altq_subr.c revision 304843
1/*-
2 * Copyright (C) 1997-2003
3 *	Sony Computer Science Laboratories Inc.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
27 * $FreeBSD: stable/11/sys/net/altq/altq_subr.c 304843 2016-08-26 10:04:10Z kib $
28 */
29
30#include "opt_altq.h"
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/param.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/socket.h>
40#include <sys/socketvar.h>
41#include <sys/kernel.h>
42#include <sys/errno.h>
43#include <sys/syslog.h>
44#include <sys/sysctl.h>
45#include <sys/queue.h>
46
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/if_dl.h>
50#include <net/if_types.h>
51#include <net/vnet.h>
52
53#include <netinet/in.h>
54#include <netinet/in_systm.h>
55#include <netinet/ip.h>
56#ifdef INET6
57#include <netinet/ip6.h>
58#endif
59#include <netinet/tcp.h>
60#include <netinet/udp.h>
61
62#include <netpfil/pf/pf.h>
63#include <netpfil/pf/pf_altq.h>
64#include <net/altq/altq.h>
65#ifdef ALTQ3_COMPAT
66#include <net/altq/altq_conf.h>
67#endif
68
69/* machine dependent clock related includes */
70#include <sys/bus.h>
71#include <sys/cpu.h>
72#include <sys/eventhandler.h>
73#include <machine/clock.h>
74#if defined(__amd64__) || defined(__i386__)
75#include <machine/cpufunc.h>		/* for pentium tsc */
76#include <machine/specialreg.h>		/* for CPUID_TSC */
77#include <machine/md_var.h>		/* for cpu_feature */
78#endif /* __amd64 || __i386__ */
79
80/*
81 * internal function prototypes
82 */
83static void	tbr_timeout(void *);
84int (*altq_input)(struct mbuf *, int) = NULL;
85static struct mbuf *tbr_dequeue(struct ifaltq *, int);
86static int tbr_timer = 0;	/* token bucket regulator timer */
87#if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
88static struct callout tbr_callout = CALLOUT_INITIALIZER;
89#else
90static struct callout tbr_callout;
91#endif
92
93#ifdef ALTQ3_CLFIER_COMPAT
94static int 	extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
95#ifdef INET6
96static int 	extract_ports6(struct mbuf *, struct ip6_hdr *,
97			       struct flowinfo_in6 *);
98#endif
99static int	apply_filter4(u_int32_t, struct flow_filter *,
100			      struct flowinfo_in *);
101static int	apply_ppfilter4(u_int32_t, struct flow_filter *,
102				struct flowinfo_in *);
103#ifdef INET6
104static int	apply_filter6(u_int32_t, struct flow_filter6 *,
105			      struct flowinfo_in6 *);
106#endif
107static int	apply_tosfilter4(u_int32_t, struct flow_filter *,
108				 struct flowinfo_in *);
109static u_long	get_filt_handle(struct acc_classifier *, int);
110static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
111static u_int32_t filt2fibmask(struct flow_filter *);
112
113static void 	ip4f_cache(struct ip *, struct flowinfo_in *);
114static int 	ip4f_lookup(struct ip *, struct flowinfo_in *);
115static int 	ip4f_init(void);
116static struct ip4_frag	*ip4f_alloc(void);
117static void 	ip4f_free(struct ip4_frag *);
118#endif /* ALTQ3_CLFIER_COMPAT */
119
120/*
121 * alternate queueing support routines
122 */
123
124/* look up the queue state by the interface name and the queueing type. */
125void *
126altq_lookup(name, type)
127	char *name;
128	int type;
129{
130	struct ifnet *ifp;
131
132	if ((ifp = ifunit(name)) != NULL) {
133		/* read if_snd unlocked */
134		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
135			return (ifp->if_snd.altq_disc);
136	}
137
138	return NULL;
139}
140
141int
142altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
143	struct ifaltq *ifq;
144	int type;
145	void *discipline;
146	int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
147	struct mbuf *(*dequeue)(struct ifaltq *, int);
148	int (*request)(struct ifaltq *, int, void *);
149	void *clfier;
150	void *(*classify)(void *, struct mbuf *, int);
151{
152	IFQ_LOCK(ifq);
153	if (!ALTQ_IS_READY(ifq)) {
154		IFQ_UNLOCK(ifq);
155		return ENXIO;
156	}
157
158#ifdef ALTQ3_COMPAT
159	/*
160	 * pfaltq can override the existing discipline, but altq3 cannot.
161	 * check these if clfier is not NULL (which implies altq3).
162	 */
163	if (clfier != NULL) {
164		if (ALTQ_IS_ENABLED(ifq)) {
165			IFQ_UNLOCK(ifq);
166			return EBUSY;
167		}
168		if (ALTQ_IS_ATTACHED(ifq)) {
169			IFQ_UNLOCK(ifq);
170			return EEXIST;
171		}
172	}
173#endif
174	ifq->altq_type     = type;
175	ifq->altq_disc     = discipline;
176	ifq->altq_enqueue  = enqueue;
177	ifq->altq_dequeue  = dequeue;
178	ifq->altq_request  = request;
179	ifq->altq_clfier   = clfier;
180	ifq->altq_classify = classify;
181	ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
182#ifdef ALTQ3_COMPAT
183#ifdef ALTQ_KLD
184	altq_module_incref(type);
185#endif
186#endif
187	IFQ_UNLOCK(ifq);
188	return 0;
189}
190
191int
192altq_detach(ifq)
193	struct ifaltq *ifq;
194{
195	IFQ_LOCK(ifq);
196
197	if (!ALTQ_IS_READY(ifq)) {
198		IFQ_UNLOCK(ifq);
199		return ENXIO;
200	}
201	if (ALTQ_IS_ENABLED(ifq)) {
202		IFQ_UNLOCK(ifq);
203		return EBUSY;
204	}
205	if (!ALTQ_IS_ATTACHED(ifq)) {
206		IFQ_UNLOCK(ifq);
207		return (0);
208	}
209#ifdef ALTQ3_COMPAT
210#ifdef ALTQ_KLD
211	altq_module_declref(ifq->altq_type);
212#endif
213#endif
214
215	ifq->altq_type     = ALTQT_NONE;
216	ifq->altq_disc     = NULL;
217	ifq->altq_enqueue  = NULL;
218	ifq->altq_dequeue  = NULL;
219	ifq->altq_request  = NULL;
220	ifq->altq_clfier   = NULL;
221	ifq->altq_classify = NULL;
222	ifq->altq_flags &= ALTQF_CANTCHANGE;
223
224	IFQ_UNLOCK(ifq);
225	return 0;
226}
227
228int
229altq_enable(ifq)
230	struct ifaltq *ifq;
231{
232	int s;
233
234	IFQ_LOCK(ifq);
235
236	if (!ALTQ_IS_READY(ifq)) {
237		IFQ_UNLOCK(ifq);
238		return ENXIO;
239	}
240	if (ALTQ_IS_ENABLED(ifq)) {
241		IFQ_UNLOCK(ifq);
242		return 0;
243	}
244
245	s = splnet();
246	IFQ_PURGE_NOLOCK(ifq);
247	ASSERT(ifq->ifq_len == 0);
248	ifq->ifq_drv_maxlen = 0;		/* disable bulk dequeue */
