*
4069     * If there is at least one valid hash at this point, we prefer to
4070     * use the faster GNU version if available.
4071     */
4072    if (obj->valid_hash_gnu)
4073	mres = symlook_obj1_gnu(req, obj);
4074    else if (obj->valid_hash_sysv)
4075	mres = symlook_obj1_sysv(req, obj);
4076    else
4077	return (EINVAL);
4078
4079    if (mres == 0) {
4080	if (obj->needed_filtees != NULL) {
4081	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4082	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4083	    donelist_init(&donelist);
4084	    symlook_init_from_req(&req1, req);
4085	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4086	    if (res == 0) {
4087		req->sym_out = req1.sym_out;
4088		req->defobj_out = req1.defobj_out;
4089	    }
4090	    return (res);
4091	}
4092	if (obj->needed_aux_filtees != NULL) {
4093	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4094	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4095	    donelist_init(&donelist);
4096	    symlook_init_from_req(&req1, req);
4097	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4098	    if (res == 0) {
4099		req->sym_out = req1.sym_out;
4100		req->defobj_out = req1.defobj_out;
4101		return (res);
4102	    }
4103	}
4104    }
4105    return (mres);
4106}
4107
4108/* Symbol match routine common to both hash functions */
4109static bool
4110matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4111    const unsigned long symnum)
4112{
4113	Elf_Versym verndx;
4114	const Elf_Sym *symp;
4115	const char *strp;
4116
4117	symp = obj->symtab + symnum;
4118	strp = obj->strtab + symp->st_name;
4119
4120	switch (ELF_ST_TYPE(symp->st_info)) {
4121	case STT_FUNC:
4122	case STT_NOTYPE:
4123	case STT_OBJECT:
4124	case STT_COMMON:
4125	case STT_GNU_IFUNC:
4126		if (symp->st_value == 0)
4127			return (false);
4128		/* fallthrough */
4129	case STT_TLS:
4130		if (symp->st_shndx != SHN_UNDEF)
4131			break;
4132#ifndef __mips__
4133		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4134		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4135			break;
4136		/* fallthrough */
4137#endif
4138	default:
4139		return (false);
4140	}
4141	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4142		return (false);
4143
4144	if (req->ventry == NULL) {
4145		if (obj->versyms != NULL) {
4146			verndx = VER_NDX(obj->versyms[symnum]);
4147			if (verndx > obj->vernum) {
4148				_rtld_error(
4149				    "%s: symbol %s references wrong version %d",
4150				    obj->path, obj->strtab + symnum, verndx);
4151				return (false);
4152			}
4153			/*
4154			 * If we are not called from dlsym (i.e. this
4155			 * is a normal relocation from unversioned
4156			 * binary), accept the symbol immediately if
4157			 * it happens to have first version after this
4158			 * shared object became versioned.  Otherwise,
4159			 * if symbol is versioned and not hidden,
4160			 * remember it. If it is the only symbol with
4161			 * this name exported by the shared object, it
4162			 * will be returned as a match by the calling
4163			 * function. If symbol is global (verndx < 2)
4164			 * accept it unconditionally.
4165			 */
4166			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4167			    verndx == VER_NDX_GIVEN) {
4168				result->sym_out = symp;
4169				return (true);
4170			}
4171			else if (verndx >= VER_NDX_GIVEN) {
4172				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4173				    == 0) {
4174					if (result->vsymp == NULL)
4175						result->vsymp = symp;
4176					result->vcount++;
4177				}
4178				return (false);
4179			}
4180		}
4181		result->sym_out = symp;
4182		return (true);
4183	}
4184	if (obj->versyms == NULL) {
4185		if (object_match_name(obj, req->ventry->name)) {
4186			_rtld_error("%s: object %s should provide version %s "
4187			    "for symbol %s", obj_rtld.path, obj->path,
4188			    req->ventry->name, obj->strtab + symnum);
4189			return (false);
4190		}
4191	} else {
4192		verndx = VER_NDX(obj->versyms[symnum]);
4193		if (verndx > obj->vernum) {
4194			_rtld_error("%s: symbol %s references wrong version %d",
4195			    obj->path, obj->strtab + symnum, verndx);
4196			return (false);
4197		}
4198		if (obj->vertab[verndx].hash != req->ventry->hash ||
4199		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4200			/*
4201			 * Version does not match. Look if this is a
4202			 * global symbol and if it is not hidden. If
4203			 * global symbol (verndx < 2) is available,
4204			 * use it. Do not return symbol if we are
4205			 * called by dlvsym, because dlvsym looks for
4206			 * a specific version and default one is not
4207			 * what dlvsym wants.
