sctp_auth.c revision 303267
1/*-
2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
4 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 *
9 * a) Redistributions of source code must retain the above copyright notice,
10 *    this list of conditions and the following disclaimer.
11 *
12 * b) Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the distribution.
15 *
16 * c) Neither the name of Cisco Systems, Inc. nor the names of its
17 *    contributors may be used to endorse or promote products derived
18 *    from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/netinet/sctp_auth.c 303267 2016-07-24 14:50:16Z tuexen $");
35
36#include <netinet/sctp_os.h>
37#include <netinet/sctp.h>
38#include <netinet/sctp_header.h>
39#include <netinet/sctp_pcb.h>
40#include <netinet/sctp_var.h>
41#include <netinet/sctp_sysctl.h>
42#include <netinet/sctputil.h>
43#include <netinet/sctp_indata.h>
44#include <netinet/sctp_output.h>
45#include <netinet/sctp_auth.h>
46
47#ifdef SCTP_DEBUG
48#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50#endif				/* SCTP_DEBUG */
51
52
53void
54sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55{
56	bzero(chklist, sizeof(*chklist));
57	/* chklist->num_chunks = 0; */
58}
59
60sctp_auth_chklist_t *
61sctp_alloc_chunklist(void)
62{
63	sctp_auth_chklist_t *chklist;
64
65	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66	    SCTP_M_AUTH_CL);
67	if (chklist == NULL) {
68		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69	} else {
70		sctp_clear_chunklist(chklist);
71	}
72	return (chklist);
73}
74
75void
76sctp_free_chunklist(sctp_auth_chklist_t * list)
77{
78	if (list != NULL)
79		SCTP_FREE(list, SCTP_M_AUTH_CL);
80}
81
82sctp_auth_chklist_t *
83sctp_copy_chunklist(sctp_auth_chklist_t * list)
84{
85	sctp_auth_chklist_t *new_list;
86
87	if (list == NULL)
88		return (NULL);
89
90	/* get a new list */
91	new_list = sctp_alloc_chunklist();
92	if (new_list == NULL)
93		return (NULL);
94	/* copy it */
95	bcopy(list, new_list, sizeof(*new_list));
96
97	return (new_list);
98}
99
100
101/*
102 * add a chunk to the required chunks list
103 */
104int
105sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106{
107	if (list == NULL)
108		return (-1);
109
110	/* is chunk restricted? */
111	if ((chunk == SCTP_INITIATION) ||
112	    (chunk == SCTP_INITIATION_ACK) ||
113	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114	    (chunk == SCTP_AUTHENTICATION)) {
115		return (-1);
116	}
117	if (list->chunks[chunk] == 0) {
118		list->chunks[chunk] = 1;
119		list->num_chunks++;
120		SCTPDBG(SCTP_DEBUG_AUTH1,
121		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122		    chunk, chunk);
123	}
124	return (0);
125}
126
127/*
128 * delete a chunk from the required chunks list
129 */
130int
131sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132{
133	if (list == NULL)
134		return (-1);
135
136	if (list->chunks[chunk] == 1) {
137		list->chunks[chunk] = 0;
138		list->num_chunks--;
139		SCTPDBG(SCTP_DEBUG_AUTH1,
140		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
141		    chunk, chunk);
142	}
143	return (0);
144}
145
146size_t
147sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
148{
149	if (list == NULL)
150		return (0);
151	else
152		return (list->num_chunks);
153}
154
155/*
156 * return the current number and list of required chunks caller must
157 * guarantee ptr has space for up to 256 bytes
158 */
159int
160sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
161{
162	int i, count = 0;
163
164	if (list == NULL)
165		return (0);
166
167	for (i = 0; i < 256; i++) {
168		if (list->chunks[i] != 0) {
169			*ptr++ = i;
170			count++;
171		}
172	}
173	return (count);
174}
175
176int
177sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
178{
179	int i, size = 0;
180
181	if (list == NULL)
182		return (0);
183
184	if (list->num_chunks <= 32) {
185		/* just list them, one byte each */
186		for (i = 0; i < 256; i++) {
187			if (list->chunks[i] != 0) {
188				*ptr++ = i;
189				size++;
190			}
191		}
192	} else {
193		int index, offset;
194
195		/* pack into a 32 byte bitfield */
196		for (i = 0; i < 256; i++) {
197			if (list->chunks[i] != 0) {
198				index = i / 8;
199				offset = i % 8;
200				ptr[index] |= (1 << offset);
201			}
202		}
203		size = 32;
204	}
205	return (size);
206}
207
208int
209sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
210    sctp_auth_chklist_t * list)
211{
212	int i;
213	int size;
214
215	if (list == NULL)
216		return (0);
217
218	if (num_chunks <= 32) {
219		/* just pull them, one byte each */
220		for (i = 0; i < num_chunks; i++) {
221			(void)sctp_auth_add_chunk(*ptr++, list);
222		}
223		size = num_chunks;
224	} else {
225		int index, offset;
226
227		/* unpack from a 32 byte bitfield */
228		for (index = 0; index < 32; index++) {
229			for (offset = 0; offset < 8; offset++) {
230				if (ptr[index] & (1 << offset)) {
231					(void)sctp_auth_add_chunk((index * 8) + offset, list);
232				}
233			}
234		}
235		size = 32;
236	}
237	return (size);
238}
239
240
241/*
242 * allocate structure space for a key of length keylen
243 */
244sctp_key_t *
245sctp_alloc_key(uint32_t keylen)
246{
247	sctp_key_t *new_key;
248
249	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
250	    SCTP_M_AUTH_KY);
251	if (new_key == NULL) {
252		/* out of memory */
253		return (NULL);
254	}
255	new_key->keylen = keylen;
256	return (new_key);
257}
258
259void
260sctp_free_key(sctp_key_t * key)
261{
262	if (key != NULL)
263		SCTP_FREE(key, SCTP_M_AUTH_KY);
264}
265
266void
267sctp_print_key(sctp_key_t * key, const char *str)
268{
269	uint32_t i;
270
271	if (key == NULL) {
272		SCTP_PRINTF("%s: [Null key]\n", str);
273		return;
274	}
275	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
276	if (key->keylen) {
277		for (i = 0; i < key->keylen; i++)
278			SCTP_PRINTF("%02x", key->key[i]);
279		SCTP_PRINTF("\n");
280	} else {
281		SCTP_PRINTF("[Null key]\n");
282	}
283}
284
285void
286sctp_show_key(sctp_key_t * key, const char *str)
287{
288	uint32_t i;
289
290	if (key == NULL) {
291		SCTP_PRINTF("%s: [Null key]\n", str);
292		return;
293	}
294	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
295	if (key->keylen) {
296		for (i = 0; i < key->keylen; i++)
297			SCTP_PRINTF("%02x", key->key[i]);
298		SCTP_PRINTF("\n");
299	} else {
300		SCTP_PRINTF("[Null key]\n");
301	}
302}
303
304static uint32_t
305sctp_get_keylen(sctp_key_t * key)
306{
307	if (key != NULL)
308		return (key->keylen);
309	else
310		return (0);
311}
312
313/*
314 * generate a new random key of length 'keylen'
315 */
316sctp_key_t *
317sctp_generate_random_key(uint32_t keylen)
318{
319	sctp_key_t *new_key;
320
