pmap.c revision 324400
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/11/sys/powerpc/booke/pmap.c 324400 2017-10-07 21:13:54Z alc $");
53
54#include "opt_kstack_pages.h"
55
56#include <sys/param.h>
57#include <sys/conf.h>
58#include <sys/malloc.h>
59#include <sys/ktr.h>
60#include <sys/proc.h>
61#include <sys/user.h>
62#include <sys/queue.h>
63#include <sys/systm.h>
64#include <sys/kernel.h>
65#include <sys/kerneldump.h>
66#include <sys/linker.h>
67#include <sys/msgbuf.h>
68#include <sys/lock.h>
69#include <sys/mutex.h>
70#include <sys/rwlock.h>
71#include <sys/sched.h>
72#include <sys/smp.h>
73#include <sys/vmmeter.h>
74
75#include <vm/vm.h>
76#include <vm/vm_page.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_pageout.h>
79#include <vm/vm_extern.h>
80#include <vm/vm_object.h>
81#include <vm/vm_param.h>
82#include <vm/vm_map.h>
83#include <vm/vm_pager.h>
84#include <vm/uma.h>
85
86#include <machine/cpu.h>
87#include <machine/pcb.h>
88#include <machine/platform.h>
89
90#include <machine/tlb.h>
91#include <machine/spr.h>
92#include <machine/md_var.h>
93#include <machine/mmuvar.h>
94#include <machine/pmap.h>
95#include <machine/pte.h>
96
97#include "mmu_if.h"
98
99#define	SPARSE_MAPDEV
100#ifdef  DEBUG
101#define debugf(fmt, args...) printf(fmt, ##args)
102#else
103#define debugf(fmt, args...)
104#endif
105
106#define TODO			panic("%s: not implemented", __func__);
107
108extern unsigned char _etext[];
109extern unsigned char _end[];
110
111extern uint32_t *bootinfo;
112
113vm_paddr_t kernload;
114vm_offset_t kernstart;
115vm_size_t kernsize;
116
117/* Message buffer and tables. */
118static vm_offset_t data_start;
119static vm_size_t data_end;
120
121/* Phys/avail memory regions. */
122static struct mem_region *availmem_regions;
123static int availmem_regions_sz;
124static struct mem_region *physmem_regions;
125static int physmem_regions_sz;
126
127/* Reserved KVA space and mutex for mmu_booke_zero_page. */
128static vm_offset_t zero_page_va;
129static struct mtx zero_page_mutex;
130
131static struct mtx tlbivax_mutex;
132
133/*
134 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
135 * by idle thred only, no lock required.
136 */
137static vm_offset_t zero_page_idle_va;
138
139/* Reserved KVA space and mutex for mmu_booke_copy_page. */
140static vm_offset_t copy_page_src_va;
141static vm_offset_t copy_page_dst_va;
142static struct mtx copy_page_mutex;
143
144/**************************************************************************/
145/* PMAP */
146/**************************************************************************/
147
148static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
149    vm_prot_t, u_int flags, int8_t psind);
150
151unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
152unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
153
154/*
155 * If user pmap is processed with mmu_booke_remove and the resident count
156 * drops to 0, there are no more pages to remove, so we need not continue.
157 */
158#define PMAP_REMOVE_DONE(pmap) \
159	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
160
161extern int elf32_nxstack;
162
163/**************************************************************************/
164/* TLB and TID handling */
165/**************************************************************************/
166
167/* Translation ID busy table */
168static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
169
170/*
171 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
172 * core revisions and should be read from h/w registers during early config.
173 */
174uint32_t tlb0_entries;
175uint32_t tlb0_ways;
176uint32_t tlb0_entries_per_way;
177uint32_t tlb1_entries;
178
179#define TLB0_ENTRIES		(tlb0_entries)
180#define TLB0_WAYS		(tlb0_ways)
181#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
182
183#define TLB1_ENTRIES (tlb1_entries)
184#define TLB1_MAXENTRIES	64
185
186static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE;
187
188static tlbtid_t tid_alloc(struct pmap *);
189static void tid_flush(tlbtid_t tid);
190
191static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
192
193static void tlb1_read_entry(tlb_entry_t *, unsigned int);
194static void tlb1_write_entry(tlb_entry_t *, unsigned int);
195static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
196static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
197
198static vm_size_t tsize2size(unsigned int);
199static unsigned int size2tsize(vm_size_t);
200static unsigned int ilog2(unsigned int);
201
202static void set_mas4_defaults(void);
203
204static inline void tlb0_flush_entry(vm_offset_t);
205static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
206
207/**************************************************************************/
208/* Page table management */
209/**************************************************************************/
210
211static struct rwlock_padalign pvh_global_lock;
212
213/* Data for the pv entry allocation mechanism */
214static uma_zone_t pvzone;
215static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
216
217#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
218
219#ifndef PMAP_SHPGPERPROC
220#define PMAP_SHPGPERPROC	200
221#endif
222
223static void ptbl_init(void);
224static struct ptbl_buf *ptbl_buf_alloc(void);
225static void ptbl_buf_free(struct ptbl_buf *);
226static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
227
228static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
229static void ptbl_free(mmu_t, pmap_t, unsigned int);
230static void ptbl_hold(mmu_t, pmap_t, unsigned int);
231static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
232
233static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
234static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
235static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
236static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
237static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr,
238			     vm_offset_t pdir);
239
240static pv_entry_t pv_alloc(void);
241static void pv_free(pv_entry_t);
242static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
243static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
244
245static void booke_pmap_init_qpages(void);
246
247/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248#define PTBL_BUFS		(128 * 16)
249
250struct ptbl_buf {
251	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
252	vm_offset_t kva;		/* va of mapping */
253};
254
255/* ptbl free list and a lock used for access synchronization. */
256static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257static struct mtx ptbl_buf_freelist_lock;
258
259/* Base address of kva space allocated fot ptbl bufs. */
260static vm_offset_t ptbl_buf_pool_vabase;
261
262/* Pointer to ptbl_buf structures. */
263static struct ptbl_buf *ptbl_bufs;
264
265#ifdef SMP
266extern tlb_entry_t __boot_tlb1[];
267void pmap_bootstrap_ap(volatile uint32_t *);
268#endif
269
270/*
271 * Kernel MMU interface
272 */
273static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
274static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275    vm_size_t, vm_offset_t);
276static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
278    vm_offset_t, vm_page_t *, vm_offset_t, int);
279static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280    vm_prot_t, u_int flags, int8_t psind);
281static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282    vm_page_t, vm_prot_t);
283static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284    vm_prot_t);
285static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287    vm_prot_t);
288static void		mmu_booke_init(mmu_t);
289static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
292static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
293static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
294    int);
295static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
296    vm_paddr_t *);
297static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
298    vm_object_t, vm_pindex_t, vm_size_t);
299static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
300static void		mmu_booke_page_init(mmu_t, vm_page_t);
301static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
302static void		mmu_booke_pinit(mmu_t, pmap_t);
303static void		mmu_booke_pinit0(mmu_t, pmap_t);
304static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
305    vm_prot_t);
306static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
308static void		mmu_booke_release(mmu_t, pmap_t);
309static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310static void		mmu_booke_remove_all(mmu_t, vm_page_t);
311static void		mmu_booke_remove_write(mmu_t, vm_page_t);
312static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313static void		mmu_booke_zero_page(mmu_t, vm_page_t);
314static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
315static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
316static void		mmu_booke_activate(mmu_t, struct thread *);
317static void		mmu_booke_deactivate(mmu_t, struct thread *);
318static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
319static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
320static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
321static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
322static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
323static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
324static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
325static void		mmu_booke_kremove(mmu_t, vm_offset_t);
326static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
327static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
328    vm_size_t);
329static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
330    void **);
331static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
332    void *);
333static void		mmu_booke_scan_init(mmu_t);
334static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
335static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
336static int		mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr,
337    vm_size_t sz, vm_memattr_t mode);
338
339static mmu_method_t mmu_booke_methods[] = {
340	/* pmap dispatcher interface */
341	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
342	MMUMETHOD(mmu_copy,		mmu_booke_copy),
343	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
344	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
345	MMUMETHOD(mmu_enter,		mmu_booke_enter),
346	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
347	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
348	MMUMETHOD(mmu_extract,		mmu_booke_extract),
349	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
350	MMUMETHOD(mmu_init,		mmu_booke_init),
351	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
352	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
353	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
354	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
355	MMUMETHOD(mmu_map,		mmu_booke_map),
356	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
357	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
358	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
359	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
360	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
361	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
362	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
363	MMUMETHOD(mmu_protect,		mmu_booke_protect),
364	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
365	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
366	MMUMETHOD(mmu_release,		mmu_booke_release),
367	MMUMETHOD(mmu_remove,		mmu_booke_remove),
368	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
369	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
370	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
371	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
372	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
373	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
374	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
375	MMUMETHOD(mmu_activate,		mmu_booke_activate),
376	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
377	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
378	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
379
380	/* Internal interfaces */
381	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
382	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
383	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
384	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
385	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
386	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
387	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
388	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),
389	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
390	MMUMETHOD(mmu_change_attr,	mmu_booke_change_attr),
391
392	/* dumpsys() support */
393	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
394	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
395	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
396
397	{ 0, 0 }
398};
399
400MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
401
402static __inline uint32_t
403tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
404{
405	uint32_t attrib;
406	int i;
407
408	if (ma != VM_MEMATTR_DEFAULT) {
409		switch (ma) {
410		case VM_MEMATTR_UNCACHEABLE:
411			return (MAS2_I | MAS2_G);
412		case VM_MEMATTR_WRITE_COMBINING:
413		case VM_MEMATTR_WRITE_BACK:
414		case VM_MEMATTR_PREFETCHABLE:
415			return (MAS2_I);
416		case VM_MEMATTR_WRITE_THROUGH:
417			return (MAS2_W | MAS2_M);
418		case VM_MEMATTR_CACHEABLE:
419			return (MAS2_M);
420		}
421	}
422
423	/*
424	 * Assume the page is cache inhibited and access is guarded unless
425	 * it's in our available memory array.