4208			 */
4209			if ((req->flags & SYMLOOK_DLSYM) ||
4210			    (verndx >= VER_NDX_GIVEN) ||
4211			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4212				return (false);
4213		}
4214	}
4215	result->sym_out = symp;
4216	return (true);
4217}
4218
4219/*
4220 * Search for symbol using SysV hash function.
4221 * obj->buckets is known not to be NULL at this point; the test for this was
4222 * performed with the obj->valid_hash_sysv assignment.
4223 */
4224static int
4225symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4226{
4227	unsigned long symnum;
4228	Sym_Match_Result matchres;
4229
4230	matchres.sym_out = NULL;
4231	matchres.vsymp = NULL;
4232	matchres.vcount = 0;
4233
4234	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4235	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4236		if (symnum >= obj->nchains)
4237			return (ESRCH);	/* Bad object */
4238
4239		if (matched_symbol(req, obj, &matchres, symnum)) {
4240			req->sym_out = matchres.sym_out;
4241			req->defobj_out = obj;
4242			return (0);
4243		}
4244	}
4245	if (matchres.vcount == 1) {
4246		req->sym_out = matchres.vsymp;
4247		req->defobj_out = obj;
4248		return (0);
4249	}
4250	return (ESRCH);
4251}
4252
4253/* Search for symbol using GNU hash function */
4254static int
4255symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4256{
4257	Elf_Addr bloom_word;
4258	const Elf32_Word *hashval;
4259	Elf32_Word bucket;
4260	Sym_Match_Result matchres;
4261	unsigned int h1, h2;
4262	unsigned long symnum;
4263
4264	matchres.sym_out = NULL;
4265	matchres.vsymp = NULL;
4266	matchres.vcount = 0;
4267
4268	/* Pick right bitmask word from Bloom filter array */
4269	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4270	    obj->maskwords_bm_gnu];
4271
4272	/* Calculate modulus word size of gnu hash and its derivative */
4273	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4274	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4275
4276	/* Filter out the "definitely not in set" queries */
4277	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4278		return (ESRCH);
4279
4280	/* Locate hash chain and corresponding value element*/
4281	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4282	if (bucket == 0)
4283		return (ESRCH);
4284	hashval = &obj->chain_zero_gnu[bucket];
4285	do {
4286		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4287			symnum = hashval - obj->chain_zero_gnu;
4288			if (matched_symbol(req, obj, &matchres, symnum)) {
4289				req->sym_out = matchres.sym_out;
4290				req->defobj_out = obj;
4291				return (0);
4292			}
4293		}
4294	} while ((*hashval++ & 1) == 0);
4295	if (matchres.vcount == 1) {
4296		req->sym_out = matchres.vsymp;
4297		req->defobj_out = obj;
4298		return (0);
4299	}
4300	return (ESRCH);
4301}
4302
4303static void
4304trace_loaded_objects(Obj_Entry *obj)
4305{
4306    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4307    int		c;
4308
4309    if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4310	main_local = "";
4311
4312    if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4313	fmt1 = "\t%o => %p (%x)\n";
4314
4315    if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4316	fmt2 = "\t%o (%x)\n";
4317
4318    list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4319
4320    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4321	Needed_Entry		*needed;
4322	char			*name, *path;
4323	bool			is_lib;
4324
4325	if (obj->marker)
4326	    continue;
4327	if (list_containers && obj->needed != NULL)
4328	    rtld_printf("%s:\n", obj->path);
