vm_page.h revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: stable/11/sys/vm/vm_page.h 330897 2018-03-14 03:19:51Z eadler $
63 */
64
65/*
66 *	Resident memory system definitions.
67 */
68
69#ifndef	_VM_PAGE_
70#define	_VM_PAGE_
71
72#include <vm/pmap.h>
73
74/*
75 *	Management of resident (logical) pages.
76 *
77 *	A small structure is kept for each resident
78 *	page, indexed by page number.  Each structure
79 *	is an element of several collections:
80 *
81 *		A radix tree used to quickly
82 *		perform object/offset lookups
83 *
84 *		A list of all pages for a given object,
85 *		so they can be quickly deactivated at
86 *		time of deallocation.
87 *
88 *		An ordered list of pages due for pageout.
89 *
90 *	In addition, the structure contains the object
91 *	and offset to which this page belongs (for pageout),
92 *	and sundry status bits.
93 *
94 *	In general, operations on this structure's mutable fields are
95 *	synchronized using either one of or a combination of the lock on the
96 *	object that the page belongs to (O), the pool lock for the page (P),
97 *	or the lock for either the free or paging queue (Q).  If a field is
98 *	annotated below with two of these locks, then holding either lock is
99 *	sufficient for read access, but both locks are required for write
100 *	access.
101 *
102 *	In contrast, the synchronization of accesses to the page's
103 *	dirty field is machine dependent (M).  In the
104 *	machine-independent layer, the lock on the object that the
105 *	page belongs to must be held in order to operate on the field.
106 *	However, the pmap layer is permitted to set all bits within
107 *	the field without holding that lock.  If the underlying
108 *	architecture does not support atomic read-modify-write
109 *	operations on the field's type, then the machine-independent
110 *	layer uses a 32-bit atomic on the aligned 32-bit word that
111 *	contains the dirty field.  In the machine-independent layer,
112 *	the implementation of read-modify-write operations on the
113 *	field is encapsulated in vm_page_clear_dirty_mask().
114 */
115
116#if PAGE_SIZE == 4096
117#define VM_PAGE_BITS_ALL 0xffu
118typedef uint8_t vm_page_bits_t;
119#elif PAGE_SIZE == 8192
120#define VM_PAGE_BITS_ALL 0xffffu
121typedef uint16_t vm_page_bits_t;
122#elif PAGE_SIZE == 16384
123#define VM_PAGE_BITS_ALL 0xffffffffu
124typedef uint32_t vm_page_bits_t;
125#elif PAGE_SIZE == 32768
126#define VM_PAGE_BITS_ALL 0xfffffffffffffffflu
127typedef uint64_t vm_page_bits_t;
128#endif
129
130struct vm_page {
131	union {
132		TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */
133		struct {
134			SLIST_ENTRY(vm_page) ss; /* private slists */
135			void *pv;
136		} s;
137		struct {
138			u_long p;
139			u_long v;
140		} memguard;
141	} plinks;
142	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) */
143	vm_object_t object;		/* which object am I in (O,P) */
144	vm_pindex_t pindex;		/* offset into object (O,P) */
145	vm_paddr_t phys_addr;		/* physical address of page */
146	struct md_page md;		/* machine dependent stuff */
147	u_int wire_count;		/* wired down maps refs (P) */
148	volatile u_int busy_lock;	/* busy owners lock */
149	uint16_t hold_count;		/* page hold count (P) */
150	uint16_t flags;			/* page PG_* flags (P) */
151	uint8_t aflags;			/* access is atomic */
152	uint8_t oflags;			/* page VPO_* flags (O) */
153	uint8_t	queue;			/* page queue index (P,Q) */
154	int8_t psind;			/* pagesizes[] index (O) */
155	int8_t segind;
156	uint8_t	order;			/* index of the buddy queue */
157	uint8_t pool;
158	u_char	act_count;		/* page usage count (P) */
159	/* NOTE that these must support one bit per DEV_BSIZE in a page */
160	/* so, on normal X86 kernels, they must be at least 8 bits wide */
161	vm_page_bits_t valid;		/* map of valid DEV_BSIZE chunks (O) */
162	vm_page_bits_t dirty;		/* map of dirty DEV_BSIZE chunks (M) */
163};
164
165/*
166 * Page flags stored in oflags:
167 *
168 * Access to these page flags is synchronized by the lock on the object
169 * containing the page (O).