321	new_key = sctp_alloc_key(keylen);
322	if (new_key == NULL) {
323		/* out of memory */
324		return (NULL);
325	}
326	SCTP_READ_RANDOM(new_key->key, keylen);
327	new_key->keylen = keylen;
328	return (new_key);
329}
330
331sctp_key_t *
332sctp_set_key(uint8_t * key, uint32_t keylen)
333{
334	sctp_key_t *new_key;
335
336	new_key = sctp_alloc_key(keylen);
337	if (new_key == NULL) {
338		/* out of memory */
339		return (NULL);
340	}
341	bcopy(key, new_key->key, keylen);
342	return (new_key);
343}
344
345/*-
346 * given two keys of variable size, compute which key is "larger/smaller"
347 * returns:  1 if key1 > key2
348 *          -1 if key1 < key2
349 *           0 if key1 = key2
350 */
351static int
352sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
353{
354	uint32_t maxlen;
355	uint32_t i;
356	uint32_t key1len, key2len;
357	uint8_t *key_1, *key_2;
358	uint8_t val1, val2;
359
360	/* sanity/length check */
361	key1len = sctp_get_keylen(key1);
362	key2len = sctp_get_keylen(key2);
363	if ((key1len == 0) && (key2len == 0))
364		return (0);
365	else if (key1len == 0)
366		return (-1);
367	else if (key2len == 0)
368		return (1);
369
370	if (key1len < key2len) {
371		maxlen = key2len;
372	} else {
373		maxlen = key1len;
374	}
375	key_1 = key1->key;
376	key_2 = key2->key;
377	/* check for numeric equality */
378	for (i = 0; i < maxlen; i++) {
379		/* left-pad with zeros */
380		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
381		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
382		if (val1 > val2) {
383			return (1);
384		} else if (val1 < val2) {
385			return (-1);
386		}
387	}
388	/* keys are equal value, so check lengths */
389	if (key1len == key2len)
390		return (0);
391	else if (key1len < key2len)
392		return (-1);
393	else
394		return (1);
395}
396
397/*
398 * generate the concatenated keying material based on the two keys and the
399 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
400 * order for concatenation
401 */
402sctp_key_t *
403sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
404{
405	uint32_t keylen;
406	sctp_key_t *new_key;
407	uint8_t *key_ptr;
408
409	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
410	    sctp_get_keylen(shared);
411
412	if (keylen > 0) {
413		/* get space for the new key */
414		new_key = sctp_alloc_key(keylen);
415		if (new_key == NULL) {
416			/* out of memory */
417			return (NULL);
418		}
419		new_key->keylen = keylen;
420		key_ptr = new_key->key;
421	} else {
422		/* all keys empty/null?! */
423		return (NULL);
424	}
425
426	/* concatenate the keys */
427	if (sctp_compare_key(key1, key2) <= 0) {
428		/* key is shared + key1 + key2 */
429		if (sctp_get_keylen(shared)) {
430			bcopy(shared->key, key_ptr, shared->keylen);
431			key_ptr += shared->keylen;
432		}
433		if (sctp_get_keylen(key1)) {
434			bcopy(key1->key, key_ptr, key1->keylen);
435			key_ptr += key1->keylen;
436		}
437		if (sctp_get_keylen(key2)) {
438			bcopy(key2->key, key_ptr, key2->keylen);
439		}
440	} else {
441		/* key is shared + key2 + key1 */
442		if (sctp_get_keylen(shared)) {
443			bcopy(shared->key, key_ptr, shared->keylen);
444			key_ptr += shared->keylen;
445		}
446		if (sctp_get_keylen(key2)) {
447			bcopy(key2->key, key_ptr, key2->keylen);
448			key_ptr += key2->keylen;
449		}
450		if (sctp_get_keylen(key1)) {
451			bcopy(key1->key, key_ptr, key1->keylen);
452		}
453	}
454	return (new_key);
455}
456
457
458sctp_sharedkey_t *
459sctp_alloc_sharedkey(void)
460{
461	sctp_sharedkey_t *new_key;
462
463	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
464	    SCTP_M_AUTH_KY);
465	if (new_key == NULL) {
466		/* out of memory */
467		return (NULL);
468	}
469	new_key->keyid = 0;
470	new_key->key = NULL;
471	new_key->refcount = 1;
472	new_key->deactivated = 0;
473	return (new_key);
474}
475
476void
477sctp_free_sharedkey(sctp_sharedkey_t * skey)
478{
479	if (skey == NULL)
480		return;
481
482	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
483		if (skey->key != NULL)
484			sctp_free_key(skey->key);
485		SCTP_FREE(skey, SCTP_M_AUTH_KY);
486	}
487}
488
489sctp_sharedkey_t *
490sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
491{
492	sctp_sharedkey_t *skey;
493
494	LIST_FOREACH(skey, shared_keys, next) {
495		if (skey->keyid == key_id)
496			return (skey);
497	}
498	return (NULL);
499}
500
501int
502sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
503    sctp_sharedkey_t * new_skey)
504{
505	sctp_sharedkey_t *skey;
506
507	if ((shared_keys == NULL) || (new_skey == NULL))
508		return (EINVAL);
509
510	/* insert into an empty list? */
511	if (LIST_EMPTY(shared_keys)) {
512		LIST_INSERT_HEAD(shared_keys, new_skey, next);
513		return (0);
514	}
515	/* insert into the existing list, ordered by key id */
516	LIST_FOREACH(skey, shared_keys, next) {
517		if (new_skey->keyid < skey->keyid) {
518			/* insert it before here */
519			LIST_INSERT_BEFORE(skey, new_skey, next);
520			return (0);
521		} else if (new_skey->keyid == skey->keyid) {
522			/* replace the existing key */
523			/* verify this key *can* be replaced */
524			if ((skey->deactivated) && (skey->refcount > 1)) {
525				SCTPDBG(SCTP_DEBUG_AUTH1,
526				    "can't replace shared key id %u\n",
527				    new_skey->keyid);
528				return (EBUSY);
529			}
530			SCTPDBG(SCTP_DEBUG_AUTH1,
531			    "replacing shared key id %u\n",
532			    new_skey->keyid);
533			LIST_INSERT_BEFORE(skey, new_skey, next);
534			LIST_REMOVE(skey, next);
535			sctp_free_sharedkey(skey);
536			return (0);
537		}
538		if (LIST_NEXT(skey, next) == NULL) {
539			/* belongs at the end of the list */
540			LIST_INSERT_AFTER(skey, new_skey, next);
541			return (0);
542		}
543	}
544	/* shouldn't reach here */
545	return (EINVAL);
546}
547
548void
549sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
550{
551	sctp_sharedkey_t *skey;
552
553	/* find the shared key */
554	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
555
556	/* bump the ref count */
557	if (skey) {
558		atomic_add_int(&skey->refcount, 1);
559		SCTPDBG(SCTP_DEBUG_AUTH2,
560		    "%s: stcb %p key %u refcount acquire to %d\n",
561		    __func__, (void *)stcb, key_id, skey->refcount);
562	}
563}
564
565void
566sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
567#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
568    SCTP_UNUSED
569#endif
570)
571{
572	sctp_sharedkey_t *skey;
573
574	/* find the shared key */
575	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
576
577	/* decrement the ref count */
578	if (skey) {
579		SCTPDBG(SCTP_DEBUG_AUTH2,
580		    "%s: stcb %p key %u refcount release to %d\n",
581		    __func__, (void *)stcb, key_id, skey->refcount);
582