249	ifq->altq_flags |= ALTQF_ENABLED;
250	if (ifq->altq_clfier != NULL)
251		ifq->altq_flags |= ALTQF_CLASSIFY;
252	splx(s);
253
254	IFQ_UNLOCK(ifq);
255	return 0;
256}
257
258int
259altq_disable(ifq)
260	struct ifaltq *ifq;
261{
262	int s;
263
264	IFQ_LOCK(ifq);
265	if (!ALTQ_IS_ENABLED(ifq)) {
266		IFQ_UNLOCK(ifq);
267		return 0;
268	}
269
270	s = splnet();
271	IFQ_PURGE_NOLOCK(ifq);
272	ASSERT(ifq->ifq_len == 0);
273	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
274	splx(s);
275
276	IFQ_UNLOCK(ifq);
277	return 0;
278}
279
280#ifdef ALTQ_DEBUG
281void
282altq_assert(file, line, failedexpr)
283	const char *file, *failedexpr;
284	int line;
285{
286	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
287		     failedexpr, file, line);
288	panic("altq assertion");
289	/* NOTREACHED */
290}
291#endif
292
293/*
294 * internal representation of token bucket parameters
295 *	rate:	byte_per_unittime << 32
296 *		(((bits_per_sec) / 8) << 32) / machclk_freq
297 *	depth:	byte << 32
298 *
299 */
300#define	TBR_SHIFT	32
301#define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
302#define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
303
304static struct mbuf *
305tbr_dequeue(ifq, op)
306	struct ifaltq *ifq;
307	int op;
308{
309	struct tb_regulator *tbr;
310	struct mbuf *m;
311	int64_t interval;
312	u_int64_t now;
313
314	IFQ_LOCK_ASSERT(ifq);
315	tbr = ifq->altq_tbr;
316	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
317		/* if this is a remove after poll, bypass tbr check */
318	} else {
319		/* update token only when it is negative */
320		if (tbr->tbr_token <= 0) {
321			now = read_machclk();
322			interval = now - tbr->tbr_last;
323			if (interval >= tbr->tbr_filluptime)
324				tbr->tbr_token = tbr->tbr_depth;
325			else {
326				tbr->tbr_token += interval * tbr->tbr_rate;
327				if (tbr->tbr_token > tbr->tbr_depth)
328					tbr->tbr_token = tbr->tbr_depth;
329			}
330			tbr->tbr_last = now;
331		}
332		/* if token is still negative, don't allow dequeue */
333		if (tbr->tbr_token <= 0)
334			return (NULL);
335	}
336
337	if (ALTQ_IS_ENABLED(ifq))
338		m = (*ifq->altq_dequeue)(ifq, op);
339	else {
340		if (op == ALTDQ_POLL)
341			_IF_POLL(ifq, m);
342		else
343			_IF_DEQUEUE(ifq, m);
344	}
345
346	if (m != NULL && op == ALTDQ_REMOVE)
347		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
348	tbr->tbr_lastop = op;
349	return (m);
350}
351
352/*
353 * set a token bucket regulator.
354 * if the specified rate is zero, the token bucket regulator is deleted.
355 */
356int
357tbr_set(ifq, profile)
358	struct ifaltq *ifq;
359	struct tb_profile *profile;
360{
361	struct tb_regulator *tbr, *otbr;
362
363	if (tbr_dequeue_ptr == NULL)
364		tbr_dequeue_ptr = tbr_dequeue;
365
366	if (machclk_freq == 0)
367		init_machclk();
368	if (machclk_freq == 0) {
369		printf("tbr_set: no cpu clock available!\n");
370		return (ENXIO);
371	}
372
373	IFQ_LOCK(ifq);
374	if (profile->rate == 0) {
375		/* delete this tbr */
376		if ((tbr = ifq->altq_tbr) == NULL) {
377			IFQ_UNLOCK(ifq);
378			return (ENOENT);
379		}
380		ifq->altq_tbr = NULL;
381		free(tbr, M_DEVBUF);
382		IFQ_UNLOCK(ifq);
383		return (0);
384	}
385
386	tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
387	if (tbr == NULL) {
388		IFQ_UNLOCK(ifq);
389		return (ENOMEM);
390	}
391
392	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
393	tbr->tbr_depth = TBR_SCALE(profile->depth);
394	if (tbr->tbr_rate > 0)
395		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
396	else
397		tbr->tbr_filluptime = 0xffffffffffffffffLL;
398	tbr->tbr_token = tbr->tbr_depth;
399	tbr->tbr_last = read_machclk();
400	tbr->tbr_lastop = ALTDQ_REMOVE;
401
402	otbr = ifq->altq_tbr;
403	ifq->altq_tbr = tbr;	/* set the new tbr */
404
405	if (otbr != NULL)
406		free(otbr, M_DEVBUF);
407	else {
408		if (tbr_timer == 0) {
409			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
410			tbr_timer = 1;
411		}
412	}
413	IFQ_UNLOCK(ifq);
414	return (0);
415}
416
417/*
418 * tbr_timeout goes through the interface list, and kicks the drivers
419 * if necessary.
420 *
421 * MPSAFE
422 */
423static void
424tbr_timeout(arg)
425	void *arg;
426{
427	VNET_ITERATOR_DECL(vnet_iter);
428	struct ifnet *ifp;
429	int active, s;
430
431	active = 0;
432	s = splnet();
433	IFNET_RLOCK_NOSLEEP();
434	VNET_LIST_RLOCK_NOSLEEP();
435	VNET_FOREACH(vnet_iter) {
436		CURVNET_SET(vnet_iter);
437		for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
438		    ifp = TAILQ_NEXT(ifp, if_list)) {
439			/* read from if_snd unlocked */
440			if (!TBR_IS_ENABLED(&ifp->if_snd))
441				continue;
442			active++;
443			if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
444			    ifp->if_start != NULL)
445				(*ifp->if_start)(ifp);
446		}
447		CURVNET_RESTORE();
448	}
449	VNET_LIST_RUNLOCK_NOSLEEP();
450	IFNET_RUNLOCK_NOSLEEP();
451	splx(s);
452	if (active > 0)
453		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
454	else
455		tbr_timer = 0;	/* don't need tbr_timer anymore */
456}
457
458/*
459 * get token bucket regulator profile
460 */
461int
462tbr_get(ifq, profile)
463	struct ifaltq *ifq;
464	struct tb_profile *profile;
465{
466	struct tb_regulator *tbr;
467
468	IFQ_LOCK(ifq);
469	if ((tbr = ifq->altq_tbr) == NULL) {
470		profile->rate = 0;
471		profile->depth = 0;
472	} else {
473		profile->rate =
474		    (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
475		profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
476	}
477	IFQ_UNLOCK(ifq);
478	return (0);
479}
480
481/*
482 * attach a discipline to the interface.  if one already exists, it is
483 * overridden.
484 * Locking is done in the discipline specific attach functions. Basically
485 * they call back to altq_attach which takes care of the attach and locking.
