tcp_syncache.c revision 315514
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/netinet/tcp_syncache.c 315514 2017-03-18 22:04:20Z ae $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/hash.h>
44#include <sys/refcount.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/proc.h>		/* for proc0 declaration */
53#include <sys/random.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/syslog.h>
57#include <sys/ucred.h>
58
59#include <sys/md5.h>
60#include <crypto/siphash/siphash.h>
61
62#include <vm/uma.h>
63
64#include <net/if.h>
65#include <net/if_var.h>
66#include <net/route.h>
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <netinet/in_var.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_options.h>
76#ifdef INET6
77#include <netinet/ip6.h>
78#include <netinet/icmp6.h>
79#include <netinet6/nd6.h>
80#include <netinet6/ip6_var.h>
81#include <netinet6/in6_pcb.h>
82#endif
83#include <netinet/tcp.h>
84#ifdef TCP_RFC7413
85#include <netinet/tcp_fastopen.h>
86#endif
87#include <netinet/tcp_fsm.h>
88#include <netinet/tcp_seq.h>
89#include <netinet/tcp_timer.h>
90#include <netinet/tcp_var.h>
91#include <netinet/tcp_syncache.h>
92#ifdef INET6
93#include <netinet6/tcp6_var.h>
94#endif
95#ifdef TCP_OFFLOAD
96#include <netinet/toecore.h>
97#endif
98
99#include <netipsec/ipsec_support.h>
100
101#include <machine/in_cksum.h>
102
103#include <security/mac/mac_framework.h>
104
105static VNET_DEFINE(int, tcp_syncookies) = 1;
106#define	V_tcp_syncookies		VNET(tcp_syncookies)
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108    &VNET_NAME(tcp_syncookies), 0,
109    "Use TCP SYN cookies if the syncache overflows");
110
111static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114    &VNET_NAME(tcp_syncookiesonly), 0,
115    "Use only TCP SYN cookies");
116
117#ifdef TCP_OFFLOAD
118#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
119#endif
120
121static void	 syncache_drop(struct syncache *, struct syncache_head *);
122static void	 syncache_free(struct syncache *);
123static void	 syncache_insert(struct syncache *, struct syncache_head *);
124static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
125		    const struct mbuf *);
126static struct	 socket *syncache_socket(struct syncache *, struct socket *,
127		    struct mbuf *m);
128static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
129		    int docallout);
130static void	 syncache_timer(void *);
131
132static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
133		    uint8_t *, uintptr_t);
134static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
135static struct syncache
136		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137		    struct syncache *, struct tcphdr *, struct tcpopt *,
138		    struct socket *);
139static void	 syncookie_reseed(void *);
140#ifdef INVARIANTS
141static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
142		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
143		    struct socket *lso);
144#endif
145
146/*
147 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
148 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
149 * the odds are that the user has given up attempting to connect by then.
150 */
151#define SYNCACHE_MAXREXMTS		3
152
153/* Arbitrary values */
154#define TCP_SYNCACHE_HASHSIZE		512
155#define TCP_SYNCACHE_BUCKETLIMIT	30
156
157static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
158#define	V_tcp_syncache			VNET(tcp_syncache)
159
160static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
161    "TCP SYN cache");
162
163SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
164    &VNET_NAME(tcp_syncache.bucket_limit), 0,
165    "Per-bucket hash limit for syncache");
166
167SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
168    &VNET_NAME(tcp_syncache.cache_limit), 0,
169    "Overall entry limit for syncache");
170
171SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
172    &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
173
174SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
175    &VNET_NAME(tcp_syncache.hashsize), 0,
176    "Size of TCP syncache hashtable");
177
178SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
179    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
180    "Limit on SYN/ACK retransmissions");
181
182VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
183SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
184    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
185    "Send reset on socket allocation failure");
186
187static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
188
189#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
190#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
191#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
192
193/*
194 * Requires the syncache entry to be already removed from the bucket list.
195 */
196static void
197syncache_free(struct syncache *sc)
198{
199
200	if (sc->sc_ipopts)
201		(void) m_free(sc->sc_ipopts);
202	if (sc->sc_cred)
203		crfree(sc->sc_cred);
204#ifdef MAC
205	mac_syncache_destroy(&sc->sc_label);
206#endif
207
208	uma_zfree(V_tcp_syncache.zone, sc);
209}
210
211void
212syncache_init(void)
213{
214	int i;
215
216	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
217	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
218	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
219	V_tcp_syncache.hash_secret = arc4random();
220
221	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
222	    &V_tcp_syncache.hashsize);
223	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
224	    &V_tcp_syncache.bucket_limit);
225	if (!powerof2(V_tcp_syncache.hashsize) ||
226	    V_tcp_syncache.hashsize == 0) {
227		printf("WARNING: syncache hash size is not a power of 2.\n");
228		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
229	}
230	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
231
232	/* Set limits. */
233	V_tcp_syncache.cache_limit =
234	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
235	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
236	    &V_tcp_syncache.cache_limit);
237
238	/* Allocate the hash table. */
239	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
240	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
241
242#ifdef VIMAGE
243	V_tcp_syncache.vnet = curvnet;
244#endif
245
246	/* Initialize the hash buckets. */
247	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
248		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
249		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
250			 NULL, MTX_DEF);
251		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
252			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
253		V_tcp_syncache.hashbase[i].sch_length = 0;
254		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
255	}
256
257	/* Create the syncache entry zone. */
258	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
259	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
260	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
261	    V_tcp_syncache.cache_limit);
262
263	/* Start the SYN cookie reseeder callout. */
264	callout_init(&V_tcp_syncache.secret.reseed, 1);
265	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
266	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
267	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
268	    syncookie_reseed, &V_tcp_syncache);
269}
270
271#ifdef VIMAGE
272void
273syncache_destroy(void)
274{
275	struct syncache_head *sch;
276	struct syncache *sc, *nsc;
277	int i;
278
279	/*
280	 * Stop the re-seed timer before freeing resources.  No need to
281	 * possibly schedule it another time.
282	 */
283	callout_drain(&V_tcp_syncache.secret.reseed);
284
285	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
286	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
287
288		sch = &V_tcp_syncache.hashbase[i];
289		callout_drain(&sch->sch_timer);
290
291		SCH_LOCK(sch);
292		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
293			syncache_drop(sc, sch);
294		SCH_UNLOCK(sch);
295		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
296		    ("%s: sch->sch_bucket not empty", __func__));
297		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
298		    __func__, sch->sch_length));
299		mtx_destroy(&sch->sch_mtx);
300	}
301
302	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
303	    ("%s: cache_count not 0", __func__));
304
305	/* Free the allocated global resources. */
306	uma_zdestroy(V_tcp_syncache.zone);
307	free(V_tcp_syncache.hashbase, M_SYNCACHE);
308}
309#endif
310
311/*
312 * Inserts a syncache entry into the specified bucket row.
313 * Locks and unlocks the syncache_head autonomously.
314 */
315static void
316syncache_insert(struct syncache *sc, struct syncache_head *sch)
317{
318	struct syncache *sc2;
319
320	SCH_LOCK(sch);
321
322	/*
323	 * Make sure that we don't overflow the per-bucket limit.
324	 * If the bucket is full, toss the oldest element.
325	 */
326	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
327		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
328			("sch->sch_length incorrect"));
329		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
330		syncache_drop(sc2, sch);
331		TCPSTAT_INC(tcps_sc_bucketoverflow);
332	}
333
334	/* Put it into the bucket. */
335	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
336	sch->sch_length++;
337
338#ifdef TCP_OFFLOAD
339	if (ADDED_BY_TOE(sc)) {
340		struct toedev *tod = sc->sc_tod;
341
342		tod->tod_syncache_added(tod, sc->sc_todctx);
343	}
344#endif
345
346	/* Reinitialize the bucket row's timer. */
347	if (sch->sch_length == 1)
348		sch->sch_nextc = ticks + INT_MAX;
349	syncache_timeout(sc, sch, 1);
350
351	SCH_UNLOCK(sch);
352
353	TCPSTATES_INC(TCPS_SYN_RECEIVED);
354	TCPSTAT_INC(tcps_sc_added);
355}
356
357/*
358 * Remove and free entry from syncache bucket row.
359 * Expects locked syncache head.