583		/* see if a notification should be generated */
584		if ((skey->refcount <= 2) && (skey->deactivated)) {
585			/* notify ULP that key is no longer used */
586			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
587			    key_id, 0, so_locked);
588			SCTPDBG(SCTP_DEBUG_AUTH2,
589			    "%s: stcb %p key %u no longer used, %d\n",
590			    __func__, (void *)stcb, key_id, skey->refcount);
591		}
592		sctp_free_sharedkey(skey);
593	}
594}
595
596static sctp_sharedkey_t *
597sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
598{
599	sctp_sharedkey_t *new_skey;
600
601	if (skey == NULL)
602		return (NULL);
603	new_skey = sctp_alloc_sharedkey();
604	if (new_skey == NULL)
605		return (NULL);
606	if (skey->key != NULL)
607		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
608	else
609		new_skey->key = NULL;
610	new_skey->keyid = skey->keyid;
611	return (new_skey);
612}
613
614int
615sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
616{
617	sctp_sharedkey_t *skey, *new_skey;
618	int count = 0;
619
620	if ((src == NULL) || (dest == NULL))
621		return (0);
622	LIST_FOREACH(skey, src, next) {
623		new_skey = sctp_copy_sharedkey(skey);
624		if (new_skey != NULL) {
625			if (sctp_insert_sharedkey(dest, new_skey)) {
626				sctp_free_sharedkey(new_skey);
627			} else {
628				count++;
629			}
630		}
631	}
632	return (count);
633}
634
635
636sctp_hmaclist_t *
637sctp_alloc_hmaclist(uint16_t num_hmacs)
638{
639	sctp_hmaclist_t *new_list;
640	int alloc_size;
641
642	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
643	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
644	    SCTP_M_AUTH_HL);
645	if (new_list == NULL) {
646		/* out of memory */
647		return (NULL);
648	}
649	new_list->max_algo = num_hmacs;
650	new_list->num_algo = 0;
651	return (new_list);
652}
653
654void
655sctp_free_hmaclist(sctp_hmaclist_t * list)
656{
657	if (list != NULL) {
658		SCTP_FREE(list, SCTP_M_AUTH_HL);
659		list = NULL;
660	}
661}
662
663int
664sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
665{
666	int i;
667
668	if (list == NULL)
669		return (-1);
670	if (list->num_algo == list->max_algo) {
671		SCTPDBG(SCTP_DEBUG_AUTH1,
672		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
673		return (-1);
674	}
675	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
676	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
677		return (-1);
678	}
679	/* Now is it already in the list */
680	for (i = 0; i < list->num_algo; i++) {
681		if (list->hmac[i] == hmac_id) {
682			/* already in list */
683			return (-1);
684		}
685	}
686	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
687	list->hmac[list->num_algo++] = hmac_id;
688	return (0);
689}
690
691sctp_hmaclist_t *
692sctp_copy_hmaclist(sctp_hmaclist_t * list)
693{
694	sctp_hmaclist_t *new_list;
695	int i;
696
697	if (list == NULL)
698		return (NULL);
699	/* get a new list */
700	new_list = sctp_alloc_hmaclist(list->max_algo);
701	if (new_list == NULL)
702		return (NULL);
703	/* copy it */
704	new_list->max_algo = list->max_algo;
705	new_list->num_algo = list->num_algo;
706	for (i = 0; i < list->num_algo; i++)
707		new_list->hmac[i] = list->hmac[i];
708	return (new_list);
709}
710
711sctp_hmaclist_t *
712sctp_default_supported_hmaclist(void)
713{
714	sctp_hmaclist_t *new_list;
715
716	new_list = sctp_alloc_hmaclist(2);
717	if (new_list == NULL)
718		return (NULL);
719	/* We prefer SHA256, so list it first */
720	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
721	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
722	return (new_list);
723}
724
725/*-
726 * HMAC algos are listed in priority/preference order
727 * find the best HMAC id to use for the peer based on local support
728 */
729uint16_t
730sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
731{
732	int i, j;
733
734	if ((local == NULL) || (peer == NULL))
735		return (SCTP_AUTH_HMAC_ID_RSVD);
736
737	for (i = 0; i < peer->num_algo; i++) {
738		for (j = 0; j < local->num_algo; j++) {
739			if (peer->hmac[i] == local->hmac[j]) {
740				/* found the "best" one */
741				SCTPDBG(SCTP_DEBUG_AUTH1,
742				    "SCTP: negotiated peer HMAC id %u\n",
743				    peer->hmac[i]);
744				return (peer->hmac[i]);
745			}
746		}
747	}
748	/* didn't find one! */
749	return (SCTP_AUTH_HMAC_ID_RSVD);
750}
751
752/*-
753 * serialize the HMAC algo list and return space used
754 * caller must guarantee ptr has appropriate space
755 */
756int
757sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
758{
759	int i;
760	uint16_t hmac_id;
761
762	if (list == NULL)
763		return (0);
764
765	for (i = 0; i < list->num_algo; i++) {
766		hmac_id = htons(list->hmac[i]);
767		bcopy(&hmac_id, ptr, sizeof(hmac_id));
768		ptr += sizeof(hmac_id);
769	}
770	return (list->num_algo * sizeof(hmac_id));
771}
772
773int
774sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
775{
776	uint32_t i;
777
778	for (i = 0; i < num_hmacs; i++) {
779		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
780			return (0);
781		}
782	}
783	return (-1);
784}
785
786sctp_authinfo_t *
787sctp_alloc_authinfo(void)
788{
789	sctp_authinfo_t *new_authinfo;
790
791	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
792	    SCTP_M_AUTH_IF);
793
794	if (new_authinfo == NULL) {
795		/* out of memory */
796		return (NULL);
797	}
798	bzero(new_authinfo, sizeof(*new_authinfo));
799	return (new_authinfo);
800}
801
802void
803sctp_free_authinfo(sctp_authinfo_t * authinfo)
804{
805	if (authinfo == NULL)
806		return;
807
808	if (authinfo->random != NULL)
809		sctp_free_key(authinfo->random);
810	if (authinfo->peer_random != NULL)
811		sctp_free_key(authinfo->peer_random);
812	if (authinfo->assoc_key != NULL)
813		sctp_free_key(authinfo->assoc_key);
814	if (authinfo->recv_key != NULL)
815		sctp_free_key(authinfo->recv_key);
816
817	/* We are NOT dynamically allocating authinfo's right now... */
818	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
819}
820
821
822uint32_t
823sctp_get_auth_chunk_len(uint16_t hmac_algo)
824{
825	int size;
826
827	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
828	return (SCTP_SIZE32(size));
829}
830
831uint32_t
832sctp_get_hmac_digest_len(uint16_t hmac_algo)
833{
834	switch (hmac_algo) {
835	case SCTP_AUTH_HMAC_ID_SHA1:
836		return (SCTP_AUTH_DIGEST_LEN_SHA1);
837	case SCTP_AUTH_HMAC_ID_SHA256:
838		return (SCTP_AUTH_DIGEST_LEN_SHA256);
839	default:
840		/* unknown HMAC algorithm: can't do anything */
841		return (0);
842	}			/* end switch */
843}
844
845static inline int
846sctp_get_hmac_block_len(uint16_t hmac_algo)
847{
848	switch (hmac_algo) {
849	case SCTP_AUTH_HMAC_ID_SHA1:
850		return (64);
851	case SCTP_AUTH_HMAC_ID_SHA256:
852		return (64);
