vm_reserv.c revision 331017
1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/11/sys/vm/vm_reserv.c 331017 2018-03-15 19:08:33Z kevans $");
41
42#include "opt_vm.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mutex.h>
49#include <sys/queue.h>
50#include <sys/rwlock.h>
51#include <sys/sbuf.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/vmmeter.h>
55
56#include <vm/vm.h>
57#include <vm/vm_param.h>
58#include <vm/vm_object.h>
59#include <vm/vm_page.h>
60#include <vm/vm_phys.h>
61#include <vm/vm_radix.h>
62#include <vm/vm_reserv.h>
63
64/*
65 * The reservation system supports the speculative allocation of large physical
66 * pages ("superpages").  Speculative allocation enables the fully automatic
67 * utilization of superpages by the virtual memory system.  In other words, no
68 * programmatic directives are required to use superpages.
69 */
70
71#if VM_NRESERVLEVEL > 0
72
73/*
74 * The number of small pages that are contained in a level 0 reservation
75 */
76#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
77
78/*
79 * The number of bits by which a physical address is shifted to obtain the
80 * reservation number
81 */
82#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
83
84/*
85 * The size of a level 0 reservation in bytes
86 */
87#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
88
89/*
90 * Computes the index of the small page underlying the given (object, pindex)
91 * within the reservation's array of small pages.
92 */
93#define	VM_RESERV_INDEX(object, pindex)	\
94    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
95
96/*
97 * The size of a population map entry
98 */
99typedef	u_long		popmap_t;
100
101/*
102 * The number of bits in a population map entry
103 */
104#define	NBPOPMAP	(NBBY * sizeof(popmap_t))
105
106/*
107 * The number of population map entries in a reservation
108 */
109#define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
110
111/*
112 * Clear a bit in the population map.
113 */
114static __inline void
115popmap_clear(popmap_t popmap[], int i)
116{
117
118	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
119}
120
121/*
122 * Set a bit in the population map.
123 */
124static __inline void
125popmap_set(popmap_t popmap[], int i)
126{
127
128	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
129}
130
131/*
132 * Is a bit in the population map clear?
133 */
134static __inline boolean_t
135popmap_is_clear(popmap_t popmap[], int i)
136{
137
138	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
139}
140
141/*
142 * Is a bit in the population map set?
143 */
144static __inline boolean_t
145popmap_is_set(popmap_t popmap[], int i)
146{
147
148	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
149}
150
151/*
152 * The reservation structure
153 *
154 * A reservation structure is constructed whenever a large physical page is
155 * speculatively allocated to an object.  The reservation provides the small
156 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
157 * within that object.  The reservation's "popcnt" tracks the number of these
158 * small physical pages that are in use at any given time.  When and if the
159 * reservation is not fully utilized, it appears in the queue of partially
160 * populated reservations.  The reservation always appears on the containing
161 * object's list of reservations.
162 *
163 * A partially populated reservation can be broken and reclaimed at any time.
164 */
165struct vm_reserv {
166	TAILQ_ENTRY(vm_reserv) partpopq;
167	LIST_ENTRY(vm_reserv) objq;
168	vm_object_t	object;			/* containing object */
169	vm_pindex_t	pindex;			/* offset within object */
170	vm_page_t	pages;			/* first page of a superpage */
171	int		popcnt;			/* # of pages in use */
172	char		inpartpopq;
173	popmap_t	popmap[NPOPMAP];	/* bit vector of used pages */
174};
175
176/*
177 * The reservation array
178 *
179 * This array is analoguous in function to vm_page_array.  It differs in the
180 * respect that it may contain a greater number of useful reservation
181 * structures than there are (physical) superpages.  These "invalid"
182 * reservation structures exist to trade-off space for time in the
183 * implementation of vm_reserv_from_page().  Invalid reservation structures are
184 * distinguishable from "valid" reservation structures by inspecting the
185 * reservation's "pages" field.  Invalid reservation structures have a NULL
186 * "pages" field.