360 */
361static void
362syncache_drop(struct syncache *sc, struct syncache_head *sch)
363{
364
365	SCH_LOCK_ASSERT(sch);
366
367	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
368	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
369	sch->sch_length--;
370
371#ifdef TCP_OFFLOAD
372	if (ADDED_BY_TOE(sc)) {
373		struct toedev *tod = sc->sc_tod;
374
375		tod->tod_syncache_removed(tod, sc->sc_todctx);
376	}
377#endif
378
379	syncache_free(sc);
380}
381
382/*
383 * Engage/reengage time on bucket row.
384 */
385static void
386syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
387{
388	sc->sc_rxttime = ticks +
389		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
390	sc->sc_rxmits++;
391	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
392		sch->sch_nextc = sc->sc_rxttime;
393		if (docallout)
394			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
395			    syncache_timer, (void *)sch);
396	}
397}
398
399/*
400 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
401 * If we have retransmitted an entry the maximum number of times, expire it.
402 * One separate timer for each bucket row.
403 */
404static void
405syncache_timer(void *xsch)
406{
407	struct syncache_head *sch = (struct syncache_head *)xsch;
408	struct syncache *sc, *nsc;
409	int tick = ticks;
410	char *s;
411
412	CURVNET_SET(sch->sch_sc->vnet);
413
414	/* NB: syncache_head has already been locked by the callout. */
415	SCH_LOCK_ASSERT(sch);
416
417	/*
418	 * In the following cycle we may remove some entries and/or
419	 * advance some timeouts, so re-initialize the bucket timer.
420	 */
421	sch->sch_nextc = tick + INT_MAX;
422
423	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
424		/*
425		 * We do not check if the listen socket still exists
426		 * and accept the case where the listen socket may be
427		 * gone by the time we resend the SYN/ACK.  We do
428		 * not expect this to happens often. If it does,
429		 * then the RST will be sent by the time the remote
430		 * host does the SYN/ACK->ACK.
431		 */
432		if (TSTMP_GT(sc->sc_rxttime, tick)) {
433			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
434				sch->sch_nextc = sc->sc_rxttime;
435			continue;
436		}
437		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
438			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
439				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
440				    "giving up and removing syncache entry\n",
441				    s, __func__);
442				free(s, M_TCPLOG);
443			}
444			syncache_drop(sc, sch);
445			TCPSTAT_INC(tcps_sc_stale);
446			continue;
447		}
448		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
449			log(LOG_DEBUG, "%s; %s: Response timeout, "
450			    "retransmitting (%u) SYN|ACK\n",
451			    s, __func__, sc->sc_rxmits);
452			free(s, M_TCPLOG);
453		}
454
455		syncache_respond(sc, sch, 1, NULL);
456		TCPSTAT_INC(tcps_sc_retransmitted);
457		syncache_timeout(sc, sch, 0);
458	}
459	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
460		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
461			syncache_timer, (void *)(sch));
462	CURVNET_RESTORE();
463}
464
465/*
466 * Find an entry in the syncache.
467 * Returns always with locked syncache_head plus a matching entry or NULL.
468 */
469static struct syncache *
470syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
471{
472	struct syncache *sc;
473	struct syncache_head *sch;
474	uint32_t hash;
475
476	/*
477	 * The hash is built on foreign port + local port + foreign address.
478	 * We rely on the fact that struct in_conninfo starts with 16 bits
479	 * of foreign port, then 16 bits of local port then followed by 128
480	 * bits of foreign address.  In case of IPv4 address, the first 3
481	 * 32-bit words of the address always are zeroes.
482	 */
483	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
484	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
485
486	sch = &V_tcp_syncache.hashbase[hash];
487	*schp = sch;
488	SCH_LOCK(sch);
489
490	/* Circle through bucket row to find matching entry. */
491	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
492		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
493		    sizeof(struct in_endpoints)) == 0)
494			break;
495
496	return (sc);	/* Always returns with locked sch. */
497}
498
499/*
500 * This function is called when we get a RST for a
501 * non-existent connection, so that we can see if the
502 * connection is in the syn cache.  If it is, zap it.
503 */
504void
505syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
506{
507	struct syncache *sc;
508	struct syncache_head *sch;
509	char *s = NULL;
510
511	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
512	SCH_LOCK_ASSERT(sch);
513
514	/*
515	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
516	 * See RFC 793 page 65, section SEGMENT ARRIVES.
517	 */
518	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
519		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
520			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
521			    "FIN flag set, segment ignored\n", s, __func__);
522		TCPSTAT_INC(tcps_badrst);
523		goto done;
524	}
525
526	/*
527	 * No corresponding connection was found in syncache.
528	 * If syncookies are enabled and possibly exclusively
529	 * used, or we are under memory pressure, a valid RST
530	 * may not find a syncache entry.  In that case we're
531	 * done and no SYN|ACK retransmissions will happen.
532	 * Otherwise the RST was misdirected or spoofed.
533	 */
534	if (sc == NULL) {
535		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
536			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
537			    "syncache entry (possibly syncookie only), "
538			    "segment ignored\n", s, __func__);
539		TCPSTAT_INC(tcps_badrst);
540		goto done;
541	}
542
543	/*
544	 * If the RST bit is set, check the sequence number to see
545	 * if this is a valid reset segment.
546	 * RFC 793 page 37:
547	 *   In all states except SYN-SENT, all reset (RST) segments
548	 *   are validated by checking their SEQ-fields.  A reset is
549	 *   valid if its sequence number is in the window.
550	 *
551	 *   The sequence number in the reset segment is normally an
552	 *   echo of our outgoing acknowlegement numbers, but some hosts
553	 *   send a reset with the sequence number at the rightmost edge
554	 *   of our receive window, and we have to handle this case.
555	 */
556	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
557	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
558		syncache_drop(sc, sch);
559		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
560			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
561			    "connection attempt aborted by remote endpoint\n",
562			    s, __func__);
563		TCPSTAT_INC(tcps_sc_reset);
564	} else {
565		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
566			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
567			    "IRS %u (+WND %u), segment ignored\n",
568			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
569		TCPSTAT_INC(tcps_badrst);
570	}
571
572done:
573	if (s != NULL)
574		free(s, M_TCPLOG);
575	SCH_UNLOCK(sch);
576}
577
578void
579syncache_badack(struct in_conninfo *inc)
580{
581	struct syncache *sc;
582	struct syncache_head *sch;
583
584	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
585	SCH_LOCK_ASSERT(sch);
586	if (sc != NULL) {
587		syncache_drop(sc, sch);
588		TCPSTAT_INC(tcps_sc_badack);
589	}
590	SCH_UNLOCK(sch);
591}
592
593void
594syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
595{
596	struct syncache *sc;
597	struct syncache_head *sch;
598
599	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
600	SCH_LOCK_ASSERT(sch);
601	if (sc == NULL)
602		goto done;
603
604	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
605	if (ntohl(th->th_seq) != sc->sc_iss)
606		goto done;
607
608	/*
609	 * If we've rertransmitted 3 times and this is our second error,
610	 * we remove the entry.  Otherwise, we allow it to continue on.
611	 * This prevents us from incorrectly nuking an entry during a
612	 * spurious network outage.
613	 *
614	 * See tcp_notify().
615	 */
616	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
617		sc->sc_flags |= SCF_UNREACH;
618		goto done;
619	}
620	syncache_drop(sc, sch);
621	TCPSTAT_INC(tcps_sc_unreach);
622done:
623	SCH_UNLOCK(sch);
624}
625
626/*
627 * Build a new TCP socket structure from a syncache entry.
628 *
629 * On success return the newly created socket with its underlying inp locked.
630 */
631static struct socket *
632syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
633{
634	struct tcp_function_block *blk;
635	struct inpcb *inp = NULL;
636	struct socket *so;
637	struct tcpcb *tp;
638	int error;
639	char *s;
640
641	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
642
643	/*
644	 * Ok, create the full blown connection, and set things up
645	 * as they would have been set up if we had created the
646	 * connection when the SYN arrived.  If we can't create
647	 * the connection, abort it.
648	 */
649	so = sonewconn(lso, 0);
650	if (so == NULL) {
651		/*
652		 * Drop the connection; we will either send a RST or
653		 * have the peer retransmit its SYN again after its
654		 * RTO and try again.
655		 */
656		TCPSTAT_INC(tcps_listendrop);
657		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
658			log(LOG_DEBUG, "%s; %s: Socket create failed "
659			    "due to limits or memory shortage\n",
660			    s, __func__);
661			free(s, M_TCPLOG);
662		}
663		goto abort2;
664	}
665#ifdef MAC
666	mac_socketpeer_set_from_mbuf(m, so);
667#endif
668
669	inp = sotoinpcb(so);
670	inp->inp_inc.inc_fibnum = so->so_fibnum;
671	INP_WLOCK(inp);
672	/*
673	 * Exclusive pcbinfo lock is not required in syncache socket case even
674	 * if two inpcb locks can be acquired simultaneously:
675	 *  - the inpcb in LISTEN state,
676	 *  - the newly created inp.
