subr_bus.c revision 308401
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/kern/subr_bus.c 308401 2016-11-07 08:36:06Z hselasky $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66#include <vm/vm.h>
67
68SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70
71/*
72 * Used to attach drivers to devclasses.
73 */
74typedef struct driverlink *driverlink_t;
75struct driverlink {
76	kobj_class_t	driver;
77	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78	int		pass;
79	TAILQ_ENTRY(driverlink) passlink;
80};
81
82/*
83 * Forward declarations
84 */
85typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87typedef TAILQ_HEAD(device_list, device) device_list_t;
88
89struct devclass {
90	TAILQ_ENTRY(devclass) link;
91	devclass_t	parent;		/* parent in devclass hierarchy */
92	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93	char		*name;
94	device_t	*devices;	/* array of devices indexed by unit */
95	int		maxunit;	/* size of devices array */
96	int		flags;
97#define DC_HAS_CHILDREN		1
98
99	struct sysctl_ctx_list sysctl_ctx;
100	struct sysctl_oid *sysctl_tree;
101};
102
103/**
104 * @brief Implementation of device.
105 */
106struct device {
107	/*
108	 * A device is a kernel object. The first field must be the
109	 * current ops table for the object.
110	 */
111	KOBJ_FIELDS;
112
113	/*
114	 * Device hierarchy.
115	 */
116	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118	device_t	parent;		/**< parent of this device  */
119	device_list_t	children;	/**< list of child devices */
120
121	/*
122	 * Details of this device.
123	 */
124	driver_t	*driver;	/**< current driver */
125	devclass_t	devclass;	/**< current device class */
126	int		unit;		/**< current unit number */
127	char*		nameunit;	/**< name+unit e.g. foodev0 */
128	char*		desc;		/**< driver specific description */
129	int		busy;		/**< count of calls to device_busy() */
130	device_state_t	state;		/**< current device state  */
131	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132	u_int		flags;		/**< internal device flags  */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144static void devctl2_init(void);
145
146#ifdef BUS_DEBUG
147
148static int bus_debug = 1;
149SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150    "Bus debug level");
151
152#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154#define DRIVERNAME(d)	((d)? d->name : "no driver")
155#define DEVCLANAME(d)	((d)? d->name : "no devclass")
156
157/**
158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159 * prevent syslog from deleting initial spaces
160 */
161#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162
163static void print_device_short(device_t dev, int indent);
164static void print_device(device_t dev, int indent);
165void print_device_tree_short(device_t dev, int indent);
166void print_device_tree(device_t dev, int indent);
167static void print_driver_short(driver_t *driver, int indent);
168static void print_driver(driver_t *driver, int indent);
169static void print_driver_list(driver_list_t drivers, int indent);
170static void print_devclass_short(devclass_t dc, int indent);
171static void print_devclass(devclass_t dc, int indent);
172void print_devclass_list_short(void);
173void print_devclass_list(void);
174
175#else
176/* Make the compiler ignore the function calls */
177#define PDEBUG(a)			/* nop */
178#define DEVICENAME(d)			/* nop */
179#define DRIVERNAME(d)			/* nop */
180#define DEVCLANAME(d)			/* nop */
181
182#define print_device_short(d,i)		/* nop */
183#define print_device(d,i)		/* nop */
184#define print_device_tree_short(d,i)	/* nop */
185#define print_device_tree(d,i)		/* nop */
186#define print_driver_short(d,i)		/* nop */