187 *
188 * vm_reserv_from_page() maps a small (physical) page to an element of this
189 * array by computing a physical reservation number from the page's physical
190 * address.  The physical reservation number is used as the array index.
191 *
192 * An "active" reservation is a valid reservation structure that has a non-NULL
193 * "object" field and a non-zero "popcnt" field.  In other words, every active
194 * reservation belongs to a particular object.  Moreover, every active
195 * reservation has an entry in the containing object's list of reservations.
196 */
197static vm_reserv_t vm_reserv_array;
198
199/*
200 * The partially populated reservation queue
201 *
202 * This queue enables the fast recovery of an unused free small page from a
203 * partially populated reservation.  The reservation at the head of this queue
204 * is the least recently changed, partially populated reservation.
205 *
206 * Access to this queue is synchronized by the free page queue lock.
207 */
208static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
209			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
210
211static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
212
213static long vm_reserv_broken;
214SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
215    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
216
217static long vm_reserv_freed;
218SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
219    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
220
221static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
222
223SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
224    sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
225
226static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
227
228SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
229    sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
230
231static long vm_reserv_reclaimed;
232SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
233    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
234
235static void		vm_reserv_break(vm_reserv_t rv);
236static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
237static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
238static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
239			    vm_pindex_t pindex);
240static void		vm_reserv_populate(vm_reserv_t rv, int index);
241static void		vm_reserv_reclaim(vm_reserv_t rv);
242
243/*
244 * Returns the current number of full reservations.
245 *
246 * Since the number of full reservations is computed without acquiring the
247 * free page queue lock, the returned value may be inexact.
248 */
249static int
250sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
251{
252	vm_paddr_t paddr;
253	struct vm_phys_seg *seg;
254	vm_reserv_t rv;
255	int fullpop, segind;
256
257	fullpop = 0;
258	for (segind = 0; segind < vm_phys_nsegs; segind++) {
259		seg = &vm_phys_segs[segind];
260		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
261		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
262			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
263			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
264			paddr += VM_LEVEL_0_SIZE;
265		}
266	}
267	return (sysctl_handle_int(oidp, &fullpop, 0, req));
268}
269
270/*
271 * Describes the current state of the partially populated reservation queue.
272 */
273static int
274sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
275{
276	struct sbuf sbuf;
277	vm_reserv_t rv;
278	int counter, error, level, unused_pages;
279
280	error = sysctl_wire_old_buffer(req, 0);
281	if (error != 0)
282		return (error);
283	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
284	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
285	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
286		counter = 0;
287		unused_pages = 0;
288		mtx_lock(&vm_page_queue_free_mtx);
289		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
290			counter++;
291			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
292		}
293		mtx_unlock(&vm_page_queue_free_mtx);
294		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
295		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
296	}
297	error = sbuf_finish(&sbuf);
298	sbuf_delete(&sbuf);
299	return (error);
300}
301
302/*
303 * Reduces the given reservation's population count.  If the population count
304 * becomes zero, the reservation is destroyed.  Additionally, moves the
305 * reservation to the tail of the partially populated reservation queue if the
306 * population count is non-zero.
307 *
308 * The free page queue lock must be held.
309 */
310static void
311vm_reserv_depopulate(vm_reserv_t rv, int index)
312{
313
314	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
315	KASSERT(rv->object != NULL,
316	    ("vm_reserv_depopulate: reserv %p is free", rv));
317	KASSERT(popmap_is_set(rv->popmap, index),
318	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
319	    index));
320	KASSERT(rv->popcnt > 0,
321	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
322	if (rv->inpartpopq) {
323		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
324		rv->inpartpopq = FALSE;
325	} else {
326		KASSERT(rv->pages->psind == 1,
327		    ("vm_reserv_depopulate: reserv %p is already demoted",
328		    rv));
329		rv->pages->psind = 0;
330	}
331	popmap_clear(rv->popmap, index);
332	rv->popcnt--;
333	if (rv->popcnt == 0) {
334		LIST_REMOVE(rv, objq);
335		rv->object = NULL;
336		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
337		vm_reserv_freed++;
338	} else {
339		rv->inpartpopq = TRUE;
340		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
341	}
342}
343
344/*
345 * Returns the reservation to which the given page might belong.