677	 *
678	 * In this case, an inp cannot be at same time in LISTEN state and
679	 * just created by an accept() call.
680	 */
681	INP_HASH_WLOCK(&V_tcbinfo);
682
683	/* Insert new socket into PCB hash list. */
684	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
685#ifdef INET6
686	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
687		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
688	} else {
689		inp->inp_vflag &= ~INP_IPV6;
690		inp->inp_vflag |= INP_IPV4;
691#endif
692		inp->inp_laddr = sc->sc_inc.inc_laddr;
693#ifdef INET6
694	}
695#endif
696
697	/*
698	 * If there's an mbuf and it has a flowid, then let's initialise the
699	 * inp with that particular flowid.
700	 */
701	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
702		inp->inp_flowid = m->m_pkthdr.flowid;
703		inp->inp_flowtype = M_HASHTYPE_GET(m);
704	}
705
706	/*
707	 * Install in the reservation hash table for now, but don't yet
708	 * install a connection group since the full 4-tuple isn't yet
709	 * configured.
710	 */
711	inp->inp_lport = sc->sc_inc.inc_lport;
712	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
713		/*
714		 * Undo the assignments above if we failed to
715		 * put the PCB on the hash lists.
716		 */
717#ifdef INET6
718		if (sc->sc_inc.inc_flags & INC_ISIPV6)
719			inp->in6p_laddr = in6addr_any;
720		else
721#endif
722			inp->inp_laddr.s_addr = INADDR_ANY;
723		inp->inp_lport = 0;
724		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
725			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
726			    "with error %i\n",
727			    s, __func__, error);
728			free(s, M_TCPLOG);
729		}
730		INP_HASH_WUNLOCK(&V_tcbinfo);
731		goto abort;
732	}
733#ifdef INET6
734	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
735		struct inpcb *oinp = sotoinpcb(lso);
736		struct in6_addr laddr6;
737		struct sockaddr_in6 sin6;
738		/*
739		 * Inherit socket options from the listening socket.
740		 * Note that in6p_inputopts are not (and should not be)
741		 * copied, since it stores previously received options and is
742		 * used to detect if each new option is different than the
743		 * previous one and hence should be passed to a user.
744		 * If we copied in6p_inputopts, a user would not be able to
745		 * receive options just after calling the accept system call.
746		 */
747		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
748		if (oinp->in6p_outputopts)
749			inp->in6p_outputopts =
750			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
751
752		sin6.sin6_family = AF_INET6;
753		sin6.sin6_len = sizeof(sin6);
754		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
755		sin6.sin6_port = sc->sc_inc.inc_fport;
756		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
757		laddr6 = inp->in6p_laddr;
758		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
759			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
760		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
761		    thread0.td_ucred, m)) != 0) {
762			inp->in6p_laddr = laddr6;
763			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
764				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
765				    "with error %i\n",
766				    s, __func__, error);
767				free(s, M_TCPLOG);
768			}
769			INP_HASH_WUNLOCK(&V_tcbinfo);
770			goto abort;
771		}
772		/* Override flowlabel from in6_pcbconnect. */
773		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
774		inp->inp_flow |= sc->sc_flowlabel;
775	}
776#endif /* INET6 */
777#if defined(INET) && defined(INET6)
778	else
779#endif
780#ifdef INET
781	{
782		struct in_addr laddr;
783		struct sockaddr_in sin;
784
785		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
786
787		if (inp->inp_options == NULL) {
788			inp->inp_options = sc->sc_ipopts;
789			sc->sc_ipopts = NULL;
790		}
791
792		sin.sin_family = AF_INET;
793		sin.sin_len = sizeof(sin);
794		sin.sin_addr = sc->sc_inc.inc_faddr;
795		sin.sin_port = sc->sc_inc.inc_fport;
796		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
797		laddr = inp->inp_laddr;
798		if (inp->inp_laddr.s_addr == INADDR_ANY)
799			inp->inp_laddr = sc->sc_inc.inc_laddr;
800		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
801		    thread0.td_ucred, m)) != 0) {
802			inp->inp_laddr = laddr;
803			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
804				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
805				    "with error %i\n",
806				    s, __func__, error);
807				free(s, M_TCPLOG);
808			}
809			INP_HASH_WUNLOCK(&V_tcbinfo);
810			goto abort;
811		}
812	}
813#endif /* INET */
814#if defined(IPSEC) || defined(IPSEC_SUPPORT)
815	/* Copy old policy into new socket's. */
816	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
817		printf("syncache_socket: could not copy policy\n");
818#endif
819	INP_HASH_WUNLOCK(&V_tcbinfo);
820	tp = intotcpcb(inp);
821	tcp_state_change(tp, TCPS_SYN_RECEIVED);
822	tp->iss = sc->sc_iss;
823	tp->irs = sc->sc_irs;
824	tcp_rcvseqinit(tp);
825	tcp_sendseqinit(tp);
826	blk = sototcpcb(lso)->t_fb;
827	if (blk != tp->t_fb) {
828		/*
829		 * Our parents t_fb was not the default,
830		 * we need to release our ref on tp->t_fb and
831		 * pickup one on the new entry.
832		 */
833		struct tcp_function_block *rblk;
834
835		rblk = find_and_ref_tcp_fb(blk);
836		KASSERT(rblk != NULL,
837		    ("cannot find blk %p out of syncache?", blk));
838		if (tp->t_fb->tfb_tcp_fb_fini)
839			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
840		refcount_release(&tp->t_fb->tfb_refcnt);
841		tp->t_fb = rblk;
842		if (tp->t_fb->tfb_tcp_fb_init) {
843			(*tp->t_fb->tfb_tcp_fb_init)(tp);
844		}
845	}
846	tp->snd_wl1 = sc->sc_irs;
847	tp->snd_max = tp->iss + 1;
848	tp->snd_nxt = tp->iss + 1;
849	tp->rcv_up = sc->sc_irs + 1;
850	tp->rcv_wnd = sc->sc_wnd;
851	tp->rcv_adv += tp->rcv_wnd;
852	tp->last_ack_sent = tp->rcv_nxt;
853
854	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
855	if (sc->sc_flags & SCF_NOOPT)
856		tp->t_flags |= TF_NOOPT;
857	else {
858		if (sc->sc_flags & SCF_WINSCALE) {
859			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
860			tp->snd_scale = sc->sc_requested_s_scale;
861			tp->request_r_scale = sc->sc_requested_r_scale;
862		}
863		if (sc->sc_flags & SCF_TIMESTAMP) {
864			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
865			tp->ts_recent = sc->sc_tsreflect;
866			tp->ts_recent_age = tcp_ts_getticks();
867			tp->ts_offset = sc->sc_tsoff;
868		}
869#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
870		if (sc->sc_flags & SCF_SIGNATURE)
871			tp->t_flags |= TF_SIGNATURE;
872#endif
873		if (sc->sc_flags & SCF_SACK)
874			tp->t_flags |= TF_SACK_PERMIT;
875	}
876
877	if (sc->sc_flags & SCF_ECN)
878		tp->t_flags |= TF_ECN_PERMIT;
879
880	/*
881	 * Set up MSS and get cached values from tcp_hostcache.
882	 * This might overwrite some of the defaults we just set.
883	 */
884	tcp_mss(tp, sc->sc_peer_mss);
885
886	/*
887	 * If the SYN,ACK was retransmitted, indicate that CWND to be
888	 * limited to one segment in cc_conn_init().
889	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
890	 */
891	if (sc->sc_rxmits > 1)
892		tp->snd_cwnd = 1;
893
894#ifdef TCP_OFFLOAD
895	/*
896	 * Allow a TOE driver to install its hooks.  Note that we hold the
897	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
898	 * new connection before the TOE driver has done its thing.
899	 */
900	if (ADDED_BY_TOE(sc)) {
901		struct toedev *tod = sc->sc_tod;
902
903		tod->tod_offload_socket(tod, sc->sc_todctx, so);
904	}
905#endif
906	/*
907	 * Copy and activate timers.