4329	for (needed = obj->needed; needed; needed = needed->next) {
4330	    if (needed->obj != NULL) {
4331		if (needed->obj->traced && !list_containers)
4332		    continue;
4333		needed->obj->traced = true;
4334		path = needed->obj->path;
4335	    } else
4336		path = "not found";
4337
4338	    name = (char *)obj->strtab + needed->name;
4339	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4340
4341	    fmt = is_lib ? fmt1 : fmt2;
4342	    while ((c = *fmt++) != '\0') {
4343		switch (c) {
4344		default:
4345		    rtld_putchar(c);
4346		    continue;
4347		case '\\':
4348		    switch (c = *fmt) {
4349		    case '\0':
4350			continue;
4351		    case 'n':
4352			rtld_putchar('\n');
4353			break;
4354		    case 't':
4355			rtld_putchar('\t');
4356			break;
4357		    }
4358		    break;
4359		case '%':
4360		    switch (c = *fmt) {
4361		    case '\0':
4362			continue;
4363		    case '%':
4364		    default:
4365			rtld_putchar(c);
4366			break;
4367		    case 'A':
4368			rtld_putstr(main_local);
4369			break;
4370		    case 'a':
4371			rtld_putstr(obj_main->path);
4372			break;
4373		    case 'o':
4374			rtld_putstr(name);
4375			break;
4376#if 0
4377		    case 'm':
4378			rtld_printf("%d", sodp->sod_major);
4379			break;
4380		    case 'n':
4381			rtld_printf("%d", sodp->sod_minor);
4382			break;
4383#endif
4384		    case 'p':
4385			rtld_putstr(path);
4386			break;
4387		    case 'x':
4388			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4389			  0);
4390			break;
4391		    }
4392		    break;
4393		}
4394		++fmt;
4395	    }
4396	}
4397    }
4398}
4399
4400/*
4401 * Unload a dlopened object and its dependencies from memory and from
4402 * our data structures.  It is assumed that the DAG rooted in the
4403 * object has already been unreferenced, and that the object has a
4404 * reference count of 0.
4405 */
4406static void
4407unload_object(Obj_Entry *root)
4408{
4409	Obj_Entry *obj, *obj1;
4410
4411	assert(root->refcount == 0);
4412
4413	/*
4414	 * Pass over the DAG removing unreferenced objects from
4415	 * appropriate lists.
4416	 */
4417	unlink_object(root);
4418
4419	/* Unmap all objects that are no longer referenced. */
4420	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4421		if (obj->marker || obj->refcount != 0)
4422			continue;
4423		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4424		    obj->mapsize, 0, obj->path);
4425		dbg("unloading \"%s\"", obj->path);
4426		unload_filtees(root);
4427		munmap(obj->mapbase, obj->mapsize);
4428		linkmap_delete(obj);
4429		TAILQ_REMOVE(&obj_list, obj, next);
4430		obj_count--;
4431		obj_free(obj);
4432	}
4433}
4434
4435static void
4436unlink_object(Obj_Entry *root)
4437{
4438    Objlist_Entry *elm;
4439
4440    if (root->refcount == 0) {
4441	/* Remove the object from the RTLD_GLOBAL list. */
4442	objlist_remove(&list_global, root);
4443
4444    	/* Remove the object from all objects' DAG lists. */
4445    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4446	    objlist_remove(&elm->obj->dldags, root);
4447	    if (elm->obj != root)
4448		unlink_object(elm->obj);
4449	}
4450    }
4451}
4452
4453static void
4454ref_dag(Obj_Entry *root)
4455{
4456    Objlist_Entry *elm;
4457
4458    assert(root->dag_inited);
4459    STAILQ_FOREACH(elm, &root->dagmembers, link)
4460	elm->obj->refcount++;
4461}
4462
4463static void
4464unref_dag(Obj_Entry *root)
4465{
4466    Objlist_Entry *elm;
4467
4468    assert(root->dag_inited);
4469    STAILQ_FOREACH(elm, &root->dagmembers, link)
4470	elm->obj->refcount--;
4471}
4472
4473/*
4474 * Common code for MD __tls_get_addr().