426	 */
427	attrib = _TLB_ENTRY_IO;
428	for (i = 0; i < physmem_regions_sz; i++) {
429		if ((pa >= physmem_regions[i].mr_start) &&
430		    (pa < (physmem_regions[i].mr_start +
431		     physmem_regions[i].mr_size))) {
432			attrib = _TLB_ENTRY_MEM;
433			break;
434		}
435	}
436
437	return (attrib);
438}
439
440static inline void
441tlb_miss_lock(void)
442{
443#ifdef SMP
444	struct pcpu *pc;
445
446	if (!smp_started)
447		return;
448
449	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
450		if (pc != pcpup) {
451
452			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
453			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
454
455			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
456			    ("tlb_miss_lock: tried to lock self"));
457
458			tlb_lock(pc->pc_booke_tlb_lock);
459
460			CTR1(KTR_PMAP, "%s: locked", __func__);
461		}
462	}
463#endif
464}
465
466static inline void
467tlb_miss_unlock(void)
468{
469#ifdef SMP
470	struct pcpu *pc;
471
472	if (!smp_started)
473		return;
474
475	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
476		if (pc != pcpup) {
477			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
478			    __func__, pc->pc_cpuid);
479
480			tlb_unlock(pc->pc_booke_tlb_lock);
481
482			CTR1(KTR_PMAP, "%s: unlocked", __func__);
483		}
484	}
485#endif
486}
487
488/* Return number of entries in TLB0. */
489static __inline void
490tlb0_get_tlbconf(void)
491{
492	uint32_t tlb0_cfg;
493
494	tlb0_cfg = mfspr(SPR_TLB0CFG);
495	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
496	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
497	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
498}
499
500/* Return number of entries in TLB1. */
501static __inline void
502tlb1_get_tlbconf(void)
503{
504	uint32_t tlb1_cfg;
505
506	tlb1_cfg = mfspr(SPR_TLB1CFG);
507	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
508}
509
510/**************************************************************************/
511/* Page table related */
512/**************************************************************************/
513
514/* Initialize pool of kva ptbl buffers. */
515static void
516ptbl_init(void)
517{
518	int i;
519
520	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
521	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
522	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
523	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
524
525	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
526	TAILQ_INIT(&ptbl_buf_freelist);
527
528	for (i = 0; i < PTBL_BUFS; i++) {
529		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
530		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
531	}
532}
533
534/* Get a ptbl_buf from the freelist. */
535static struct ptbl_buf *
536ptbl_buf_alloc(void)
537{
538	struct ptbl_buf *buf;
539
540	mtx_lock(&ptbl_buf_freelist_lock);
541	buf = TAILQ_FIRST(&ptbl_buf_freelist);
542	if (buf != NULL)
543		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
544	mtx_unlock(&ptbl_buf_freelist_lock);
545
546	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
547
548	return (buf);
549}
550
551/* Return ptbl buff to free pool. */
552static void
553ptbl_buf_free(struct ptbl_buf *buf)
554{
555
556	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
557
558	mtx_lock(&ptbl_buf_freelist_lock);
559	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
560	mtx_unlock(&ptbl_buf_freelist_lock);
561}
562
563/*
564 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
565 */
566static void
567ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
568{
569	struct ptbl_buf *pbuf;
570
571	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
572
573	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
574
575	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
576		if (pbuf->kva == (vm_offset_t)ptbl) {
577			/* Remove from pmap ptbl buf list. */
578			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
579
580			/* Free corresponding ptbl buf. */
581			ptbl_buf_free(pbuf);
582			break;
583		}
584}
585
586/* Allocate page table. */
587static pte_t *
588ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
589{
590	vm_page_t mtbl[PTBL_PAGES];
591	vm_page_t m;
592	struct ptbl_buf *pbuf;
593	unsigned int pidx;
594	pte_t *ptbl;
595	int i, j;
596
597	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
598	    (pmap == kernel_pmap), pdir_idx);
599
600	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
601	    ("ptbl_alloc: invalid pdir_idx"));
602	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
603	    ("pte_alloc: valid ptbl entry exists!"));
604
605	pbuf = ptbl_buf_alloc();
606	if (pbuf == NULL)
607		panic("pte_alloc: couldn't alloc kernel virtual memory");
608
609	ptbl = (pte_t *)pbuf->kva;
610
611	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
612
613	/* Allocate ptbl pages, this will sleep! */
614	for (i = 0; i < PTBL_PAGES; i++) {
615		pidx = (PTBL_PAGES * pdir_idx) + i;
616		while ((m = vm_page_alloc(NULL, pidx,
617		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
618			PMAP_UNLOCK(pmap);
619			rw_wunlock(&pvh_global_lock);
620			if (nosleep) {
621				ptbl_free_pmap_ptbl(pmap, ptbl);
622				for (j = 0; j < i; j++)
623					vm_page_free(mtbl[j]);
624				atomic_subtract_int(&vm_cnt.v_wire_count, i);
625				return (NULL);
626			}
627			VM_WAIT;
628			rw_wlock(&pvh_global_lock);
629			PMAP_LOCK(pmap);
630		}
631		mtbl[i] = m;
632	}
633
634	/* Map allocated pages into kernel_pmap. */
635	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
636
637	/* Zero whole ptbl. */
638	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
639
640	/* Add pbuf to the pmap ptbl bufs list. */
641	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
642
643	return (ptbl);
644}
645
646/* Free ptbl pages and invalidate pdir entry. */
647static void
648ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
649{
650	pte_t *ptbl;
651	vm_paddr_t pa;
652	vm_offset_t va;
653	vm_page_t m;
654	int i;
655
656	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
657	    (pmap == kernel_pmap), pdir_idx);
658
659	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
660	    ("ptbl_free: invalid pdir_idx"));
661
662	ptbl = pmap->pm_pdir[pdir_idx];
663
664	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
665
666	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
667
668	/*
669	 * Invalidate the pdir entry as soon as possible, so that other CPUs
670	 * don't attempt to look up the page tables we are releasing.
671	 */
672	mtx_lock_spin(&tlbivax_mutex);
673	tlb_miss_lock();
674
675	pmap->pm_pdir[pdir_idx] = NULL;
676
677	tlb_miss_unlock();
678	mtx_unlock_spin(&tlbivax_mutex);
679
680	for (i = 0; i < PTBL_PAGES; i++) {
681		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
682		pa = pte_vatopa(mmu, kernel_pmap, va);
683		m = PHYS_TO_VM_PAGE(pa);
684		vm_page_free_zero(m);
685		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
686		mmu_booke_kremove(mmu, va);
687	}
688
689	ptbl_free_pmap_ptbl(pmap, ptbl);
690}
691
692/*
693 * Decrement ptbl pages hold count and attempt to free ptbl pages.
694 * Called when removing pte entry from ptbl.
695 *
696 * Return 1 if ptbl pages were freed.
697 */
698static int
699ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
700{
701	pte_t *ptbl;
702	vm_paddr_t pa;
703	vm_page_t m;
704	int i;
705
706	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
707	    (pmap == kernel_pmap), pdir_idx);
708
709	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
710	    ("ptbl_unhold: invalid pdir_idx"));
711	KASSERT((pmap != kernel_pmap),
712	    ("ptbl_unhold: unholding kernel ptbl!"));
713
714	ptbl = pmap->pm_pdir[pdir_idx];
715
716	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
717	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
718	    ("ptbl_unhold: non kva ptbl"));
719
720	/* decrement hold count */
721	for (i = 0; i < PTBL_PAGES; i++) {
722		pa = pte_vatopa(mmu, kernel_pmap,
723		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
724		m = PHYS_TO_VM_PAGE(pa);
725		m->wire_count--;
726	}
727
728	/*
729	 * Free ptbl pages if there are no pte etries in this ptbl.
730	 * wire_count has the same value for all ptbl pages, so check the last
731	 * page.
732	 */
733	if (m->wire_count == 0) {
734		ptbl_free(mmu, pmap, pdir_idx);
735
736		//debugf("ptbl_unhold: e (freed ptbl)\n");
737		return (1);
738	}
739
740	return (0);
741}
742
743/*
744 * Increment hold count for ptbl pages. This routine is used when a new pte
745 * entry is being inserted into the ptbl.
746 */
747static void
748ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
749{
750	vm_paddr_t pa;
751	pte_t *ptbl;
752	vm_page_t m;
753	int i;
754
755	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
756	    pdir_idx);
757
758	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
759	    ("ptbl_hold: invalid pdir_idx"));
760	KASSERT((pmap != kernel_pmap),
761	    ("ptbl_hold: holding kernel ptbl!"));
762
763	ptbl = pmap->pm_pdir[pdir_idx];
764
765	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
766
767	for (i = 0; i < PTBL_PAGES; i++) {
768		pa = pte_vatopa(mmu, kernel_pmap,
769		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
770		m = PHYS_TO_VM_PAGE(pa);
771		m->wire_count++;
772	}
773}
774
775/* Allocate pv_entry structure. */
776pv_entry_t
777pv_alloc(void)
778{
779	pv_entry_t pv;
780
781	pv_entry_count++;
782	if (pv_entry_count > pv_entry_high_water)
783		pagedaemon_wakeup();
784	pv = uma_zalloc(pvzone, M_NOWAIT);
785
786	return (pv);
787}
788
789/* Free pv_entry structure. */
790static __inline void
791pv_free(pv_entry_t pve)
792{
793
794	pv_entry_count--;
795	uma_zfree(pvzone, pve);
796}
797
798
799/* Allocate and initialize pv_entry structure. */
800static void
801pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
802{
803	pv_entry_t pve;
804
805	//int su = (pmap == kernel_pmap);
806	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
807	//	(u_int32_t)pmap, va, (u_int32_t)m);
808
809	pve = pv_alloc();
810	if (pve == NULL)
811		panic("pv_insert: no pv entries!");
812
813	pve->pv_pmap = pmap;
814	pve->pv_va = va;
815
816	/* add to pv_list */
817	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
818	rw_assert(&pvh_global_lock, RA_WLOCKED);
819
820	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
821
822	//debugf("pv_insert: e\n");
823}
824
825/* Destroy pv entry. */
826static void
827pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
828{
829	pv_entry_t pve;
830
831	//int su = (pmap == kernel_pmap);
832	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
833
834	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
835	rw_assert(&pvh_global_lock, RA_WLOCKED);
836
837	/* find pv entry */
838	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
839		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
840			/* remove from pv_list */
841			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
842			if (TAILQ_EMPTY(&m->md.pv_list))
843				vm_page_aflag_clear(m, PGA_WRITEABLE);
844
845			/* free pv entry struct */
846			pv_free(pve);
847			break;
848		}
849	}
850
851	//debugf("pv_remove: e\n");
852}
853
854/*
855 * Clean pte entry, try to free page table page if requested.
856 *
857 * Return 1 if ptbl pages were freed, otherwise return 0.
858 */
859static int
860pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
861{
862	unsigned int pdir_idx = PDIR_IDX(va);
863	unsigned int ptbl_idx = PTBL_IDX(va);
864	vm_page_t m;
865	pte_t *ptbl;
866	pte_t *pte;
867
868	//int su = (pmap == kernel_pmap);
869	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
870	//		su, (u_int32_t)pmap, va, flags);
871
872	ptbl = pmap->pm_pdir[pdir_idx];
873	KASSERT(ptbl, ("pte_remove: null ptbl"));
874
875	pte = &ptbl[ptbl_idx];
876
877	if (pte == NULL || !PTE_ISVALID(pte))
878		return (0);
879
880	if (PTE_ISWIRED(pte))
881		pmap->pm_stats.wired_count--;
882
883	/* Handle managed entry. */
884	if (PTE_ISMANAGED(pte)) {
885		/* Get vm_page_t for mapped pte. */
886		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
887
888		if (PTE_ISMODIFIED(pte))
889			vm_page_dirty(m);
890
891		if (PTE_ISREFERENCED(pte))
892			vm_page_aflag_set(m, PGA_REFERENCED);
893
894		pv_remove(pmap, va, m);
895	}
896
897	mtx_lock_spin(&tlbivax_mutex);
898	tlb_miss_lock();
899
900	tlb0_flush_entry(va);
901	*pte = 0;
902
903	tlb_miss_unlock();
904	mtx_unlock_spin(&tlbivax_mutex);
905
906	pmap->pm_stats.resident_count--;
907
908	if (flags & PTBL_UNHOLD) {
909		//debugf("pte_remove: e (unhold)\n");
910		return (ptbl_unhold(mmu, pmap, pdir_idx));
911	}
912
913	//debugf("pte_remove: e\n");
914	return (0);
915}
916
917/*
918 * Insert PTE for a given page and virtual address.
919 */
920static int
921pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
922    boolean_t nosleep)
923{
924	unsigned int pdir_idx = PDIR_IDX(va);
925	unsigned int ptbl_idx = PTBL_IDX(va);
926	pte_t *ptbl, *pte;
927
928	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
929	    pmap == kernel_pmap, pmap, va);
930
931	/* Get the page table pointer. */
932	ptbl = pmap->pm_pdir[pdir_idx];
933
934	if (ptbl == NULL) {
935		/* Allocate page table pages. */
936		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
937		if (ptbl == NULL) {
938			KASSERT(nosleep, ("nosleep and NULL ptbl"));
939			return (ENOMEM);
940		}
941	} else {
942		/*
943		 * Check if there is valid mapping for requested
944		 * va, if there is, remove it.
945		 */
946		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
947		if (PTE_ISVALID(pte)) {
948			pte_remove(mmu, pmap, va, PTBL_HOLD);
949		} else {
950			/*
951			 * pte is not used, increment hold count
952			 * for ptbl pages.
953			 */
954			if (pmap != kernel_pmap)
955				ptbl_hold(mmu, pmap, pdir_idx);
956		}
957	}
958
959	/*
960	 * Insert pv_entry into pv_list for mapped page if part of managed
961	 * memory.
962	 */
963	if ((m->oflags & VPO_UNMANAGED) == 0) {
964		flags |= PTE_MANAGED;
965
966		/* Create and insert pv entry. */
967		pv_insert(pmap, va, m);
968	}
969
970	pmap->pm_stats.resident_count++;
971
972	mtx_lock_spin(&tlbivax_mutex);
973	tlb_miss_lock();
974
975	tlb0_flush_entry(va);
976	if (pmap->pm_pdir[pdir_idx] == NULL) {
977		/*
978		 * If we just allocated a new page table, hook it in
979		 * the pdir.