908	 */
909	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
910	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
911	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
912	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
913	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
914
915	TCPSTAT_INC(tcps_accepts);
916	return (so);
917
918abort:
919	INP_WUNLOCK(inp);
920abort2:
921	if (so != NULL)
922		soabort(so);
923	return (NULL);
924}
925
926/*
927 * This function gets called when we receive an ACK for a
928 * socket in the LISTEN state.  We look up the connection
929 * in the syncache, and if its there, we pull it out of
930 * the cache and turn it into a full-blown connection in
931 * the SYN-RECEIVED state.
932 *
933 * On syncache_socket() success the newly created socket
934 * has its underlying inp locked.
935 */
936int
937syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
938    struct socket **lsop, struct mbuf *m)
939{
940	struct syncache *sc;
941	struct syncache_head *sch;
942	struct syncache scs;
943	char *s;
944
945	/*
946	 * Global TCP locks are held because we manipulate the PCB lists
947	 * and create a new socket.
948	 */
949	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
950	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
951	    ("%s: can handle only ACK", __func__));
952
953	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
954	SCH_LOCK_ASSERT(sch);
955
956#ifdef INVARIANTS
957	/*
958	 * Test code for syncookies comparing the syncache stored
959	 * values with the reconstructed values from the cookie.
960	 */
961	if (sc != NULL)
962		syncookie_cmp(inc, sch, sc, th, to, *lsop);
963#endif
964
965	if (sc == NULL) {
966		/*
967		 * There is no syncache entry, so see if this ACK is
968		 * a returning syncookie.  To do this, first:
969		 *  A. See if this socket has had a syncache entry dropped in
970		 *     the past.  We don't want to accept a bogus syncookie
971		 *     if we've never received a SYN.
972		 *  B. check that the syncookie is valid.  If it is, then
973		 *     cobble up a fake syncache entry, and return.
974		 */
975		if (!V_tcp_syncookies) {
976			SCH_UNLOCK(sch);
977			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
978				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
979				    "segment rejected (syncookies disabled)\n",
980				    s, __func__);
981			goto failed;
982		}
983		bzero(&scs, sizeof(scs));
984		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
985		SCH_UNLOCK(sch);
986		if (sc == NULL) {
987			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
988				log(LOG_DEBUG, "%s; %s: Segment failed "
989				    "SYNCOOKIE authentication, segment rejected "
990				    "(probably spoofed)\n", s, __func__);
991			goto failed;
992		}
993#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
994		/* If received ACK has MD5 signature, check it. */
995		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
996		    (!TCPMD5_ENABLED() ||
997		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
998			/* Drop the ACK. */
999			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1000				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1001				    "MD5 signature doesn't match.\n",
1002				    s, __func__);
1003				free(s, M_TCPLOG);
1004			}
1005			TCPSTAT_INC(tcps_sig_err_sigopt);
1006			return (-1); /* Do not send RST */
1007		}
1008#endif /* TCP_SIGNATURE */
1009	} else {
1010#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1011		/*
1012		 * If listening socket requested TCP digests, check that
1013		 * received ACK has signature and it is correct.
1014		 * If not, drop the ACK and leave sc entry in th cache,
1015		 * because SYN was received with correct signature.
1016		 */
1017		if (sc->sc_flags & SCF_SIGNATURE) {
1018			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1019				/* No signature */
1020				TCPSTAT_INC(tcps_sig_err_nosigopt);
1021				SCH_UNLOCK(sch);
1022				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1023					log(LOG_DEBUG, "%s; %s: Segment "
1024					    "rejected, MD5 signature wasn't "
1025					    "provided.\n", s, __func__);
1026					free(s, M_TCPLOG);
1027				}
1028				return (-1); /* Do not send RST */
1029			}
1030			if (!TCPMD5_ENABLED() ||
1031			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1032				/* Doesn't match or no SA */
1033				SCH_UNLOCK(sch);
1034				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1035					log(LOG_DEBUG, "%s; %s: Segment "
1036					    "rejected, MD5 signature doesn't "
1037					    "match.\n", s, __func__);
1038					free(s, M_TCPLOG);
1039				}
1040				return (-1); /* Do not send RST */
1041			}
1042		}
1043#endif /* TCP_SIGNATURE */
1044		/*
1045		 * Pull out the entry to unlock the bucket row.
1046		 *
1047		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1048		 * tcp_state_change().  The tcpcb is not existent at this
1049		 * moment.  A new one will be allocated via syncache_socket->
1050		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1051		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1052		 */
1053		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1054		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1055		sch->sch_length--;
1056#ifdef TCP_OFFLOAD
1057		if (ADDED_BY_TOE(sc)) {
1058			struct toedev *tod = sc->sc_tod;
1059
1060			tod->tod_syncache_removed(tod, sc->sc_todctx);
1061		}
1062#endif
1063		SCH_UNLOCK(sch);
1064	}
1065
1066	/*
1067	 * Segment validation:
1068	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1069	 */
1070	if (th->th_ack != sc->sc_iss + 1) {
1071		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1072			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1073			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1074		goto failed;
1075	}
1076
1077	/*
1078	 * The SEQ must fall in the window starting at the received
1079	 * initial receive sequence number + 1 (the SYN).
1080	 */
1081	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1082	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1083		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1084			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1085			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1086		goto failed;
1087	}
1088
1089	/*
1090	 * If timestamps were not negotiated during SYN/ACK they
1091	 * must not appear on any segment during this session.
1092	 */
1093	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1094		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1095			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1096			    "segment rejected\n", s, __func__);
1097		goto failed;
1098	}
1099
1100	/*
1101	 * If timestamps were negotiated during SYN/ACK they should
1102	 * appear on every segment during this session.
1103	 * XXXAO: This is only informal as there have been unverified
1104	 * reports of non-compliants stacks.
1105	 */
1106	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1107		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1108			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1109			    "no action\n", s, __func__);
1110			free(s, M_TCPLOG);
1111			s = NULL;
1112		}
1113	}
1114
1115	/*
1116	 * If timestamps were negotiated, the reflected timestamp
1117	 * must be equal to what we actually sent in the SYN|ACK
1118	 * except in the case of 0. Some boxes are known for sending
1119	 * broken timestamp replies during the 3whs (and potentially
1120	 * during the connection also).
1121	 *
1122	 * Accept the final ACK of 3whs with reflected timestamp of 0
1123	 * instead of sending a RST and deleting the syncache entry.
1124	 */
1125	if ((to->to_flags & TOF_TS) && to->to_tsecr &&
1126	    to->to_tsecr != sc->sc_ts) {
1127		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1128			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1129			    "segment rejected\n",
1130			    s, __func__, to->to_tsecr, sc->sc_ts);
1131		goto failed;
1132	}
1133
1134	*lsop = syncache_socket(sc, *lsop, m);
1135
1136	if (*lsop == NULL)
1137		TCPSTAT_INC(tcps_sc_aborted);
1138	else
1139		TCPSTAT_INC(tcps_sc_completed);
1140
1141/* how do we find the inp for the new socket? */
1142	if (sc != &scs)
1143		syncache_free(sc);
1144	return (1);
1145failed:
1146	if (sc != NULL && sc != &scs)
1147		syncache_free(sc);
1148	if (s != NULL)
1149		free(s, M_TCPLOG);
1150	*lsop = NULL;
1151	return (0);
1152}
1153
1154#ifdef TCP_RFC7413
1155static void
1156syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1157    uint64_t response_cookie)
1158{
1159	struct inpcb *inp;
1160	struct tcpcb *tp;
1161	unsigned int *pending_counter;
1162
1163	/*
1164	 * Global TCP locks are held because we manipulate the PCB lists
1165	 * and create a new socket.
1166	 */
1167	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1168
1169	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1170	*lsop = syncache_socket(sc, *lsop, m);
1171	if (*lsop == NULL) {
1172		TCPSTAT_INC(tcps_sc_aborted);
1173		atomic_subtract_int(pending_counter, 1);
1174	} else {
1175		inp = sotoinpcb(*lsop);
1176		tp = intotcpcb(inp);
1177		tp->t_flags |= TF_FASTOPEN;
1178		tp->t_tfo_cookie = response_cookie;
1179		tp->snd_max = tp->iss;
1180		tp->snd_nxt = tp->iss;
1181		tp->t_tfo_pending = pending_counter;
1182		TCPSTAT_INC(tcps_sc_completed);
1183	}
1184}
1185#endif /* TCP_RFC7413 */
1186
1187/*
1188 * Given a LISTEN socket and an inbound SYN request, add
1189 * this to the syn cache, and send back a segment:
1190 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1191 * to the source.