170 *
171 * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG)
172 * 	 indicates that the page is not under PV management but
173 * 	 otherwise should be treated as a normal page.  Pages not
174 * 	 under PV management cannot be paged out via the
175 * 	 object/vm_page_t because there is no knowledge of their pte
176 * 	 mappings, and such pages are also not on any PQ queue.
177 *
178 */
179#define	VPO_UNUSED01	0x01		/* --available-- */
180#define	VPO_SWAPSLEEP	0x02		/* waiting for swap to finish */
181#define	VPO_UNMANAGED	0x04		/* no PV management for page */
182#define	VPO_SWAPINPROG	0x08		/* swap I/O in progress on page */
183#define	VPO_NOSYNC	0x10		/* do not collect for syncer */
184
185/*
186 * Busy page implementation details.
187 * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation,
188 * even if the support for owner identity is removed because of size
189 * constraints.  Checks on lock recursion are then not possible, while the
190 * lock assertions effectiveness is someway reduced.
191 */
192#define	VPB_BIT_SHARED		0x01
193#define	VPB_BIT_EXCLUSIVE	0x02
194#define	VPB_BIT_WAITERS		0x04
195#define	VPB_BIT_FLAGMASK						\
196	(VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS)
197
198#define	VPB_SHARERS_SHIFT	3
199#define	VPB_SHARERS(x)							\
200	(((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT)
201#define	VPB_SHARERS_WORD(x)	((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED)
202#define	VPB_ONE_SHARER		(1 << VPB_SHARERS_SHIFT)
203
204#define	VPB_SINGLE_EXCLUSIVER	VPB_BIT_EXCLUSIVE
205
206#define	VPB_UNBUSIED		VPB_SHARERS_WORD(0)
207
208#define	PQ_NONE		255
209#define	PQ_INACTIVE	0
210#define	PQ_ACTIVE	1
211#define	PQ_LAUNDRY	2
212#define	PQ_COUNT	3
213
214#ifndef VM_PAGE_HAVE_PGLIST
215TAILQ_HEAD(pglist, vm_page);
216#define VM_PAGE_HAVE_PGLIST
217#endif
218SLIST_HEAD(spglist, vm_page);
219
220struct vm_pagequeue {
221	struct mtx	pq_mutex;
222	struct pglist	pq_pl;
223	int		pq_cnt;
224	u_int		* const pq_vcnt;
225	const char	* const pq_name;
226} __aligned(CACHE_LINE_SIZE);
227
228
229struct vm_domain {
230	struct vm_pagequeue vmd_pagequeues[PQ_COUNT];
231	u_int vmd_page_count;
232	u_int vmd_free_count;
233	long vmd_segs;	/* bitmask of the segments */
234	boolean_t vmd_oom;
235	int vmd_oom_seq;
236	int vmd_last_active_scan;
237	struct vm_page vmd_laundry_marker;
238	struct vm_page vmd_marker; /* marker for pagedaemon private use */
239	struct vm_page vmd_inacthead; /* marker for LRU-defeating insertions */
240};
241
242extern struct vm_domain vm_dom[MAXMEMDOM];
243
244#define	vm_pagequeue_assert_locked(pq)	mtx_assert(&(pq)->pq_mutex, MA_OWNED)
245#define	vm_pagequeue_lock(pq)		mtx_lock(&(pq)->pq_mutex)
246#define	vm_pagequeue_lockptr(pq)	(&(pq)->pq_mutex)
247#define	vm_pagequeue_unlock(pq)		mtx_unlock(&(pq)->pq_mutex)
248
249#ifdef _KERNEL
250static __inline void
251vm_pagequeue_cnt_add(struct vm_pagequeue *pq, int addend)
252{
253
254#ifdef notyet
255	vm_pagequeue_assert_locked(pq);
256#endif
257	pq->pq_cnt += addend;
258	atomic_add_int(pq->pq_vcnt, addend);
259}