980		 */
981		pmap->pm_pdir[pdir_idx] = ptbl;
982	}
983	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
984	*pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
985	*pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
986
987	tlb_miss_unlock();
988	mtx_unlock_spin(&tlbivax_mutex);
989	return (0);
990}
991
992/* Return the pa for the given pmap/va. */
993static vm_paddr_t
994pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
995{
996	vm_paddr_t pa = 0;
997	pte_t *pte;
998
999	pte = pte_find(mmu, pmap, va);
1000	if ((pte != NULL) && PTE_ISVALID(pte))
1001		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1002	return (pa);
1003}
1004
1005/* Get a pointer to a PTE in a page table. */
1006static pte_t *
1007pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1008{
1009	unsigned int pdir_idx = PDIR_IDX(va);
1010	unsigned int ptbl_idx = PTBL_IDX(va);
1011
1012	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1013
1014	if (pmap->pm_pdir[pdir_idx])
1015		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1016
1017	return (NULL);
1018}
1019
1020/* Set up kernel page tables. */
1021static void
1022kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1023{
1024	int		i;
1025	vm_offset_t	va;
1026	pte_t		*pte;
1027
1028	/* Initialize kernel pdir */
1029	for (i = 0; i < kernel_ptbls; i++)
1030		kernel_pmap->pm_pdir[kptbl_min + i] =
1031		    (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1032
1033	/*
1034	 * Fill in PTEs covering kernel code and data. They are not required
1035	 * for address translation, as this area is covered by static TLB1
1036	 * entries, but for pte_vatopa() to work correctly with kernel area
1037	 * addresses.
1038	 */
1039	for (va = addr; va < data_end; va += PAGE_SIZE) {
1040		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1041		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1042		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1043		    PTE_VALID | PTE_PS_4KB;
1044	}
1045}
1046
1047/**************************************************************************/
1048/* PMAP related */
1049/**************************************************************************/
1050
1051/*
1052 * This is called during booke_init, before the system is really initialized.
1053 */
1054static void
1055mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1056{
1057	vm_paddr_t phys_kernelend;
1058	struct mem_region *mp, *mp1;
1059	int cnt, i, j;
1060	vm_paddr_t s, e, sz;
1061	vm_paddr_t physsz, hwphyssz;
1062	u_int phys_avail_count;
1063	vm_size_t kstack0_sz;
1064	vm_offset_t kernel_pdir, kstack0;
1065	vm_paddr_t kstack0_phys;
1066	void *dpcpu;
1067
1068	debugf("mmu_booke_bootstrap: entered\n");
1069
1070	/* Set interesting system properties */
1071	hw_direct_map = 0;
1072	elf32_nxstack = 1;
1073
1074	/* Initialize invalidation mutex */
1075	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1076
1077	/* Read TLB0 size and associativity. */
1078	tlb0_get_tlbconf();
1079
1080	/*
1081	 * Align kernel start and end address (kernel image).
1082	 * Note that kernel end does not necessarily relate to kernsize.
1083	 * kernsize is the size of the kernel that is actually mapped.
1084	 */
1085	kernstart = trunc_page(start);
1086	data_start = round_page(kernelend);
1087	data_end = data_start;
1088
1089	/*
1090	 * Addresses of preloaded modules (like file systems) use
1091	 * physical addresses. Make sure we relocate those into
1092	 * virtual addresses.
1093	 */
1094	preload_addr_relocate = kernstart - kernload;
1095
1096	/* Allocate the dynamic per-cpu area. */
1097	dpcpu = (void *)data_end;
1098	data_end += DPCPU_SIZE;
1099
1100	/* Allocate space for the message buffer. */
1101	msgbufp = (struct msgbuf *)data_end;
1102	data_end += msgbufsize;
1103	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1104	    data_end);
1105
1106	data_end = round_page(data_end);
1107
1108	/* Allocate space for ptbl_bufs. */
1109	ptbl_bufs = (struct ptbl_buf *)data_end;
1110	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1111	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1112	    data_end);
1113
1114	data_end = round_page(data_end);
1115
1116	/* Allocate PTE tables for kernel KVA. */
1117	kernel_pdir = data_end;
1118	kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
1119	    PDIR_SIZE);
1120	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1121	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1122	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1123
1124	debugf(" data_end: 0x%08x\n", data_end);
1125	if (data_end - kernstart > kernsize) {
1126		kernsize += tlb1_mapin_region(kernstart + kernsize,
1127		    kernload + kernsize, (data_end - kernstart) - kernsize);
1128	}
1129	data_end = kernstart + kernsize;
1130	debugf(" updated data_end: 0x%08x\n", data_end);
1131
1132	/*
1133	 * Clear the structures - note we can only do it safely after the
1134	 * possible additional TLB1 translations are in place (above) so that
1135	 * all range up to the currently calculated 'data_end' is covered.
1136	 */
1137	dpcpu_init(dpcpu, 0);
1138	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1139	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1140
1141	/*******************************************************/
1142	/* Set the start and end of kva. */
1143	/*******************************************************/
1144	virtual_avail = round_page(data_end);
1145	virtual_end = VM_MAX_KERNEL_ADDRESS;
1146
1147	/* Allocate KVA space for page zero/copy operations. */
1148	zero_page_va = virtual_avail;
1149	virtual_avail += PAGE_SIZE;
1150	zero_page_idle_va = virtual_avail;
1151	virtual_avail += PAGE_SIZE;
1152	copy_page_src_va = virtual_avail;
1153	virtual_avail += PAGE_SIZE;
1154	copy_page_dst_va = virtual_avail;
1155	virtual_avail += PAGE_SIZE;
1156	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1157	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1158	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1159	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1160
1161	/* Initialize page zero/copy mutexes. */
1162	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1163	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1164
1165	/* Allocate KVA space for ptbl bufs. */
1166	ptbl_buf_pool_vabase = virtual_avail;
1167	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1168	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1169	    ptbl_buf_pool_vabase, virtual_avail);
1170
1171	/* Calculate corresponding physical addresses for the kernel region. */
1172	phys_kernelend = kernload + kernsize;
1173	debugf("kernel image and allocated data:\n");
1174	debugf(" kernload    = 0x%09llx\n", (uint64_t)kernload);
1175	debugf(" kernstart   = 0x%08x\n", kernstart);
1176	debugf(" kernsize    = 0x%08x\n", kernsize);
1177
1178	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1179		panic("mmu_booke_bootstrap: phys_avail too small");
1180
1181	/*
1182	 * Remove kernel physical address range from avail regions list. Page
1183	 * align all regions.  Non-page aligned memory isn't very interesting
1184	 * to us.  Also, sort the entries for ascending addresses.
1185	 */
1186
1187	/* Retrieve phys/avail mem regions */
1188	mem_regions(&physmem_regions, &physmem_regions_sz,
1189	    &availmem_regions, &availmem_regions_sz);
1190	sz = 0;
1191	cnt = availmem_regions_sz;
1192	debugf("processing avail regions:\n");
1193	for (mp = availmem_regions; mp->mr_size; mp++) {
1194		s = mp->mr_start;
1195		e = mp->mr_start + mp->mr_size;
1196		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1197		/* Check whether this region holds all of the kernel. */
1198		if (s < kernload && e > phys_kernelend) {
1199			availmem_regions[cnt].mr_start = phys_kernelend;
1200			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1201			e = kernload;
1202		}
1203		/* Look whether this regions starts within the kernel. */
1204		if (s >= kernload && s < phys_kernelend) {
1205			if (e <= phys_kernelend)
1206				goto empty;
1207			s = phys_kernelend;
1208		}
1209		/* Now look whether this region ends within the kernel. */
1210		if (e > kernload && e <= phys_kernelend) {
1211			if (s >= kernload)
1212				goto empty;
1213			e = kernload;
1214		}
1215		/* Now page align the start and size of the region. */
1216		s = round_page(s);
1217		e = trunc_page(e);
1218		if (e < s)
1219			e = s;
1220		sz = e - s;
1221		debugf("%09jx-%09jx = %jx\n",
1222		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1223
1224		/* Check whether some memory is left here. */
1225		if (sz == 0) {
1226		empty:
1227			memmove(mp, mp + 1,
1228			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1229			cnt--;
1230			mp--;
1231			continue;
1232		}
1233
1234		/* Do an insertion sort. */
1235		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1236			if (s < mp1->mr_start)
1237				break;
1238		if (mp1 < mp) {
1239			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1240			mp1->mr_start = s;
1241			mp1->mr_size = sz;
1242		} else {
1243			mp->mr_start = s;
1244			mp->mr_size = sz;
1245		}
1246	}
1247	availmem_regions_sz = cnt;
1248
1249	/*******************************************************/
1250	/* Steal physical memory for kernel stack from the end */
1251	/* of the first avail region                           */
1252	/*******************************************************/
1253	kstack0_sz = kstack_pages * PAGE_SIZE;
1254	kstack0_phys = availmem_regions[0].mr_start +
1255	    availmem_regions[0].mr_size;
1256	kstack0_phys -= kstack0_sz;
1257	availmem_regions[0].mr_size -= kstack0_sz;
1258
1259	/*******************************************************/
1260	/* Fill in phys_avail table, based on availmem_regions */
1261	/*******************************************************/
1262	phys_avail_count = 0;
1263	physsz = 0;
1264	hwphyssz = 0;
1265	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1266
1267	debugf("fill in phys_avail:\n");
1268	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1269
1270		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1271		    (uintmax_t)availmem_regions[i].mr_start,
1272		    (uintmax_t)availmem_regions[i].mr_start +
1273		        availmem_regions[i].mr_size,
1274		    (uintmax_t)availmem_regions[i].mr_size);
1275
1276		if (hwphyssz != 0 &&
1277		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1278			debugf(" hw.physmem adjust\n");
1279			if (physsz < hwphyssz) {
1280				phys_avail[j] = availmem_regions[i].mr_start;
1281				phys_avail[j + 1] =
1282				    availmem_regions[i].mr_start +
1283				    hwphyssz - physsz;
1284				physsz = hwphyssz;
1285				phys_avail_count++;
1286			}
1287			break;
1288		}
1289
1290		phys_avail[j] = availmem_regions[i].mr_start;
1291		phys_avail[j + 1] = availmem_regions[i].mr_start +
1292		    availmem_regions[i].mr_size;
1293		phys_avail_count++;
1294		physsz += availmem_regions[i].mr_size;
1295	}
1296	physmem = btoc(physsz);
1297
1298	/* Calculate the last available physical address. */
1299	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1300		;
1301	Maxmem = powerpc_btop(phys_avail[i + 1]);
1302
1303	debugf("Maxmem = 0x%08lx\n", Maxmem);
1304	debugf("phys_avail_count = %d\n", phys_avail_count);
1305	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
1306	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
1307
1308	/*******************************************************/
1309	/* Initialize (statically allocated) kernel pmap. */
1310	/*******************************************************/
1311	PMAP_LOCK_INIT(kernel_pmap);
1312	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1313
1314	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1315	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1316	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1317	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1318
1319	kernel_pte_alloc(data_end, kernstart, kernel_pdir);
1320	for (i = 0; i < MAXCPU; i++) {
1321		kernel_pmap->pm_tid[i] = TID_KERNEL;
1322
1323		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1324		tidbusy[i][TID_KERNEL] = kernel_pmap;
1325	}
1326
1327	/* Mark kernel_pmap active on all CPUs */
1328	CPU_FILL(&kernel_pmap->pm_active);
1329
1330 	/*
1331	 * Initialize the global pv list lock.
1332	 */
1333	rw_init(&pvh_global_lock, "pmap pv global");
1334
1335	/*******************************************************/
1336	/* Final setup */
1337	/*******************************************************/
1338
1339	/* Enter kstack0 into kernel map, provide guard page */
1340	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1341	thread0.td_kstack = kstack0;
1342	thread0.td_kstack_pages = kstack_pages;
1343
1344	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1345	debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1346	    kstack0_phys, kstack0_phys + kstack0_sz);
1347	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1348
1349	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1350	for (i = 0; i < kstack_pages; i++) {
1351		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1352		kstack0 += PAGE_SIZE;
1353		kstack0_phys += PAGE_SIZE;
1354	}
1355
1356	pmap_bootstrapped = 1;
1357
1358	debugf("virtual_avail = %08x\n", virtual_avail);
1359	debugf("virtual_end   = %08x\n", virtual_end);
1360
1361	debugf("mmu_booke_bootstrap: exit\n");
1362}
1363
1364#ifdef SMP
1365 void
1366tlb1_ap_prep(void)
1367{
1368	tlb_entry_t *e, tmp;
1369	unsigned int i;
1370
1371	/* Prepare TLB1 image for AP processors */
1372	e = __boot_tlb1;
1373	for (i = 0; i < TLB1_ENTRIES; i++) {
1374		tlb1_read_entry(&tmp, i);
1375
1376		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
1377			memcpy(e++, &tmp, sizeof(tmp));
1378	}
1379}
1380
1381void
1382pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1383{
1384	int i;
1385
1386	/*
1387	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1388	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
1389	 * created by tlb1_ap_prep(), so use these values directly to
1390	 * (re)program AP's TLB1 hardware.
1391	 *
1392	 * Start at index 1 because index 0 has the kernel map.