1192 *
1193 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1194 * Doing so would require that we hold onto the data and deliver it
1195 * to the application.  However, if we are the target of a SYN-flood
1196 * DoS attack, an attacker could send data which would eventually
1197 * consume all available buffer space if it were ACKed.  By not ACKing
1198 * the data, we avoid this DoS scenario.
1199 *
1200 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1201 * cookie is processed, V_tcp_fastopen_enabled set to true, and the
1202 * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
1203 * and returned via lsop, the mbuf is not freed so that tcp_input() can
1204 * queue its data to the socket, and 1 is returned to indicate the
1205 * TFO-socket-creation path was taken.
1206 */
1207int
1208syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1209    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1210    void *todctx)
1211{
1212	struct tcpcb *tp;
1213	struct socket *so;
1214	struct syncache *sc = NULL;
1215	struct syncache_head *sch;
1216	struct mbuf *ipopts = NULL;
1217	u_int ltflags;
1218	int win, sb_hiwat, ip_ttl, ip_tos;
1219	char *s;
1220	int rv = 0;
1221#ifdef INET6
1222	int autoflowlabel = 0;
1223#endif
1224#ifdef MAC
1225	struct label *maclabel;
1226#endif
1227	struct syncache scs;
1228	struct ucred *cred;
1229#ifdef TCP_RFC7413
1230	uint64_t tfo_response_cookie;
1231	int tfo_cookie_valid = 0;
1232	int tfo_response_cookie_valid = 0;
1233#endif
1234
1235	INP_WLOCK_ASSERT(inp);			/* listen socket */
1236	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1237	    ("%s: unexpected tcp flags", __func__));
1238
1239	/*
1240	 * Combine all so/tp operations very early to drop the INP lock as
1241	 * soon as possible.
1242	 */
1243	so = *lsop;
1244	tp = sototcpcb(so);
1245	cred = crhold(so->so_cred);
1246
1247#ifdef INET6
1248	if ((inc->inc_flags & INC_ISIPV6) &&
1249	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1250		autoflowlabel = 1;
1251#endif
1252	ip_ttl = inp->inp_ip_ttl;
1253	ip_tos = inp->inp_ip_tos;
1254	win = sbspace(&so->so_rcv);
1255	sb_hiwat = so->so_rcv.sb_hiwat;
1256	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1257
1258#ifdef TCP_RFC7413
1259	if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
1260	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1261		/*
1262		 * Limit the number of pending TFO connections to
1263		 * approximately half of the queue limit.  This prevents TFO
1264		 * SYN floods from starving the service by filling the
1265		 * listen queue with bogus TFO connections.
1266		 */
1267		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1268		    (so->so_qlimit / 2)) {
1269			int result;
1270
1271			result = tcp_fastopen_check_cookie(inc,
1272			    to->to_tfo_cookie, to->to_tfo_len,
1273			    &tfo_response_cookie);
1274			tfo_cookie_valid = (result > 0);
1275			tfo_response_cookie_valid = (result >= 0);
1276		} else
1277			atomic_subtract_int(tp->t_tfo_pending, 1);
1278	}
1279#endif
1280
1281	/* By the time we drop the lock these should no longer be used. */
1282	so = NULL;
1283	tp = NULL;
1284
1285#ifdef MAC
1286	if (mac_syncache_init(&maclabel) != 0) {
1287		INP_WUNLOCK(inp);
1288		goto done;
1289	} else
1290		mac_syncache_create(maclabel, inp);
1291#endif
1292#ifdef TCP_RFC7413
1293	if (!tfo_cookie_valid)
1294#endif
1295		INP_WUNLOCK(inp);
1296
1297	/*
1298	 * Remember the IP options, if any.
1299	 */
1300#ifdef INET6
1301	if (!(inc->inc_flags & INC_ISIPV6))
1302#endif
1303#ifdef INET
1304		ipopts = (m) ? ip_srcroute(m) : NULL;
1305#else
1306		ipopts = NULL;
1307#endif
1308
1309#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1310	/*
1311	 * If listening socket requested TCP digests, check that received
1312	 * SYN has signature and it is correct. If signature doesn't match
1313	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1314	 */
1315	if (ltflags & TF_SIGNATURE) {
1316		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1317			TCPSTAT_INC(tcps_sig_err_nosigopt);
1318			goto done;
1319		}
1320		if (!TCPMD5_ENABLED() ||
1321		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1322			goto done;
1323	}
1324#endif	/* TCP_SIGNATURE */
1325	/*
1326	 * See if we already have an entry for this connection.
1327	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1328	 *
1329	 * XXX: should the syncache be re-initialized with the contents
1330	 * of the new SYN here (which may have different options?)
1331	 *
1332	 * XXX: We do not check the sequence number to see if this is a
1333	 * real retransmit or a new connection attempt.  The question is
1334	 * how to handle such a case; either ignore it as spoofed, or
1335	 * drop the current entry and create a new one?
1336	 */
1337	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1338	SCH_LOCK_ASSERT(sch);
1339	if (sc != NULL) {
1340#ifdef TCP_RFC7413
1341		if (tfo_cookie_valid)
1342			INP_WUNLOCK(inp);
1343#endif
1344		TCPSTAT_INC(tcps_sc_dupsyn);
1345		if (ipopts) {
1346			/*
1347			 * If we were remembering a previous source route,
1348			 * forget it and use the new one we've been given.
1349			 */
1350			if (sc->sc_ipopts)
1351				(void) m_free(sc->sc_ipopts);
1352			sc->sc_ipopts = ipopts;
1353		}
1354		/*
1355		 * Update timestamp if present.
1356		 */
1357		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1358			sc->sc_tsreflect = to->to_tsval;
1359		else
1360			sc->sc_flags &= ~SCF_TIMESTAMP;
1361#ifdef MAC
1362		/*
1363		 * Since we have already unconditionally allocated label
1364		 * storage, free it up.  The syncache entry will already
1365		 * have an initialized label we can use.
1366		 */
1367		mac_syncache_destroy(&maclabel);
1368#endif
1369		/* Retransmit SYN|ACK and reset retransmit count. */
1370		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1371			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1372			    "resetting timer and retransmitting SYN|ACK\n",
1373			    s, __func__);
1374			free(s, M_TCPLOG);
1375		}
1376		if (syncache_respond(sc, sch, 1, m) == 0) {
1377			sc->sc_rxmits = 0;
1378			syncache_timeout(sc, sch, 1);
1379			TCPSTAT_INC(tcps_sndacks);
1380			TCPSTAT_INC(tcps_sndtotal);
1381		}
1382		SCH_UNLOCK(sch);
1383		goto done;
1384	}
1385
1386#ifdef TCP_RFC7413
1387	if (tfo_cookie_valid) {
1388		bzero(&scs, sizeof(scs));
1389		sc = &scs;
1390		goto skip_alloc;
1391	}
1392#endif
1393
1394	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1395	if (sc == NULL) {
1396		/*
1397		 * The zone allocator couldn't provide more entries.
1398		 * Treat this as if the cache was full; drop the oldest
1399		 * entry and insert the new one.
1400		 */
1401		TCPSTAT_INC(tcps_sc_zonefail);
1402		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1403			syncache_drop(sc, sch);
1404		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1405		if (sc == NULL) {
1406			if (V_tcp_syncookies) {
1407				bzero(&scs, sizeof(scs));
1408				sc = &scs;
1409			} else {
1410				SCH_UNLOCK(sch);
1411				if (ipopts)
1412					(void) m_free(ipopts);
1413				goto done;
1414			}
1415		}
1416	}
1417
1418#ifdef TCP_RFC7413
1419skip_alloc:
1420	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1421		sc->sc_tfo_cookie = &tfo_response_cookie;
1422#endif
1423
1424	/*
1425	 * Fill in the syncache values.
1426	 */
1427#ifdef MAC
1428	sc->sc_label = maclabel;
1429#endif
1430	sc->sc_cred = cred;
1431	cred = NULL;
1432	sc->sc_ipopts = ipopts;
1433	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1434#ifdef INET6
1435	if (!(inc->inc_flags & INC_ISIPV6))
1436#endif
1437	{
1438		sc->sc_ip_tos = ip_tos;
1439		sc->sc_ip_ttl = ip_ttl;
1440	}
1441#ifdef TCP_OFFLOAD
1442	sc->sc_tod = tod;
1443	sc->sc_todctx = todctx;
1444#endif
1445	sc->sc_irs = th->th_seq;
1446	sc->sc_iss = arc4random();
1447	sc->sc_flags = 0;
1448	sc->sc_flowlabel = 0;
1449
1450	/*
1451	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1452	 * win was derived from socket earlier in the function.