486 */
487int
488altq_pfattach(struct pf_altq *a)
489{
490	int error = 0;
491
492	switch (a->scheduler) {
493	case ALTQT_NONE:
494		break;
495#ifdef ALTQ_CBQ
496	case ALTQT_CBQ:
497		error = cbq_pfattach(a);
498		break;
499#endif
500#ifdef ALTQ_PRIQ
501	case ALTQT_PRIQ:
502		error = priq_pfattach(a);
503		break;
504#endif
505#ifdef ALTQ_HFSC
506	case ALTQT_HFSC:
507		error = hfsc_pfattach(a);
508		break;
509#endif
510#ifdef ALTQ_FAIRQ
511	case ALTQT_FAIRQ:
512		error = fairq_pfattach(a);
513		break;
514#endif
515#ifdef ALTQ_CODEL
516	case ALTQT_CODEL:
517		error = codel_pfattach(a);
518		break;
519#endif
520	default:
521		error = ENXIO;
522	}
523
524	return (error);
525}
526
527/*
528 * detach a discipline from the interface.
529 * it is possible that the discipline was already overridden by another
530 * discipline.
531 */
532int
533altq_pfdetach(struct pf_altq *a)
534{
535	struct ifnet *ifp;
536	int s, error = 0;
537
538	if ((ifp = ifunit(a->ifname)) == NULL)
539		return (EINVAL);
540
541	/* if this discipline is no longer referenced, just return */
542	/* read unlocked from if_snd */
543	if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
544		return (0);
545
546	s = splnet();
547	/* read unlocked from if_snd, _disable and _detach take care */
548	if (ALTQ_IS_ENABLED(&ifp->if_snd))
549		error = altq_disable(&ifp->if_snd);
550	if (error == 0)
551		error = altq_detach(&ifp->if_snd);
552	splx(s);
553
554	return (error);
555}
556
557/*
558 * add a discipline or a queue
559 * Locking is done in the discipline specific functions with regards to
560 * malloc with WAITOK, also it is not yet clear which lock to use.
561 */
562int
563altq_add(struct pf_altq *a)
564{
565	int error = 0;
566
567	if (a->qname[0] != 0)
568		return (altq_add_queue(a));
569
570	if (machclk_freq == 0)
571		init_machclk();
572	if (machclk_freq == 0)
573		panic("altq_add: no cpu clock");
574
575	switch (a->scheduler) {
576#ifdef ALTQ_CBQ
577	case ALTQT_CBQ:
578		error = cbq_add_altq(a);
579		break;
580#endif
581#ifdef ALTQ_PRIQ
582	case ALTQT_PRIQ:
583		error = priq_add_altq(a);
584		break;
585#endif
586#ifdef ALTQ_HFSC
587	case ALTQT_HFSC:
588		error = hfsc_add_altq(a);
589		break;
590#endif
591#ifdef ALTQ_FAIRQ
592        case ALTQT_FAIRQ:
593                error = fairq_add_altq(a);
594                break;
595#endif
596#ifdef ALTQ_CODEL
597	case ALTQT_CODEL:
598		error = codel_add_altq(a);
599		break;
600#endif
601	default:
602		error = ENXIO;
603	}
604
605	return (error);
606}
607
608/*
609 * remove a discipline or a queue
610 * It is yet unclear what lock to use to protect this operation, the
611 * discipline specific functions will determine and grab it
612 */
613int
614altq_remove(struct pf_altq *a)
615{
616	int error = 0;
617
618	if (a->qname[0] != 0)
619		return (altq_remove_queue(a));
620
621	switch (a->scheduler) {
622#ifdef ALTQ_CBQ
623	case ALTQT_CBQ:
624		error = cbq_remove_altq(a);
625		break;
626#endif
627#ifdef ALTQ_PRIQ
628	case ALTQT_PRIQ:
629		error = priq_remove_altq(a);
630		break;
631#endif
632#ifdef ALTQ_HFSC
633	case ALTQT_HFSC:
634		error = hfsc_remove_altq(a);
635		break;
636#endif
637#ifdef ALTQ_FAIRQ
638        case ALTQT_FAIRQ:
639                error = fairq_remove_altq(a);
640                break;
641#endif
642#ifdef ALTQ_CODEL
643	case ALTQT_CODEL:
644		error = codel_remove_altq(a);
645		break;
646#endif
647	default:
648		error = ENXIO;
649	}
650
651	return (error);
652}
653
654/*
655 * add a queue to the discipline
656 * It is yet unclear what lock to use to protect this operation, the
657 * discipline specific functions will determine and grab it
658 */
659int
660altq_add_queue(struct pf_altq *a)
661{
662	int error = 0;
663
664	switch (a->scheduler) {
665#ifdef ALTQ_CBQ
666	case ALTQT_CBQ:
667		error = cbq_add_queue(a);
668		break;
669#endif
670#ifdef ALTQ_PRIQ
671	case ALTQT_PRIQ:
672		error = priq_add_queue(a);
673		break;
674#endif
675#ifdef ALTQ_HFSC
676	case ALTQT_HFSC:
677		error = hfsc_add_queue(a);
678		break;
679#endif
680#ifdef ALTQ_FAIRQ
681        case ALTQT_FAIRQ:
682                error = fairq_add_queue(a);
683                break;
684#endif
685	default:
686		error = ENXIO;
687	}
688
689	return (error);
690}
691
692/*
693 * remove a queue from the discipline
694 * It is yet unclear what lock to use to protect this operation, the
695 * discipline specific functions will determine and grab it
696 */
697int
698altq_remove_queue(struct pf_altq *a)
699{
700	int error = 0;
701
702	switch (a->scheduler) {
703#ifdef ALTQ_CBQ
704	case ALTQT_CBQ:
705		error = cbq_remove_queue(a);
706		break;
707#endif
708#ifdef ALTQ_PRIQ
709	case ALTQT_PRIQ:
710		error = priq_remove_queue(a);
711		break;
712#endif
713#ifdef ALTQ_HFSC
714	case ALTQT_HFSC:
715		error = hfsc_remove_queue(a);
716		break;
717#endif
718#ifdef ALTQ_FAIRQ
719        case ALTQT_FAIRQ:
720                error = fairq_remove_queue(a);
721                break;
722#endif
723	default:
724		error = ENXIO;
725	}
726
727	return (error);
728}
729
730/*
731 * get queue statistics
732 * Locking is done in the discipline specific functions with regards to
733 * copyout operations, also it is not yet clear which lock to use.