260#define	vm_pagequeue_cnt_inc(pq)	vm_pagequeue_cnt_add((pq), 1)
261#define	vm_pagequeue_cnt_dec(pq)	vm_pagequeue_cnt_add((pq), -1)
262#endif	/* _KERNEL */
263
264extern struct mtx_padalign vm_page_queue_free_mtx;
265extern struct mtx_padalign pa_lock[];
266
267#if defined(__arm__)
268#define	PDRSHIFT	PDR_SHIFT
269#elif !defined(PDRSHIFT)
270#define PDRSHIFT	21
271#endif
272
273#define	pa_index(pa)	((pa) >> PDRSHIFT)
274#define	PA_LOCKPTR(pa)	((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT]))
275#define	PA_LOCKOBJPTR(pa)	((struct lock_object *)PA_LOCKPTR((pa)))
276#define	PA_LOCK(pa)	mtx_lock(PA_LOCKPTR(pa))
277#define	PA_TRYLOCK(pa)	mtx_trylock(PA_LOCKPTR(pa))
278#define	PA_UNLOCK(pa)	mtx_unlock(PA_LOCKPTR(pa))
279#define	PA_UNLOCK_COND(pa) 			\
280	do {		   			\
281		if ((pa) != 0) {		\
282			PA_UNLOCK((pa));	\
283			(pa) = 0;		\
284		}				\
285	} while (0)
286
287#define	PA_LOCK_ASSERT(pa, a)	mtx_assert(PA_LOCKPTR(pa), (a))
288
289#ifdef KLD_MODULE
290#define	vm_page_lock(m)		vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE)
291#define	vm_page_unlock(m)	vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE)
292#define	vm_page_trylock(m)	vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE)
293#else	/* !KLD_MODULE */
294#define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
295#define	vm_page_lock(m)		mtx_lock(vm_page_lockptr((m)))
296#define	vm_page_unlock(m)	mtx_unlock(vm_page_lockptr((m)))
297#define	vm_page_trylock(m)	mtx_trylock(vm_page_lockptr((m)))
298#endif
299#if defined(INVARIANTS)
300#define	vm_page_assert_locked(m)		\
301    vm_page_assert_locked_KBI((m), __FILE__, __LINE__)
302#define	vm_page_lock_assert(m, a)		\
303    vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__)
304#else
305#define	vm_page_assert_locked(m)
306#define	vm_page_lock_assert(m, a)
307#endif
308
309/*
310 * The vm_page's aflags are updated using atomic operations.  To set or clear
311 * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear()
312 * must be used.  Neither these flags nor these functions are part of the KBI.
313 *
314 * PGA_REFERENCED may be cleared only if the page is locked.  It is set by
315 * both the MI and MD VM layers.  However, kernel loadable modules should not
316 * directly set this flag.  They should call vm_page_reference() instead.
317 *
318 * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter().
319 * When it does so, the object must be locked, or the page must be
320 * exclusive busied.  The MI VM layer must never access this flag
321 * directly.  Instead, it should call pmap_page_is_write_mapped().
322 *
323 * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has
324 * at least one executable mapping.  It is not consumed by the MI VM layer.
325 */
326#define	PGA_WRITEABLE	0x01		/* page may be mapped writeable */
327#define	PGA_REFERENCED	0x02		/* page has been referenced */
328#define	PGA_EXECUTABLE	0x04		/* page may be mapped executable */
329
330/*
331 * Page flags.  If changed at any other time than page allocation or
332 * freeing, the modification must be protected by the vm_page lock.