187#define print_driver(d,i)		/* nop */
188#define print_driver_list(d,i)		/* nop */
189#define print_devclass_short(d,i)	/* nop */
190#define print_devclass(d,i)		/* nop */
191#define print_devclass_list_short()	/* nop */
192#define print_devclass_list()		/* nop */
193#endif
194
195/*
196 * dev sysctl tree
197 */
198
199enum {
200	DEVCLASS_SYSCTL_PARENT,
201};
202
203static int
204devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205{
206	devclass_t dc = (devclass_t)arg1;
207	const char *value;
208
209	switch (arg2) {
210	case DEVCLASS_SYSCTL_PARENT:
211		value = dc->parent ? dc->parent->name : "";
212		break;
213	default:
214		return (EINVAL);
215	}
216	return (SYSCTL_OUT_STR(req, value));
217}
218
219static void
220devclass_sysctl_init(devclass_t dc)
221{
222
223	if (dc->sysctl_tree != NULL)
224		return;
225	sysctl_ctx_init(&dc->sysctl_ctx);
226	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228	    CTLFLAG_RD, NULL, "");
229	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232	    "parent class");
233}
234
235enum {
236	DEVICE_SYSCTL_DESC,
237	DEVICE_SYSCTL_DRIVER,
238	DEVICE_SYSCTL_LOCATION,
239	DEVICE_SYSCTL_PNPINFO,
240	DEVICE_SYSCTL_PARENT,
241};
242
243static int
244device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245{
246	device_t dev = (device_t)arg1;
247	const char *value;
248	char *buf;
249	int error;
250
251	buf = NULL;
252	switch (arg2) {
253	case DEVICE_SYSCTL_DESC:
254		value = dev->desc ? dev->desc : "";
255		break;
256	case DEVICE_SYSCTL_DRIVER:
257		value = dev->driver ? dev->driver->name : "";
258		break;
259	case DEVICE_SYSCTL_LOCATION:
260		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261		bus_child_location_str(dev, buf, 1024);
262		break;
263	case DEVICE_SYSCTL_PNPINFO:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_pnpinfo_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PARENT:
268		value = dev->parent ? dev->parent->nameunit : "";
269		break;
270	default:
271		return (EINVAL);
272	}
273	error = SYSCTL_OUT_STR(req, value);
274	if (buf != NULL)
275		free(buf, M_BUS);
276	return (error);
277}
278
279static void
280device_sysctl_init(device_t dev)
281{
282	devclass_t dc = dev->devclass;
283	int domain;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, NULL, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313	if (bus_get_domain(dev, &domain) == 0)
314		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317}
318
319static void
320device_sysctl_update(device_t dev)
321{
322	devclass_t dc = dev->devclass;
323
324	if (dev->sysctl_tree == NULL)
325		return;
326	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327}
328
329static void
330device_sysctl_fini(device_t dev)
331{
332	if (dev->sysctl_tree == NULL)
333		return;
334	sysctl_ctx_free(&dev->sysctl_ctx);
335	dev->sysctl_tree = NULL;
336}
337
338/*
339 * /dev/devctl implementation
340 */
341
342/*
343 * This design allows only one reader for /dev/devctl.  This is not desirable
344 * in the long run, but will get a lot of hair out of this implementation.
345 * Maybe we should make this device a clonable device.
346 *
347 * Also note: we specifically do not attach a device to the device_t tree
348 * to avoid potential chicken and egg problems.  One could argue that all
349 * of this belongs to the root node.  One could also further argue that the
350 * sysctl interface that we have not might more properly be an ioctl
351 * interface, but at this stage of the game, I'm not inclined to rock that
352 * boat.
353 *
354 * I'm also not sure that the SIGIO support is done correctly or not, as
355 * I copied it from a driver that had SIGIO support that likely hasn't been
356 * tested since 3.4 or 2.2.8!