734 */
735int
736altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
737{
738	int error = 0;
739
740	switch (a->scheduler) {
741#ifdef ALTQ_CBQ
742	case ALTQT_CBQ:
743		error = cbq_getqstats(a, ubuf, nbytes);
744		break;
745#endif
746#ifdef ALTQ_PRIQ
747	case ALTQT_PRIQ:
748		error = priq_getqstats(a, ubuf, nbytes);
749		break;
750#endif
751#ifdef ALTQ_HFSC
752	case ALTQT_HFSC:
753		error = hfsc_getqstats(a, ubuf, nbytes);
754		break;
755#endif
756#ifdef ALTQ_FAIRQ
757        case ALTQT_FAIRQ:
758                error = fairq_getqstats(a, ubuf, nbytes);
759                break;
760#endif
761#ifdef ALTQ_CODEL
762	case ALTQT_CODEL:
763		error = codel_getqstats(a, ubuf, nbytes);
764		break;
765#endif
766	default:
767		error = ENXIO;
768	}
769
770	return (error);
771}
772
773/*
774 * read and write diffserv field in IPv4 or IPv6 header
775 */
776u_int8_t
777read_dsfield(m, pktattr)
778	struct mbuf *m;
779	struct altq_pktattr *pktattr;
780{
781	struct mbuf *m0;
782	u_int8_t ds_field = 0;
783
784	if (pktattr == NULL ||
785	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
786		return ((u_int8_t)0);
787
788	/* verify that pattr_hdr is within the mbuf data */
789	for (m0 = m; m0 != NULL; m0 = m0->m_next)
790		if ((pktattr->pattr_hdr >= m0->m_data) &&
791		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
792			break;
793	if (m0 == NULL) {
794		/* ick, pattr_hdr is stale */
795		pktattr->pattr_af = AF_UNSPEC;
796#ifdef ALTQ_DEBUG
797		printf("read_dsfield: can't locate header!\n");
798#endif
799		return ((u_int8_t)0);
800	}
801
802	if (pktattr->pattr_af == AF_INET) {
803		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
804
805		if (ip->ip_v != 4)
806			return ((u_int8_t)0);	/* version mismatch! */
807		ds_field = ip->ip_tos;
808	}
809#ifdef INET6
810	else if (pktattr->pattr_af == AF_INET6) {
811		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
812		u_int32_t flowlabel;
813
814		flowlabel = ntohl(ip6->ip6_flow);
815		if ((flowlabel >> 28) != 6)
816			return ((u_int8_t)0);	/* version mismatch! */
817		ds_field = (flowlabel >> 20) & 0xff;
818	}
819#endif
820	return (ds_field);
821}
822
823void
824write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
825{
826	struct mbuf *m0;
827
828	if (pktattr == NULL ||
829	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
830		return;
831
832	/* verify that pattr_hdr is within the mbuf data */
833	for (m0 = m; m0 != NULL; m0 = m0->m_next)
834		if ((pktattr->pattr_hdr >= m0->m_data) &&
835		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
836			break;
837	if (m0 == NULL) {
838		/* ick, pattr_hdr is stale */
839		pktattr->pattr_af = AF_UNSPEC;
840#ifdef ALTQ_DEBUG
841		printf("write_dsfield: can't locate header!\n");
842#endif
843		return;
844	}
845
846	if (pktattr->pattr_af == AF_INET) {
847		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
848		u_int8_t old;
849		int32_t sum;
850
851		if (ip->ip_v != 4)
852			return;		/* version mismatch! */
853		old = ip->ip_tos;
854		dsfield |= old & 3;	/* leave CU bits */
855		if (old == dsfield)
856			return;
857		ip->ip_tos = dsfield;
858		/*
859		 * update checksum (from RFC1624)
860		 *	   HC' = ~(~HC + ~m + m')
861		 */
862		sum = ~ntohs(ip->ip_sum) & 0xffff;
863		sum += 0xff00 + (~old & 0xff) + dsfield;
864		sum = (sum >> 16) + (sum & 0xffff);
865		sum += (sum >> 16);  /* add carry */
866
867		ip->ip_sum = htons(~sum & 0xffff);
868	}
869#ifdef INET6
870	else if (pktattr->pattr_af == AF_INET6) {
871		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
872		u_int32_t flowlabel;
873
874		flowlabel = ntohl(ip6->ip6_flow);
875		if ((flowlabel >> 28) != 6)
876			return;		/* version mismatch! */
877		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
878		ip6->ip6_flow = htonl(flowlabel);
879	}
880#endif
881	return;
882}
883
884
885/*
886 * high resolution clock support taking advantage of a machine dependent
887 * high resolution time counter (e.g., timestamp counter of intel pentium).
888 * we assume
889 *  - 64-bit-long monotonically-increasing counter
890 *  - frequency range is 100M-4GHz (CPU speed)
891 */
892/* if pcc is not available or disabled, emulate 256MHz using microtime() */
893#define	MACHCLK_SHIFT	8
894
895int machclk_usepcc;
896u_int32_t machclk_freq;
897u_int32_t machclk_per_tick;
898
899#if defined(__i386__) && defined(__NetBSD__)
900extern u_int64_t cpu_tsc_freq;
901#endif
902
903#if (__FreeBSD_version >= 700035)
904/* Update TSC freq with the value indicated by the caller. */
905static void
906tsc_freq_changed(void *arg, const struct cf_level *level, int status)
907{
908	/* If there was an error during the transition, don't do anything. */
909	if (status != 0)
910		return;
911
912#if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
913	/* If TSC is P-state invariant, don't do anything. */
914	if (tsc_is_invariant)
915		return;
916#endif
917
918	/* Total setting for this level gives the new frequency in MHz. */
919	init_machclk();
920}
921EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
922    EVENTHANDLER_PRI_LAST);
923#endif /* __FreeBSD_version >= 700035 */
924
925static void
926init_machclk_setup(void)
927{
928#if (__FreeBSD_version >= 600000)
929	callout_init(&tbr_callout, 0);
930#endif
931
932	machclk_usepcc = 1;
933
934#if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
935	machclk_usepcc = 0;
936#endif
937#if defined(__FreeBSD__) && defined(SMP)
938	machclk_usepcc = 0;
939#endif
940#if defined(__NetBSD__) && defined(MULTIPROCESSOR)
941	machclk_usepcc = 0;
942#endif
943#if defined(__amd64__) || defined(__i386__)
944	/* check if TSC is available */
945	if ((cpu_feature & CPUID_TSC) == 0 ||
946	    atomic_load_acq_64(&tsc_freq) == 0)
947		machclk_usepcc = 0;
948#endif
949}
950
951void
952init_machclk(void)
953{
954	static int called;
955
956	/* Call one-time initialization function. */
957	if (!called) {
958		init_machclk_setup();
959		called = 1;
960	}
961
962	if (machclk_usepcc == 0) {
963		/* emulate 256MHz using microtime() */
964		machclk_freq = 1000000 << MACHCLK_SHIFT;
965		machclk_per_tick = machclk_freq / hz;
966#ifdef ALTQ_DEBUG
967		printf("altq: emulate %uHz cpu clock\n", machclk_freq);
968#endif
969		return;
970	}
971
972	/*
973	 * if the clock frequency (of Pentium TSC or Alpha PCC) is
974	 * accessible, just use it.
975	 */
976#if defined(__amd64__) || defined(__i386__)
977	machclk_freq = atomic_load_acq_64(&tsc_freq);
978#endif
979
980	/*
981	 * if we don't know the clock frequency, measure it.
982	 */
983	if (machclk_freq == 0) {
984		static int	wait;
985		struct timeval	tv_start, tv_end;
986		u_int64_t	start, end, diff;
987		int		timo;
988
989		microtime(&tv_start);
990		start = read_machclk();
991		timo = hz;	/* 1 sec */
992		(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
993		microtime(&tv_end);
994		end = read_machclk();
995		diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
996		    + tv_end.tv_usec - tv_start.tv_usec;
997		if (diff != 0)
998			machclk_freq = (u_int)((end - start) * 1000000 / diff);
999	}
1000
1001	machclk_per_tick = machclk_freq / hz;
1002
1003#ifdef ALTQ_DEBUG
1004	printf("altq: CPU clock: %uHz\n", machclk_freq);
1005#endif
1006}
1007
1008#if defined(__OpenBSD__) && defined(__i386__)
1009static __inline u_int64_t
1010rdtsc(void)
1011{
1012	u_int64_t rv;
1013	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
1014	return (rv);
1015}
1016#endif /* __OpenBSD__ && __i386__ */
1017
1018u_int64_t
1019read_machclk(void)
1020{
1021	u_int64_t val;
1022
1023	if (machclk_usepcc) {
1024#if defined(__amd64__) || defined(__i386__)
1025		val = rdtsc();
1026#else
1027		panic("read_machclk");
1028#endif
1029	} else {
1030		struct timeval tv, boottime;
1031
1032		microtime(&tv);
1033		getboottime(&boottime);
1034		val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
1035		    + tv.tv_usec) << MACHCLK_SHIFT);
1036	}
1037	return (val);
1038}
1039
1040#ifdef ALTQ3_CLFIER_COMPAT
1041
1042#ifndef IPPROTO_ESP
1043#define	IPPROTO_ESP	50		/* encapsulating security payload */
1044#endif
1045#ifndef IPPROTO_AH
1046#define	IPPROTO_AH	51		/* authentication header */
1047#endif
1048
1049/*
1050 * extract flow information from a given packet.