333 */
334#define	PG_FICTITIOUS	0x0004		/* physical page doesn't exist */
335#define	PG_ZERO		0x0008		/* page is zeroed */
336#define	PG_MARKER	0x0010		/* special queue marker page */
337#define	PG_NODUMP	0x0080		/* don't include this page in a dump */
338#define	PG_UNHOLDFREE	0x0100		/* delayed free of a held page */
339
340/*
341 * Misc constants.
342 */
343#define ACT_DECLINE		1
344#define ACT_ADVANCE		3
345#define ACT_INIT		5
346#define ACT_MAX			64
347
348#ifdef _KERNEL
349
350#include <sys/systm.h>
351
352#include <machine/atomic.h>
353
354/*
355 * Each pageable resident page falls into one of four lists:
356 *
357 *	free
358 *		Available for allocation now.
359 *
360 *	inactive
361 *		Low activity, candidates for reclamation.
362 *		This list is approximately LRU ordered.
363 *
364 *	laundry
365 *		This is the list of pages that should be
366 *		paged out next.
367 *
368 *	active
369 *		Pages that are "active", i.e., they have been
370 *		recently referenced.
371 *
372 */
373
374extern int vm_page_zero_count;
375
376extern vm_page_t vm_page_array;		/* First resident page in table */
377extern long vm_page_array_size;		/* number of vm_page_t's */
378extern long first_page;			/* first physical page number */
379
380#define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
381
382/*
383 * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory
384 * page to which the given physical address belongs. The correct vm_page_t
385 * object is returned for addresses that are not page-aligned.
386 */
387vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa);
388
389/*
390 * Page allocation parameters for vm_page for the functions
391 * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and
392 * vm_page_alloc_freelist().  Some functions support only a subset
393 * of the flags, and ignore others, see the flags legend.
394 *
395 * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*()
396 * and the vm_page_grab*() functions.  See these functions for details.
397 *
398 * Bits 0 - 1 define class.
399 * Bits 2 - 15 dedicated for flags.
400 * Legend:
401 * (a) - vm_page_alloc() supports the flag.
402 * (c) - vm_page_alloc_contig() supports the flag.
403 * (f) - vm_page_alloc_freelist() supports the flag.
404 * (g) - vm_page_grab() supports the flag.
405 * (p) - vm_page_grab_pages() supports the flag.
406 * Bits above 15 define the count of additional pages that the caller
407 * intends to allocate.
408 */
409#define VM_ALLOC_NORMAL		0
410#define VM_ALLOC_INTERRUPT	1
411#define VM_ALLOC_SYSTEM		2
412#define	VM_ALLOC_CLASS_MASK	3
413#define	VM_ALLOC_WAITOK		0x0008	/* (acf) Sleep and retry */
414#define	VM_ALLOC_WAITFAIL	0x0010	/* (acf) Sleep and return error */
415#define	VM_ALLOC_WIRED		0x0020	/* (acfgp) Allocate a wired page */
416#define	VM_ALLOC_ZERO		0x0040	/* (acfgp) Allocate a prezeroed page */
417#define	VM_ALLOC_NOOBJ		0x0100	/* (acg) No associated object */
418#define	VM_ALLOC_NOBUSY		0x0200	/* (acgp) Do not excl busy the page */
419#define	VM_ALLOC_IFCACHED	0x0400
420#define	VM_ALLOC_IFNOTCACHED	0x0800
421#define	VM_ALLOC_IGN_SBUSY	0x1000	/* (gp) Ignore shared busy flag */
422#define	VM_ALLOC_NODUMP		0x2000	/* (ag) don't include in dump */
423#define	VM_ALLOC_SBUSY		0x4000	/* (acgp) Shared busy the page */
424#define	VM_ALLOC_NOWAIT		0x8000	/* (acfgp) Do not sleep */
425#define	VM_ALLOC_COUNT_SHIFT	16
426#define	VM_ALLOC_COUNT(count)	((count) << VM_ALLOC_COUNT_SHIFT)
427
428#ifdef M_NOWAIT
429static inline int
430malloc2vm_flags(int malloc_flags)
431{
432	int pflags;
433
434	KASSERT((malloc_flags & M_USE_RESERVE) == 0 ||