1393	 */
1394	for (i = 1; i < TLB1_ENTRIES; i++) {
1395		if (__boot_tlb1[i].mas1 & MAS1_VALID)
1396			tlb1_write_entry(&__boot_tlb1[i], i);
1397	}
1398
1399	set_mas4_defaults();
1400}
1401#endif
1402
1403static void
1404booke_pmap_init_qpages(void)
1405{
1406	struct pcpu *pc;
1407	int i;
1408
1409	CPU_FOREACH(i) {
1410		pc = pcpu_find(i);
1411		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1412		if (pc->pc_qmap_addr == 0)
1413			panic("pmap_init_qpages: unable to allocate KVA");
1414	}
1415}
1416
1417SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1418
1419/*
1420 * Get the physical page address for the given pmap/virtual address.
1421 */
1422static vm_paddr_t
1423mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1424{
1425	vm_paddr_t pa;
1426
1427	PMAP_LOCK(pmap);
1428	pa = pte_vatopa(mmu, pmap, va);
1429	PMAP_UNLOCK(pmap);
1430
1431	return (pa);
1432}
1433
1434/*
1435 * Extract the physical page address associated with the given
1436 * kernel virtual address.
1437 */
1438static vm_paddr_t
1439mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1440{
1441	tlb_entry_t e;
1442	int i;
1443
1444	/* Check TLB1 mappings */
1445	for (i = 0; i < TLB1_ENTRIES; i++) {
1446		tlb1_read_entry(&e, i);
1447		if (!(e.mas1 & MAS1_VALID))
1448			continue;
1449		if (va >= e.virt && va < e.virt + e.size)
1450			return (e.phys + (va - e.virt));
1451	}
1452
1453	return (pte_vatopa(mmu, kernel_pmap, va));
1454}
1455
1456/*
1457 * Initialize the pmap module.
1458 * Called by vm_init, to initialize any structures that the pmap
1459 * system needs to map virtual memory.
1460 */
1461static void
1462mmu_booke_init(mmu_t mmu)
1463{
1464	int shpgperproc = PMAP_SHPGPERPROC;
1465
1466	/*
1467	 * Initialize the address space (zone) for the pv entries.  Set a
1468	 * high water mark so that the system can recover from excessive
1469	 * numbers of pv entries.
1470	 */
1471	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1472	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1473
1474	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1475	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1476
1477	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1478	pv_entry_high_water = 9 * (pv_entry_max / 10);
1479
1480	uma_zone_reserve_kva(pvzone, pv_entry_max);
1481
1482	/* Pre-fill pvzone with initial number of pv entries. */
1483	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1484
1485	/* Initialize ptbl allocation. */
1486	ptbl_init();
1487}
1488
1489/*
1490 * Map a list of wired pages into kernel virtual address space.  This is
1491 * intended for temporary mappings which do not need page modification or
1492 * references recorded.  Existing mappings in the region are overwritten.
1493 */
1494static void
1495mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1496{
1497	vm_offset_t va;
1498
1499	va = sva;
1500	while (count-- > 0) {
1501		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1502		va += PAGE_SIZE;
1503		m++;
1504	}
1505}
1506
1507/*
1508 * Remove page mappings from kernel virtual address space.  Intended for
1509 * temporary mappings entered by mmu_booke_qenter.
1510 */
1511static void
1512mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1513{
1514	vm_offset_t va;
1515
1516	va = sva;
1517	while (count-- > 0) {
1518		mmu_booke_kremove(mmu, va);
1519		va += PAGE_SIZE;
1520	}
1521}
1522
1523/*
1524 * Map a wired page into kernel virtual address space.
1525 */
1526static void
1527mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1528{
1529
1530	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1531}
1532
1533static void
1534mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1535{
1536	uint32_t flags;
1537	pte_t *pte;
1538
1539	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1540	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1541
1542	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1543	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1544	flags |= PTE_PS_4KB;
1545
1546	pte = pte_find(mmu, kernel_pmap, va);
1547
1548	mtx_lock_spin(&tlbivax_mutex);
1549	tlb_miss_lock();
1550
1551	if (PTE_ISVALID(pte)) {
1552
1553		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1554
1555		/* Flush entry from TLB0 */
1556		tlb0_flush_entry(va);
1557	}
1558
1559	*pte = PTE_RPN_FROM_PA(pa) | flags;
1560
1561	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1562	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1563	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1564
1565	/* Flush the real memory from the instruction cache. */
1566	if ((flags & (PTE_I | PTE_G)) == 0)
1567		__syncicache((void *)va, PAGE_SIZE);
1568
1569	tlb_miss_unlock();
1570	mtx_unlock_spin(&tlbivax_mutex);
1571}
1572
1573/*
1574 * Remove a page from kernel page table.
1575 */
1576static void
1577mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1578{
1579	pte_t *pte;
1580
1581	CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va);
1582
1583	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1584	    (va <= VM_MAX_KERNEL_ADDRESS)),
1585	    ("mmu_booke_kremove: invalid va"));
1586
1587	pte = pte_find(mmu, kernel_pmap, va);
1588
1589	if (!PTE_ISVALID(pte)) {
1590
1591		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1592
1593		return;
1594	}
1595
1596	mtx_lock_spin(&tlbivax_mutex);
1597	tlb_miss_lock();
1598
1599	/* Invalidate entry in TLB0, update PTE. */
1600	tlb0_flush_entry(va);
1601	*pte = 0;
1602
1603	tlb_miss_unlock();
1604	mtx_unlock_spin(&tlbivax_mutex);
1605}
1606
1607/*
1608 * Initialize pmap associated with process 0.
1609 */
1610static void
1611mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1612{
1613
1614	PMAP_LOCK_INIT(pmap);
1615	mmu_booke_pinit(mmu, pmap);
1616	PCPU_SET(curpmap, pmap);
1617}
1618
1619/*
1620 * Initialize a preallocated and zeroed pmap structure,
1621 * such as one in a vmspace structure.
1622 */
1623static void
1624mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1625{
1626	int i;
1627
1628	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1629	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1630
1631	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1632
1633	for (i = 0; i < MAXCPU; i++)
1634		pmap->pm_tid[i] = TID_NONE;
1635	CPU_ZERO(&kernel_pmap->pm_active);
1636	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1637	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1638	TAILQ_INIT(&pmap->pm_ptbl_list);
1639}
1640
1641/*
1642 * Release any resources held by the given physical map.
1643 * Called when a pmap initialized by mmu_booke_pinit is being released.
1644 * Should only be called if the map contains no valid mappings.
1645 */
1646static void
1647mmu_booke_release(mmu_t mmu, pmap_t pmap)
1648{
1649
1650	KASSERT(pmap->pm_stats.resident_count == 0,
1651	    ("pmap_release: pmap resident count %ld != 0",
1652	    pmap->pm_stats.resident_count));
1653}
1654
1655/*
1656 * Insert the given physical page at the specified virtual address in the
1657 * target physical map with the protection requested. If specified the page
1658 * will be wired down.
1659 */
1660static int
1661mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1662    vm_prot_t prot, u_int flags, int8_t psind)
1663{
1664	int error;
1665
1666	rw_wlock(&pvh_global_lock);
1667	PMAP_LOCK(pmap);
1668	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1669	rw_wunlock(&pvh_global_lock);
1670	PMAP_UNLOCK(pmap);
1671	return (error);
1672}
1673
1674static int
1675mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1676    vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1677{
1678	pte_t *pte;
1679	vm_paddr_t pa;
1680	uint32_t flags;
1681	int error, su, sync;
1682
1683	pa = VM_PAGE_TO_PHYS(m);
1684	su = (pmap == kernel_pmap);
1685	sync = 0;
1686
1687	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1688	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1689	//		(u_int32_t)pmap, su, pmap->pm_tid,
1690	//		(u_int32_t)m, va, pa, prot, flags);
1691
1692	if (su) {
1693		KASSERT(((va >= virtual_avail) &&
1694		    (va <= VM_MAX_KERNEL_ADDRESS)),
1695		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1696	} else {
1697		KASSERT((va <= VM_MAXUSER_ADDRESS),
1698		    ("mmu_booke_enter_locked: user pmap, non user va"));
1699	}
1700	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1701		VM_OBJECT_ASSERT_LOCKED(m->object);
1702
1703	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1704
1705	/*
1706	 * If there is an existing mapping, and the physical address has not
1707	 * changed, must be protection or wiring change.
1708	 */
1709	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1710	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1711
1712		/*
1713		 * Before actually updating pte->flags we calculate and
1714		 * prepare its new value in a helper var.
1715		 */
1716		flags = *pte;
1717		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1718
1719		/* Wiring change, just update stats. */
1720		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1721			if (!PTE_ISWIRED(pte)) {
1722				flags |= PTE_WIRED;
1723				pmap->pm_stats.wired_count++;
1724			}
1725		} else {
1726			if (PTE_ISWIRED(pte)) {
1727				flags &= ~PTE_WIRED;
1728				pmap->pm_stats.wired_count--;
1729			}
1730		}
1731
1732		if (prot & VM_PROT_WRITE) {
1733			/* Add write permissions. */
1734			flags |= PTE_SW;
1735			if (!su)
1736				flags |= PTE_UW;
1737
1738			if ((flags & PTE_MANAGED) != 0)
1739				vm_page_aflag_set(m, PGA_WRITEABLE);
1740		} else {
1741			/* Handle modified pages, sense modify status. */
1742
1743			/*
1744			 * The PTE_MODIFIED flag could be set by underlying
1745			 * TLB misses since we last read it (above), possibly
1746			 * other CPUs could update it so we check in the PTE
1747			 * directly rather than rely on that saved local flags
1748			 * copy.
1749			 */
1750			if (PTE_ISMODIFIED(pte))
1751				vm_page_dirty(m);
1752		}
1753
1754		if (prot & VM_PROT_EXECUTE) {
1755			flags |= PTE_SX;
1756			if (!su)
1757				flags |= PTE_UX;
1758
1759			/*
1760			 * Check existing flags for execute permissions: if we
1761			 * are turning execute permissions on, icache should
1762			 * be flushed.
1763			 */
1764			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1765				sync++;
1766		}
1767
1768		flags &= ~PTE_REFERENCED;
1769
1770		/*
1771		 * The new flags value is all calculated -- only now actually
1772		 * update the PTE.
1773		 */
1774		mtx_lock_spin(&tlbivax_mutex);
1775		tlb_miss_lock();
1776
1777		tlb0_flush_entry(va);
1778		*pte &= ~PTE_FLAGS_MASK;
1779		*pte |= flags;
1780
1781		tlb_miss_unlock();
1782		mtx_unlock_spin(&tlbivax_mutex);
1783
1784	} else {
1785		/*
1786		 * If there is an existing mapping, but it's for a different
1787		 * physical address, pte_enter() will delete the old mapping.
1788		 */
1789		//if ((pte != NULL) && PTE_ISVALID(pte))
1790		//	debugf("mmu_booke_enter_locked: replace\n");
1791		//else
1792		//	debugf("mmu_booke_enter_locked: new\n");
1793
1794		/* Now set up the flags and install the new mapping. */
1795		flags = (PTE_SR | PTE_VALID);
1796		flags |= PTE_M;
1797
1798		if (!su)
1799			flags |= PTE_UR;
1800
1801		if (prot & VM_PROT_WRITE) {
1802			flags |= PTE_SW;
1803			if (!su)
1804				flags |= PTE_UW;
1805
1806			if ((m->oflags & VPO_UNMANAGED) == 0)
1807				vm_page_aflag_set(m, PGA_WRITEABLE);
1808		}
1809
1810		if (prot & VM_PROT_EXECUTE) {
1811			flags |= PTE_SX;
1812			if (!su)
1813				flags |= PTE_UX;
1814		}
1815
1816		/* If its wired update stats. */
1817		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1818			flags |= PTE_WIRED;
1819
1820		error = pte_enter(mmu, pmap, m, va, flags,
1821		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1822		if (error != 0)
1823			return (KERN_RESOURCE_SHORTAGE);
1824
1825		if ((flags & PMAP_ENTER_WIRED) != 0)
1826			pmap->pm_stats.wired_count++;
1827
1828		/* Flush the real memory from the instruction cache. */
1829		if (prot & VM_PROT_EXECUTE)
1830			sync++;
1831	}
1832
1833	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1834		__syncicache((void *)va, PAGE_SIZE);
1835		sync = 0;
1836	}
1837
1838	return (KERN_SUCCESS);
1839}
1840
1841/*
1842 * Maps a sequence of resident pages belonging to the same object.