346 */
347static __inline vm_reserv_t
348vm_reserv_from_page(vm_page_t m)
349{
350
351	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
352}
353
354/*
355 * Returns TRUE if the given reservation contains the given page index and
356 * FALSE otherwise.
357 */
358static __inline boolean_t
359vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
360{
361
362	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
363}
364
365/*
366 * Increases the given reservation's population count.  Moves the reservation
367 * to the tail of the partially populated reservation queue.
368 *
369 * The free page queue must be locked.
370 */
371static void
372vm_reserv_populate(vm_reserv_t rv, int index)
373{
374
375	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
376	KASSERT(rv->object != NULL,
377	    ("vm_reserv_populate: reserv %p is free", rv));
378	KASSERT(popmap_is_clear(rv->popmap, index),
379	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
380	    index));
381	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
382	    ("vm_reserv_populate: reserv %p is already full", rv));
383	KASSERT(rv->pages->psind == 0,
384	    ("vm_reserv_populate: reserv %p is already promoted", rv));
385	if (rv->inpartpopq) {
386		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
387		rv->inpartpopq = FALSE;
388	}
389	popmap_set(rv->popmap, index);
390	rv->popcnt++;
391	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
392		rv->inpartpopq = TRUE;
393		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
394	} else
395		rv->pages->psind = 1;
396}
397
398/*
399 * Allocates a contiguous set of physical pages of the given size "npages"
400 * from existing or newly created reservations.  All of the physical pages
401 * must be at or above the given physical address "low" and below the given
402 * physical address "high".  The given value "alignment" determines the
403 * alignment of the first physical page in the set.  If the given value
404 * "boundary" is non-zero, then the set of physical pages cannot cross any
405 * physical address boundary that is a multiple of that value.  Both
406 * "alignment" and "boundary" must be a power of two.
407 *
408 * The page "mpred" must immediately precede the offset "pindex" within the
409 * specified object.
410 *
411 * The object and free page queue must be locked.
412 */
413vm_page_t
414vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
415    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
416    vm_page_t mpred)
417{
418	vm_paddr_t pa, size;
419	vm_page_t m, m_ret, msucc;
420	vm_pindex_t first, leftcap, rightcap;
421	vm_reserv_t rv;
422	u_long allocpages, maxpages, minpages;
423	int i, index, n;
424
425	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
426	VM_OBJECT_ASSERT_WLOCKED(object);
427	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
428
429	/*
430	 * Is a reservation fundamentally impossible?
431	 */
432	if (pindex < VM_RESERV_INDEX(object, pindex) ||
433	    pindex + npages > object->size)
434		return (NULL);
435
436	/*
437	 * All reservations of a particular size have the same alignment.
438	 * Assuming that the first page is allocated from a reservation, the
439	 * least significant bits of its physical address can be determined
440	 * from its offset from the beginning of the reservation and the size
441	 * of the reservation.
442	 *
443	 * Could the specified index within a reservation of the smallest
444	 * possible size satisfy the alignment and boundary requirements?
445	 */
446	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
447	if ((pa & (alignment - 1)) != 0)
448		return (NULL);
449	size = npages << PAGE_SHIFT;
450	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
451		return (NULL);
452
453	/*
454	 * Look for an existing reservation.
455	 */
456	if (mpred != NULL) {
457		KASSERT(mpred->object == object,
458		    ("vm_reserv_alloc_contig: object doesn't contain mpred"));
459		KASSERT(mpred->pindex < pindex,
460		    ("vm_reserv_alloc_contig: mpred doesn't precede pindex"));
461		rv = vm_reserv_from_page(mpred);
462		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
463			goto found;
464		msucc = TAILQ_NEXT(mpred, listq);
465	} else
466		msucc = TAILQ_FIRST(&object->memq);
467	if (msucc != NULL) {
468		KASSERT(msucc->pindex > pindex,
469		    ("vm_reserv_alloc_contig: msucc doesn't succeed pindex"));
470		rv = vm_reserv_from_page(msucc);
471		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
472			goto found;
473	}
474
475	/*
476	 * Could at least one reservation fit between the first index to the
477	 * left that can be used ("leftcap") and the first index to the right
478	 * that cannot be used ("rightcap")?