853	case SCTP_AUTH_HMAC_ID_RSVD:
854	default:
855		/* unknown HMAC algorithm: can't do anything */
856		return (0);
857	}			/* end switch */
858}
859
860static void
861sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
862{
863	switch (hmac_algo) {
864	case SCTP_AUTH_HMAC_ID_SHA1:
865		SCTP_SHA1_INIT(&ctx->sha1);
866		break;
867	case SCTP_AUTH_HMAC_ID_SHA256:
868		SCTP_SHA256_INIT(&ctx->sha256);
869		break;
870	case SCTP_AUTH_HMAC_ID_RSVD:
871	default:
872		/* unknown HMAC algorithm: can't do anything */
873		return;
874	}			/* end switch */
875}
876
877static void
878sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
879    uint8_t * text, uint32_t textlen)
880{
881	switch (hmac_algo) {
882	case SCTP_AUTH_HMAC_ID_SHA1:
883		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
884		break;
885	case SCTP_AUTH_HMAC_ID_SHA256:
886		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
887		break;
888	case SCTP_AUTH_HMAC_ID_RSVD:
889	default:
890		/* unknown HMAC algorithm: can't do anything */
891		return;
892	}			/* end switch */
893}
894
895static void
896sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
897    uint8_t * digest)
898{
899	switch (hmac_algo) {
900	case SCTP_AUTH_HMAC_ID_SHA1:
901		SCTP_SHA1_FINAL(digest, &ctx->sha1);
902		break;
903	case SCTP_AUTH_HMAC_ID_SHA256:
904		SCTP_SHA256_FINAL(digest, &ctx->sha256);
905		break;
906	case SCTP_AUTH_HMAC_ID_RSVD:
907	default:
908		/* unknown HMAC algorithm: can't do anything */
909		return;
910	}			/* end switch */
911}
912
913/*-
914 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
915 *
916 * Compute the HMAC digest using the desired hash key, text, and HMAC
917 * algorithm.  Resulting digest is placed in 'digest' and digest length
918 * is returned, if the HMAC was performed.
919 *
920 * WARNING: it is up to the caller to supply sufficient space to hold the
921 * resultant digest.
922 */
923uint32_t
924sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
925    uint8_t * text, uint32_t textlen, uint8_t * digest)
926{
927	uint32_t digestlen;
928	uint32_t blocklen;
929	sctp_hash_context_t ctx;
930	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
931	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
932	uint32_t i;
933
934	/* sanity check the material and length */
935	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
936	    (textlen == 0) || (digest == NULL)) {
937		/* can't do HMAC with empty key or text or digest store */
938		return (0);
939	}
940	/* validate the hmac algo and get the digest length */
941	digestlen = sctp_get_hmac_digest_len(hmac_algo);
942	if (digestlen == 0)
943		return (0);
944
945	/* hash the key if it is longer than the hash block size */
946	blocklen = sctp_get_hmac_block_len(hmac_algo);
947	if (keylen > blocklen) {
948		sctp_hmac_init(hmac_algo, &ctx);
949		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
950		sctp_hmac_final(hmac_algo, &ctx, temp);
951		/* set the hashed key as the key */
952		keylen = digestlen;
953		key = temp;
954	}
955	/* initialize the inner/outer pads with the key and "append" zeroes */
956	bzero(ipad, blocklen);
957	bzero(opad, blocklen);
958	bcopy(key, ipad, keylen);
959	bcopy(key, opad, keylen);
960
961	/* XOR the key with ipad and opad values */
962	for (i = 0; i < blocklen; i++) {
963		ipad[i] ^= 0x36;
964		opad[i] ^= 0x5c;
965	}
966
967	/* perform inner hash */
968	sctp_hmac_init(hmac_algo, &ctx);
969	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
970	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
971	sctp_hmac_final(hmac_algo, &ctx, temp);
972
973	/* perform outer hash */
974	sctp_hmac_init(hmac_algo, &ctx);
975	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
976	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
977	sctp_hmac_final(hmac_algo, &ctx, digest);
978
979	return (digestlen);
980}
981
982/* mbuf version */
983uint32_t
984sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
985    struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
986{
987	uint32_t digestlen;
988	uint32_t blocklen;
989	sctp_hash_context_t ctx;
990	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
991	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
992	uint32_t i;
993	struct mbuf *m_tmp;
994
995	/* sanity check the material and length */
996	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
997		/* can't do HMAC with empty key or text or digest store */
998		return (0);
999	}
1000	/* validate the hmac algo and get the digest length */
1001	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1002	if (digestlen == 0)
1003		return (0);
1004
1005	/* hash the key if it is longer than the hash block size */
1006	blocklen = sctp_get_hmac_block_len(hmac_algo);
1007	if (keylen > blocklen) {
1008		sctp_hmac_init(hmac_algo, &ctx);
1009		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1010		sctp_hmac_final(hmac_algo, &ctx, temp);
1011		/* set the hashed key as the key */
1012		keylen = digestlen;
1013		key = temp;
1014	}
1015	/* initialize the inner/outer pads with the key and "append" zeroes */
1016	bzero(ipad, blocklen);
1017	bzero(opad, blocklen);
1018	bcopy(key, ipad, keylen);
1019	bcopy(key, opad, keylen);
1020
1021	/* XOR the key with ipad and opad values */
1022	for (i = 0; i < blocklen; i++) {
1023		ipad[i] ^= 0x36;
1024		opad[i] ^= 0x5c;
1025	}
1026
1027	/* perform inner hash */
1028	sctp_hmac_init(hmac_algo, &ctx);
1029	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1030	/* find the correct starting mbuf and offset (get start of text) */
1031	m_tmp = m;
1032	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1033		m_offset -= SCTP_BUF_LEN(m_tmp);
1034		m_tmp = SCTP_BUF_NEXT(m_tmp);
1035	}
1036	/* now use the rest of the mbuf chain for the text */
1037	while (m_tmp != NULL) {
1038		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1039			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1040			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1041		} else {
1042			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1043			    SCTP_BUF_LEN(m_tmp) - m_offset);
1044		}
1045
1046		/* clear the offset since it's only for the first mbuf */
1047		m_offset = 0;
1048		m_tmp = SCTP_BUF_NEXT(m_tmp);
1049	}
1050	sctp_hmac_final(hmac_algo, &ctx, temp);
1051
1052	/* perform outer hash */
1053	sctp_hmac_init(hmac_algo, &ctx);
1054	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1055	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1056	sctp_hmac_final(hmac_algo, &ctx, digest);
1057
1058	return (digestlen);
1059}
1060
1061/*-
1062 * verify the HMAC digest using the desired hash key, text, and HMAC
1063 * algorithm.
1064 * Returns -1 on error, 0 on success.