1453	 */
1454	win = imax(win, 0);
1455	win = imin(win, TCP_MAXWIN);
1456	sc->sc_wnd = win;
1457
1458	if (V_tcp_do_rfc1323) {
1459		/*
1460		 * A timestamp received in a SYN makes
1461		 * it ok to send timestamp requests and replies.
1462		 */
1463		if (to->to_flags & TOF_TS) {
1464			sc->sc_tsreflect = to->to_tsval;
1465			sc->sc_ts = tcp_ts_getticks();
1466			sc->sc_flags |= SCF_TIMESTAMP;
1467		}
1468		if (to->to_flags & TOF_SCALE) {
1469			int wscale = 0;
1470
1471			/*
1472			 * Pick the smallest possible scaling factor that
1473			 * will still allow us to scale up to sb_max, aka
1474			 * kern.ipc.maxsockbuf.
1475			 *
1476			 * We do this because there are broken firewalls that
1477			 * will corrupt the window scale option, leading to
1478			 * the other endpoint believing that our advertised
1479			 * window is unscaled.  At scale factors larger than
1480			 * 5 the unscaled window will drop below 1500 bytes,
1481			 * leading to serious problems when traversing these
1482			 * broken firewalls.
1483			 *
1484			 * With the default maxsockbuf of 256K, a scale factor
1485			 * of 3 will be chosen by this algorithm.  Those who
1486			 * choose a larger maxsockbuf should watch out
1487			 * for the compatibility problems mentioned above.
1488			 *
1489			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1490			 * or <SYN,ACK>) segment itself is never scaled.
1491			 */
1492			while (wscale < TCP_MAX_WINSHIFT &&
1493			    (TCP_MAXWIN << wscale) < sb_max)
1494				wscale++;
1495			sc->sc_requested_r_scale = wscale;
1496			sc->sc_requested_s_scale = to->to_wscale;
1497			sc->sc_flags |= SCF_WINSCALE;
1498		}
1499	}
1500#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1501	/*
1502	 * If listening socket requested TCP digests, flag this in the
1503	 * syncache so that syncache_respond() will do the right thing
1504	 * with the SYN+ACK.
1505	 */
1506	if (ltflags & TF_SIGNATURE)
1507		sc->sc_flags |= SCF_SIGNATURE;
1508#endif	/* TCP_SIGNATURE */
1509	if (to->to_flags & TOF_SACKPERM)
1510		sc->sc_flags |= SCF_SACK;
1511	if (to->to_flags & TOF_MSS)
1512		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1513	if (ltflags & TF_NOOPT)
1514		sc->sc_flags |= SCF_NOOPT;
1515	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1516		sc->sc_flags |= SCF_ECN;
1517
1518	if (V_tcp_syncookies)
1519		sc->sc_iss = syncookie_generate(sch, sc);
1520#ifdef INET6
1521	if (autoflowlabel) {
1522		if (V_tcp_syncookies)
1523			sc->sc_flowlabel = sc->sc_iss;
1524		else
1525			sc->sc_flowlabel = ip6_randomflowlabel();
1526		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1527	}
1528#endif
1529	SCH_UNLOCK(sch);
1530
1531#ifdef TCP_RFC7413
1532	if (tfo_cookie_valid) {
1533		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1534		/* INP_WUNLOCK(inp) will be performed by the called */
1535		rv = 1;
1536		goto tfo_done;
1537	}
1538#endif
1539
1540	/*
1541	 * Do a standard 3-way handshake.
1542	 */
1543	if (syncache_respond(sc, sch, 0, m) == 0) {
1544		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1545			syncache_free(sc);
1546		else if (sc != &scs)
1547			syncache_insert(sc, sch);   /* locks and unlocks sch */
1548		TCPSTAT_INC(tcps_sndacks);
1549		TCPSTAT_INC(tcps_sndtotal);
1550	} else {
1551		if (sc != &scs)
1552			syncache_free(sc);
1553		TCPSTAT_INC(tcps_sc_dropped);
1554	}
1555
1556done:
1557	if (m) {
1558		*lsop = NULL;
1559		m_freem(m);
1560	}
1561#ifdef TCP_RFC7413
1562tfo_done:
1563#endif
1564	if (cred != NULL)
1565		crfree(cred);
1566#ifdef MAC
1567	if (sc == &scs)
1568		mac_syncache_destroy(&maclabel);
1569#endif
1570	return (rv);
1571}
1572
1573/*
1574 * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1575 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1576 */
1577static int
1578syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1579    const struct mbuf *m0)
1580{
1581	struct ip *ip = NULL;
1582	struct mbuf *m;
1583	struct tcphdr *th = NULL;
1584	int optlen, error = 0;	/* Make compiler happy */
1585	u_int16_t hlen, tlen, mssopt;
1586	struct tcpopt to;
1587#ifdef INET6
1588	struct ip6_hdr *ip6 = NULL;
1589#endif
1590	hlen =
1591#ifdef INET6
1592	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1593#endif
1594		sizeof(struct ip);
1595	tlen = hlen + sizeof(struct tcphdr);
1596
1597	/* Determine MSS we advertize to other end of connection. */
1598	mssopt = tcp_mssopt(&sc->sc_inc);
1599	if (sc->sc_peer_mss)
1600		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1601
1602	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1603	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1604	    ("syncache: mbuf too small"));
1605
1606	/* Create the IP+TCP header from scratch. */
1607	m = m_gethdr(M_NOWAIT, MT_DATA);
1608	if (m == NULL)
1609		return (ENOBUFS);
1610#ifdef MAC
1611	mac_syncache_create_mbuf(sc->sc_label, m);
1612#endif
1613	m->m_data += max_linkhdr;
1614	m->m_len = tlen;
1615	m->m_pkthdr.len = tlen;
1616	m->m_pkthdr.rcvif = NULL;
1617
1618#ifdef INET6
1619	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1620		ip6 = mtod(m, struct ip6_hdr *);
1621		ip6->ip6_vfc = IPV6_VERSION;
1622		ip6->ip6_nxt = IPPROTO_TCP;
1623		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1624		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1625		ip6->ip6_plen = htons(tlen - hlen);
1626		/* ip6_hlim is set after checksum */
1627		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1628		ip6->ip6_flow |= sc->sc_flowlabel;
1629
1630		th = (struct tcphdr *)(ip6 + 1);
1631	}
1632#endif
1633#if defined(INET6) && defined(INET)
1634	else
1635#endif
1636#ifdef INET
1637	{
1638		ip = mtod(m, struct ip *);
1639		ip->ip_v = IPVERSION;
1640		ip->ip_hl = sizeof(struct ip) >> 2;
1641		ip->ip_len = htons(tlen);
1642		ip->ip_id = 0;
1643		ip->ip_off = 0;
1644		ip->ip_sum = 0;
1645		ip->ip_p = IPPROTO_TCP;
1646		ip->ip_src = sc->sc_inc.inc_laddr;
1647		ip->ip_dst = sc->sc_inc.inc_faddr;
1648		ip->ip_ttl = sc->sc_ip_ttl;
1649		ip->ip_tos = sc->sc_ip_tos;
1650
1651		/*
1652		 * See if we should do MTU discovery.  Route lookups are
1653		 * expensive, so we will only unset the DF bit if:
1654		 *
1655		 *	1) path_mtu_discovery is disabled
1656		 *	2) the SCF_UNREACH flag has been set
1657		 */
1658		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1659		       ip->ip_off |= htons(IP_DF);
1660
1661		th = (struct tcphdr *)(ip + 1);
1662	}
1663#endif /* INET */
1664	th->th_sport = sc->sc_inc.inc_lport;
1665	th->th_dport = sc->sc_inc.inc_fport;
1666
1667	th->th_seq = htonl(sc->sc_iss);
1668	th->th_ack = htonl(sc->sc_irs + 1);
1669	th->th_off = sizeof(struct tcphdr) >> 2;
1670	th->th_x2 = 0;
1671	th->th_flags = TH_SYN|TH_ACK;
1672	th->th_win = htons(sc->sc_wnd);
1673	th->th_urp = 0;
1674
1675	if (sc->sc_flags & SCF_ECN) {
1676		th->th_flags |= TH_ECE;
1677		TCPSTAT_INC(tcps_ecn_shs);
1678	}
1679
1680	/* Tack on the TCP options. */
1681	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1682		to.to_flags = 0;
1683
1684		to.to_mss = mssopt;
1685		to.to_flags = TOF_MSS;
1686		if (sc->sc_flags & SCF_WINSCALE) {
1687			to.to_wscale = sc->sc_requested_r_scale;
1688			to.to_flags |= TOF_SCALE;
1689		}
1690		if (sc->sc_flags & SCF_TIMESTAMP) {
1691			/* Virgin timestamp or TCP cookie enhanced one. */
1692			to.to_tsval = sc->sc_ts;
1693			to.to_tsecr = sc->sc_tsreflect;
1694			to.to_flags |= TOF_TS;
1695		}
1696		if (sc->sc_flags & SCF_SACK)
1697			to.to_flags |= TOF_SACKPERM;
1698#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1699		if (sc->sc_flags & SCF_SIGNATURE)
1700			to.to_flags |= TOF_SIGNATURE;
1701#endif
1702#ifdef TCP_RFC7413
1703		if (sc->sc_tfo_cookie) {
1704			to.to_flags |= TOF_FASTOPEN;
1705			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1706			to.to_tfo_cookie = sc->sc_tfo_cookie;
1707			/* don't send cookie again when retransmitting response */
1708			sc->sc_tfo_cookie = NULL;
1709		}
1710#endif
1711		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1712
1713		/* Adjust headers by option size. */
1714		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1715		m->m_len += optlen;
1716		m->m_pkthdr.len += optlen;
1717#ifdef INET6
1718		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1719			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1720		else
1721#endif
1722			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1723#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1724		if (sc->sc_flags & SCF_SIGNATURE) {
1725			KASSERT(to.to_flags & TOF_SIGNATURE,
1726			    ("tcp_addoptions() didn't set tcp_signature"));
1727
1728			/* NOTE: to.to_signature is inside of mbuf */
1729			if (!TCPMD5_ENABLED() ||
1730			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1731				m_freem(m);
1732				return (EACCES);
1733			}
1734		}
1735#endif
1736	} else
1737		optlen = 0;
1738
1739	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1740	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1741	/*
1742	 * If we have peer's SYN and it has a flowid, then let's assign it to
1743	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1744	 * to SYN|ACK due to lack of inp here.