479	 */
480	first = pindex - VM_RESERV_INDEX(object, pindex);
481	if (mpred != NULL) {
482		if ((rv = vm_reserv_from_page(mpred))->object != object)
483			leftcap = mpred->pindex + 1;
484		else
485			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
486		if (leftcap > first)
487			return (NULL);
488	}
489	minpages = VM_RESERV_INDEX(object, pindex) + npages;
490	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
491	allocpages = maxpages;
492	if (msucc != NULL) {
493		if ((rv = vm_reserv_from_page(msucc))->object != object)
494			rightcap = msucc->pindex;
495		else
496			rightcap = rv->pindex;
497		if (first + maxpages > rightcap) {
498			if (maxpages == VM_LEVEL_0_NPAGES)
499				return (NULL);
500
501			/*
502			 * At least one reservation will fit between "leftcap"
503			 * and "rightcap".  However, a reservation for the
504			 * last of the requested pages will not fit.  Reduce
505			 * the size of the upcoming allocation accordingly.
506			 */
507			allocpages = minpages;
508		}
509	}
510
511	/*
512	 * Would the last new reservation extend past the end of the object?
513	 */
514	if (first + maxpages > object->size) {
515		/*
516		 * Don't allocate the last new reservation if the object is a
517		 * vnode or backed by another object that is a vnode.
518		 */
519		if (object->type == OBJT_VNODE ||
520		    (object->backing_object != NULL &&
521		    object->backing_object->type == OBJT_VNODE)) {
522			if (maxpages == VM_LEVEL_0_NPAGES)
523				return (NULL);
524			allocpages = minpages;
525		}
526		/* Speculate that the object may grow. */
527	}
528
529	/*
530	 * Allocate the physical pages.  The alignment and boundary specified
531	 * for this allocation may be different from the alignment and
532	 * boundary specified for the requested pages.  For instance, the
533	 * specified index may not be the first page within the first new
534	 * reservation.
535	 */
536	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
537	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
538	if (m == NULL)
539		return (NULL);
540
541	/*
542	 * The allocated physical pages always begin at a reservation
543	 * boundary, but they do not always end at a reservation boundary.
544	 * Initialize every reservation that is completely covered by the
545	 * allocated physical pages.
546	 */
547	m_ret = NULL;
548	index = VM_RESERV_INDEX(object, pindex);
549	do {
550		rv = vm_reserv_from_page(m);
551		KASSERT(rv->pages == m,
552		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
553		    rv));
554		KASSERT(rv->object == NULL,
555		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
556		LIST_INSERT_HEAD(&object->rvq, rv, objq);
557		rv->object = object;
558		rv->pindex = first;
559		KASSERT(rv->popcnt == 0,
560		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
561		    rv));
562		KASSERT(!rv->inpartpopq,
563		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
564		    rv));
565		for (i = 0; i < NPOPMAP; i++)
566			KASSERT(rv->popmap[i] == 0,
567		    ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted",
568			    rv));
569		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
570		for (i = 0; i < n; i++)
571			vm_reserv_populate(rv, index + i);
572		npages -= n;
573		if (m_ret == NULL) {
574			m_ret = &rv->pages[index];
575			index = 0;
576		}
577		m += VM_LEVEL_0_NPAGES;
578		first += VM_LEVEL_0_NPAGES;
579		allocpages -= VM_LEVEL_0_NPAGES;
580	} while (allocpages >= VM_LEVEL_0_NPAGES);
581	return (m_ret);
582
583	/*
584	 * Found a matching reservation.