1065 */
1066int
1067sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1068    uint8_t * text, uint32_t textlen,
1069    uint8_t * digest, uint32_t digestlen)
1070{
1071	uint32_t len;
1072	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1073
1074	/* sanity check the material and length */
1075	if ((key == NULL) || (keylen == 0) ||
1076	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1077		/* can't do HMAC with empty key or text or digest */
1078		return (-1);
1079	}
1080	len = sctp_get_hmac_digest_len(hmac_algo);
1081	if ((len == 0) || (digestlen != len))
1082		return (-1);
1083
1084	/* compute the expected hash */
1085	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1086		return (-1);
1087
1088	if (memcmp(digest, temp, digestlen) != 0)
1089		return (-1);
1090	else
1091		return (0);
1092}
1093
1094
1095/*
1096 * computes the requested HMAC using a key struct (which may be modified if
1097 * the keylen exceeds the HMAC block len).
1098 */
1099uint32_t
1100sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1101    uint32_t textlen, uint8_t * digest)
1102{
1103	uint32_t digestlen;
1104	uint32_t blocklen;
1105	sctp_hash_context_t ctx;
1106	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1107
1108	/* sanity check */
1109	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1110	    (digest == NULL)) {
1111		/* can't do HMAC with empty key or text or digest store */
1112		return (0);
1113	}
1114	/* validate the hmac algo and get the digest length */
1115	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1116	if (digestlen == 0)
1117		return (0);
1118
1119	/* hash the key if it is longer than the hash block size */
1120	blocklen = sctp_get_hmac_block_len(hmac_algo);
1121	if (key->keylen > blocklen) {
1122		sctp_hmac_init(hmac_algo, &ctx);
1123		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1124		sctp_hmac_final(hmac_algo, &ctx, temp);
1125		/* save the hashed key as the new key */
1126		key->keylen = digestlen;
1127		bcopy(temp, key->key, key->keylen);
1128	}
1129	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1130	    digest));
1131}
1132
1133/* mbuf version */
1134uint32_t
1135sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1136    uint32_t m_offset, uint8_t * digest)
1137{
1138	uint32_t digestlen;
1139	uint32_t blocklen;
1140	sctp_hash_context_t ctx;
1141	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1142
1143	/* sanity check */
1144	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1145		/* can't do HMAC with empty key or text or digest store */
1146		return (0);
1147	}
1148	/* validate the hmac algo and get the digest length */
1149	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1150	if (digestlen == 0)
1151		return (0);
1152
1153	/* hash the key if it is longer than the hash block size */
1154	blocklen = sctp_get_hmac_block_len(hmac_algo);
1155	if (key->keylen > blocklen) {
1156		sctp_hmac_init(hmac_algo, &ctx);
1157		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1158		sctp_hmac_final(hmac_algo, &ctx, temp);
1159		/* save the hashed key as the new key */
1160		key->keylen = digestlen;
1161		bcopy(temp, key->key, key->keylen);
1162	}
1163	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1164}
1165
1166int
1167sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1168{
1169	int i;
1170
1171	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1172		return (0);
1173
1174	for (i = 0; i < list->num_algo; i++)
1175		if (list->hmac[i] == id)
1176			return (1);
1177
1178	/* not in the list */
1179	return (0);
1180}
1181
1182
1183/*-
1184 * clear any cached key(s) if they match the given key id on an association.
1185 * the cached key(s) will be recomputed and re-cached at next use.
1186 * ASSUMES TCB_LOCK is already held
1187 */
1188void
1189sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1190{
1191	if (stcb == NULL)
1192		return;
1193
1194	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1195		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1196		stcb->asoc.authinfo.assoc_key = NULL;
1197	}
1198	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1199		sctp_free_key(stcb->asoc.authinfo.recv_key);
1200		stcb->asoc.authinfo.recv_key = NULL;
1201	}
1202}
1203
1204/*-
1205 * clear any cached key(s) if they match the given key id for all assocs on
1206 * an endpoint.
1207 * ASSUMES INP_WLOCK is already held
1208 */
1209void
1210sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1211{
1212	struct sctp_tcb *stcb;
1213
1214	if (inp == NULL)
1215		return;
1216
1217	/* clear the cached keys on all assocs on this instance */
1218	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1219		SCTP_TCB_LOCK(stcb);
1220		sctp_clear_cachedkeys(stcb, keyid);
1221		SCTP_TCB_UNLOCK(stcb);
1222	}
1223}
1224
1225/*-
1226 * delete a shared key from an association
1227 * ASSUMES TCB_LOCK is already held
1228 */
1229int
1230sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1231{
1232	sctp_sharedkey_t *skey;
1233
1234	if (stcb == NULL)
1235		return (-1);
1236
1237	/* is the keyid the assoc active sending key */
1238	if (keyid == stcb->asoc.authinfo.active_keyid)
1239		return (-1);
1240
1241	/* does the key exist? */
1242	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1243	if (skey == NULL)
1244		return (-1);
1245
1246	/* are there other refcount holders on the key? */
1247	if (skey->refcount > 1)
1248		return (-1);
1249
1250	/* remove it */
1251	LIST_REMOVE(skey, next);
1252	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1253
1254	/* clear any cached keys */
1255	sctp_clear_cachedkeys(stcb, keyid);
1256	return (0);
1257}
1258
1259/*-
1260 * deletes a shared key from the endpoint
1261 * ASSUMES INP_WLOCK is already held
1262 */
1263int
1264sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1265{
1266	sctp_sharedkey_t *skey;
1267
1268	if (inp == NULL)
1269		return (-1);
1270
1271	/* is the keyid the active sending key on the endpoint */
1272	if (keyid == inp->sctp_ep.default_keyid)
1273		return (-1);
1274
1275	/* does the key exist? */
1276	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1277	if (skey == NULL)
1278		return (-1);
1279
1280	/* endpoint keys are not refcounted */
1281
1282	/* remove it */
1283	LIST_REMOVE(skey, next);
1284	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1285
1286	/* clear any cached keys */
1287	sctp_clear_cachedkeys_ep(inp, keyid);
1288	return (0);
1289}
1290
1291/*-
1292 * set the active key on an association
1293 * ASSUMES TCB_LOCK is already held
1294 */
1295int
1296sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1297{
1298	sctp_sharedkey_t *skey = NULL;
1299
1300	/* find the key on the assoc */
1301	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1302	if (skey == NULL) {
1303		/* that key doesn't exist */
1304		return (-1);
1305	}
1306	if ((skey->deactivated) && (skey->refcount > 1)) {
1307		/* can't reactivate a deactivated key with other refcounts */
1308		return (-1);
1309	}
1310	/* set the (new) active key */
1311	stcb->asoc.authinfo.active_keyid = keyid;
1312	/* reset the deactivated flag */
1313	skey->deactivated = 0;
1314
1315	return (0);
1316}
1317
1318/*-
1319 * set the active key on an endpoint
1320 * ASSUMES INP_WLOCK is already held
1321 */
1322int
1323sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1324{
1325	sctp_sharedkey_t *skey;
1326
1327	/* find the key */
1328	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1329	if (skey == NULL) {
1330		/* that key doesn't exist */
1331		return (-1);
1332	}
1333	inp->sctp_ep.default_keyid = keyid;
1334	return (0);
1335}
1336
1337/*-
1338 * deactivates a shared key from the association