1745	 */
1746	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1747		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1748		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1749	}
1750#ifdef INET6
1751	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1752		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1753		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1754		    IPPROTO_TCP, 0);
1755		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1756#ifdef TCP_OFFLOAD
1757		if (ADDED_BY_TOE(sc)) {
1758			struct toedev *tod = sc->sc_tod;
1759
1760			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1761
1762			return (error);
1763		}
1764#endif
1765		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1766	}
1767#endif
1768#if defined(INET6) && defined(INET)
1769	else
1770#endif
1771#ifdef INET
1772	{
1773		m->m_pkthdr.csum_flags = CSUM_TCP;
1774		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1775		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1776#ifdef TCP_OFFLOAD
1777		if (ADDED_BY_TOE(sc)) {
1778			struct toedev *tod = sc->sc_tod;
1779
1780			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1781
1782			return (error);
1783		}
1784#endif
1785		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1786	}
1787#endif
1788	return (error);
1789}
1790
1791/*
1792 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1793 * that exceed the capacity of the syncache by avoiding the storage of any
1794 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1795 * attacks where the attacker does not have access to our responses.
1796 *
1797 * Syncookies encode and include all necessary information about the
1798 * connection setup within the SYN|ACK that we send back.  That way we
1799 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1800 * (if ever).  Normally the syncache and syncookies are running in parallel
1801 * with the latter taking over when the former is exhausted.  When matching
1802 * syncache entry is found the syncookie is ignored.
1803 *
1804 * The only reliable information persisting the 3WHS is our initial sequence
1805 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1806 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1807 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1808 * returns and signifies a legitimate connection if it matches the ACK.
1809 *
1810 * The available space of 32 bits to store the hash and to encode the SYN
1811 * option information is very tight and we should have at least 24 bits for
1812 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1813 *
1814 * SYN option information we have to encode to fully restore a connection:
1815 * MSS: is imporant to chose an optimal segment size to avoid IP level
1816 *   fragmentation along the path.  The common MSS values can be encoded
1817 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1818 *   in the table leading to a slight increase in packetization overhead.
1819 * WSCALE: is necessary to allow large windows to be used for high delay-
1820 *   bandwidth product links.  Not scaling the window when it was initially
1821 *   negotiated is bad for performance as lack of scaling further decreases
1822 *   the apparent available send window.  We only need to encode the WSCALE
1823 *   we received from the remote end.  Our end can be recalculated at any
1824 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1825 *   Uncommon values are captured by the next lower value in the table
1826 *   making us under-estimate the available window size halving our
1827 *   theoretically possible maximum throughput for that connection.
1828 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1829 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1830 *   that are included in all segments on a connection.  We enable them when
1831 *   the ACK has them.
1832 *
1833 * Security of syncookies and attack vectors:
1834 *
1835 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1836 * together with the gloabl secret to make it unique per connection attempt.
1837 * Thus any change of any of those parameters results in a different MAC output
1838 * in an unpredictable way unless a collision is encountered.  24 bits of the
1839 * MAC are embedded into the ISS.
1840 *
1841 * To prevent replay attacks two rotating global secrets are updated with a
1842 * new random value every 15 seconds.  The life-time of a syncookie is thus
1843 * 15-30 seconds.
1844 *
1845 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1846 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1847 * text attack by varying and testing the all parameters under his control.
1848 * The strength depends on the size and randomness of the secret, and the
1849 * cryptographic security of the MAC function.  Due to the constant updating
1850 * of the secret the attacker has at most 29.999 seconds to find the secret
1851 * and launch spoofed connections.  After that he has to start all over again.
1852 *
1853 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1854 * size an average of 4,823 attempts are required for a 50% chance of success
1855 * to spoof a single syncookie (birthday collision paradox).  However the
1856 * attacker is blind and doesn't know if one of his attempts succeeded unless
1857 * he has a side channel to interfere success from.  A single connection setup
1858 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1859 * This many attempts are required for each one blind spoofed connection.  For
1860 * every additional spoofed connection he has to launch another N attempts.
1861 * Thus for a sustained rate 100 spoofed connections per second approximately
1862 * 1,800,000 packets per second would have to be sent.
1863 *
1864 * NB: The MAC function should be fast so that it doesn't become a CPU
1865 * exhaustion attack vector itself.
1866 *
1867 * References:
1868 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1869 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1870 *   http://cr.yp.to/syncookies.html    (overview)
1871 *   http://cr.yp.to/syncookies/archive (details)
1872 *
1873 *
1874 * Schematic construction of a syncookie enabled Initial Sequence Number:
1875 *  0        1         2         3
1876 *  12345678901234567890123456789012
1877 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1878 *
1879 *  x 24 MAC (truncated)
1880 *  W  3 Send Window Scale index
1881 *  M  3 MSS index
1882 *  S  1 SACK permitted
1883 *  P  1 Odd/even secret
1884 */
1885
1886/*
1887 * Distribution and probability of certain MSS values.  Those in between are
1888 * rounded down to the next lower one.
1889 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1890 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1891 */
1892static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1893
1894/*
1895 * Distribution and probability of certain WSCALE values.  We have to map the
1896 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1897 * bits based on prevalence of certain values.  Where we don't have an exact
1898 * match for are rounded down to the next lower one letting us under-estimate
1899 * the true available window.  At the moment this would happen only for the
1900 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1901 * and window size).  The absence of the WSCALE option (no scaling in either
1902 * direction) is encoded with index zero.
1903 * [WSCALE values histograms, Allman, 2012]
1904 *                            X 10 10 35  5  6 14 10%   by host
1905 *                            X 11  4  5  5 18 49  3%   by connections
1906 */
1907static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1908
1909/*
1910 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1911 * and good cryptographic properties.