1051 * filt_mask shows flowinfo fields required.
1052 * we assume the ip header is in one mbuf, and addresses and ports are
1053 * in network byte order.
1054 */
1055int
1056altq_extractflow(m, af, flow, filt_bmask)
1057	struct mbuf *m;
1058	int af;
1059	struct flowinfo *flow;
1060	u_int32_t	filt_bmask;
1061{
1062
1063	switch (af) {
1064	case PF_INET: {
1065		struct flowinfo_in *fin;
1066		struct ip *ip;
1067
1068		ip = mtod(m, struct ip *);
1069
1070		if (ip->ip_v != 4)
1071			break;
1072
1073		fin = (struct flowinfo_in *)flow;
1074		fin->fi_len = sizeof(struct flowinfo_in);
1075		fin->fi_family = AF_INET;
1076
1077		fin->fi_proto = ip->ip_p;
1078		fin->fi_tos = ip->ip_tos;
1079
1080		fin->fi_src.s_addr = ip->ip_src.s_addr;
1081		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
1082
1083		if (filt_bmask & FIMB4_PORTS)
1084			/* if port info is required, extract port numbers */
1085			extract_ports4(m, ip, fin);
1086		else {
1087			fin->fi_sport = 0;
1088			fin->fi_dport = 0;
1089			fin->fi_gpi = 0;
1090		}
1091		return (1);
1092	}
1093
1094#ifdef INET6
1095	case PF_INET6: {
1096		struct flowinfo_in6 *fin6;
1097		struct ip6_hdr *ip6;
1098
1099		ip6 = mtod(m, struct ip6_hdr *);
1100		/* should we check the ip version? */
1101
1102		fin6 = (struct flowinfo_in6 *)flow;
1103		fin6->fi6_len = sizeof(struct flowinfo_in6);
1104		fin6->fi6_family = AF_INET6;
1105
1106		fin6->fi6_proto = ip6->ip6_nxt;
1107		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1108
1109		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
1110		fin6->fi6_src = ip6->ip6_src;
1111		fin6->fi6_dst = ip6->ip6_dst;
1112
1113		if ((filt_bmask & FIMB6_PORTS) ||
1114		    ((filt_bmask & FIMB6_PROTO)
1115		     && ip6->ip6_nxt > IPPROTO_IPV6))
1116			/*
1117			 * if port info is required, or proto is required
1118			 * but there are option headers, extract port
1119			 * and protocol numbers.
1120			 */
1121			extract_ports6(m, ip6, fin6);
1122		else {
1123			fin6->fi6_sport = 0;
1124			fin6->fi6_dport = 0;
1125			fin6->fi6_gpi = 0;
1126		}
1127		return (1);
1128	}
1129#endif /* INET6 */
1130
1131	default:
1132		break;
1133	}
1134
1135	/* failed */
1136	flow->fi_len = sizeof(struct flowinfo);
1137	flow->fi_family = AF_UNSPEC;
1138	return (0);
1139}
1140
1141/*
1142 * helper routine to extract port numbers
1143 */
1144/* structure for ipsec and ipv6 option header template */
1145struct _opt6 {
1146	u_int8_t	opt6_nxt;	/* next header */
1147	u_int8_t	opt6_hlen;	/* header extension length */
1148	u_int16_t	_pad;
1149	u_int32_t	ah_spi;		/* security parameter index
1150					   for authentication header */
1151};
1152
1153/*
1154 * extract port numbers from a ipv4 packet.
1155 */
1156static int
1157extract_ports4(m, ip, fin)
1158	struct mbuf *m;
1159	struct ip *ip;
1160	struct flowinfo_in *fin;
1161{
1162	struct mbuf *m0;
1163	u_short ip_off;
1164	u_int8_t proto;
1165	int 	off;
1166
1167	fin->fi_sport = 0;
1168	fin->fi_dport = 0;
1169	fin->fi_gpi = 0;
1170
1171	ip_off = ntohs(ip->ip_off);
1172	/* if it is a fragment, try cached fragment info */
1173	if (ip_off & IP_OFFMASK) {
1174		ip4f_lookup(ip, fin);
1175		return (1);
1176	}
1177
1178	/* locate the mbuf containing the protocol header */
1179	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1180		if (((caddr_t)ip >= m0->m_data) &&
1181		    ((caddr_t)ip < m0->m_data + m0->m_len))
1182			break;
1183	if (m0 == NULL) {
1184#ifdef ALTQ_DEBUG
1185		printf("extract_ports4: can't locate header! ip=%p\n", ip);
1186#endif
1187		return (0);
1188	}
1189	off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
1190	proto = ip->ip_p;
1191
1192#ifdef ALTQ_IPSEC
1193 again:
1194#endif
1195	while (off >= m0->m_len) {
1196		off -= m0->m_len;
1197		m0 = m0->m_next;
1198		if (m0 == NULL)
1199			return (0);  /* bogus ip_hl! */
1200	}
1201	if (m0->m_len < off + 4)
1202		return (0);
1203
1204	switch (proto) {
1205	case IPPROTO_TCP:
1206	case IPPROTO_UDP: {
1207		struct udphdr *udp;
1208
1209		udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1210		fin->fi_sport = udp->uh_sport;
1211		fin->fi_dport = udp->uh_dport;
1212		fin->fi_proto = proto;
1213		}
1214		break;
1215
1216#ifdef ALTQ_IPSEC
1217	case IPPROTO_ESP:
1218		if (fin->fi_gpi == 0){
1219			u_int32_t *gpi;
1220
1221			gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1222			fin->fi_gpi   = *gpi;
1223		}
1224		fin->fi_proto = proto;
1225		break;
1226
1227	case IPPROTO_AH: {
1228			/* get next header and header length */
1229			struct _opt6 *opt6;
1230
1231			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1232			proto = opt6->opt6_nxt;
1233			off += 8 + (opt6->opt6_hlen * 4);
1234			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1235				fin->fi_gpi = opt6->ah_spi;
1236		}
1237		/* goto the next header */
1238		goto again;
1239#endif  /* ALTQ_IPSEC */
1240
1241	default:
1242		fin->fi_proto = proto;
1243		return (0);
1244	}
1245
1246	/* if this is a first fragment, cache it. */
1247	if (ip_off & IP_MF)
1248		ip4f_cache(ip, fin);
1249
1250	return (1);
1251}
1252
1253#ifdef INET6
1254static int
1255extract_ports6(m, ip6, fin6)
1256	struct mbuf *m;
1257	struct ip6_hdr *ip6;
1258	struct flowinfo_in6 *fin6;
1259{
1260	struct mbuf *m0;
1261	int	off;
1262	u_int8_t proto;
1263
1264	fin6->fi6_gpi   = 0;
1265	fin6->fi6_sport = 0;
1266	fin6->fi6_dport = 0;
1267
1268	/* locate the mbuf containing the protocol header */
1269	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1270		if (((caddr_t)ip6 >= m0->m_data) &&
1271		    ((caddr_t)ip6 < m0->m_data + m0->m_len))
1272			break;
1273	if (m0 == NULL) {