1339 * ASSUMES INP_WLOCK is already held
1340 */
1341int
1342sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1343{
1344	sctp_sharedkey_t *skey;
1345
1346	if (stcb == NULL)
1347		return (-1);
1348
1349	/* is the keyid the assoc active sending key */
1350	if (keyid == stcb->asoc.authinfo.active_keyid)
1351		return (-1);
1352
1353	/* does the key exist? */
1354	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1355	if (skey == NULL)
1356		return (-1);
1357
1358	/* are there other refcount holders on the key? */
1359	if (skey->refcount == 1) {
1360		/* no other users, send a notification for this key */
1361		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1362		    SCTP_SO_LOCKED);
1363	}
1364	/* mark the key as deactivated */
1365	skey->deactivated = 1;
1366
1367	return (0);
1368}
1369
1370/*-
1371 * deactivates a shared key from the endpoint
1372 * ASSUMES INP_WLOCK is already held
1373 */
1374int
1375sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1376{
1377	sctp_sharedkey_t *skey;
1378
1379	if (inp == NULL)
1380		return (-1);
1381
1382	/* is the keyid the active sending key on the endpoint */
1383	if (keyid == inp->sctp_ep.default_keyid)
1384		return (-1);
1385
1386	/* does the key exist? */
1387	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1388	if (skey == NULL)
1389		return (-1);
1390
1391	/* endpoint keys are not refcounted */
1392
1393	/* remove it */
1394	LIST_REMOVE(skey, next);
1395	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1396
1397	return (0);
1398}
1399
1400/*
1401 * get local authentication parameters from cookie (from INIT-ACK)
1402 */
1403void
1404sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1405    uint32_t offset, uint32_t length)
1406{
1407	struct sctp_paramhdr *phdr, tmp_param;
1408	uint16_t plen, ptype;
1409	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1410	struct sctp_auth_random *p_random = NULL;
1411	uint16_t random_len = 0;
1412	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1413	struct sctp_auth_hmac_algo *hmacs = NULL;
1414	uint16_t hmacs_len = 0;
1415	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1416	struct sctp_auth_chunk_list *chunks = NULL;
1417	uint16_t num_chunks = 0;
1418	sctp_key_t *new_key;
1419	uint32_t keylen;
1420
1421	/* convert to upper bound */
1422	length += offset;
1423
1424	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1425	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1426	while (phdr != NULL) {
1427		ptype = ntohs(phdr->param_type);
1428		plen = ntohs(phdr->param_length);
1429
1430		if ((plen == 0) || (offset + plen > length))
1431			break;
1432
1433		if (ptype == SCTP_RANDOM) {
1434			if (plen > sizeof(random_store))
1435				break;
1436			phdr = sctp_get_next_param(m, offset,
1437			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1438			if (phdr == NULL)
1439				return;
1440			/* save the random and length for the key */
1441			p_random = (struct sctp_auth_random *)phdr;
1442			random_len = plen - sizeof(*p_random);
1443		} else if (ptype == SCTP_HMAC_LIST) {
1444			uint16_t num_hmacs;
1445			uint16_t i;
1446
1447			if (plen > sizeof(hmacs_store))
1448				break;
1449			phdr = sctp_get_next_param(m, offset,
1450			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1451			if (phdr == NULL)
1452				return;
1453			/* save the hmacs list and num for the key */
1454			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1455			hmacs_len = plen - sizeof(*hmacs);
1456			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1457			if (stcb->asoc.local_hmacs != NULL)
1458				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1459			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1460			if (stcb->asoc.local_hmacs != NULL) {
1461				for (i = 0; i < num_hmacs; i++) {
1462					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1463					    ntohs(hmacs->hmac_ids[i]));
1464				}
1465			}
1466		} else if (ptype == SCTP_CHUNK_LIST) {
1467			int i;
1468
1469			if (plen > sizeof(chunks_store))
1470				break;
1471			phdr = sctp_get_next_param(m, offset,
1472			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1473			if (phdr == NULL)
1474				return;
1475			chunks = (struct sctp_auth_chunk_list *)phdr;
1476			num_chunks = plen - sizeof(*chunks);
1477			/* save chunks list and num for the key */
1478			if (stcb->asoc.local_auth_chunks != NULL)
1479				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1480			else
1481				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1482			for (i = 0; i < num_chunks; i++) {
1483				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1484				    stcb->asoc.local_auth_chunks);
1485			}
1486		}
1487		/* get next parameter */
1488		offset += SCTP_SIZE32(plen);
1489		if (offset + sizeof(struct sctp_paramhdr) > length)
1490			break;
1491		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1492		    (uint8_t *) & tmp_param);
1493	}
1494	/* concatenate the full random key */
1495	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1496	if (chunks != NULL) {
1497		keylen += sizeof(*chunks) + num_chunks;
1498	}
1499	new_key = sctp_alloc_key(keylen);
1500	if (new_key != NULL) {
1501		/* copy in the RANDOM */
1502		if (p_random != NULL) {
1503			keylen = sizeof(*p_random) + random_len;
1504			bcopy(p_random, new_key->key, keylen);
1505		}
1506		/* append in the AUTH chunks */
1507		if (chunks != NULL) {
1508			bcopy(chunks, new_key->key + keylen,
1509			    sizeof(*chunks) + num_chunks);
1510			keylen += sizeof(*chunks) + num_chunks;
1511		}
1512		/* append in the HMACs */
1513		if (hmacs != NULL) {
1514			bcopy(hmacs, new_key->key + keylen,
1515			    sizeof(*hmacs) + hmacs_len);
1516		}
1517	}
1518	if (stcb->asoc.authinfo.random != NULL)
1519		sctp_free_key(stcb->asoc.authinfo.random);
1520	stcb->asoc.authinfo.random = new_key;
1521	stcb->asoc.authinfo.random_len = random_len;
1522	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1523	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1524
1525	/* negotiate what HMAC to use for the peer */
1526	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1527	    stcb->asoc.local_hmacs);
1528
1529	/* copy defaults from the endpoint */
1530	/* FIX ME: put in cookie? */
1531	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1532	/* copy out the shared key list (by reference) from the endpoint */
1533	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1534	    &stcb->asoc.shared_keys);
1535}
1536
1537/*
1538 * compute and fill in the HMAC digest for a packet
1539 */
1540void
1541sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1542    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1543{
1544	uint32_t digestlen;
1545	sctp_sharedkey_t *skey;
1546	sctp_key_t *key;
1547
1548	if ((stcb == NULL) || (auth == NULL))
1549		return;
1550
1551	/* zero the digest + chunk padding */
1552	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1553	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1554
1555	/* is the desired key cached? */
1556	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1557	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1558		if (stcb->asoc.authinfo.assoc_key != NULL) {
1559			/* free the old cached key */
1560			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1561		}
1562		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1563		/* the only way skey is NULL is if null key id 0 is used */
1564		if (skey != NULL)
1565			key = skey->key;
1566		else
1567			key = NULL;
1568		/* compute a new assoc key and cache it */
1569		stcb->asoc.authinfo.assoc_key =
1570		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1571		    stcb->asoc.authinfo.peer_random, key);