585	 */
586found:
587	index = VM_RESERV_INDEX(object, pindex);
588	/* Does the allocation fit within the reservation? */
589	if (index + npages > VM_LEVEL_0_NPAGES)
590		return (NULL);
591	m = &rv->pages[index];
592	pa = VM_PAGE_TO_PHYS(m);
593	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
594	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
595		return (NULL);
596	/* Handle vm_page_rename(m, new_object, ...). */
597	for (i = 0; i < npages; i++)
598		if (popmap_is_set(rv->popmap, index + i))
599			return (NULL);
600	for (i = 0; i < npages; i++)
601		vm_reserv_populate(rv, index + i);
602	return (m);
603}
604
605/*
606 * Allocates a page from an existing or newly created reservation.
607 *
608 * The page "mpred" must immediately precede the offset "pindex" within the
609 * specified object.
610 *
611 * The object and free page queue must be locked.
612 */
613vm_page_t
614vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
615{
616	vm_page_t m, msucc;
617	vm_pindex_t first, leftcap, rightcap;
618	vm_reserv_t rv;
619	int i, index;
620
621	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
622	VM_OBJECT_ASSERT_WLOCKED(object);
623
624	/*
625	 * Is a reservation fundamentally impossible?
626	 */
627	if (pindex < VM_RESERV_INDEX(object, pindex) ||
628	    pindex >= object->size)
629		return (NULL);
630
631	/*
632	 * Look for an existing reservation.
633	 */
634	if (mpred != NULL) {
635		KASSERT(mpred->object == object,
636		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
637		KASSERT(mpred->pindex < pindex,
638		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
639		rv = vm_reserv_from_page(mpred);
640		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
641			goto found;
642		msucc = TAILQ_NEXT(mpred, listq);
643	} else
644		msucc = TAILQ_FIRST(&object->memq);
645	if (msucc != NULL) {
646		KASSERT(msucc->pindex > pindex,
647		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
648		rv = vm_reserv_from_page(msucc);
649		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
650			goto found;
651	}
652
653	/*
654	 * Could a reservation fit between the first index to the left that
655	 * can be used and the first index to the right that cannot be used?
656	 */
657	first = pindex - VM_RESERV_INDEX(object, pindex);
658	if (mpred != NULL) {
659		if ((rv = vm_reserv_from_page(mpred))->object != object)
660			leftcap = mpred->pindex + 1;
661		else
662			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
663		if (leftcap > first)
664			return (NULL);
665	}
666	if (msucc != NULL) {
667		if ((rv = vm_reserv_from_page(msucc))->object != object)
668			rightcap = msucc->pindex;
669		else
670			rightcap = rv->pindex;
671		if (first + VM_LEVEL_0_NPAGES > rightcap)
672			return (NULL);
673	}
674
675	/*
676	 * Would a new reservation extend past the end of the object?
677	 */
678	if (first + VM_LEVEL_0_NPAGES > object->size) {
679		/*
680		 * Don't allocate a new reservation if the object is a vnode or
681		 * backed by another object that is a vnode.
682		 */
683		if (object->type == OBJT_VNODE ||
684		    (object->backing_object != NULL &&
685		    object->backing_object->type == OBJT_VNODE))
686			return (NULL);
687		/* Speculate that the object may grow. */
688	}
689
690	/*
691	 * Allocate and populate the new reservation.
692	 */
693	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
694	if (m == NULL)
695		return (NULL);
696	rv = vm_reserv_from_page(m);
697	KASSERT(rv->pages == m,
698	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
699	KASSERT(rv->object == NULL,
700	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
701	LIST_INSERT_HEAD(&object->rvq, rv, objq);
702	rv->object = object;
703	rv->pindex = first;
704	KASSERT(rv->popcnt == 0,
705	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
706	KASSERT(!rv->inpartpopq,
707	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
708	for (i = 0; i < NPOPMAP; i++)
709		KASSERT(rv->popmap[i] == 0,
710		    ("vm_reserv_alloc_page: reserv %p's popmap is corrupted",
711		    rv));
712	index = VM_RESERV_INDEX(object, pindex);
713	vm_reserv_populate(rv, index);
714	return (&rv->pages[index]);
715
716	/*
717	 * Found a matching reservation.