4475 */
4476static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4477static void *
4478tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4479{
4480    Elf_Addr *newdtv, *dtv;
4481    RtldLockState lockstate;
4482    int to_copy;
4483
4484    dtv = *dtvp;
4485    /* Check dtv generation in case new modules have arrived */
4486    if (dtv[0] != tls_dtv_generation) {
4487	wlock_acquire(rtld_bind_lock, &lockstate);
4488	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4489	to_copy = dtv[1];
4490	if (to_copy > tls_max_index)
4491	    to_copy = tls_max_index;
4492	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4493	newdtv[0] = tls_dtv_generation;
4494	newdtv[1] = tls_max_index;
4495	free(dtv);
4496	lock_release(rtld_bind_lock, &lockstate);
4497	dtv = *dtvp = newdtv;
4498    }
4499
4500    /* Dynamically allocate module TLS if necessary */
4501    if (dtv[index + 1] == 0) {
4502	/* Signal safe, wlock will block out signals. */
4503	wlock_acquire(rtld_bind_lock, &lockstate);
4504	if (!dtv[index + 1])
4505	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4506	lock_release(rtld_bind_lock, &lockstate);
4507    }
4508    return ((void *)(dtv[index + 1] + offset));
4509}
4510
4511void *
4512tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4513{
4514	Elf_Addr *dtv;
4515
4516	dtv = *dtvp;
4517	/* Check dtv generation in case new modules have arrived */
4518	if (__predict_true(dtv[0] == tls_dtv_generation &&
4519	    dtv[index + 1] != 0))
4520		return ((void *)(dtv[index + 1] + offset));
4521	return (tls_get_addr_slow(dtvp, index, offset));
4522}
4523
4524#if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4525    defined(__powerpc__) || defined(__riscv__)
4526
4527/*
4528 * Allocate Static TLS using the Variant I method.
4529 */
4530void *
4531allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4532{
4533    Obj_Entry *obj;
4534    char *tcb;
4535    Elf_Addr **tls;
4536    Elf_Addr *dtv;
4537    Elf_Addr addr;
4538    int i;
4539
4540    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4541	return (oldtcb);
4542
4543    assert(tcbsize >= TLS_TCB_SIZE);
4544    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4545    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4546
4547    if (oldtcb != NULL) {
4548	memcpy(tls, oldtcb, tls_static_space);
4549	free(oldtcb);
4550
4551	/* Adjust the DTV. */
4552	dtv = tls[0];
4553	for (i = 0; i < dtv[1]; i++) {
4554	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4555		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4556		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4557	    }
4558	}
4559    } else {
4560	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4561	tls[0] = dtv;
4562	dtv[0] = tls_dtv_generation;
4563	dtv[1] = tls_max_index;
4564
4565	for (obj = globallist_curr(objs); obj != NULL;
4566	  obj = globallist_next(obj)) {
4567	    if (obj->tlsoffset > 0) {
4568		addr = (Elf_Addr)tls + obj->tlsoffset;
4569		if (obj->tlsinitsize > 0)
4570		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4571		if (obj->tlssize > obj->tlsinitsize)
4572		    memset((void*) (addr + obj->tlsinitsize), 0,
4573			   obj->tlssize - obj->tlsinitsize);
4574		dtv[obj->tlsindex + 1] = addr;
4575	    }
4576	}
4577    }
4578
4579    return (tcb);
4580}
4581
4582void
4583free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4584{
4585    Elf_Addr *dtv;
4586    Elf_Addr tlsstart, tlsend;
4587    int dtvsize, i;
4588
4589    assert(tcbsize >= TLS_TCB_SIZE);
4590
4591    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4592    tlsend = tlsstart + tls_static_space;
4593
4594    dtv = *(Elf_Addr **)tlsstart;
4595    dtvsize = dtv[1];
4596    for (i = 0; i < dtvsize; i++) {
4597	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4598	    free((void*)dtv[i+2]);
4599	}
4600    }
4601    free(dtv);
4602    free(tcb);
4603}
4604
4605#endif
4606
4607#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4608
4609/*
4610 * Allocate Static TLS using the Variant II method.