435	    (malloc_flags & M_NOWAIT) != 0,
436	    ("M_USE_RESERVE requires M_NOWAIT"));
437	pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT :
438	    VM_ALLOC_SYSTEM;
439	if ((malloc_flags & M_ZERO) != 0)
440		pflags |= VM_ALLOC_ZERO;
441	if ((malloc_flags & M_NODUMP) != 0)
442		pflags |= VM_ALLOC_NODUMP;
443	if ((malloc_flags & M_NOWAIT))
444		pflags |= VM_ALLOC_NOWAIT;
445	if ((malloc_flags & M_WAITOK))
446		pflags |= VM_ALLOC_WAITOK;
447	return (pflags);
448}
449#endif
450
451/*
452 * Predicates supported by vm_page_ps_test():
453 *
454 *	PS_ALL_DIRTY is true only if the entire (super)page is dirty.
455 *	However, it can be spuriously false when the (super)page has become
456 *	dirty in the pmap but that information has not been propagated to the
457 *	machine-independent layer.
458 */
459#define	PS_ALL_DIRTY	0x1
460#define	PS_ALL_VALID	0x2
461#define	PS_NONE_BUSY	0x4
462
463void vm_page_busy_downgrade(vm_page_t m);
464void vm_page_busy_sleep(vm_page_t m, const char *msg, bool nonshared);
465void vm_page_flash(vm_page_t m);
466void vm_page_hold(vm_page_t mem);
467void vm_page_unhold(vm_page_t mem);
468void vm_page_free(vm_page_t m);
469void vm_page_free_zero(vm_page_t m);
470
471void vm_page_activate (vm_page_t);
472void vm_page_advise(vm_page_t m, int advice);
473vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int);
474vm_page_t vm_page_alloc_after(vm_object_t, vm_pindex_t, int, vm_page_t);
475vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
476    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
477    vm_paddr_t boundary, vm_memattr_t memattr);
478vm_page_t vm_page_alloc_freelist(int, int);
479void vm_page_change_lock(vm_page_t m, struct mtx **mtx);
480vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
481int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
482    vm_page_t *ma, int count);
483void vm_page_deactivate (vm_page_t);
484void vm_page_deactivate_noreuse(vm_page_t);
485void vm_page_dequeue(vm_page_t m);
486void vm_page_dequeue_locked(vm_page_t m);
487vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
488void vm_page_free_phys_pglist(struct pglist *tq);
489bool vm_page_free_prep(vm_page_t m, bool pagequeue_locked);
490vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
491void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
492int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
493void vm_page_launder(vm_page_t m);
494vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
495vm_page_t vm_page_next(vm_page_t m);
496int vm_page_pa_tryrelock(pmap_t, vm_paddr_t, vm_paddr_t *);
497struct vm_pagequeue *vm_page_pagequeue(vm_page_t m);
498vm_page_t vm_page_prev(vm_page_t m);
499bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m);
500void vm_page_putfake(vm_page_t m);
501void vm_page_readahead_finish(vm_page_t m);
502bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
503    vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
504void vm_page_reference(vm_page_t m);
505void vm_page_remove (vm_page_t);
506int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
507vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
508    vm_pindex_t pindex);
509void vm_page_requeue(vm_page_t m);
510void vm_page_requeue_locked(vm_page_t m);
511int vm_page_sbusied(vm_page_t m);
512vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
513    vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
514void vm_page_set_valid_range(vm_page_t m, int base, int size);
515int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
516vm_offset_t vm_page_startup(vm_offset_t vaddr);