1572		stcb->asoc.authinfo.assoc_keyid = keyid;
1573		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1574		    stcb->asoc.authinfo.assoc_keyid);
1575#ifdef SCTP_DEBUG
1576		if (SCTP_AUTH_DEBUG)
1577			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1578			    "Assoc Key");
1579#endif
1580	}
1581	/* set in the active key id */
1582	auth->shared_key_id = htons(keyid);
1583
1584	/* compute and fill in the digest */
1585	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1586	    m, auth_offset, auth->hmac);
1587}
1588
1589
1590static void
1591sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1592{
1593	struct mbuf *m_tmp;
1594	uint8_t *data;
1595
1596	/* sanity check */
1597	if (m == NULL)
1598		return;
1599
1600	/* find the correct starting mbuf and offset (get start position) */
1601	m_tmp = m;
1602	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1603		m_offset -= SCTP_BUF_LEN(m_tmp);
1604		m_tmp = SCTP_BUF_NEXT(m_tmp);
1605	}
1606	/* now use the rest of the mbuf chain */
1607	while ((m_tmp != NULL) && (size > 0)) {
1608		data = mtod(m_tmp, uint8_t *) + m_offset;
1609		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1610			bzero(data, SCTP_BUF_LEN(m_tmp));
1611			size -= SCTP_BUF_LEN(m_tmp);
1612		} else {
1613			bzero(data, size);
1614			size = 0;
1615		}
1616		/* clear the offset since it's only for the first mbuf */
1617		m_offset = 0;
1618		m_tmp = SCTP_BUF_NEXT(m_tmp);
1619	}
1620}
1621
1622/*-
1623 * process the incoming Authentication chunk
1624 * return codes:
1625 *   -1 on any authentication error
1626 *    0 on authentication verification
1627 */
1628int
1629sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1630    struct mbuf *m, uint32_t offset)
1631{
1632	uint16_t chunklen;
1633	uint16_t shared_key_id;
1634	uint16_t hmac_id;
1635	sctp_sharedkey_t *skey;
1636	uint32_t digestlen;
1637	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1638	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1639
1640	/* auth is checked for NULL by caller */
1641	chunklen = ntohs(auth->ch.chunk_length);
1642	if (chunklen < sizeof(*auth)) {
1643		SCTP_STAT_INCR(sctps_recvauthfailed);
1644		return (-1);
1645	}
1646	SCTP_STAT_INCR(sctps_recvauth);
1647
1648	/* get the auth params */
1649	shared_key_id = ntohs(auth->shared_key_id);
1650	hmac_id = ntohs(auth->hmac_id);
1651	SCTPDBG(SCTP_DEBUG_AUTH1,
1652	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1653	    shared_key_id, hmac_id);
1654
1655	/* is the indicated HMAC supported? */
1656	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1657		struct mbuf *op_err;
1658		struct sctp_error_auth_invalid_hmac *cause;
1659
1660		SCTP_STAT_INCR(sctps_recvivalhmacid);
1661		SCTPDBG(SCTP_DEBUG_AUTH1,
1662		    "SCTP Auth: unsupported HMAC id %u\n",
1663		    hmac_id);
1664		/*
1665		 * report this in an Error Chunk: Unsupported HMAC
1666		 * Identifier
1667		 */
1668		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1669		    0, M_NOWAIT, 1, MT_HEADER);
1670		if (op_err != NULL) {
1671			/* pre-reserve some space */
1672			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1673			/* fill in the error */
1674			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1675			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1676			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1677			cause->hmac_id = ntohs(hmac_id);
1678			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1679			/* queue it */
1680			sctp_queue_op_err(stcb, op_err);
1681		}
1682		return (-1);
1683	}
1684	/* get the indicated shared key, if available */
1685	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1686	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1687		/* find the shared key on the assoc first */
1688		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1689		    shared_key_id);
1690		/* if the shared key isn't found, discard the chunk */
1691		if (skey == NULL) {
1692			SCTP_STAT_INCR(sctps_recvivalkeyid);
1693			SCTPDBG(SCTP_DEBUG_AUTH1,
1694			    "SCTP Auth: unknown key id %u\n",
1695			    shared_key_id);
1696			return (-1);
1697		}
1698		/* generate a notification if this is a new key id */
1699		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1700			/*
1701			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1702			 * shared_key_id, (void
1703			 * *)stcb->asoc.authinfo.recv_keyid);
1704			 */
1705			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1706			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1707			    SCTP_SO_NOT_LOCKED);
1708		/* compute a new recv assoc key and cache it */
1709		if (stcb->asoc.authinfo.recv_key != NULL)
1710			sctp_free_key(stcb->asoc.authinfo.recv_key);
1711		stcb->asoc.authinfo.recv_key =
1712		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1713		    stcb->asoc.authinfo.peer_random, skey->key);
1714		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1715#ifdef SCTP_DEBUG
1716		if (SCTP_AUTH_DEBUG)
1717			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1718#endif
1719	}
1720	/* validate the digest length */
1721	digestlen = sctp_get_hmac_digest_len(hmac_id);
1722	if (chunklen < (sizeof(*auth) + digestlen)) {
1723		/* invalid digest length */
1724		SCTP_STAT_INCR(sctps_recvauthfailed);
1725		SCTPDBG(SCTP_DEBUG_AUTH1,
1726		    "SCTP Auth: chunk too short for HMAC\n");
1727		return (-1);
1728	}
1729	/* save a copy of the digest, zero the pseudo header, and validate */
1730	bcopy(auth->hmac, digest, digestlen);
1731	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1732	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1733	    m, offset, computed_digest);
1734
1735	/* compare the computed digest with the one in the AUTH chunk */
1736	if (memcmp(digest, computed_digest, digestlen) != 0) {
1737		SCTP_STAT_INCR(sctps_recvauthfailed);
1738		SCTPDBG(SCTP_DEBUG_AUTH1,
1739		    "SCTP Auth: HMAC digest check failed\n");
1740		return (-1);
1741	}
1742	return (0);
1743}
1744
1745/*
1746 * Generate NOTIFICATION
1747 */
1748void
1749sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1750    uint16_t keyid, uint16_t alt_keyid, int so_locked
1751#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1752    SCTP_UNUSED
1753#endif
1754)
1755{
1756	struct mbuf *m_notify;
1757	struct sctp_authkey_event *auth;
1758	struct sctp_queued_to_read *control;
1759
1760	if ((stcb == NULL) ||
1761	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1762	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1763	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1764	    ) {
1765		/* If the socket is gone we are out of here */
1766		return;
1767	}
1768	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1769		/* event not enabled */
1770		return;
1771
1772	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1773	    0, M_NOWAIT, 1, MT_HEADER);
1774	if (m_notify == NULL)
1775		/* no space left */
1776		return;
1777
1778	SCTP_BUF_LEN(m_notify) = 0;
1779	auth = mtod(m_notify, struct sctp_authkey_event *);
1780	memset(auth, 0, sizeof(struct sctp_authkey_event));
1781	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1782	auth->auth_flags = 0;
1783	auth->auth_length = sizeof(*auth);
1784	auth->auth_keynumber = keyid;
1785	auth->auth_altkeynumber = alt_keyid;
1786	auth->auth_indication = indication;
1787	auth->auth_assoc_id = sctp_get_associd(stcb);
1788
1789	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1790	SCTP_BUF_NEXT(m_notify) = NULL;
1791
1792	/* append to socket */
1793	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1794	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1795	if (control == NULL) {
1796		/* no memory */
1797		sctp_m_freem(m_notify);