1274#ifdef ALTQ_DEBUG
1275		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1276#endif
1277		return (0);
1278	}
1279	off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1280
1281	proto = ip6->ip6_nxt;
1282	do {
1283		while (off >= m0->m_len) {
1284			off -= m0->m_len;
1285			m0 = m0->m_next;
1286			if (m0 == NULL)
1287				return (0);
1288		}
1289		if (m0->m_len < off + 4)
1290			return (0);
1291
1292		switch (proto) {
1293		case IPPROTO_TCP:
1294		case IPPROTO_UDP: {
1295			struct udphdr *udp;
1296
1297			udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1298			fin6->fi6_sport = udp->uh_sport;
1299			fin6->fi6_dport = udp->uh_dport;
1300			fin6->fi6_proto = proto;
1301			}
1302			return (1);
1303
1304		case IPPROTO_ESP:
1305			if (fin6->fi6_gpi == 0) {
1306				u_int32_t *gpi;
1307
1308				gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1309				fin6->fi6_gpi   = *gpi;
1310			}
1311			fin6->fi6_proto = proto;
1312			return (1);
1313
1314		case IPPROTO_AH: {
1315			/* get next header and header length */
1316			struct _opt6 *opt6;
1317
1318			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1319			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1320				fin6->fi6_gpi = opt6->ah_spi;
1321			proto = opt6->opt6_nxt;
1322			off += 8 + (opt6->opt6_hlen * 4);
1323			/* goto the next header */
1324			break;
1325			}
1326
1327		case IPPROTO_HOPOPTS:
1328		case IPPROTO_ROUTING:
1329		case IPPROTO_DSTOPTS: {
1330			/* get next header and header length */
1331			struct _opt6 *opt6;
1332
1333			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1334			proto = opt6->opt6_nxt;
1335			off += (opt6->opt6_hlen + 1) * 8;
1336			/* goto the next header */
1337			break;
1338			}
1339
1340		case IPPROTO_FRAGMENT:
1341			/* ipv6 fragmentations are not supported yet */
1342		default:
1343			fin6->fi6_proto = proto;
1344			return (0);
1345		}
1346	} while (1);
1347	/*NOTREACHED*/
1348}
1349#endif /* INET6 */
1350
1351/*
1352 * altq common classifier
1353 */
1354int
1355acc_add_filter(classifier, filter, class, phandle)
1356	struct acc_classifier *classifier;
1357	struct flow_filter *filter;
1358	void	*class;
1359	u_long	*phandle;
1360{
1361	struct acc_filter *afp, *prev, *tmp;
1362	int	i, s;
1363
1364#ifdef INET6
1365	if (filter->ff_flow.fi_family != AF_INET &&
1366	    filter->ff_flow.fi_family != AF_INET6)
1367		return (EINVAL);
1368#else
1369	if (filter->ff_flow.fi_family != AF_INET)
1370		return (EINVAL);
1371#endif
1372
1373	afp = malloc(sizeof(struct acc_filter),
1374	       M_DEVBUF, M_WAITOK);
1375	if (afp == NULL)
1376		return (ENOMEM);
1377	bzero(afp, sizeof(struct acc_filter));
1378
1379	afp->f_filter = *filter;
1380	afp->f_class = class;
1381
1382	i = ACC_WILDCARD_INDEX;
1383	if (filter->ff_flow.fi_family == AF_INET) {
1384		struct flow_filter *filter4 = &afp->f_filter;
1385
1386		/*
1387		 * if address is 0, it's a wildcard.  if address mask
1388		 * isn't set, use full mask.
1389		 */
1390		if (filter4->ff_flow.fi_dst.s_addr == 0)
1391			filter4->ff_mask.mask_dst.s_addr = 0;
1392		else if (filter4->ff_mask.mask_dst.s_addr == 0)
1393			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1394		if (filter4->ff_flow.fi_src.s_addr == 0)
1395			filter4->ff_mask.mask_src.s_addr = 0;
1396		else if (filter4->ff_mask.mask_src.s_addr == 0)
1397			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1398
1399		/* clear extra bits in addresses  */
1400		   filter4->ff_flow.fi_dst.s_addr &=
1401		       filter4->ff_mask.mask_dst.s_addr;
1402		   filter4->ff_flow.fi_src.s_addr &=
1403		       filter4->ff_mask.mask_src.s_addr;
1404
1405		/*
1406		 * if dst address is a wildcard, use hash-entry
1407		 * ACC_WILDCARD_INDEX.
1408		 */
1409		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1410			i = ACC_WILDCARD_INDEX;
1411		else
1412			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1413	}
1414#ifdef INET6
1415	else if (filter->ff_flow.fi_family == AF_INET6) {
1416		struct flow_filter6 *filter6 =
1417			(struct flow_filter6 *)&afp->f_filter;
1418#ifndef IN6MASK0 /* taken from kame ipv6 */
1419#define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
1420#define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1421		const struct in6_addr in6mask0 = IN6MASK0;
1422		const struct in6_addr in6mask128 = IN6MASK128;
1423#endif
1424
1425		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1426			filter6->ff_mask6.mask6_dst = in6mask0;
1427		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1428			filter6->ff_mask6.mask6_dst = in6mask128;
1429		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1430			filter6->ff_mask6.mask6_src = in6mask0;
1431		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1432			filter6->ff_mask6.mask6_src = in6mask128;
1433
1434		/* clear extra bits in addresses  */
1435		for (i = 0; i < 16; i++)
1436			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1437			    filter6->ff_mask6.mask6_dst.s6_addr[i];
1438		for (i = 0; i < 16; i++)
1439			filter6->ff_flow6.fi6_src.s6_addr[i] &=
1440			    filter6->ff_mask6.mask6_src.s6_addr[i];
1441
1442		if (filter6->ff_flow6.fi6_flowlabel == 0)
1443			i = ACC_WILDCARD_INDEX;
1444		else
1445			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1446	}
1447#endif /* INET6 */
1448
1449	afp->f_handle = get_filt_handle(classifier, i);
1450
1451	/* update filter bitmask */
1452	afp->f_fbmask = filt2fibmask(filter);
1453	classifier->acc_fbmask |= afp->f_fbmask;
1454
1455	/*
1456	 * add this filter to the filter list.
1457	 * filters are ordered from the highest rule number.