1912 */
1913static uint32_t
1914syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1915    uint8_t *secbits, uintptr_t secmod)
1916{
1917	SIPHASH_CTX ctx;
1918	uint32_t siphash[2];
1919
1920	SipHash24_Init(&ctx);
1921	SipHash_SetKey(&ctx, secbits);
1922	switch (inc->inc_flags & INC_ISIPV6) {
1923#ifdef INET
1924	case 0:
1925		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1926		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1927		break;
1928#endif
1929#ifdef INET6
1930	case INC_ISIPV6:
1931		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1932		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1933		break;
1934#endif
1935	}
1936	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1937	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1938	SipHash_Update(&ctx, &irs, sizeof(irs));
1939	SipHash_Update(&ctx, &flags, sizeof(flags));
1940	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1941	SipHash_Final((u_int8_t *)&siphash, &ctx);
1942
1943	return (siphash[0] ^ siphash[1]);
1944}
1945
1946static tcp_seq
1947syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1948{
1949	u_int i, mss, secbit, wscale;
1950	uint32_t iss, hash;
1951	uint8_t *secbits;
1952	union syncookie cookie;
1953
1954	SCH_LOCK_ASSERT(sch);
1955
1956	cookie.cookie = 0;
1957
1958	/* Map our computed MSS into the 3-bit index. */
1959	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1960	for (i = nitems(tcp_sc_msstab) - 1; tcp_sc_msstab[i] > mss && i > 0;
1961	     i--)
1962		;
1963	cookie.flags.mss_idx = i;
1964
1965	/*
1966	 * Map the send window scale into the 3-bit index but only if
1967	 * the wscale option was received.
1968	 */
1969	if (sc->sc_flags & SCF_WINSCALE) {
1970		wscale = sc->sc_requested_s_scale;
1971		for (i = nitems(tcp_sc_wstab) - 1;
1972		    tcp_sc_wstab[i] > wscale && i > 0;
1973		     i--)
1974			;
1975		cookie.flags.wscale_idx = i;
1976	}
1977
1978	/* Can we do SACK? */
1979	if (sc->sc_flags & SCF_SACK)
1980		cookie.flags.sack_ok = 1;
1981
1982	/* Which of the two secrets to use. */
1983	secbit = sch->sch_sc->secret.oddeven & 0x1;
1984	cookie.flags.odd_even = secbit;
1985
1986	secbits = sch->sch_sc->secret.key[secbit];
1987	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1988	    (uintptr_t)sch);
1989
1990	/*
1991	 * Put the flags into the hash and XOR them to get better ISS number
1992	 * variance.  This doesn't enhance the cryptographic strength and is
1993	 * done to prevent the 8 cookie bits from showing up directly on the
1994	 * wire.
1995	 */
1996	iss = hash & ~0xff;
1997	iss |= cookie.cookie ^ (hash >> 24);
1998
1999	/* Randomize the timestamp. */
2000	if (sc->sc_flags & SCF_TIMESTAMP) {
2001		sc->sc_ts = arc4random();
2002		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
2003	}
2004
2005	TCPSTAT_INC(tcps_sc_sendcookie);
2006	return (iss);
2007}
2008
2009static struct syncache *
2010syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2011    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2012    struct socket *lso)
2013{
2014	uint32_t hash;
2015	uint8_t *secbits;
2016	tcp_seq ack, seq;
2017	int wnd, wscale = 0;
2018	union syncookie cookie;
2019
2020	SCH_LOCK_ASSERT(sch);
2021
2022	/*
2023	 * Pull information out of SYN-ACK/ACK and revert sequence number
2024	 * advances.
2025	 */
2026	ack = th->th_ack - 1;
2027	seq = th->th_seq - 1;
2028
2029	/*
2030	 * Unpack the flags containing enough information to restore the
2031	 * connection.
2032	 */
2033	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2034
2035	/* Which of the two secrets to use. */
2036	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2037
2038	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2039
2040	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2041	if ((ack & ~0xff) != (hash & ~0xff))
2042		return (NULL);
2043
2044	/* Fill in the syncache values. */
2045	sc->sc_flags = 0;
2046	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2047	sc->sc_ipopts = NULL;
2048
2049	sc->sc_irs = seq;
2050	sc->sc_iss = ack;
2051
2052	switch (inc->inc_flags & INC_ISIPV6) {
2053#ifdef INET
2054	case 0:
2055		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2056		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2057		break;
2058#endif
2059#ifdef INET6
2060	case INC_ISIPV6:
2061		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2062			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2063		break;
2064#endif
2065	}
2066
2067	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2068
2069	/* We can simply recompute receive window scale we sent earlier. */
2070	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2071		wscale++;
2072
2073	/* Only use wscale if it was enabled in the orignal SYN. */
2074	if (cookie.flags.wscale_idx > 0) {
2075		sc->sc_requested_r_scale = wscale;
2076		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2077		sc->sc_flags |= SCF_WINSCALE;
2078	}
2079
2080	wnd = sbspace(&lso->so_rcv);
2081	wnd = imax(wnd, 0);
2082	wnd = imin(wnd, TCP_MAXWIN);
2083	sc->sc_wnd = wnd;
2084
2085	if (cookie.flags.sack_ok)
2086		sc->sc_flags |= SCF_SACK;
2087
2088	if (to->to_flags & TOF_TS) {
2089		sc->sc_flags |= SCF_TIMESTAMP;
2090		sc->sc_tsreflect = to->to_tsval;
2091		sc->sc_ts = to->to_tsecr;
2092		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2093	}
2094
2095	if (to->to_flags & TOF_SIGNATURE)
2096		sc->sc_flags |= SCF_SIGNATURE;
2097
2098	sc->sc_rxmits = 0;
2099
2100	TCPSTAT_INC(tcps_sc_recvcookie);
2101	return (sc);
2102}
2103
2104#ifdef INVARIANTS
2105static int
2106syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2107    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2108    struct socket *lso)
2109{
2110	struct syncache scs, *scx;
2111	char *s;
2112
2113	bzero(&scs, sizeof(scs));
2114	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2115
2116	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2117		return (0);
2118
2119	if (scx != NULL) {
2120		if (sc->sc_peer_mss != scx->sc_peer_mss)
2121			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2122			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2123
2124		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2125			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2126			    s, __func__, sc->sc_requested_r_scale,
2127			    scx->sc_requested_r_scale);
2128
2129		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2130			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2131			    s, __func__, sc->sc_requested_s_scale,
2132			    scx->sc_requested_s_scale);
2133
2134		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2135			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2136	}
2137
2138	if (s != NULL)
2139		free(s, M_TCPLOG);
2140	return (0);
2141}
2142#endif /* INVARIANTS */
2143
2144static void
2145syncookie_reseed(void *arg)
2146{
2147	struct tcp_syncache *sc = arg;
2148	uint8_t *secbits;
2149	int secbit;
2150
2151	/*
2152	 * Reseeding the secret doesn't have to be protected by a lock.
2153	 * It only must be ensured that the new random values are visible
2154	 * to all CPUs in a SMP environment.  The atomic with release
2155	 * semantics ensures that.
2156	 */
2157	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2158	secbits = sc->secret.key[secbit];
2159	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2160	atomic_add_rel_int(&sc->secret.oddeven, 1);
2161
2162	/* Reschedule ourself. */
2163	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2164}
2165
2166/*
2167 * Exports the syncache entries to userland so that netstat can display
2168 * them alongside the other sockets.  This function is intended to be
2169 * called only from tcp_pcblist.
2170 *
2171 * Due to concurrency on an active system, the number of pcbs exported
2172 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2173 * amount of space the caller allocated for this function to use.
2174 */
2175int
2176syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2177{
2178	struct xtcpcb xt;
2179	struct syncache *sc;
2180	struct syncache_head *sch;
2181	int count, error, i;
2182
2183	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2184		sch = &V_tcp_syncache.hashbase[i];
2185		SCH_LOCK(sch);
2186		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2187			if (count >= max_pcbs) {
2188				SCH_UNLOCK(sch);
2189				goto exit;
2190			}
2191			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2192				continue;
2193			bzero(&xt, sizeof(xt));
2194			xt.xt_len = sizeof(xt);
2195			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2196				xt.xt_inp.inp_vflag = INP_IPV6;
2197			else
2198				xt.xt_inp.inp_vflag = INP_IPV4;
2199			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2200			xt.xt_tp.t_inpcb = &xt.xt_inp;
2201			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2202			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2203			xt.xt_socket.xso_len = sizeof (struct xsocket);
2204			xt.xt_socket.so_type = SOCK_STREAM;
2205			xt.xt_socket.so_state = SS_ISCONNECTING;
2206			error = SYSCTL_OUT(req, &xt, sizeof xt);
2207			if (error) {
2208				SCH_UNLOCK(sch);
2209				goto exit;
2210			}
2211			count++;
2212		}
2213		SCH_UNLOCK(sch);
2214	}
2215exit:
2216	*pcbs_exported = count;
2217	return error;
2218}
2219