1843 * The sequence begins with the given page m_start.  This page is
1844 * mapped at the given virtual address start.  Each subsequent page is
1845 * mapped at a virtual address that is offset from start by the same
1846 * amount as the page is offset from m_start within the object.  The
1847 * last page in the sequence is the page with the largest offset from
1848 * m_start that can be mapped at a virtual address less than the given
1849 * virtual address end.  Not every virtual page between start and end
1850 * is mapped; only those for which a resident page exists with the
1851 * corresponding offset from m_start are mapped.
1852 */
1853static void
1854mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1855    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1856{
1857	vm_page_t m;
1858	vm_pindex_t diff, psize;
1859
1860	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1861
1862	psize = atop(end - start);
1863	m = m_start;
1864	rw_wlock(&pvh_global_lock);
1865	PMAP_LOCK(pmap);
1866	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1867		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1868		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1869		    PMAP_ENTER_NOSLEEP, 0);
1870		m = TAILQ_NEXT(m, listq);
1871	}
1872	rw_wunlock(&pvh_global_lock);
1873	PMAP_UNLOCK(pmap);
1874}
1875
1876static void
1877mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1878    vm_prot_t prot)
1879{
1880
1881	rw_wlock(&pvh_global_lock);
1882	PMAP_LOCK(pmap);
1883	mmu_booke_enter_locked(mmu, pmap, va, m,
1884	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1885	    0);
1886	rw_wunlock(&pvh_global_lock);
1887	PMAP_UNLOCK(pmap);
1888}
1889
1890/*
1891 * Remove the given range of addresses from the specified map.
1892 *
1893 * It is assumed that the start and end are properly rounded to the page size.
1894 */
1895static void
1896mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1897{
1898	pte_t *pte;
1899	uint8_t hold_flag;
1900
1901	int su = (pmap == kernel_pmap);
1902
1903	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1904	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1905
1906	if (su) {
1907		KASSERT(((va >= virtual_avail) &&
1908		    (va <= VM_MAX_KERNEL_ADDRESS)),
1909		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1910	} else {
1911		KASSERT((va <= VM_MAXUSER_ADDRESS),
1912		    ("mmu_booke_remove: user pmap, non user va"));
1913	}
1914
1915	if (PMAP_REMOVE_DONE(pmap)) {
1916		//debugf("mmu_booke_remove: e (empty)\n");
1917		return;
1918	}
1919
1920	hold_flag = PTBL_HOLD_FLAG(pmap);
1921	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1922
1923	rw_wlock(&pvh_global_lock);
1924	PMAP_LOCK(pmap);
1925	for (; va < endva; va += PAGE_SIZE) {
1926		pte = pte_find(mmu, pmap, va);
1927		if ((pte != NULL) && PTE_ISVALID(pte))
1928			pte_remove(mmu, pmap, va, hold_flag);
1929	}
1930	PMAP_UNLOCK(pmap);
1931	rw_wunlock(&pvh_global_lock);
1932
1933	//debugf("mmu_booke_remove: e\n");
1934}
1935
1936/*
1937 * Remove physical page from all pmaps in which it resides.
1938 */
1939static void
1940mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1941{
1942	pv_entry_t pv, pvn;
1943	uint8_t hold_flag;
1944
1945	rw_wlock(&pvh_global_lock);
1946	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1947		pvn = TAILQ_NEXT(pv, pv_link);
1948
1949		PMAP_LOCK(pv->pv_pmap);
1950		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1951		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1952		PMAP_UNLOCK(pv->pv_pmap);
1953	}
1954	vm_page_aflag_clear(m, PGA_WRITEABLE);
1955	rw_wunlock(&pvh_global_lock);
1956}
1957
1958/*
1959 * Map a range of physical addresses into kernel virtual address space.
1960 */
1961static vm_offset_t
1962mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1963    vm_paddr_t pa_end, int prot)
1964{
1965	vm_offset_t sva = *virt;
1966	vm_offset_t va = sva;
1967
1968	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1969	//		sva, pa_start, pa_end);
1970
1971	while (pa_start < pa_end) {
1972		mmu_booke_kenter(mmu, va, pa_start);
1973		va += PAGE_SIZE;
1974		pa_start += PAGE_SIZE;
1975	}
1976	*virt = va;
1977
1978	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1979	return (sva);
1980}
1981
1982/*
1983 * The pmap must be activated before it's address space can be accessed in any
1984 * way.
1985 */
1986static void
1987mmu_booke_activate(mmu_t mmu, struct thread *td)
1988{
1989	pmap_t pmap;
1990	u_int cpuid;
1991
1992	pmap = &td->td_proc->p_vmspace->vm_pmap;
1993
1994	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1995	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1996
1997	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1998
1999	sched_pin();
2000
2001	cpuid = PCPU_GET(cpuid);
2002	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2003	PCPU_SET(curpmap, pmap);
2004
2005	if (pmap->pm_tid[cpuid] == TID_NONE)
2006		tid_alloc(pmap);
2007
2008	/* Load PID0 register with pmap tid value. */
2009	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
2010	__asm __volatile("isync");
2011
2012	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
2013
2014	sched_unpin();
2015
2016	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2017	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2018}
2019
2020/*
2021 * Deactivate the specified process's address space.
2022 */
2023static void
2024mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2025{
2026	pmap_t pmap;
2027
2028	pmap = &td->td_proc->p_vmspace->vm_pmap;
2029
2030	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
2031	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2032
2033	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2034
2035	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2036	PCPU_SET(curpmap, NULL);
2037}
2038
2039/*
2040 * Copy the range specified by src_addr/len
2041 * from the source map to the range dst_addr/len
2042 * in the destination map.
2043 *
2044 * This routine is only advisory and need not do anything.
2045 */
2046static void
2047mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2048    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2049{
2050
2051}
2052
2053/*
2054 * Set the physical protection on the specified range of this map as requested.
2055 */
2056static void
2057mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2058    vm_prot_t prot)
2059{
2060	vm_offset_t va;
2061	vm_page_t m;
2062	pte_t *pte;
2063
2064	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2065		mmu_booke_remove(mmu, pmap, sva, eva);
2066		return;
2067	}
2068
2069	if (prot & VM_PROT_WRITE)
2070		return;
2071
2072	PMAP_LOCK(pmap);
2073	for (va = sva; va < eva; va += PAGE_SIZE) {
2074		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2075			if (PTE_ISVALID(pte)) {
2076				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2077
2078				mtx_lock_spin(&tlbivax_mutex);
2079				tlb_miss_lock();
2080
2081				/* Handle modified pages. */
2082				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2083					vm_page_dirty(m);
2084
2085				tlb0_flush_entry(va);
2086				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2087
2088				tlb_miss_unlock();
2089				mtx_unlock_spin(&tlbivax_mutex);
2090			}
2091		}
2092	}
2093	PMAP_UNLOCK(pmap);
2094}
2095
2096/*
2097 * Clear the write and modified bits in each of the given page's mappings.
2098 */
2099static void
2100mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2101{
2102	pv_entry_t pv;
2103	pte_t *pte;
2104
2105	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2106	    ("mmu_booke_remove_write: page %p is not managed", m));
2107
2108	/*
2109	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2110	 * set by another thread while the object is locked.  Thus,
2111	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2112	 */
2113	VM_OBJECT_ASSERT_WLOCKED(m->object);
2114	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2115		return;
2116	rw_wlock(&pvh_global_lock);
2117	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2118		PMAP_LOCK(pv->pv_pmap);
2119		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2120			if (PTE_ISVALID(pte)) {
2121				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2122
2123				mtx_lock_spin(&tlbivax_mutex);
2124				tlb_miss_lock();
2125
2126				/* Handle modified pages. */
2127				if (PTE_ISMODIFIED(pte))
2128					vm_page_dirty(m);
2129
2130				/* Flush mapping from TLB0. */
2131				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2132
2133				tlb_miss_unlock();
2134				mtx_unlock_spin(&tlbivax_mutex);
2135			}
2136		}
2137		PMAP_UNLOCK(pv->pv_pmap);
2138	}
2139	vm_page_aflag_clear(m, PGA_WRITEABLE);
2140	rw_wunlock(&pvh_global_lock);
2141}
2142
2143static void
2144mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2145{
2146	pte_t *pte;
2147	pmap_t pmap;
2148	vm_page_t m;
2149	vm_offset_t addr;
2150	vm_paddr_t pa = 0;
2151	int active, valid;
2152
2153	va = trunc_page(va);
2154	sz = round_page(sz);
2155
2156	rw_wlock(&pvh_global_lock);
2157	pmap = PCPU_GET(curpmap);
2158	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2159	while (sz > 0) {
2160		PMAP_LOCK(pm);
2161		pte = pte_find(mmu, pm, va);
2162		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2163		if (valid)
2164			pa = PTE_PA(pte);
2165		PMAP_UNLOCK(pm);
2166		if (valid) {
2167			if (!active) {
2168				/* Create a mapping in the active pmap. */
2169				addr = 0;
2170				m = PHYS_TO_VM_PAGE(pa);
2171				PMAP_LOCK(pmap);
2172				pte_enter(mmu, pmap, m, addr,
2173				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2174				__syncicache((void *)addr, PAGE_SIZE);
2175				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2176				PMAP_UNLOCK(pmap);
2177			} else
2178				__syncicache((void *)va, PAGE_SIZE);
2179		}
2180		va += PAGE_SIZE;
2181		sz -= PAGE_SIZE;
2182	}
2183	rw_wunlock(&pvh_global_lock);
2184}
2185
2186/*
2187 * Atomically extract and hold the physical page with the given
2188 * pmap and virtual address pair if that mapping permits the given
2189 * protection.
2190 */
2191static vm_page_t
2192mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2193    vm_prot_t prot)
2194{
2195	pte_t *pte;
2196	vm_page_t m;
2197	uint32_t pte_wbit;
2198	vm_paddr_t pa;
2199
2200	m = NULL;
2201	pa = 0;
2202	PMAP_LOCK(pmap);
2203retry:
2204	pte = pte_find(mmu, pmap, va);
2205	if ((pte != NULL) && PTE_ISVALID(pte)) {
2206		if (pmap == kernel_pmap)
2207			pte_wbit = PTE_SW;
2208		else
2209			pte_wbit = PTE_UW;
2210
2211		if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2212			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2213				goto retry;
2214			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2215			vm_page_hold(m);
2216		}
2217	}
2218
2219	PA_UNLOCK_COND(pa);
2220	PMAP_UNLOCK(pmap);
2221	return (m);
2222}
2223
2224/*
2225 * Initialize a vm_page's machine-dependent fields.
2226 */
2227static void
2228mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2229{
2230
2231	TAILQ_INIT(&m->md.pv_list);
2232}
2233
2234/*
2235 * mmu_booke_zero_page_area zeros the specified hardware page by
2236 * mapping it into virtual memory and using bzero to clear
2237 * its contents.
2238 *
2239 * off and size must reside within a single page.
2240 */
2241static void
2242mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2243{
2244	vm_offset_t va;
2245
2246	/* XXX KASSERT off and size are within a single page? */
2247
2248	mtx_lock(&zero_page_mutex);
2249	va = zero_page_va;
2250
2251	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2252	bzero((caddr_t)va + off, size);
2253	mmu_booke_kremove(mmu, va);
2254
2255	mtx_unlock(&zero_page_mutex);
2256}
2257
2258/*
2259 * mmu_booke_zero_page zeros the specified hardware page.
2260 */
2261static void
2262mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2263{
2264	vm_offset_t off, va;
2265
2266	mtx_lock(&zero_page_mutex);
2267	va = zero_page_va;
2268
2269	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2270	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2271		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2272	mmu_booke_kremove(mmu, va);
2273
2274	mtx_unlock(&zero_page_mutex);
2275}
2276
2277/*
2278 * mmu_booke_copy_page copies the specified (machine independent) page by
2279 * mapping the page into virtual memory and using memcopy to copy the page,
2280 * one machine dependent page at a time.