357 */
358
359/* Deprecated way to adjust queue length */
360static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363    "devctl disable -- deprecated");
364
365#define DEVCTL_DEFAULT_QUEUE_LEN 1000
366static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370
371static d_open_t		devopen;
372static d_close_t	devclose;
373static d_read_t		devread;
374static d_ioctl_t	devioctl;
375static d_poll_t		devpoll;
376static d_kqfilter_t	devkqfilter;
377
378static struct cdevsw dev_cdevsw = {
379	.d_version =	D_VERSION,
380	.d_open =	devopen,
381	.d_close =	devclose,
382	.d_read =	devread,
383	.d_ioctl =	devioctl,
384	.d_poll =	devpoll,
385	.d_kqfilter =	devkqfilter,
386	.d_name =	"devctl",
387};
388
389struct dev_event_info
390{
391	char *dei_data;
392	TAILQ_ENTRY(dev_event_info) dei_link;
393};
394
395TAILQ_HEAD(devq, dev_event_info);
396
397static struct dev_softc
398{
399	int	inuse;
400	int	nonblock;
401	int	queued;
402	int	async;
403	struct mtx mtx;
404	struct cv cv;
405	struct selinfo sel;
406	struct devq devq;
407	struct sigio *sigio;
408} devsoftc;
409
410static void	filt_devctl_detach(struct knote *kn);
411static int	filt_devctl_read(struct knote *kn, long hint);
412
413struct filterops devctl_rfiltops = {
414	.f_isfd = 1,
415	.f_detach = filt_devctl_detach,
416	.f_event = filt_devctl_read,
417};
418
419static struct cdev *devctl_dev;
420
421static void
422devinit(void)
423{
424	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427	cv_init(&devsoftc.cv, "dev cv");
428	TAILQ_INIT(&devsoftc.devq);
429	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430	devctl2_init();
431}
432
433static int
434devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435{
436
437	mtx_lock(&devsoftc.mtx);
438	if (devsoftc.inuse) {
439		mtx_unlock(&devsoftc.mtx);
440		return (EBUSY);
441	}
442	/* move to init */
443	devsoftc.inuse = 1;
444	mtx_unlock(&devsoftc.mtx);
445	return (0);
446}
447
448static int
449devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450{
451
452	mtx_lock(&devsoftc.mtx);
453	devsoftc.inuse = 0;
454	devsoftc.nonblock = 0;
455	devsoftc.async = 0;
456	cv_broadcast(&devsoftc.cv);
457	funsetown(&devsoftc.sigio);
458	mtx_unlock(&devsoftc.mtx);
459	return (0);
460}
461
462/*
463 * The read channel for this device is used to report changes to
464 * userland in realtime.  We are required to free the data as well as
465 * the n1 object because we allocate them separately.  Also note that
466 * we return one record at a time.  If you try to read this device a
467 * character at a time, you will lose the rest of the data.  Listening
468 * programs are expected to cope.
469 */
470static int
471devread(struct cdev *dev, struct uio *uio, int ioflag)
472{
473	struct dev_event_info *n1;
474	int rv;
475
476	mtx_lock(&devsoftc.mtx);
477	while (TAILQ_EMPTY(&devsoftc.devq)) {
478		if (devsoftc.nonblock) {
479			mtx_unlock(&devsoftc.mtx);
480			return (EAGAIN);
481		}
482		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483		if (rv) {
484			/*
485			 * Need to translate ERESTART to EINTR here? -- jake
486			 */
487			mtx_unlock(&devsoftc.mtx);
488			return (rv);
489		}
490	}
491	n1 = TAILQ_FIRST(&devsoftc.devq);
492	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493	devsoftc.queued--;
494	mtx_unlock(&devsoftc.mtx);
495	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496	free(n1->dei_data, M_BUS);
497	free(n1, M_BUS);
498	return (rv);
499}
500
501static	int
502devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503{
504	switch (cmd) {
505
506	case FIONBIO:
507		if (*(int*)data)
508			devsoftc.nonblock = 1;
509		else
510			devsoftc.nonblock = 0;
511		return (0);
512	case FIOASYNC:
513		if (*(int*)data)
514			devsoftc.async = 1;
515		else
516			devsoftc.async = 0;
517		return (0);
518	case FIOSETOWN:
519		return fsetown(*(int *)data, &devsoftc.sigio);
520	case FIOGETOWN:
521		*(int *)data = fgetown(&devsoftc.sigio);
522		return (0);
523
524		/* (un)Support for other fcntl() calls. */
525	case FIOCLEX:
526	case FIONCLEX:
527	case FIONREAD:
528	default:
529		break;
530	}
531	return (ENOTTY);
532}
533
534static	int