517void vm_page_sunbusy(vm_page_t m);
518bool vm_page_try_to_free(vm_page_t m);
519int vm_page_trysbusy(vm_page_t m);
520void vm_page_unhold_pages(vm_page_t *ma, int count);
521boolean_t vm_page_unwire(vm_page_t m, uint8_t queue);
522void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
523void vm_page_wire (vm_page_t);
524void vm_page_xunbusy_hard(vm_page_t m);
525void vm_page_xunbusy_maybelocked(vm_page_t m);
526void vm_page_set_validclean (vm_page_t, int, int);
527void vm_page_clear_dirty (vm_page_t, int, int);
528void vm_page_set_invalid (vm_page_t, int, int);
529int vm_page_is_valid (vm_page_t, int, int);
530void vm_page_test_dirty (vm_page_t);
531vm_page_bits_t vm_page_bits(int base, int size);
532void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
533void vm_page_free_toq(vm_page_t m);
534void vm_page_zero_idle_wakeup(void);
535
536void vm_page_dirty_KBI(vm_page_t m);
537void vm_page_lock_KBI(vm_page_t m, const char *file, int line);
538void vm_page_unlock_KBI(vm_page_t m, const char *file, int line);
539int vm_page_trylock_KBI(vm_page_t m, const char *file, int line);
540#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
541void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line);
542void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line);
543#endif
544
545#define	vm_page_assert_sbusied(m)					\
546	KASSERT(vm_page_sbusied(m),					\
547	    ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \
548	    (m), __FILE__, __LINE__))
549
550#define	vm_page_assert_unbusied(m)					\
551	KASSERT(!vm_page_busied(m),					\
552	    ("vm_page_assert_unbusied: page %p busy @ %s:%d",		\
553	    (m), __FILE__, __LINE__))
554
555#define	vm_page_assert_xbusied(m)					\
556	KASSERT(vm_page_xbusied(m),					\
557	    ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \
558	    (m), __FILE__, __LINE__))
559
560#define	vm_page_busied(m)						\
561	((m)->busy_lock != VPB_UNBUSIED)
562
563#define	vm_page_sbusy(m) do {						\
564	if (!vm_page_trysbusy(m))					\
565		panic("%s: page %p failed shared busying", __func__,	\
566		    (m));						\
567} while (0)
568
569#define	vm_page_tryxbusy(m)						\
570	(atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,		\
571	    VPB_SINGLE_EXCLUSIVER))
572
573#define	vm_page_xbusied(m)						\
574	(((m)->busy_lock & VPB_SINGLE_EXCLUSIVER) != 0)
575
576#define	vm_page_xbusy(m) do {						\
577	if (!vm_page_tryxbusy(m))					\
578		panic("%s: page %p failed exclusive busying", __func__,	\
579		    (m));						\
580} while (0)
581
582/* Note: page m's lock must not be owned by the caller. */
583#define	vm_page_xunbusy(m) do {						\
584	if (!atomic_cmpset_rel_int(&(m)->busy_lock,			\
585	    VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED))			\
586		vm_page_xunbusy_hard(m);				\
587} while (0)
588
589#ifdef INVARIANTS
590void vm_page_object_lock_assert(vm_page_t m);
591#define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	vm_page_object_lock_assert(m)
592void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits);
593#define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)				\
594	vm_page_assert_pga_writeable(m, bits)
595#else
596#define	VM_PAGE_OBJECT_LOCK_ASSERT(m)	(void)0
597#define	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits)	(void)0
598#endif
599
600/*
601 * We want to use atomic updates for the aflags field, which is 8 bits wide.
602 * However, not all architectures support atomic operations on 8-bit
603 * destinations.  In order that we can easily use a 32-bit operation, we
604 * require that the aflags field be 32-bit aligned.