4611 */
4612void *
4613allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4614{
4615    Obj_Entry *obj;
4616    size_t size, ralign;
4617    char *tls;
4618    Elf_Addr *dtv, *olddtv;
4619    Elf_Addr segbase, oldsegbase, addr;
4620    int i;
4621
4622    ralign = tcbalign;
4623    if (tls_static_max_align > ralign)
4624	    ralign = tls_static_max_align;
4625    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4626
4627    assert(tcbsize >= 2*sizeof(Elf_Addr));
4628    tls = malloc_aligned(size, ralign);
4629    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4630
4631    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4632    ((Elf_Addr*)segbase)[0] = segbase;
4633    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4634
4635    dtv[0] = tls_dtv_generation;
4636    dtv[1] = tls_max_index;
4637
4638    if (oldtls) {
4639	/*
4640	 * Copy the static TLS block over whole.
4641	 */
4642	oldsegbase = (Elf_Addr) oldtls;
4643	memcpy((void *)(segbase - tls_static_space),
4644	       (const void *)(oldsegbase - tls_static_space),
4645	       tls_static_space);
4646
4647	/*
4648	 * If any dynamic TLS blocks have been created tls_get_addr(),
4649	 * move them over.
4650	 */
4651	olddtv = ((Elf_Addr**)oldsegbase)[1];
4652	for (i = 0; i < olddtv[1]; i++) {
4653	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4654		dtv[i+2] = olddtv[i+2];
4655		olddtv[i+2] = 0;
4656	    }
4657	}
4658
4659	/*
4660	 * We assume that this block was the one we created with
4661	 * allocate_initial_tls().
4662	 */
4663	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4664    } else {
4665	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4666		if (obj->marker || obj->tlsoffset == 0)
4667			continue;
4668		addr = segbase - obj->tlsoffset;
4669		memset((void*) (addr + obj->tlsinitsize),
4670		       0, obj->tlssize - obj->tlsinitsize);
4671		if (obj->tlsinit)
4672		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4673		dtv[obj->tlsindex + 1] = addr;
4674	}
4675    }
4676
4677    return (void*) segbase;
4678}
4679
4680void
4681free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4682{
4683    Elf_Addr* dtv;
4684    size_t size, ralign;
4685    int dtvsize, i;
4686    Elf_Addr tlsstart, tlsend;
4687
4688    /*
4689     * Figure out the size of the initial TLS block so that we can
4690     * find stuff which ___tls_get_addr() allocated dynamically.
4691     */
4692    ralign = tcbalign;
4693    if (tls_static_max_align > ralign)
4694	    ralign = tls_static_max_align;
4695    size = round(tls_static_space, ralign);
4696
4697    dtv = ((Elf_Addr**)tls)[1];
4698    dtvsize = dtv[1];
4699    tlsend = (Elf_Addr) tls;
4700    tlsstart = tlsend - size;
4701    for (i = 0; i < dtvsize; i++) {
4702	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4703		free_aligned((void *)dtv[i + 2]);
4704	}
4705    }
4706
4707    free_aligned((void *)tlsstart);
4708    free((void*) dtv);
4709}
4710
4711#endif
4712
4713/*
4714 * Allocate TLS block for module with given index.
4715 */
4716void *
4717allocate_module_tls(int index)
4718{
4719    Obj_Entry* obj;
4720    char* p;
4721
4722    TAILQ_FOREACH(obj, &obj_list, next) {
4723	if (obj->marker)
4724	    continue;
4725	if (obj->tlsindex == index)
4726	    break;
4727    }
4728    if (!obj) {
4729	_rtld_error("Can't find module with TLS index %d", index);
4730	rtld_die();
4731    }
4732
4733    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4734    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4735    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4736
4737    return p;
4738}
4739
4740bool
4741allocate_tls_offset(Obj_Entry *obj)
4742{
4743    size_t off;
4744
4745    if (obj->tls_done)
4746	return true;
4747
4748    if (obj->tlssize == 0) {
4749	obj->tls_done = true;
4750	return true;
4751    }
4752
4753    if (tls_last_offset == 0)
4754	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4755    else
4756	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4757				   obj->tlssize, obj->tlsalign);
4758
4759    /*
4760     * If we have already fixed the size of the static TLS block, we
4761     * must stay within that size. When allocating the static TLS, we
4762     * leave a small amount of space spare to be used for dynamically
4763     * loading modules which use static TLS.