1458	 */
1459	s = splnet();
1460	prev = NULL;
1461	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1462		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1463			prev = tmp;
1464		else
1465			break;
1466	}
1467	if (prev == NULL)
1468		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1469	else
1470		LIST_INSERT_AFTER(prev, afp, f_chain);
1471	splx(s);
1472
1473	*phandle = afp->f_handle;
1474	return (0);
1475}
1476
1477int
1478acc_delete_filter(classifier, handle)
1479	struct acc_classifier *classifier;
1480	u_long handle;
1481{
1482	struct acc_filter *afp;
1483	int	s;
1484
1485	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1486		return (EINVAL);
1487
1488	s = splnet();
1489	LIST_REMOVE(afp, f_chain);
1490	splx(s);
1491
1492	free(afp, M_DEVBUF);
1493
1494	/* todo: update filt_bmask */
1495
1496	return (0);
1497}
1498
1499/*
1500 * delete filters referencing to the specified class.
1501 * if the all flag is not 0, delete all the filters.
1502 */
1503int
1504acc_discard_filters(classifier, class, all)
1505	struct acc_classifier *classifier;
1506	void	*class;
1507	int	all;
1508{
1509	struct acc_filter *afp;
1510	int	i, s;
1511
1512	s = splnet();
1513	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1514		do {
1515			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1516				if (all || afp->f_class == class) {
1517					LIST_REMOVE(afp, f_chain);
1518					free(afp, M_DEVBUF);
1519					/* start again from the head */
1520					break;
1521				}
1522		} while (afp != NULL);
1523	}
1524	splx(s);
1525
1526	if (all)
1527		classifier->acc_fbmask = 0;
1528
1529	return (0);
1530}
1531
1532void *
1533acc_classify(clfier, m, af)
1534	void *clfier;
1535	struct mbuf *m;
1536	int af;
1537{
1538	struct acc_classifier *classifier;
1539	struct flowinfo flow;
1540	struct acc_filter *afp;
1541	int	i;
1542
1543	classifier = (struct acc_classifier *)clfier;
1544	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1545
1546	if (flow.fi_family == AF_INET) {
1547		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1548
1549		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1550			/* only tos is used */
1551			LIST_FOREACH(afp,
1552				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1553				 f_chain)
1554				if (apply_tosfilter4(afp->f_fbmask,
1555						     &afp->f_filter, fp))
1556					/* filter matched */
1557					return (afp->f_class);
1558		} else if ((classifier->acc_fbmask &
1559			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1560		    == 0) {
1561			/* only proto and ports are used */
1562			LIST_FOREACH(afp,
1563				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1564				 f_chain)
1565				if (apply_ppfilter4(afp->f_fbmask,
1566						    &afp->f_filter, fp))
1567					/* filter matched */
1568					return (afp->f_class);
1569		} else {
1570			/* get the filter hash entry from its dest address */
1571			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1572			do {
1573				/*
1574				 * go through this loop twice.  first for dst
1575				 * hash, second for wildcards.
1576				 */
1577				LIST_FOREACH(afp, &classifier->acc_filters[i],
1578					     f_chain)
1579					if (apply_filter4(afp->f_fbmask,
1580							  &afp->f_filter, fp))
1581						/* filter matched */
1582						return (afp->f_class);
1583
1584				/*
1585				 * check again for filters with a dst addr
1586				 * wildcard.
1587				 * (daddr == 0 || dmask != 0xffffffff).
1588				 */
1589				if (i != ACC_WILDCARD_INDEX)
1590					i = ACC_WILDCARD_INDEX;
1591				else
1592					break;
1593			} while (1);
1594		}
1595	}
1596#ifdef INET6
1597	else if (flow.fi_family == AF_INET6) {
1598		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1599
1600		/* get the filter hash entry from its flow ID */
1601		if (fp6->fi6_flowlabel != 0)
1602			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1603		else
1604			/* flowlable can be zero */
1605			i = ACC_WILDCARD_INDEX;
1606
1607		/* go through this loop twice.  first for flow hash, second
1608		   for wildcards. */
1609		do {
1610			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1611				if (apply_filter6(afp->f_fbmask,
1612					(struct flow_filter6 *)&afp->f_filter,
1613					fp6))
1614					/* filter matched */
1615					return (afp->f_class);
1616
1617			/*
1618			 * check again for filters with a wildcard.
1619			 */
1620			if (i != ACC_WILDCARD_INDEX)
1621				i = ACC_WILDCARD_INDEX;
1622			else
1623				break;
1624		} while (1);
1625	}
1626#endif /* INET6 */
1627
1628	/* no filter matched */
1629	return (NULL);
1630}
1631
1632static int
1633apply_filter4(fbmask, filt, pkt)
1634	u_int32_t	fbmask;
1635	struct flow_filter *filt;
1636	struct flowinfo_in *pkt;
1637{
1638	if (filt->ff_flow.fi_family != AF_INET)
1639		return (0);
1640	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1641		return (0);
1642	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1643		return (0);
1644	if ((fbmask & FIMB4_DADDR) &&
1645	    filt->ff_flow.fi_dst.s_addr !=
1646	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1647		return (0);
1648	if ((fbmask & FIMB4_SADDR) &&
1649	    filt->ff_flow.fi_src.s_addr !=
1650	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1651		return (0);
1652	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1653		return (0);
1654	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1655	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1656		return (0);
1657	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1658		return (0);
1659	/* match */
1660	return (1);
1661}
1662
1663/*
1664 * filter matching function optimized for a common case that checks
1665 * only protocol and port numbers
1666 */
1667static int
1668apply_ppfilter4(fbmask, filt, pkt)
1669	u_int32_t	fbmask;
1670	struct flow_filter *filt;
1671	struct flowinfo_in *pkt;
1672{
1673	if (filt->ff_flow.fi_family != AF_INET)
1674		return (0);
1675	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1676		return (0);
1677	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1678		return (0);
1679	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1680		return (0);
1681	/* match */
1682	return (1);
1683}
1684
1685/*
1686 * filter matching function only for tos field.
1687 */
1688static int
1689apply_tosfilter4(fbmask, filt, pkt)
1690	u_int32_t	fbmask;
1691	struct flow_filter *filt;
1692	struct flowinfo_in *pkt;
1693{
1694	if (filt->ff_flow.fi_family != AF_INET)
1695		return (0);
1696	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1697	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1698		return (0);
1699	/* match */
1700	return (1);
1701}
1702
1703#ifdef INET6
1704static int
1705apply_filter6(fbmask, filt, pkt)
1706	u_int32_t	fbmask;
1707	struct flow_filter6 *filt;
1708	struct flowinfo_in6 *pkt;
1709{
1710	int i;
1711
1712	if (filt->ff_flow6.fi6_family != AF_INET6)
1713		return (0);
1714	if ((fbmask & FIMB6_FLABEL) &&
1715	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1716		return (0);
1717	if ((fbmask & FIMB6_PROTO) &&
1718	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1719		return (0);
1720	if ((fbmask & FIMB6_SPORT) &&
1721	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1722		return (0);
1723	if ((fbmask & FIMB6_DPORT) &&
1724	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1725		return (0);
1726	if (fbmask & FIMB6_SADDR) {
1727		for (i = 0; i < 4; i++)
1728			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1729			    (pkt->fi6_src.s6_addr32[i] &
1730			     filt->ff_mask6.mask6_src.s6_addr32[i]))
1731				return (0);
1732	}
1733	if (fbmask & FIMB6_DADDR) {
1734		for (i = 0; i < 4; i++)
1735			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1736			    (pkt->fi6_dst.s6_addr32[i] &
1737			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
1738				return (0);
1739	}
1740	if ((fbmask & FIMB6_TCLASS) &&
1741	    filt->ff_flow6.fi6_tclass !=
1742	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1743		return (0);
1744	if ((fbmask & FIMB6_GPI) &&
1745	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1746		return (0);
1747	/* match */
1748	return (1);
1749}
1750#endif /* INET6 */
1751
1752/*
1753 *  filter handle:
1754 *	bit 20-28: index to the filter hash table
1755 *	bit  0-19: unique id in the hash bucket.