535devpoll(struct cdev *dev, int events, struct thread *td)
536{
537	int	revents = 0;
538
539	mtx_lock(&devsoftc.mtx);
540	if (events & (POLLIN | POLLRDNORM)) {
541		if (!TAILQ_EMPTY(&devsoftc.devq))
542			revents = events & (POLLIN | POLLRDNORM);
543		else
544			selrecord(td, &devsoftc.sel);
545	}
546	mtx_unlock(&devsoftc.mtx);
547
548	return (revents);
549}
550
551static int
552devkqfilter(struct cdev *dev, struct knote *kn)
553{
554	int error;
555
556	if (kn->kn_filter == EVFILT_READ) {
557		kn->kn_fop = &devctl_rfiltops;
558		knlist_add(&devsoftc.sel.si_note, kn, 0);
559		error = 0;
560	} else
561		error = EINVAL;
562	return (error);
563}
564
565static void
566filt_devctl_detach(struct knote *kn)
567{
568
569	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570}
571
572static int
573filt_devctl_read(struct knote *kn, long hint)
574{
575	kn->kn_data = devsoftc.queued;
576	return (kn->kn_data != 0);
577}
578
579/**
580 * @brief Return whether the userland process is running
581 */
582boolean_t
583devctl_process_running(void)
584{
585	return (devsoftc.inuse == 1);
586}
587
588/**
589 * @brief Queue data to be read from the devctl device
590 *
591 * Generic interface to queue data to the devctl device.  It is
592 * assumed that @p data is properly formatted.  It is further assumed
593 * that @p data is allocated using the M_BUS malloc type.
594 */
595void
596devctl_queue_data_f(char *data, int flags)
597{
598	struct dev_event_info *n1 = NULL, *n2 = NULL;
599
600	if (strlen(data) == 0)
601		goto out;
602	if (devctl_queue_length == 0)
603		goto out;
604	n1 = malloc(sizeof(*n1), M_BUS, flags);
605	if (n1 == NULL)
606		goto out;
607	n1->dei_data = data;
608	mtx_lock(&devsoftc.mtx);
609	if (devctl_queue_length == 0) {
610		mtx_unlock(&devsoftc.mtx);
611		free(n1->dei_data, M_BUS);
612		free(n1, M_BUS);
613		return;
614	}
615	/* Leave at least one spot in the queue... */
616	while (devsoftc.queued > devctl_queue_length - 1) {
617		n2 = TAILQ_FIRST(&devsoftc.devq);
618		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619		free(n2->dei_data, M_BUS);
620		free(n2, M_BUS);
621		devsoftc.queued--;
622	}
623	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624	devsoftc.queued++;
625	cv_broadcast(&devsoftc.cv);
626	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627	mtx_unlock(&devsoftc.mtx);
628	selwakeup(&devsoftc.sel);
629	if (devsoftc.async && devsoftc.sigio != NULL)
630		pgsigio(&devsoftc.sigio, SIGIO, 0);
631	return;
632out:
633	/*
634	 * We have to free data on all error paths since the caller
635	 * assumes it will be free'd when this item is dequeued.
636	 */
637	free(data, M_BUS);
638	return;
639}
640
641void
642devctl_queue_data(char *data)
643{
644
645	devctl_queue_data_f(data, M_NOWAIT);
646}
647
648/**
649 * @brief Send a 'notification' to userland, using standard ways
650 */
651void
652devctl_notify_f(const char *system, const char *subsystem, const char *type,
653    const char *data, int flags)
654{
655	int len = 0;
656	char *msg;
657
658	if (system == NULL)
659		return;		/* BOGUS!  Must specify system. */
660	if (subsystem == NULL)
661		return;		/* BOGUS!  Must specify subsystem. */
662	if (type == NULL)
663		return;		/* BOGUS!  Must specify type. */
664	len += strlen(" system=") + strlen(system);
665	len += strlen(" subsystem=") + strlen(subsystem);
666	len += strlen(" type=") + strlen(type);
667	/* add in the data message plus newline. */
668	if (data != NULL)
669		len += strlen(data);
670	len += 3;	/* '!', '\n', and NUL */
671	msg = malloc(len, M_BUS, flags);
672	if (msg == NULL)
673		return;		/* Drop it on the floor */
674	if (data != NULL)
675		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676		    system, subsystem, type, data);
677	else
678		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679		    system, subsystem, type);
680	devctl_queue_data_f(msg, flags);
681}
682
683void
684devctl_notify(const char *system, const char *subsystem, const char *type,
685    const char *data)
686{
687
688	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689}
690
691/*
692 * Common routine that tries to make sending messages as easy as possible.