4764     */
4765    if (tls_static_space != 0) {
4766	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4767	    return false;
4768    } else if (obj->tlsalign > tls_static_max_align) {
4769	    tls_static_max_align = obj->tlsalign;
4770    }
4771
4772    tls_last_offset = obj->tlsoffset = off;
4773    tls_last_size = obj->tlssize;
4774    obj->tls_done = true;
4775
4776    return true;
4777}
4778
4779void
4780free_tls_offset(Obj_Entry *obj)
4781{
4782
4783    /*
4784     * If we were the last thing to allocate out of the static TLS
4785     * block, we give our space back to the 'allocator'. This is a
4786     * simplistic workaround to allow libGL.so.1 to be loaded and
4787     * unloaded multiple times.
4788     */
4789    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4790	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4791	tls_last_offset -= obj->tlssize;
4792	tls_last_size = 0;
4793    }
4794}
4795
4796void *
4797_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4798{
4799    void *ret;
4800    RtldLockState lockstate;
4801
4802    wlock_acquire(rtld_bind_lock, &lockstate);
4803    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4804      tcbsize, tcbalign);
4805    lock_release(rtld_bind_lock, &lockstate);
4806    return (ret);
4807}
4808
4809void
4810_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4811{
4812    RtldLockState lockstate;
4813
4814    wlock_acquire(rtld_bind_lock, &lockstate);
4815    free_tls(tcb, tcbsize, tcbalign);
4816    lock_release(rtld_bind_lock, &lockstate);
4817}
4818
4819static void
4820object_add_name(Obj_Entry *obj, const char *name)
4821{
4822    Name_Entry *entry;
4823    size_t len;
4824
4825    len = strlen(name);
4826    entry = malloc(sizeof(Name_Entry) + len);
4827
4828    if (entry != NULL) {
4829	strcpy(entry->name, name);
4830	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4831    }
4832}
4833
4834static int
4835object_match_name(const Obj_Entry *obj, const char *name)
4836{
4837    Name_Entry *entry;
4838
4839    STAILQ_FOREACH(entry, &obj->names, link) {
4840	if (strcmp(name, entry->name) == 0)
4841	    return (1);
4842    }
4843    return (0);
4844}
4845
4846static Obj_Entry *
4847locate_dependency(const Obj_Entry *obj, const char *name)
4848{
4849    const Objlist_Entry *entry;
4850    const Needed_Entry *needed;
4851
4852    STAILQ_FOREACH(entry, &list_main, link) {
4853	if (object_match_name(entry->obj, name))
4854	    return entry->obj;
4855    }
4856
4857    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4858	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4859	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4860	    /*
4861	     * If there is DT_NEEDED for the name we are looking for,
4862	     * we are all set.  Note that object might not be found if
4863	     * dependency was not loaded yet, so the function can
4864	     * return NULL here.  This is expected and handled
4865	     * properly by the caller.
4866	     */
4867	    return (needed->obj);
4868	}
4869    }
4870    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4871	obj->path, name);
4872    rtld_die();
4873}
4874
4875static int
4876check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4877    const Elf_Vernaux *vna)
4878{
4879    const Elf_Verdef *vd;
4880    const char *vername;
4881
4882    vername = refobj->strtab + vna->vna_name;
4883    vd = depobj->verdef;
4884    if (vd == NULL) {
4885	_rtld_error("%s: version %s required by %s not defined",
4886	    depobj->path, vername, refobj->path);
4887	return (-1);
4888    }
4889    for (;;) {
4890	if (vd->vd_version != VER_DEF_CURRENT) {
4891	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4892		depobj->path, vd->vd_version);
4893	    return (-1);
4894	}
4895	if (vna->vna_hash == vd->vd_hash) {
4896	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4897		((char *)vd + vd->vd_aux);
4898	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4899		return (0);
4900	}
4901	if (vd->vd_next == 0)
4902	    break;
4903	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4904    }
4905    if (vna->vna_flags & VER_FLG_WEAK)
4906	return (0);
4907    _rtld_error("%s: version %s required by %s not found",
4908	depobj->path, vername, refobj->path);
4909    return (-1);
4910}
4911
4912static int
4913rtld_verify_object_versions(Obj_Entry *obj)
4914{
4915    const Elf_Verneed *vn;
4916    const Elf_Verdef  *vd;
4917    const Elf_Verdaux *vda;
4918    const Elf_Vernaux *vna;
4919    const Obj_Entry *depobj;
4920    int maxvernum, vernum;
4921
4922    if (obj->ver_checked)
4923	return (0);
4924    obj->ver_checked = true;
4925
4926    maxvernum = 0;
4927    /*
4928     * Walk over defined and required version records and figure out
4929     * max index used by any of them. Do very basic sanity checking
4930     * while there.