605 */
606CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
607
608/*
609 *	Clear the given bits in the specified page.
610 */
611static inline void
612vm_page_aflag_clear(vm_page_t m, uint8_t bits)
613{
614	uint32_t *addr, val;
615
616	/*
617	 * The PGA_REFERENCED flag can only be cleared if the page is locked.
618	 */
619	if ((bits & PGA_REFERENCED) != 0)
620		vm_page_assert_locked(m);
621
622	/*
623	 * Access the whole 32-bit word containing the aflags field with an
624	 * atomic update.  Parallel non-atomic updates to the other fields
625	 * within this word are handled properly by the atomic update.
626	 */
627	addr = (void *)&m->aflags;
628	KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
629	    ("vm_page_aflag_clear: aflags is misaligned"));
630	val = bits;
631#if BYTE_ORDER == BIG_ENDIAN
632	val <<= 24;
633#endif
634	atomic_clear_32(addr, val);
635}
636
637/*
638 *	Set the given bits in the specified page.
639 */
640static inline void
641vm_page_aflag_set(vm_page_t m, uint8_t bits)
642{
643	uint32_t *addr, val;
644
645	VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits);
646
647	/*
648	 * Access the whole 32-bit word containing the aflags field with an
649	 * atomic update.  Parallel non-atomic updates to the other fields
650	 * within this word are handled properly by the atomic update.
651	 */
652	addr = (void *)&m->aflags;
653	KASSERT(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0,
654	    ("vm_page_aflag_set: aflags is misaligned"));
655	val = bits;
656#if BYTE_ORDER == BIG_ENDIAN
657	val <<= 24;
658#endif
659	atomic_set_32(addr, val);
660}
661
662/*
663 *	vm_page_dirty:
664 *
665 *	Set all bits in the page's dirty field.
666 *
667 *	The object containing the specified page must be locked if the
668 *	call is made from the machine-independent layer.
669 *
670 *	See vm_page_clear_dirty_mask().
671 */
672static __inline void
673vm_page_dirty(vm_page_t m)
674{
675
676	/* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */
677#if defined(KLD_MODULE) || defined(INVARIANTS)
678	vm_page_dirty_KBI(m);
679#else
680	m->dirty = VM_PAGE_BITS_ALL;
681#endif
682}
683
684/*
685 *	vm_page_remque:
686 *
687 *	If the given page is in a page queue, then remove it from that page
688 *	queue.
689 *
690 *	The page must be locked.
691 */
692static inline void
693vm_page_remque(vm_page_t m)
694{
695
696	if (m->queue != PQ_NONE)
697		vm_page_dequeue(m);
698}
699
700/*
701 *	vm_page_undirty:
702 *
703 *	Set page to not be dirty.  Note: does not clear pmap modify bits
704 */
705static __inline void
706vm_page_undirty(vm_page_t m)
707{
708
709	VM_PAGE_OBJECT_LOCK_ASSERT(m);
710	m->dirty = 0;
711}
712
713static inline void
714vm_page_replace_checked(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
715    vm_page_t mold)
716{
717	vm_page_t mret;
718
719	mret = vm_page_replace(mnew, object, pindex);
720	KASSERT(mret == mold,
721	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
722
723	/* Unused if !INVARIANTS. */
724	(void)mold;
725	(void)mret;
726}
727
728static inline bool
729vm_page_active(vm_page_t m)
730{
731
732	return (m->queue == PQ_ACTIVE);
733}
734
735static inline bool
736vm_page_inactive(vm_page_t m)
737{
738
739	return (m->queue == PQ_INACTIVE);
740}
741
742static inline bool
743vm_page_in_laundry(vm_page_t m)
744{
745
746	return (m->queue == PQ_LAUNDRY);
747}
748
749#endif				/* _KERNEL */
750#endif				/* !_VM_PAGE_ */
751