693 * We allocate memory for the data, copy strings into that, but do not
694 * free it unless there's an error.  The dequeue part of the driver should
695 * free the data.  We don't send data when the device is disabled.  We do
696 * send data, even when we have no listeners, because we wish to avoid
697 * races relating to startup and restart of listening applications.
698 *
699 * devaddq is designed to string together the type of event, with the
700 * object of that event, plus the plug and play info and location info
701 * for that event.  This is likely most useful for devices, but less
702 * useful for other consumers of this interface.  Those should use
703 * the devctl_queue_data() interface instead.
704 */
705static void
706devaddq(const char *type, const char *what, device_t dev)
707{
708	char *data = NULL;
709	char *loc = NULL;
710	char *pnp = NULL;
711	const char *parstr;
712
713	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714		return;
715	data = malloc(1024, M_BUS, M_NOWAIT);
716	if (data == NULL)
717		goto bad;
718
719	/* get the bus specific location of this device */
720	loc = malloc(1024, M_BUS, M_NOWAIT);
721	if (loc == NULL)
722		goto bad;
723	*loc = '\0';
724	bus_child_location_str(dev, loc, 1024);
725
726	/* Get the bus specific pnp info of this device */
727	pnp = malloc(1024, M_BUS, M_NOWAIT);
728	if (pnp == NULL)
729		goto bad;
730	*pnp = '\0';
731	bus_child_pnpinfo_str(dev, pnp, 1024);
732
733	/* Get the parent of this device, or / if high enough in the tree. */
734	if (device_get_parent(dev) == NULL)
735		parstr = ".";	/* Or '/' ? */
736	else
737		parstr = device_get_nameunit(device_get_parent(dev));
738	/* String it all together. */
739	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740	  parstr);
741	free(loc, M_BUS);
742	free(pnp, M_BUS);
743	devctl_queue_data(data);
744	return;
745bad:
746	free(pnp, M_BUS);
747	free(loc, M_BUS);
748	free(data, M_BUS);
749	return;
750}
751
752/*
753 * A device was added to the tree.  We are called just after it successfully
754 * attaches (that is, probe and attach success for this device).  No call
755 * is made if a device is merely parented into the tree.  See devnomatch
756 * if probe fails.  If attach fails, no notification is sent (but maybe
757 * we should have a different message for this).
758 */
759static void
760devadded(device_t dev)
761{
762	devaddq("+", device_get_nameunit(dev), dev);
763}
764
765/*
766 * A device was removed from the tree.  We are called just before this
767 * happens.
768 */
769static void
770devremoved(device_t dev)
771{
772	devaddq("-", device_get_nameunit(dev), dev);
773}
774
775/*
776 * Called when there's no match for this device.  This is only called
777 * the first time that no match happens, so we don't keep getting this
778 * message.  Should that prove to be undesirable, we can change it.
779 * This is called when all drivers that can attach to a given bus
780 * decline to accept this device.  Other errors may not be detected.