4931     */
4932    vn = obj->verneed;
4933    while (vn != NULL) {
4934	if (vn->vn_version != VER_NEED_CURRENT) {
4935	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4936		obj->path, vn->vn_version);
4937	    return (-1);
4938	}
4939	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4940	for (;;) {
4941	    vernum = VER_NEED_IDX(vna->vna_other);
4942	    if (vernum > maxvernum)
4943		maxvernum = vernum;
4944	    if (vna->vna_next == 0)
4945		 break;
4946	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4947	}
4948	if (vn->vn_next == 0)
4949	    break;
4950	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4951    }
4952
4953    vd = obj->verdef;
4954    while (vd != NULL) {
4955	if (vd->vd_version != VER_DEF_CURRENT) {
4956	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4957		obj->path, vd->vd_version);
4958	    return (-1);
4959	}
4960	vernum = VER_DEF_IDX(vd->vd_ndx);
4961	if (vernum > maxvernum)
4962		maxvernum = vernum;
4963	if (vd->vd_next == 0)
4964	    break;
4965	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4966    }
4967
4968    if (maxvernum == 0)
4969	return (0);
4970
4971    /*
4972     * Store version information in array indexable by version index.
4973     * Verify that object version requirements are satisfied along the
4974     * way.
4975     */
4976    obj->vernum = maxvernum + 1;
4977    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4978
4979    vd = obj->verdef;
4980    while (vd != NULL) {
4981	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4982	    vernum = VER_DEF_IDX(vd->vd_ndx);
4983	    assert(vernum <= maxvernum);
4984	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4985	    obj->vertab[vernum].hash = vd->vd_hash;
4986	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4987	    obj->vertab[vernum].file = NULL;
4988	    obj->vertab[vernum].flags = 0;
4989	}
4990	if (vd->vd_next == 0)
4991	    break;
4992	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4993    }
4994
4995    vn = obj->verneed;
4996    while (vn != NULL) {
4997	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4998	if (depobj == NULL)
4999	    return (-1);
5000	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5001	for (;;) {
5002	    if (check_object_provided_version(obj, depobj, vna))
5003		return (-1);
5004	    vernum = VER_NEED_IDX(vna->vna_other);
5005	    assert(vernum <= maxvernum);
5006	    obj->vertab[vernum].hash = vna->vna_hash;
5007	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5008	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5009	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5010		VER_INFO_HIDDEN : 0;
5011	    if (vna->vna_next == 0)
5012		 break;
5013	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5014	}
5015	if (vn->vn_next == 0)
5016	    break;
5017	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5018    }
5019    return 0;
5020}
5021
5022static int
5023rtld_verify_versions(const Objlist *objlist)
5024{
5025    Objlist_Entry *entry;
5026    int rc;
5027
5028    rc = 0;
5029    STAILQ_FOREACH(entry, objlist, link) {
5030	/*
5031	 * Skip dummy objects or objects that have their version requirements
5032	 * already checked.