718	 */
719found:
720	index = VM_RESERV_INDEX(object, pindex);
721	m = &rv->pages[index];
722	/* Handle vm_page_rename(m, new_object, ...). */
723	if (popmap_is_set(rv->popmap, index))
724		return (NULL);
725	vm_reserv_populate(rv, index);
726	return (m);
727}
728
729/*
730 * Breaks the given reservation.  All free pages in the reservation
731 * are returned to the physical memory allocator.  The reservation's
732 * population count and map are reset to their initial state.
733 *
734 * The given reservation must not be in the partially populated reservation
735 * queue.  The free page queue lock must be held.
736 */
737static void
738vm_reserv_break(vm_reserv_t rv)
739{
740	int begin_zeroes, hi, i, lo;
741
742	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
743	KASSERT(rv->object != NULL,
744	    ("vm_reserv_break: reserv %p is free", rv));
745	KASSERT(!rv->inpartpopq,
746	    ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv));
747	LIST_REMOVE(rv, objq);
748	rv->object = NULL;
749	rv->pages->psind = 0;
750	i = hi = 0;
751	do {
752		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
753		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
754		if (lo == 0) {
755			/* Redundantly clears bits < "hi". */
756			rv->popmap[i] = 0;
757			rv->popcnt -= NBPOPMAP - hi;
758			while (++i < NPOPMAP) {
759				lo = ffsl(~rv->popmap[i]);
760				if (lo == 0) {
761					rv->popmap[i] = 0;
762					rv->popcnt -= NBPOPMAP;
763				} else
764					break;
765			}
766			if (i == NPOPMAP)
767				break;
768			hi = 0;
769		}
770		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
771		/* Convert from ffsl() to ordinary bit numbering. */
772		lo--;
773		if (lo > 0) {
774			/* Redundantly clears bits < "hi". */
775			rv->popmap[i] &= ~((1UL << lo) - 1);
776			rv->popcnt -= lo - hi;
777		}
778		begin_zeroes = NBPOPMAP * i + lo;
779		/* Find the next 1 bit. */
780		do
781			hi = ffsl(rv->popmap[i]);
782		while (hi == 0 && ++i < NPOPMAP);
783		if (i != NPOPMAP)
784			/* Convert from ffsl() to ordinary bit numbering. */
785			hi--;
786		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
787		    hi - begin_zeroes);
788	} while (i < NPOPMAP);
789	KASSERT(rv->popcnt == 0,
790	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
791	vm_reserv_broken++;
792}
793
794/*
795 * Breaks all reservations belonging to the given object.
796 */
797void
798vm_reserv_break_all(vm_object_t object)
799{
800	vm_reserv_t rv;
801
802	mtx_lock(&vm_page_queue_free_mtx);
803	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
804		KASSERT(rv->object == object,
805		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
806		if (rv->inpartpopq) {
807			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
808			rv->inpartpopq = FALSE;
809		}
810		vm_reserv_break(rv);
811	}
812	mtx_unlock(&vm_page_queue_free_mtx);
813}
814
815/*
816 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
817 * page is freed and FALSE otherwise.
818 *
819 * The free page queue lock must be held.
820 */
821boolean_t
822vm_reserv_free_page(vm_page_t m)
823{
824	vm_reserv_t rv;
825
826	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
827	rv = vm_reserv_from_page(m);
828	if (rv->object == NULL)
829		return (FALSE);
830	vm_reserv_depopulate(rv, m - rv->pages);
831	return (TRUE);
832}
833
834/*
835 * Initializes the reservation management system.  Specifically, initializes
836 * the reservation array.
837 *
838 * Requires that vm_page_array and first_page are initialized!
839 */
840void
841vm_reserv_init(void)
842{
843	vm_paddr_t paddr;
844	struct vm_phys_seg *seg;
845	int segind;
846
847	/*
848	 * Initialize the reservation array.  Specifically, initialize the
849	 * "pages" field for every element that has an underlying superpage.