2281 */
2282static void
2283mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2284{
2285	vm_offset_t sva, dva;
2286
2287	sva = copy_page_src_va;
2288	dva = copy_page_dst_va;
2289
2290	mtx_lock(&copy_page_mutex);
2291	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2292	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2293	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2294	mmu_booke_kremove(mmu, dva);
2295	mmu_booke_kremove(mmu, sva);
2296	mtx_unlock(&copy_page_mutex);
2297}
2298
2299static inline void
2300mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2301    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2302{
2303	void *a_cp, *b_cp;
2304	vm_offset_t a_pg_offset, b_pg_offset;
2305	int cnt;
2306
2307	mtx_lock(&copy_page_mutex);
2308	while (xfersize > 0) {
2309		a_pg_offset = a_offset & PAGE_MASK;
2310		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2311		mmu_booke_kenter(mmu, copy_page_src_va,
2312		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2313		a_cp = (char *)copy_page_src_va + a_pg_offset;
2314		b_pg_offset = b_offset & PAGE_MASK;
2315		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2316		mmu_booke_kenter(mmu, copy_page_dst_va,
2317		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2318		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2319		bcopy(a_cp, b_cp, cnt);
2320		mmu_booke_kremove(mmu, copy_page_dst_va);
2321		mmu_booke_kremove(mmu, copy_page_src_va);
2322		a_offset += cnt;
2323		b_offset += cnt;
2324		xfersize -= cnt;
2325	}
2326	mtx_unlock(&copy_page_mutex);
2327}
2328
2329/*
2330 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2331 * into virtual memory and using bzero to clear its contents. This is intended
2332 * to be called from the vm_pagezero process only and outside of Giant. No
2333 * lock is required.
2334 */
2335static void
2336mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2337{
2338	vm_offset_t va;
2339
2340	va = zero_page_idle_va;
2341	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2342	bzero((caddr_t)va, PAGE_SIZE);
2343	mmu_booke_kremove(mmu, va);
2344}
2345
2346static vm_offset_t
2347mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2348{
2349	vm_paddr_t paddr;
2350	vm_offset_t qaddr;
2351	uint32_t flags;
2352	pte_t *pte;
2353
2354	paddr = VM_PAGE_TO_PHYS(m);
2355
2356	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2357	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
2358	flags |= PTE_PS_4KB;
2359
2360	critical_enter();
2361	qaddr = PCPU_GET(qmap_addr);
2362
2363	pte = pte_find(mmu, kernel_pmap, qaddr);
2364
2365	KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2366
2367	/*
2368	 * XXX: tlbivax is broadcast to other cores, but qaddr should
2369 	 * not be present in other TLBs.  Is there a better instruction
2370	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2371	 */
2372	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2373	__asm __volatile("isync; msync");
2374
2375	*pte = PTE_RPN_FROM_PA(paddr) | flags;
2376
2377	/* Flush the real memory from the instruction cache. */
2378	if ((flags & (PTE_I | PTE_G)) == 0)
2379		__syncicache((void *)qaddr, PAGE_SIZE);
2380
2381	return (qaddr);
2382}
2383
2384static void
2385mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
2386{
2387	pte_t *pte;
2388
2389	pte = pte_find(mmu, kernel_pmap, addr);
2390
2391	KASSERT(PCPU_GET(qmap_addr) == addr,
2392	    ("mmu_booke_quick_remove_page: invalid address"));
2393	KASSERT(*pte != 0,
2394	    ("mmu_booke_quick_remove_page: PTE not in use"));
2395
2396	*pte = 0;
2397	critical_exit();
2398}
2399
2400/*
2401 * Return whether or not the specified physical page was modified
2402 * in any of physical maps.
2403 */
2404static boolean_t
2405mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2406{
2407	pte_t *pte;
2408	pv_entry_t pv;
2409	boolean_t rv;
2410
2411	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2412	    ("mmu_booke_is_modified: page %p is not managed", m));
2413	rv = FALSE;
2414
2415	/*
2416	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2417	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2418	 * is clear, no PTEs can be modified.
2419	 */
2420	VM_OBJECT_ASSERT_WLOCKED(m->object);
2421	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2422		return (rv);
2423	rw_wlock(&pvh_global_lock);
2424	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2425		PMAP_LOCK(pv->pv_pmap);
2426		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2427		    PTE_ISVALID(pte)) {
2428			if (PTE_ISMODIFIED(pte))
2429				rv = TRUE;
2430		}
2431		PMAP_UNLOCK(pv->pv_pmap);
2432		if (rv)
2433			break;
2434	}
2435	rw_wunlock(&pvh_global_lock);
2436	return (rv);
2437}
2438
2439/*
2440 * Return whether or not the specified virtual address is eligible
2441 * for prefault.
2442 */
2443static boolean_t
2444mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2445{
2446
2447	return (FALSE);
2448}
2449
2450/*
2451 * Return whether or not the specified physical page was referenced
2452 * in any physical maps.
2453 */
2454static boolean_t
2455mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2456{
2457	pte_t *pte;
2458	pv_entry_t pv;
2459	boolean_t rv;
2460
2461	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2462	    ("mmu_booke_is_referenced: page %p is not managed", m));
2463	rv = FALSE;
2464	rw_wlock(&pvh_global_lock);
2465	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2466		PMAP_LOCK(pv->pv_pmap);
2467		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2468		    PTE_ISVALID(pte)) {
2469			if (PTE_ISREFERENCED(pte))
2470				rv = TRUE;
2471		}
2472		PMAP_UNLOCK(pv->pv_pmap);
2473		if (rv)
2474			break;
2475	}
2476	rw_wunlock(&pvh_global_lock);
2477	return (rv);
2478}
2479
2480/*
2481 * Clear the modify bits on the specified physical page.
2482 */
2483static void
2484mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2485{
2486	pte_t *pte;
2487	pv_entry_t pv;
2488
2489	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2490	    ("mmu_booke_clear_modify: page %p is not managed", m));
2491	VM_OBJECT_ASSERT_WLOCKED(m->object);
2492	KASSERT(!vm_page_xbusied(m),
2493	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2494
2495	/*
2496	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2497	 * If the object containing the page is locked and the page is not
2498	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2499	 */
2500	if ((m->aflags & PGA_WRITEABLE) == 0)
2501		return;
2502	rw_wlock(&pvh_global_lock);
2503	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2504		PMAP_LOCK(pv->pv_pmap);
2505		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2506		    PTE_ISVALID(pte)) {
2507			mtx_lock_spin(&tlbivax_mutex);
2508			tlb_miss_lock();
2509
2510			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2511				tlb0_flush_entry(pv->pv_va);
2512				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2513				    PTE_REFERENCED);
2514			}
2515
2516			tlb_miss_unlock();
2517			mtx_unlock_spin(&tlbivax_mutex);
2518		}
2519		PMAP_UNLOCK(pv->pv_pmap);
2520	}
2521	rw_wunlock(&pvh_global_lock);
2522}
2523
2524/*
2525 * Return a count of reference bits for a page, clearing those bits.
2526 * It is not necessary for every reference bit to be cleared, but it
2527 * is necessary that 0 only be returned when there are truly no
2528 * reference bits set.
2529 *
2530 * As an optimization, update the page's dirty field if a modified bit is
2531 * found while counting reference bits.  This opportunistic update can be
2532 * performed at low cost and can eliminate the need for some future calls
2533 * to pmap_is_modified().  However, since this function stops after
2534 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
2535 * dirty pages.  Those dirty pages will only be detected by a future call
2536 * to pmap_is_modified().
2537 */
2538static int
2539mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2540{
2541	pte_t *pte;
2542	pv_entry_t pv;
2543	int count;
2544
2545	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2546	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2547	count = 0;
2548	rw_wlock(&pvh_global_lock);
2549	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2550		PMAP_LOCK(pv->pv_pmap);
2551		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2552		    PTE_ISVALID(pte)) {
2553			if (PTE_ISMODIFIED(pte))
2554				vm_page_dirty(m);
2555			if (PTE_ISREFERENCED(pte)) {
2556				mtx_lock_spin(&tlbivax_mutex);
2557				tlb_miss_lock();
2558
2559				tlb0_flush_entry(pv->pv_va);
2560				*pte &= ~PTE_REFERENCED;
2561
2562				tlb_miss_unlock();
2563				mtx_unlock_spin(&tlbivax_mutex);
2564
2565				if (++count >= PMAP_TS_REFERENCED_MAX) {
2566					PMAP_UNLOCK(pv->pv_pmap);
2567					break;
2568				}
2569			}
2570		}
2571		PMAP_UNLOCK(pv->pv_pmap);
2572	}
2573	rw_wunlock(&pvh_global_lock);
2574	return (count);
2575}
2576
2577/*
2578 * Clear the wired attribute from the mappings for the specified range of
2579 * addresses in the given pmap.  Every valid mapping within that range must
2580 * have the wired attribute set.  In contrast, invalid mappings cannot have
2581 * the wired attribute set, so they are ignored.
2582 *
2583 * The wired attribute of the page table entry is not a hardware feature, so
2584 * there is no need to invalidate any TLB entries.
2585 */
2586static void
2587mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2588{
2589	vm_offset_t va;
2590	pte_t *pte;
2591
2592	PMAP_LOCK(pmap);
2593	for (va = sva; va < eva; va += PAGE_SIZE) {
2594		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2595		    PTE_ISVALID(pte)) {
2596			if (!PTE_ISWIRED(pte))
2597				panic("mmu_booke_unwire: pte %p isn't wired",
2598				    pte);
2599			*pte &= ~PTE_WIRED;
2600			pmap->pm_stats.wired_count--;
2601		}
2602	}
2603	PMAP_UNLOCK(pmap);
2604
2605}
2606
2607/*
2608 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2609 * page.  This count may be changed upwards or downwards in the future; it is
2610 * only necessary that true be returned for a small subset of pmaps for proper
2611 * page aging.
2612 */
2613static boolean_t
2614mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2615{
2616	pv_entry_t pv;
2617	int loops;
2618	boolean_t rv;
2619
2620	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2621	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2622	loops = 0;
2623	rv = FALSE;
2624	rw_wlock(&pvh_global_lock);
2625	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2626		if (pv->pv_pmap == pmap) {
2627			rv = TRUE;
2628			break;
2629		}
2630		if (++loops >= 16)
2631			break;
2632	}
2633	rw_wunlock(&pvh_global_lock);
2634	return (rv);
2635}
2636
2637/*
2638 * Return the number of managed mappings to the given physical page that are
2639 * wired.
2640 */
2641static int
2642mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2643{
2644	pv_entry_t pv;
2645	pte_t *pte;
2646	int count = 0;
2647
2648	if ((m->oflags & VPO_UNMANAGED) != 0)
2649		return (count);
2650	rw_wlock(&pvh_global_lock);
2651	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2652		PMAP_LOCK(pv->pv_pmap);
2653		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2654			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2655				count++;
2656		PMAP_UNLOCK(pv->pv_pmap);
2657	}
2658	rw_wunlock(&pvh_global_lock);
2659	return (count);
2660}
2661
2662static int
2663mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2664{
2665	int i;
2666	vm_offset_t va;
2667
2668	/*
2669	 * This currently does not work for entries that
2670	 * overlap TLB1 entries.