5033	 */
5034	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5035	    continue;
5036	if (rtld_verify_object_versions(entry->obj) == -1) {
5037	    rc = -1;
5038	    if (ld_tracing == NULL)
5039		break;
5040	}
5041    }
5042    if (rc == 0 || ld_tracing != NULL)
5043    	rc = rtld_verify_object_versions(&obj_rtld);
5044    return rc;
5045}
5046
5047const Ver_Entry *
5048fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5049{
5050    Elf_Versym vernum;
5051
5052    if (obj->vertab) {
5053	vernum = VER_NDX(obj->versyms[symnum]);
5054	if (vernum >= obj->vernum) {
5055	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5056		obj->path, obj->strtab + symnum, vernum);
5057	} else if (obj->vertab[vernum].hash != 0) {
5058	    return &obj->vertab[vernum];
5059	}
5060    }
5061    return NULL;
5062}
5063
5064int
5065_rtld_get_stack_prot(void)
5066{
5067
5068	return (stack_prot);
5069}
5070
5071int
5072_rtld_is_dlopened(void *arg)
5073{
5074	Obj_Entry *obj;
5075	RtldLockState lockstate;
5076	int res;
5077
5078	rlock_acquire(rtld_bind_lock, &lockstate);
5079	obj = dlcheck(arg);
5080	if (obj == NULL)
5081		obj = obj_from_addr(arg);
5082	if (obj == NULL) {
5083		_rtld_error("No shared object contains address");
5084		lock_release(rtld_bind_lock, &lockstate);
5085		return (-1);
5086	}
5087	res = obj->dlopened ? 1 : 0;
5088	lock_release(rtld_bind_lock, &lockstate);
5089	return (res);
5090}
5091
5092static void
5093map_stacks_exec(RtldLockState *lockstate)
5094{
5095	void (*thr_map_stacks_exec)(void);
5096
5097	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5098		return;
5099	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5100	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5101	if (thr_map_stacks_exec != NULL) {
5102		stack_prot |= PROT_EXEC;
5103		thr_map_stacks_exec();
5104	}
5105}
5106
5107void
5108symlook_init(SymLook *dst, const char *name)
5109{
5110
5111	bzero(dst, sizeof(*dst));
5112	dst->name = name;
5113	dst->hash = elf_hash(name);
5114	dst->hash_gnu = gnu_hash(name);
5115}
5116
5117static void
5118symlook_init_from_req(SymLook *dst, const SymLook *src)
5119{
5120
5121	dst->name = src->name;
5122	dst->hash = src->hash;
5123	dst->hash_gnu = src->hash_gnu;
5124	dst->ventry = src->ventry;
5125	dst->flags = src->flags;
5126	dst->defobj_out = NULL;
5127	dst->sym_out = NULL;
5128	dst->lockstate = src->lockstate;
5129}
5130
5131
5132/*
5133 * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5134 */
5135static int
5136parse_libdir(const char *str)
5137{
5138	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5139	const char *orig;
5140	int fd;
5141	char c;
5142
5143	orig = str;
5144	fd = 0;
5145	for (c = *str; c != '\0'; c = *++str) {
5146		if (c < '0' || c > '9')
5147			return (-1);
5148
5149		fd *= RADIX;
5150		fd += c - '0';
5151	}
5152
5153	/* Make sure we actually parsed something. */
5154	if (str == orig) {
5155		_rtld_error("failed to parse directory FD from '%s'", str);
5156		return (-1);
5157	}
5158	return (fd);
5159}
5160
5161/*
5162 * Overrides for libc_pic-provided functions.
5163 */
5164
5165int
5166__getosreldate(void)
5167{
5168	size_t len;
5169	int oid[2];
5170	int error, osrel;
5171
5172	if (osreldate != 0)
5173		return (osreldate);
5174
5175	oid[0] = CTL_KERN;
5176	oid[1] = KERN_OSRELDATE;
5177	osrel = 0;
5178	len = sizeof(osrel);
5179	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5180	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5181		osreldate = osrel;
5182	return (osreldate);
5183}
5184
5185void
5186exit(int status)
5187{
5188
5189	_exit(status);
5190}
5191
5192void (*__cleanup)(void);
5193int __isthreaded = 0;
5194int _thread_autoinit_dummy_decl = 1;
5195
5196/*
5197 * No unresolved symbols for rtld.
5198 */
5199void
5200__pthread_cxa_finalize(struct dl_phdr_info *a)
5201{
5202}
5203
5204void
5205__stack_chk_fail(void)
5206{
5207
5208	_rtld_error("stack overflow detected; terminated");
5209	rtld_die();
5210}
5211__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5212
5213void
5214__chk_fail(void)
5215{
5216
5217	_rtld_error("buffer overflow detected; terminated");
5218	rtld_die();
5219}
5220
5221const char *
5222rtld_strerror(int errnum)
5223{
5224
5225	if (errnum < 0 || errnum >= sys_nerr)
5226		return ("Unknown error");
5227	return (sys_errlist[errnum]);
5228}
5229