850	 */
851	for (segind = 0; segind < vm_phys_nsegs; segind++) {
852		seg = &vm_phys_segs[segind];
853		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
854		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
855			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
856			    PHYS_TO_VM_PAGE(paddr);
857			paddr += VM_LEVEL_0_SIZE;
858		}
859	}
860}
861
862/*
863 * Returns true if the given page belongs to a reservation and that page is
864 * free.  Otherwise, returns false.
865 */
866bool
867vm_reserv_is_page_free(vm_page_t m)
868{
869	vm_reserv_t rv;
870
871	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
872	rv = vm_reserv_from_page(m);
873	if (rv->object == NULL)
874		return (false);
875	return (popmap_is_clear(rv->popmap, m - rv->pages));
876}
877
878/*
879 * If the given page belongs to a reservation, returns the level of that
880 * reservation.  Otherwise, returns -1.
881 */
882int
883vm_reserv_level(vm_page_t m)
884{
885	vm_reserv_t rv;
886
887	rv = vm_reserv_from_page(m);
888	return (rv->object != NULL ? 0 : -1);
889}
890
891/*
892 * Returns a reservation level if the given page belongs to a fully populated
893 * reservation and -1 otherwise.
894 */
895int
896vm_reserv_level_iffullpop(vm_page_t m)
897{
898	vm_reserv_t rv;
899
900	rv = vm_reserv_from_page(m);
901	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
902}
903
904/*
905 * Breaks the given partially populated reservation, releasing its free pages
906 * to the physical memory allocator.
907 *
908 * The free page queue lock must be held.
909 */
910static void
911vm_reserv_reclaim(vm_reserv_t rv)
912{
913
914	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
915	KASSERT(rv->inpartpopq,
916	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
917	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
918	rv->inpartpopq = FALSE;
919	vm_reserv_break(rv);
920	vm_reserv_reclaimed++;
921}
922
923/*
924 * Breaks the reservation at the head of the partially populated reservation
925 * queue, releasing its free pages to the physical memory allocator.  Returns
926 * TRUE if a reservation is broken and FALSE otherwise.
927 *
928 * The free page queue lock must be held.
929 */
930boolean_t
931vm_reserv_reclaim_inactive(void)
932{
933	vm_reserv_t rv;
934
935	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
936	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
937		vm_reserv_reclaim(rv);
938		return (TRUE);
939	}
940	return (FALSE);
941}
942
943/*
944 * Searches the partially populated reservation queue for the least recently
945 * changed reservation with free pages that satisfy the given request for
946 * contiguous physical memory.  If a satisfactory reservation is found, it is
947 * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
948 *
949 * The free page queue lock must be held.
950 */
951boolean_t
952vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
953    u_long alignment, vm_paddr_t boundary)
954{
955	vm_paddr_t pa, size;
956	vm_reserv_t rv;
957	int hi, i, lo, low_index, next_free;
958
959	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
960	if (npages > VM_LEVEL_0_NPAGES - 1)
961		return (FALSE);
962	size = npages << PAGE_SHIFT;
963	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
964		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
965		if (pa + PAGE_SIZE - size < low) {
966			/* This entire reservation is too low; go to next. */
967			continue;
968		}
969		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
970		if (pa + size > high) {
971			/* This entire reservation is too high; go to next. */
972			continue;
973		}
974		if (pa < low) {
975			/* Start the search for free pages at "low". */
976			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
977			i = low_index / NBPOPMAP;
978			hi = low_index % NBPOPMAP;
979		} else
980			i = hi = 0;
981		do {
982			/* Find the next free page. */
983			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
984			while (lo == 0 && ++i < NPOPMAP)
985				lo = ffsl(~rv->popmap[i]);
986			if (i == NPOPMAP)
987				break;
988			/* Convert from ffsl() to ordinary bit numbering. */
989			lo--;
990			next_free = NBPOPMAP * i + lo;
991			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
992			KASSERT(pa >= low,
993			    ("vm_reserv_reclaim_contig: pa is too low"));
994			if (pa + size > high) {
995				/* The rest of this reservation is too high. */
996				break;
997			} else if ((pa & (alignment - 1)) != 0 ||
998			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
999				/*
1000				 * The current page doesn't meet the alignment
1001				 * and/or boundary requirements.  Continue
1002				 * searching this reservation until the rest
1003				 * of its free pages are either excluded or
1004				 * exhausted.