1756 */
1757static u_long
1758get_filt_handle(classifier, i)
1759	struct acc_classifier *classifier;
1760	int	i;
1761{
1762	static u_long handle_number = 1;
1763	u_long 	handle;
1764	struct acc_filter *afp;
1765
1766	while (1) {
1767		handle = handle_number++ & 0x000fffff;
1768
1769		if (LIST_EMPTY(&classifier->acc_filters[i]))
1770			break;
1771
1772		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1773			if ((afp->f_handle & 0x000fffff) == handle)
1774				break;
1775		if (afp == NULL)
1776			break;
1777		/* this handle is already used, try again */
1778	}
1779
1780	return ((i << 20) | handle);
1781}
1782
1783/* convert filter handle to filter pointer */
1784static struct acc_filter *
1785filth_to_filtp(classifier, handle)
1786	struct acc_classifier *classifier;
1787	u_long handle;
1788{
1789	struct acc_filter *afp;
1790	int	i;
1791
1792	i = ACC_GET_HINDEX(handle);
1793
1794	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1795		if (afp->f_handle == handle)
1796			return (afp);
1797
1798	return (NULL);
1799}
1800
1801/* create flowinfo bitmask */
1802static u_int32_t
1803filt2fibmask(filt)
1804	struct flow_filter *filt;
1805{
1806	u_int32_t mask = 0;
1807#ifdef INET6
1808	struct flow_filter6 *filt6;
1809#endif
1810
1811	switch (filt->ff_flow.fi_family) {
1812	case AF_INET:
1813		if (filt->ff_flow.fi_proto != 0)
1814			mask |= FIMB4_PROTO;
1815		if (filt->ff_flow.fi_tos != 0)
1816			mask |= FIMB4_TOS;
1817		if (filt->ff_flow.fi_dst.s_addr != 0)
1818			mask |= FIMB4_DADDR;
1819		if (filt->ff_flow.fi_src.s_addr != 0)
1820			mask |= FIMB4_SADDR;
1821		if (filt->ff_flow.fi_sport != 0)
1822			mask |= FIMB4_SPORT;
1823		if (filt->ff_flow.fi_dport != 0)
1824			mask |= FIMB4_DPORT;
1825		if (filt->ff_flow.fi_gpi != 0)
1826			mask |= FIMB4_GPI;
1827		break;
1828#ifdef INET6
1829	case AF_INET6:
1830		filt6 = (struct flow_filter6 *)filt;
1831
1832		if (filt6->ff_flow6.fi6_proto != 0)
1833			mask |= FIMB6_PROTO;
1834		if (filt6->ff_flow6.fi6_tclass != 0)
1835			mask |= FIMB6_TCLASS;
1836		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1837			mask |= FIMB6_DADDR;
1838		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1839			mask |= FIMB6_SADDR;
1840		if (filt6->ff_flow6.fi6_sport != 0)
1841			mask |= FIMB6_SPORT;
1842		if (filt6->ff_flow6.fi6_dport != 0)
1843			mask |= FIMB6_DPORT;
1844		if (filt6->ff_flow6.fi6_gpi != 0)
1845			mask |= FIMB6_GPI;
1846		if (filt6->ff_flow6.fi6_flowlabel != 0)
1847			mask |= FIMB6_FLABEL;
1848		break;
1849#endif /* INET6 */
1850	}
1851	return (mask);
1852}
1853
1854
1855/*
1856 * helper functions to handle IPv4 fragments.
1857 * currently only in-sequence fragments are handled.
1858 *	- fragment info is cached in a LRU list.
1859 *	- when a first fragment is found, cache its flow info.
1860 *	- when a non-first fragment is found, lookup the cache.
1861 */
1862
1863struct ip4_frag {
1864    TAILQ_ENTRY(ip4_frag) ip4f_chain;
1865    char    ip4f_valid;
1866    u_short ip4f_id;
1867    struct flowinfo_in ip4f_info;
1868};
1869
1870static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1871
1872#define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
1873
1874
1875static void
1876ip4f_cache(ip, fin)
1877	struct ip *ip;
1878	struct flowinfo_in *fin;
1879{
1880	struct ip4_frag *fp;
1881
1882	if (TAILQ_EMPTY(&ip4f_list)) {
1883		/* first time call, allocate fragment cache entries. */
1884		if (ip4f_init() < 0)
1885			/* allocation failed! */
1886			return;
1887	}
1888
1889	fp = ip4f_alloc();
1890	fp->ip4f_id = ip->ip_id;
1891	fp->ip4f_info.fi_proto = ip->ip_p;
1892	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1893	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1894
1895	/* save port numbers */
1896	fp->ip4f_info.fi_sport = fin->fi_sport;
1897	fp->ip4f_info.fi_dport = fin->fi_dport;
1898	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
1899}
1900
1901static int
1902ip4f_lookup(ip, fin)
1903	struct ip *ip;
1904	struct flowinfo_in *fin;
1905{
1906	struct ip4_frag *fp;
1907
1908	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1909	     fp = TAILQ_NEXT(fp, ip4f_chain))
1910		if (ip->ip_id == fp->ip4f_id &&
1911		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1912		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1913		    ip->ip_p == fp->ip4f_info.fi_proto) {
1914
1915			/* found the matching entry */
1916			fin->fi_sport = fp->ip4f_info.fi_sport;
1917			fin->fi_dport = fp->ip4f_info.fi_dport;
1918			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
1919
1920			if ((ntohs(ip->ip_off) & IP_MF) == 0)
1921				/* this is the last fragment,
1922				   release the entry. */
1923				ip4f_free(fp);
1924
1925			return (1);
1926		}
1927
1928	/* no matching entry found */
1929	return (0);
1930}
1931
1932static int
1933ip4f_init(void)
1934{
1935	struct ip4_frag *fp;
1936	int i;
1937
1938	TAILQ_INIT(&ip4f_list);
1939	for (i=0; i<IP4F_TABSIZE; i++) {
1940		fp = malloc(sizeof(struct ip4_frag),
1941		       M_DEVBUF, M_NOWAIT);
1942		if (fp == NULL) {
1943			printf("ip4f_init: can't alloc %dth entry!\n", i);
1944			if (i == 0)
1945				return (-1);
1946			return (0);
1947		}
1948		fp->ip4f_valid = 0;
1949		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1950	}
1951	return (0);
1952}
1953
1954static struct ip4_frag *
1955ip4f_alloc(void)
1956{
1957	struct ip4_frag *fp;
1958
1959	/* reclaim an entry at the tail, put it at the head */
1960	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1961	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1962	fp->ip4f_valid = 1;
1963	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1964	return (fp);
1965}
1966
1967static void
1968ip4f_free(fp)
1969	struct ip4_frag *fp;
1970{
1971	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1972	fp->ip4f_valid = 0;
1973	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1974}
1975
1976#endif /* ALTQ3_CLFIER_COMPAT */
1977