2671	 */
2672	for (i = 0; i < TLB1_ENTRIES; i ++) {
2673		if (tlb1_iomapped(i, pa, size, &va) == 0)
2674			return (0);
2675	}
2676
2677	return (EFAULT);
2678}
2679
2680void
2681mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2682{
2683	vm_paddr_t ppa;
2684	vm_offset_t ofs;
2685	vm_size_t gran;
2686
2687	/* Minidumps are based on virtual memory addresses. */
2688	if (do_minidump) {
2689		*va = (void *)(vm_offset_t)pa;
2690		return;
2691	}
2692
2693	/* Raw physical memory dumps don't have a virtual address. */
2694	/* We always map a 256MB page at 256M. */
2695	gran = 256 * 1024 * 1024;
2696	ppa = rounddown2(pa, gran);
2697	ofs = pa - ppa;
2698	*va = (void *)gran;
2699	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2700
2701	if (sz > (gran - ofs))
2702		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2703		    _TLB_ENTRY_IO);
2704}
2705
2706void
2707mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
2708{
2709	vm_paddr_t ppa;
2710	vm_offset_t ofs;
2711	vm_size_t gran;
2712	tlb_entry_t e;
2713	int i;
2714
2715	/* Minidumps are based on virtual memory addresses. */
2716	/* Nothing to do... */
2717	if (do_minidump)
2718		return;
2719
2720	for (i = 0; i < TLB1_ENTRIES; i++) {
2721		tlb1_read_entry(&e, i);
2722		if (!(e.mas1 & MAS1_VALID))
2723			break;
2724	}
2725
2726	/* Raw physical memory dumps don't have a virtual address. */
2727	i--;
2728	e.mas1 = 0;
2729	e.mas2 = 0;
2730	e.mas3 = 0;
2731	tlb1_write_entry(&e, i);
2732
2733	gran = 256 * 1024 * 1024;
2734	ppa = rounddown2(pa, gran);
2735	ofs = pa - ppa;
2736	if (sz > (gran - ofs)) {
2737		i--;
2738		e.mas1 = 0;
2739		e.mas2 = 0;
2740		e.mas3 = 0;
2741		tlb1_write_entry(&e, i);
2742	}
2743}
2744
2745extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2746
2747void
2748mmu_booke_scan_init(mmu_t mmu)
2749{
2750	vm_offset_t va;
2751	pte_t *pte;
2752	int i;
2753
2754	if (!do_minidump) {
2755		/* Initialize phys. segments for dumpsys(). */
2756		memset(&dump_map, 0, sizeof(dump_map));
2757		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2758		    &availmem_regions_sz);
2759		for (i = 0; i < physmem_regions_sz; i++) {
2760			dump_map[i].pa_start = physmem_regions[i].mr_start;
2761			dump_map[i].pa_size = physmem_regions[i].mr_size;
2762		}
2763		return;
2764	}
2765
2766	/* Virtual segments for minidumps: */
2767	memset(&dump_map, 0, sizeof(dump_map));
2768
2769	/* 1st: kernel .data and .bss. */
2770	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2771	dump_map[0].pa_size =
2772	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2773
2774	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2775	dump_map[1].pa_start = data_start;
2776	dump_map[1].pa_size = data_end - data_start;
2777
2778	/* 3rd: kernel VM. */
2779	va = dump_map[1].pa_start + dump_map[1].pa_size;
2780	/* Find start of next chunk (from va). */
2781	while (va < virtual_end) {
2782		/* Don't dump the buffer cache. */
2783		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2784			va = kmi.buffer_eva;
2785			continue;
2786		}
2787		pte = pte_find(mmu, kernel_pmap, va);
2788		if (pte != NULL && PTE_ISVALID(pte))
2789			break;
2790		va += PAGE_SIZE;
2791	}
2792	if (va < virtual_end) {
2793		dump_map[2].pa_start = va;
2794		va += PAGE_SIZE;
2795		/* Find last page in chunk. */
2796		while (va < virtual_end) {
2797			/* Don't run into the buffer cache. */
2798			if (va == kmi.buffer_sva)
2799				break;
2800			pte = pte_find(mmu, kernel_pmap, va);
2801			if (pte == NULL || !PTE_ISVALID(pte))
2802				break;
2803			va += PAGE_SIZE;
2804		}
2805		dump_map[2].pa_size = va - dump_map[2].pa_start;
2806	}
2807}
2808
2809/*
2810 * Map a set of physical memory pages into the kernel virtual address space.
2811 * Return a pointer to where it is mapped. This routine is intended to be used
2812 * for mapping device memory, NOT real memory.
2813 */
2814static void *
2815mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2816{
2817
2818	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2819}
2820
2821static void *
2822mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2823{
2824	tlb_entry_t e;
2825	void *res;
2826	uintptr_t va, tmpva;
2827	vm_size_t sz;
2828	int i;
2829
2830	/*
2831	 * Check if this is premapped in TLB1. Note: this should probably also
2832	 * check whether a sequence of TLB1 entries exist that match the
2833	 * requirement, but now only checks the easy case.
2834	 */
2835	if (ma == VM_MEMATTR_DEFAULT) {
2836		for (i = 0; i < TLB1_ENTRIES; i++) {
2837			tlb1_read_entry(&e, i);
2838			if (!(e.mas1 & MAS1_VALID))
2839				continue;
2840			if (pa >= e.phys &&
2841			    (pa + size) <= (e.phys + e.size))
2842				return (void *)(e.virt +
2843				    (vm_offset_t)(pa - e.phys));
2844		}
2845	}
2846
2847	size = roundup(size, PAGE_SIZE);
2848
2849	/*
2850	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2851	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2852	 */
2853#ifdef SPARSE_MAPDEV
2854	/*
2855	 * With a sparse mapdev, align to the largest starting region.  This
2856	 * could feasibly be optimized for a 'best-fit' alignment, but that
2857	 * calculation could be very costly.
2858	 */
2859	do {
2860	    tmpva = tlb1_map_base;
2861	    va = roundup(tlb1_map_base, 1 << flsl(size));
2862	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2863#else
2864	va = atomic_fetchadd_int(&tlb1_map_base, size);
2865#endif
2866	res = (void *)va;
2867
2868	do {
2869		sz = 1 << (ilog2(size) & ~1);
2870		if (va % sz != 0) {
2871			do {
2872				sz >>= 2;
2873			} while (va % sz != 0);
2874		}
2875		if (bootverbose)
2876			printf("Wiring VA=%x to PA=%jx (size=%x)\n",
2877			    va, (uintmax_t)pa, sz);
2878		tlb1_set_entry(va, pa, sz,
2879		    _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma));
2880		size -= sz;
2881		pa += sz;
2882		va += sz;
2883	} while (size > 0);
2884
2885	return (res);
2886}
2887
2888/*
2889 * 'Unmap' a range mapped by mmu_booke_mapdev().
2890 */
2891static void
2892mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2893{
2894#ifdef SUPPORTS_SHRINKING_TLB1
2895	vm_offset_t base, offset;
2896
2897	/*
2898	 * Unmap only if this is inside kernel virtual space.
2899	 */
2900	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2901		base = trunc_page(va);
2902		offset = va & PAGE_MASK;
2903		size = roundup(offset + size, PAGE_SIZE);
2904		kva_free(base, size);
2905	}
2906#endif
2907}
2908
2909/*
2910 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2911 * specified pmap. This eliminates the blast of soft faults on process startup
2912 * and immediately after an mmap.
2913 */
2914static void
2915mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2916    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2917{
2918
2919	VM_OBJECT_ASSERT_WLOCKED(object);
2920	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2921	    ("mmu_booke_object_init_pt: non-device object"));
2922}
2923
2924/*
2925 * Perform the pmap work for mincore.
2926 */
2927static int
2928mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2929    vm_paddr_t *locked_pa)
2930{
2931
2932	/* XXX: this should be implemented at some point */
2933	return (0);
2934}
2935
2936static int
2937mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz,
2938    vm_memattr_t mode)
2939{
2940	vm_offset_t va;
2941	pte_t *pte;
2942	int i, j;
2943	tlb_entry_t e;
2944
2945	/* Check TLB1 mappings */
2946	for (i = 0; i < TLB1_ENTRIES; i++) {
2947		tlb1_read_entry(&e, i);
2948		if (!(e.mas1 & MAS1_VALID))
2949			continue;
2950		if (addr >= e.virt && addr < e.virt + e.size)
2951			break;
2952	}
2953	if (i < TLB1_ENTRIES) {
2954		/* Only allow full mappings to be modified for now. */
2955		/* Validate the range. */
2956		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2957			tlb1_read_entry(&e, j);
2958			if (va != e.virt || (sz - (va - addr) < e.size))
2959				return (EINVAL);
2960		}
2961		for (va = addr; va < addr + sz; va += e.size, i++) {
2962			tlb1_read_entry(&e, i);
2963			e.mas2 &= ~MAS2_WIMGE_MASK;
2964			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2965
2966			/*
2967			 * Write it out to the TLB.  Should really re-sync with other
2968			 * cores.
2969			 */
2970			tlb1_write_entry(&e, i);
2971		}
2972		return (0);
2973	}
2974
2975	/* Not in TLB1, try through pmap */
2976	/* First validate the range. */
2977	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2978		pte = pte_find(mmu, kernel_pmap, va);
2979		if (pte == NULL || !PTE_ISVALID(pte))
2980			return (EINVAL);
2981	}
2982
2983	mtx_lock_spin(&tlbivax_mutex);
2984	tlb_miss_lock();
2985	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2986		pte = pte_find(mmu, kernel_pmap, va);
2987		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2988		*pte |= tlb_calc_wimg(PTE_PA(pte), mode << PTE_MAS2_SHIFT);
2989		tlb0_flush_entry(va);
2990	}
2991	tlb_miss_unlock();
2992	mtx_unlock_spin(&tlbivax_mutex);
2993
2994	return (pte_vatopa(mmu, kernel_pmap, va));
2995}
2996
2997/**************************************************************************/
2998/* TID handling */
2999/**************************************************************************/
3000
3001/*
3002 * Allocate a TID. If necessary, steal one from someone else.
3003 * The new TID is flushed from the TLB before returning.
3004 */
3005static tlbtid_t
3006tid_alloc(pmap_t pmap)
3007{
3008	tlbtid_t tid;
3009	int thiscpu;
3010
3011	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
3012
3013	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
3014
3015	thiscpu = PCPU_GET(cpuid);
3016
3017	tid = PCPU_GET(tid_next);
3018	if (tid > TID_MAX)
3019		tid = TID_MIN;
3020	PCPU_SET(tid_next, tid + 1);
3021
3022	/* If we are stealing TID then clear the relevant pmap's field */
3023	if (tidbusy[thiscpu][tid] != NULL) {
3024
3025		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
3026
3027		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
3028
3029		/* Flush all entries from TLB0 matching this TID. */
3030		tid_flush(tid);
3031	}
3032
3033	tidbusy[thiscpu][tid] = pmap;
3034	pmap->pm_tid[thiscpu] = tid;
3035	__asm __volatile("msync; isync");
3036
3037	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
3038	    PCPU_GET(tid_next));
3039
3040	return (tid);
3041}
3042
3043/**************************************************************************/
3044/* TLB0 handling */
3045/**************************************************************************/
3046
3047static void
3048tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3049    uint32_t mas7)
3050{
3051	int as;
3052	char desc[3];
3053	tlbtid_t tid;
3054	vm_size_t size;
3055	unsigned int tsize;
3056
3057	desc[2] = '\0';
3058	if (mas1 & MAS1_VALID)
3059		desc[0] = 'V';
3060	else
3061		desc[0] = ' ';
3062
3063	if (mas1 & MAS1_IPROT)
3064		desc[1] = 'P';
3065	else
3066		desc[1] = ' ';
3067
3068	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3069	tid = MAS1_GETTID(mas1);
3070
3071	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3072	size = 0;
3073	if (tsize)
3074		size = tsize2size(tsize);
3075
3076	debugf("%3d: (%s) [AS=%d] "
3077	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
3078	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3079	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
3080}
3081
3082/* Convert TLB0 va and way number to tlb0[] table index. */
3083static inline unsigned int
3084tlb0_tableidx(vm_offset_t va, unsigned int way)
3085{
3086	unsigned int idx;
3087
3088	idx = (way * TLB0_ENTRIES_PER_WAY);
3089	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
3090	return (idx);
3091}
3092
3093/*
3094 * Invalidate TLB0 entry.
3095 */
3096static inline void
3097tlb0_flush_entry(vm_offset_t va)
3098{
3099
3100	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3101
3102	mtx_assert(&tlbivax_mutex, MA_OWNED);
3103
3104	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3105	__asm __volatile("isync; msync");
3106	__asm __volatile("tlbsync; msync");
3107
3108	CTR1(KTR_PMAP, "%s: e", __func__);
3109}
3110
3111/* Print out contents of the MAS registers for each TLB0 entry */
3112void
3113tlb0_print_tlbentries(void)
3114{
3115	uint32_t mas0, mas1, mas2, mas3, mas7;
3116	int entryidx, way, idx;
3117
3118	debugf("TLB0 entries:\n");
3119	for (way = 0; way < TLB0_WAYS; way ++)
3120		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3121
3122			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3123			mtspr(SPR_MAS0, mas0);
3124			__asm __volatile("isync");
3125
3126			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3127			mtspr(SPR_MAS2, mas2);
3128
3129			__asm __volatile("isync; tlbre");
3130
3131			mas1 = mfspr(SPR_MAS1);
3132			mas2 = mfspr(SPR_MAS2);
3133			mas3 = mfspr(SPR_MAS3);
3134			mas7 = mfspr(SPR_MAS7);
3135
3136			idx = tlb0_tableidx(mas2, way);
3137			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3138		}
3139}
3140
3141/**************************************************************************/
3142/* TLB1 handling */
3143/**************************************************************************/
3144
3145/*
3146 * TLB1 mapping notes:
3147 *
3148 * TLB1[0]	Kernel text and data.
3149 * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3150 *		windows, other devices mappings.
3151 */
3152
3153 /*
3154 * Read an entry from given TLB1 slot.
3155 */
3156void
3157tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
3158{
3159	register_t msr;
3160	uint32_t mas0;
3161
3162	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
3163
3164	msr = mfmsr();
3165	__asm __volatile("wrteei 0");
3166
3167	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
3168	mtspr(SPR_MAS0, mas0);
3169	__asm __volatile("isync; tlbre");
3170
3171	entry->mas1 = mfspr(SPR_MAS1);
3172	entry->mas2 = mfspr(SPR_MAS2);
3173	entry->mas3 = mfspr(SPR_MAS3);
3174
3175	switch ((mfpvr() >> 16) & 0xFFFF) {
3176	case FSL_E500v2:
3177	case FSL_E500mc:
3178	case FSL_E5500:
3179		entry->mas7 = mfspr(SPR_MAS7);
3180		break;
3181	default:
3182		entry->mas7 = 0;
3183		break;
3184	}
3185	mtmsr(msr);
3186
3187	entry->virt = entry->mas2 & MAS2_EPN_MASK;
3188	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
3189	    (entry->mas3 & MAS3_RPN);
3190	entry->size =
3191	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
3192}
3193
3194/*
3195 * Write given entry to TLB1 hardware.