1005				 */
1006				hi = lo + 1;
1007				if (hi >= NBPOPMAP) {
1008					hi = 0;
1009					i++;
1010				}
1011				continue;
1012			}
1013			/* Find the next used page. */
1014			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1015			while (hi == 0 && ++i < NPOPMAP) {
1016				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1017				    size) {
1018					vm_reserv_reclaim(rv);
1019					return (TRUE);
1020				}
1021				hi = ffsl(rv->popmap[i]);
1022			}
1023			/* Convert from ffsl() to ordinary bit numbering. */
1024			if (i != NPOPMAP)
1025				hi--;
1026			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1027			    size) {
1028				vm_reserv_reclaim(rv);
1029				return (TRUE);
1030			}
1031		} while (i < NPOPMAP);
1032	}
1033	return (FALSE);
1034}
1035
1036/*
1037 * Transfers the reservation underlying the given page to a new object.
1038 *
1039 * The object must be locked.
1040 */
1041void
1042vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1043    vm_pindex_t old_object_offset)
1044{
1045	vm_reserv_t rv;
1046
1047	VM_OBJECT_ASSERT_WLOCKED(new_object);
1048	rv = vm_reserv_from_page(m);
1049	if (rv->object == old_object) {
1050		mtx_lock(&vm_page_queue_free_mtx);
1051		if (rv->object == old_object) {
1052			LIST_REMOVE(rv, objq);
1053			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1054			rv->object = new_object;
1055			rv->pindex -= old_object_offset;
1056		}
1057		mtx_unlock(&vm_page_queue_free_mtx);
1058	}
1059}
1060
1061/*
1062 * Returns the size (in bytes) of a reservation of the specified level.
1063 */
1064int
1065vm_reserv_size(int level)
1066{
1067
1068	switch (level) {
1069	case 0:
1070		return (VM_LEVEL_0_SIZE);
1071	case -1:
1072		return (PAGE_SIZE);
1073	default:
1074		return (0);
1075	}
1076}
1077
1078/*
1079 * Allocates the virtual and physical memory required by the reservation
1080 * management system's data structures, in particular, the reservation array.
1081 */
1082vm_paddr_t
1083vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1084{
1085	vm_paddr_t new_end;
1086	size_t size;
1087
1088	/*
1089	 * Calculate the size (in bytes) of the reservation array.  Round up
1090	 * from "high_water" because every small page is mapped to an element
1091	 * in the reservation array based on its physical address.  Thus, the
1092	 * number of elements in the reservation array can be greater than the
1093	 * number of superpages.
1094	 */
1095	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1096
1097	/*
1098	 * Allocate and map the physical memory for the reservation array.  The
1099	 * next available virtual address is returned by reference.
1100	 */
1101	new_end = end - round_page(size);
1102	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1103	    VM_PROT_READ | VM_PROT_WRITE);
1104	bzero(vm_reserv_array, size);
1105
1106	/*
1107	 * Return the next available physical address.
1108	 */
1109	return (new_end);
1110}
1111
1112/*
1113 * Returns the superpage containing the given page.
1114 */
1115vm_page_t
1116vm_reserv_to_superpage(vm_page_t m)
1117{
1118	vm_reserv_t rv;
1119
1120	VM_OBJECT_ASSERT_LOCKED(m->object);
1121	rv = vm_reserv_from_page(m);
1122	return (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES ?
1123	    rv->pages : NULL);
1124}
1125
1126#endif	/* VM_NRESERVLEVEL > 0 */
1127