1798		return;
1799	}
1800	control->spec_flags = M_NOTIFICATION;
1801	control->length = SCTP_BUF_LEN(m_notify);
1802	/* not that we need this */
1803	control->tail_mbuf = m_notify;
1804	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1805	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1806}
1807
1808
1809/*-
1810 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1811 * Note: currently only used for INIT as INIT-ACK is handled inline
1812 * with sctp_load_addresses_from_init()
1813 */
1814int
1815sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1816{
1817	struct sctp_paramhdr *phdr, parm_buf;
1818	uint16_t ptype, plen;
1819	int peer_supports_asconf = 0;
1820	int peer_supports_auth = 0;
1821	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1822	uint8_t saw_asconf = 0;
1823	uint8_t saw_asconf_ack = 0;
1824
1825	/* go through each of the params. */
1826	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1827	while (phdr) {
1828		ptype = ntohs(phdr->param_type);
1829		plen = ntohs(phdr->param_length);
1830
1831		if (offset + plen > limit) {
1832			break;
1833		}
1834		if (plen < sizeof(struct sctp_paramhdr)) {
1835			break;
1836		}
1837		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1838			/* A supported extension chunk */
1839			struct sctp_supported_chunk_types_param *pr_supported;
1840			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1841			int num_ent, i;
1842
1843			phdr = sctp_get_next_param(m, offset,
1844			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1845			if (phdr == NULL) {
1846				return (-1);
1847			}
1848			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1849			num_ent = plen - sizeof(struct sctp_paramhdr);
1850			for (i = 0; i < num_ent; i++) {
1851				switch (pr_supported->chunk_types[i]) {
1852				case SCTP_ASCONF:
1853				case SCTP_ASCONF_ACK:
1854					peer_supports_asconf = 1;
1855					break;
1856				default:
1857					/* one we don't care about */
1858					break;
1859				}
1860			}
1861		} else if (ptype == SCTP_RANDOM) {
1862			got_random = 1;
1863			/* enforce the random length */
1864			if (plen != (sizeof(struct sctp_auth_random) +
1865			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1866				SCTPDBG(SCTP_DEBUG_AUTH1,
1867				    "SCTP: invalid RANDOM len\n");
1868				return (-1);
1869			}
1870		} else if (ptype == SCTP_HMAC_LIST) {
1871			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1872			struct sctp_auth_hmac_algo *hmacs;
1873			int num_hmacs;
1874
1875			if (plen > sizeof(store))
1876				break;
1877			phdr = sctp_get_next_param(m, offset,
1878			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1879			if (phdr == NULL)
1880				return (-1);
1881			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1882			num_hmacs = (plen - sizeof(*hmacs)) /
1883			    sizeof(hmacs->hmac_ids[0]);
1884			/* validate the hmac list */
1885			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1886				SCTPDBG(SCTP_DEBUG_AUTH1,
1887				    "SCTP: invalid HMAC param\n");
1888				return (-1);
1889			}
1890			got_hmacs = 1;
1891		} else if (ptype == SCTP_CHUNK_LIST) {
1892			int i, num_chunks;
1893			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1894
1895			/* did the peer send a non-empty chunk list? */
1896			struct sctp_auth_chunk_list *chunks = NULL;
1897
1898			phdr = sctp_get_next_param(m, offset,
1899			    (struct sctp_paramhdr *)chunks_store,
1900			    min(plen, sizeof(chunks_store)));
1901			if (phdr == NULL)
1902				return (-1);
1903
1904			/*-
1905			 * Flip through the list and mark that the
1906			 * peer supports asconf/asconf_ack.
1907			 */
1908			chunks = (struct sctp_auth_chunk_list *)phdr;
1909			num_chunks = plen - sizeof(*chunks);
1910			for (i = 0; i < num_chunks; i++) {
1911				/* record asconf/asconf-ack if listed */
1912				if (chunks->chunk_types[i] == SCTP_ASCONF)
1913					saw_asconf = 1;
1914				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1915					saw_asconf_ack = 1;
1916
1917			}
1918			if (num_chunks)
1919				got_chklist = 1;
1920		}
1921		offset += SCTP_SIZE32(plen);
1922		if (offset >= limit) {
1923			break;
1924		}
1925		phdr = sctp_get_next_param(m, offset, &parm_buf,
1926		    sizeof(parm_buf));
1927	}
1928	/* validate authentication required parameters */
1929	if (got_random && got_hmacs) {
1930		peer_supports_auth = 1;
1931	} else {
1932		peer_supports_auth = 0;
1933	}
1934	if (!peer_supports_auth && got_chklist) {
1935		SCTPDBG(SCTP_DEBUG_AUTH1,
1936		    "SCTP: peer sent chunk list w/o AUTH\n");
1937		return (-1);
1938	}
1939	if (peer_supports_asconf && !peer_supports_auth) {
1940		SCTPDBG(SCTP_DEBUG_AUTH1,
1941		    "SCTP: peer supports ASCONF but not AUTH\n");
1942		return (-1);
1943	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1944	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1945		return (-2);
1946	}
1947	return (0);
1948}
1949
1950void
1951sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1952{
1953	uint16_t chunks_len = 0;
1954	uint16_t hmacs_len = 0;
1955	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1956	sctp_key_t *new_key;
1957	uint16_t keylen;
1958
1959	/* initialize hmac list from endpoint */
1960	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1961	if (stcb->asoc.local_hmacs != NULL) {
1962		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1963		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1964	}
1965	/* initialize auth chunks list from endpoint */
1966	stcb->asoc.local_auth_chunks =
1967	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1968	if (stcb->asoc.local_auth_chunks != NULL) {
1969		int i;
1970
1971		for (i = 0; i < 256; i++) {
1972			if (stcb->asoc.local_auth_chunks->chunks[i])
1973				chunks_len++;
1974		}
1975	}
1976	/* copy defaults from the endpoint */
1977	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1978
1979	/* copy out the shared key list (by reference) from the endpoint */
1980	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1981	    &stcb->asoc.shared_keys);
1982
1983	/* now set the concatenated key (random + chunks + hmacs) */
1984	/* key includes parameter headers */
1985	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1986	    hmacs_len;
1987	new_key = sctp_alloc_key(keylen);
1988	if (new_key != NULL) {
1989		struct sctp_paramhdr *ph;
1990		int plen;
1991
1992		/* generate and copy in the RANDOM */
1993		ph = (struct sctp_paramhdr *)new_key->key;
1994		ph->param_type = htons(SCTP_RANDOM);
1995		plen = sizeof(*ph) + random_len;
1996		ph->param_length = htons(plen);
1997		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1998		keylen = plen;
1999
2000		/* append in the AUTH chunks */
2001		/* NOTE: currently we always have chunks to list */
2002		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2003		ph->param_type = htons(SCTP_CHUNK_LIST);
2004		plen = sizeof(*ph) + chunks_len;
2005		ph->param_length = htons(plen);
2006		keylen += sizeof(*ph);
2007		if (stcb->asoc.local_auth_chunks) {
2008			int i;
2009
2010			for (i = 0; i < 256; i++) {
2011				if (stcb->asoc.local_auth_chunks->chunks[i])
2012					new_key->key[keylen++] = i;
2013			}
2014		}
2015		/* append in the HMACs */
2016		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2017		ph->param_type = htons(SCTP_HMAC_LIST);
2018		plen = sizeof(*ph) + hmacs_len;
2019		ph->param_length = htons(plen);
2020		keylen += sizeof(*ph);
2021		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2022		    new_key->key + keylen);
2023	}
2024	if (stcb->asoc.authinfo.random != NULL)
2025		sctp_free_key(stcb->asoc.authinfo.random);
2026	stcb->asoc.authinfo.random = new_key;
2027	stcb->asoc.authinfo.random_len = random_len;
2028}
2029