3196 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
3197 */
3198static void
3199tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
3200{
3201	register_t msr;
3202	uint32_t mas0;
3203
3204	//debugf("tlb1_write_entry: s\n");
3205
3206	/* Select entry */
3207	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
3208	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
3209
3210	msr = mfmsr();
3211	__asm __volatile("wrteei 0");
3212
3213	mtspr(SPR_MAS0, mas0);
3214	__asm __volatile("isync");
3215	mtspr(SPR_MAS1, e->mas1);
3216	__asm __volatile("isync");
3217	mtspr(SPR_MAS2, e->mas2);
3218	__asm __volatile("isync");
3219	mtspr(SPR_MAS3, e->mas3);
3220	__asm __volatile("isync");
3221	switch ((mfpvr() >> 16) & 0xFFFF) {
3222	case FSL_E500mc:
3223	case FSL_E5500:
3224		mtspr(SPR_MAS8, 0);
3225		__asm __volatile("isync");
3226		/* FALLTHROUGH */
3227	case FSL_E500v2:
3228		mtspr(SPR_MAS7, e->mas7);
3229		__asm __volatile("isync");
3230		break;
3231	default:
3232		break;
3233	}
3234
3235	__asm __volatile("tlbwe; isync; msync");
3236	mtmsr(msr);
3237
3238	//debugf("tlb1_write_entry: e\n");
3239}
3240
3241/*
3242 * Return the largest uint value log such that 2^log <= num.
3243 */
3244static unsigned int
3245ilog2(unsigned int num)
3246{
3247	int lz;
3248
3249	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3250	return (31 - lz);
3251}
3252
3253/*
3254 * Convert TLB TSIZE value to mapped region size.
3255 */
3256static vm_size_t
3257tsize2size(unsigned int tsize)
3258{
3259
3260	/*
3261	 * size = 4^tsize KB
3262	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3263	 */
3264
3265	return ((1 << (2 * tsize)) * 1024);
3266}
3267
3268/*
3269 * Convert region size (must be power of 4) to TLB TSIZE value.
3270 */
3271static unsigned int
3272size2tsize(vm_size_t size)
3273{
3274
3275	return (ilog2(size) / 2 - 5);
3276}
3277
3278/*
3279 * Register permanent kernel mapping in TLB1.
3280 *
3281 * Entries are created starting from index 0 (current free entry is
3282 * kept in tlb1_idx) and are not supposed to be invalidated.
3283 */
3284int
3285tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3286    uint32_t flags)
3287{
3288	tlb_entry_t e;
3289	uint32_t ts, tid;
3290	int tsize, index;
3291
3292	for (index = 0; index < TLB1_ENTRIES; index++) {
3293		tlb1_read_entry(&e, index);
3294		if ((e.mas1 & MAS1_VALID) == 0)
3295			break;
3296		/* Check if we're just updating the flags, and update them. */
3297		if (e.phys == pa && e.virt == va && e.size == size) {
3298			e.mas2 = (va & MAS2_EPN_MASK) | flags;
3299			tlb1_write_entry(&e, index);
3300			return (0);
3301		}
3302	}
3303	if (index >= TLB1_ENTRIES) {
3304		printf("tlb1_set_entry: TLB1 full!\n");
3305		return (-1);
3306	}
3307
3308	/* Convert size to TSIZE */
3309	tsize = size2tsize(size);
3310
3311	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3312	/* XXX TS is hard coded to 0 for now as we only use single address space */
3313	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3314
3315	e.phys = pa;
3316	e.virt = va;
3317	e.size = size;
3318	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3319	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3320	e.mas2 = (va & MAS2_EPN_MASK) | flags;
3321
3322	/* Set supervisor RWX permission bits */
3323	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3324	e.mas7 = (pa >> 32) & MAS7_RPN;
3325
3326	tlb1_write_entry(&e, index);
3327
3328	/*
3329	 * XXX in general TLB1 updates should be propagated between CPUs,
3330	 * since current design assumes to have the same TLB1 set-up on all
3331	 * cores.
3332	 */
3333	return (0);
3334}
3335
3336/*
3337 * Map in contiguous RAM region into the TLB1 using maximum of
3338 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3339 *
3340 * If necessary round up last entry size and return total size
3341 * used by all allocated entries.
3342 */
3343vm_size_t
3344tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3345{
3346	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3347	vm_size_t mapped, pgsz, base, mask;
3348	int idx, nents;
3349
3350	/* Round up to the next 1M */
3351	size = roundup2(size, 1 << 20);
3352
3353	mapped = 0;
3354	idx = 0;
3355	base = va;
3356	pgsz = 64*1024*1024;
3357	while (mapped < size) {
3358		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3359			while (pgsz > (size - mapped))
3360				pgsz >>= 2;
3361			pgs[idx++] = pgsz;
3362			mapped += pgsz;
3363		}
3364
3365		/* We under-map. Correct for this. */
3366		if (mapped < size) {
3367			while (pgs[idx - 1] == pgsz) {
3368				idx--;
3369				mapped -= pgsz;
3370			}
3371			/* XXX We may increase beyond out starting point. */
3372			pgsz <<= 2;
3373			pgs[idx++] = pgsz;
3374			mapped += pgsz;
3375		}
3376	}
3377
3378	nents = idx;
3379	mask = pgs[0] - 1;
3380	/* Align address to the boundary */
3381	if (va & mask) {
3382		va = (va + mask) & ~mask;
3383		pa = (pa + mask) & ~mask;
3384	}
3385
3386	for (idx = 0; idx < nents; idx++) {
3387		pgsz = pgs[idx];
3388		debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz);
3389		tlb1_set_entry(va, pa, pgsz,
3390		    _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM);
3391		pa += pgsz;
3392		va += pgsz;
3393	}
3394
3395	mapped = (va - base);
3396#ifdef __powerpc64__
3397	printf("mapped size 0x%016lx (wasted space 0x%16lx)\n",
3398#else
3399	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3400#endif
3401	    mapped, mapped - size);
3402	return (mapped);
3403}
3404
3405/*
3406 * TLB1 initialization routine, to be called after the very first
3407 * assembler level setup done in locore.S.
3408 */
3409void
3410tlb1_init()
3411{
3412	uint32_t mas0, mas1, mas2, mas3, mas7;
3413	uint32_t tsz;
3414
3415	tlb1_get_tlbconf();
3416
3417	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
3418	mtspr(SPR_MAS0, mas0);
3419	__asm __volatile("isync; tlbre");
3420
3421	mas1 = mfspr(SPR_MAS1);
3422	mas2 = mfspr(SPR_MAS2);
3423	mas3 = mfspr(SPR_MAS3);
3424	mas7 = mfspr(SPR_MAS7);
3425
3426	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
3427	    (mas3 & MAS3_RPN);
3428
3429	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3430	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3431
3432	/* Setup TLB miss defaults */
3433	set_mas4_defaults();
3434}
3435
3436vm_offset_t
3437pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3438{
3439	vm_paddr_t pa_base;
3440	vm_offset_t va, sz;
3441	int i;
3442	tlb_entry_t e;
3443
3444	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3445
3446	for (i = 0; i < TLB1_ENTRIES; i++) {
3447		tlb1_read_entry(&e, i);
3448		if (!(e.mas1 & MAS1_VALID))
3449			continue;
3450		if (pa >= e.phys && (pa + size) <=
3451		    (e.phys + e.size))
3452			return (e.virt + (pa - e.phys));
3453	}
3454
3455	pa_base = rounddown(pa, PAGE_SIZE);
3456	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3457	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3458	va = tlb1_map_base + (pa - pa_base);
3459
3460	do {
3461		sz = 1 << (ilog2(size) & ~1);
3462		tlb1_set_entry(tlb1_map_base, pa_base, sz,
3463		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
3464		size -= sz;
3465		pa_base += sz;
3466		tlb1_map_base += sz;
3467	} while (size > 0);
3468
3469	return (va);
3470}
3471
3472/*
3473 * Setup MAS4 defaults.
3474 * These values are loaded to MAS0-2 on a TLB miss.
3475 */
3476static void
3477set_mas4_defaults(void)
3478{
3479	uint32_t mas4;
3480
3481	/* Defaults: TLB0, PID0, TSIZED=4K */
3482	mas4 = MAS4_TLBSELD0;
3483	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3484#ifdef SMP
3485	mas4 |= MAS4_MD;
3486#endif
3487	mtspr(SPR_MAS4, mas4);
3488	__asm __volatile("isync");
3489}
3490
3491/*
3492 * Print out contents of the MAS registers for each TLB1 entry
3493 */
3494void
3495tlb1_print_tlbentries(void)
3496{
3497	uint32_t mas0, mas1, mas2, mas3, mas7;
3498	int i;
3499
3500	debugf("TLB1 entries:\n");
3501	for (i = 0; i < TLB1_ENTRIES; i++) {
3502
3503		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3504		mtspr(SPR_MAS0, mas0);
3505
3506		__asm __volatile("isync; tlbre");
3507
3508		mas1 = mfspr(SPR_MAS1);
3509		mas2 = mfspr(SPR_MAS2);
3510		mas3 = mfspr(SPR_MAS3);
3511		mas7 = mfspr(SPR_MAS7);
3512
3513		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3514	}
3515}
3516
3517/*
3518 * Return 0 if the physical IO range is encompassed by one of the
3519 * the TLB1 entries, otherwise return related error code.
3520 */
3521static int
3522tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3523{
3524	uint32_t prot;
3525	vm_paddr_t pa_start;
3526	vm_paddr_t pa_end;
3527	unsigned int entry_tsize;
3528	vm_size_t entry_size;
3529	tlb_entry_t e;
3530
3531	*va = (vm_offset_t)NULL;
3532
3533	tlb1_read_entry(&e, i);
3534	/* Skip invalid entries */
3535	if (!(e.mas1 & MAS1_VALID))
3536		return (EINVAL);
3537
3538	/*
3539	 * The entry must be cache-inhibited, guarded, and r/w
3540	 * so it can function as an i/o page
3541	 */
3542	prot = e.mas2 & (MAS2_I | MAS2_G);
3543	if (prot != (MAS2_I | MAS2_G))
3544		return (EPERM);
3545
3546	prot = e.mas3 & (MAS3_SR | MAS3_SW);
3547	if (prot != (MAS3_SR | MAS3_SW))
3548		return (EPERM);
3549
3550	/* The address should be within the entry range. */
3551	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3552	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3553
3554	entry_size = tsize2size(entry_tsize);
3555	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3556	    (e.mas3 & MAS3_RPN);
3557	pa_end = pa_start + entry_size;
3558
3559	if ((pa < pa_start) || ((pa + size) > pa_end))
3560		return (ERANGE);
3561
3562	/* Return virtual address of this mapping. */
3563	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3564	return (0);
3565}
3566
3567/*
3568 * Invalidate all TLB0 entries which match the given TID. Note this is
3569 * dedicated for cases when invalidations should NOT be propagated to other
3570 * CPUs.
3571 */
3572static void
3573tid_flush(tlbtid_t tid)
3574{
3575	register_t msr;
3576	uint32_t mas0, mas1, mas2;
3577	int entry, way;
3578
3579
3580	/* Don't evict kernel translations */
3581	if (tid == TID_KERNEL)
3582		return;
3583
3584	msr = mfmsr();
3585	__asm __volatile("wrteei 0");
3586
3587	for (way = 0; way < TLB0_WAYS; way++)
3588		for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
3589
3590			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3591			mtspr(SPR_MAS0, mas0);
3592			__asm __volatile("isync");
3593
3594			mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
3595			mtspr(SPR_MAS2, mas2);
3596
3597			__asm __volatile("isync; tlbre");
3598
3599			mas1 = mfspr(SPR_MAS1);
3600
3601			if (!(mas1 & MAS1_VALID))
3602				continue;
3603			if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
3604				continue;
3605			mas1 &= ~MAS1_VALID;
3606			mtspr(SPR_MAS1, mas1);
3607			__asm __volatile("isync; tlbwe; isync; msync");
3608		}
3609	mtmsr(msr);
3610}
3611