781 */
782static void
783devnomatch(device_t dev)
784{
785	devaddq("?", "", dev);
786}
787
788static int
789sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790{
791	struct dev_event_info *n1;
792	int dis, error;
793
794	dis = (devctl_queue_length == 0);
795	error = sysctl_handle_int(oidp, &dis, 0, req);
796	if (error || !req->newptr)
797		return (error);
798	if (mtx_initialized(&devsoftc.mtx))
799		mtx_lock(&devsoftc.mtx);
800	if (dis) {
801		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802			n1 = TAILQ_FIRST(&devsoftc.devq);
803			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804			free(n1->dei_data, M_BUS);
805			free(n1, M_BUS);
806		}
807		devsoftc.queued = 0;
808		devctl_queue_length = 0;
809	} else {
810		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811	}
812	if (mtx_initialized(&devsoftc.mtx))
813		mtx_unlock(&devsoftc.mtx);
814	return (0);
815}
816
817static int
818sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819{
820	struct dev_event_info *n1;
821	int q, error;
822
823	q = devctl_queue_length;
824	error = sysctl_handle_int(oidp, &q, 0, req);
825	if (error || !req->newptr)
826		return (error);
827	if (q < 0)
828		return (EINVAL);
829	if (mtx_initialized(&devsoftc.mtx))
830		mtx_lock(&devsoftc.mtx);
831	devctl_queue_length = q;
832	while (devsoftc.queued > devctl_queue_length) {
833		n1 = TAILQ_FIRST(&devsoftc.devq);
834		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835		free(n1->dei_data, M_BUS);
836		free(n1, M_BUS);
837		devsoftc.queued--;
838	}
839	if (mtx_initialized(&devsoftc.mtx))
840		mtx_unlock(&devsoftc.mtx);
841	return (0);
842}
843
844/**
845 * @brief safely quotes strings that might have double quotes in them.
846 *
847 * The devctl protocol relies on quoted strings having matching quotes.
848 * This routine quotes any internal quotes so the resulting string
849 * is safe to pass to snprintf to construct, for example pnp info strings.
850 * Strings are always terminated with a NUL, but may be truncated if longer
851 * than @p len bytes after quotes.
852 *
853 * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854 * @param src	Original buffer.
855 * @param len	Length of buffer pointed to by @dst, including trailing NUL
856 */
857void
858devctl_safe_quote(char *dst, const char *src, size_t len)
859{
860	char *walker = dst, *ep = dst + len - 1;
861
862	if (len == 0)
863		return;
864	while (src != NULL && walker < ep)
865	{
866		if (*src == '"' || *src == '\\') {
867			if (ep - walker < 2)
868				break;
869			*walker++ = '\\';
870		}
871		*walker++ = *src++;
872	}
873	*walker = '\0';
874}
875
876/* End of /dev/devctl code */
877
878static TAILQ_HEAD(,device)	bus_data_devices;
879static int bus_data_generation = 1;
880
881static kobj_method_t null_methods[] = {
882	KOBJMETHOD_END
883};
884
885DEFINE_CLASS(null, null_methods, 0);
886
887/*
888 * Bus pass implementation
889 */
890
891static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892int bus_current_pass = BUS_PASS_ROOT;
893
894/**
895 * @internal
896 * @brief Register the pass level of a new driver attachment
897 *
898 * Register a new driver attachment's pass level.  If no driver
899 * attachment with the same pass level has been added, then @p new
900 * will be added to the global passes list.
901 *
902 * @param new		the new driver attachment
903 */
904static void
905driver_register_pass(struct driverlink *new)
906{
907	struct driverlink *dl;
908
909	/* We only consider pass numbers during boot. */
910	if (bus_current_pass == BUS_PASS_DEFAULT)
911		return;
912
913	/*
914	 * Walk the passes list.  If we already know about this pass
915	 * then there is nothing to do.  If we don't, then insert this
916	 * driver link into the list.
917	 */
918	TAILQ_FOREACH(dl, &passes, passlink) {
919		if (dl->pass < new->pass)
920			continue;
921		if (dl->pass == new->pass)
922			return;
923		TAILQ_INSERT_BEFORE(dl, new, passlink);
924		return;
925	}
926	TAILQ_INSERT_TAIL(&passes, new, passlink);
927}
928
929/**
930 * @brief Raise the current bus pass
931 *
932 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933 * method on the root bus to kick off a new device tree scan for each
934 * new pass level that has at least one driver.
935 */
936void
937bus_set_pass(int pass)
938{
939	struct driverlink *dl;
940
941	if (bus_current_pass > pass)
942		panic("Attempt to lower bus pass level");
943
944	TAILQ_FOREACH(dl, &passes, passlink) {
945		/* Skip pass values below the current pass level. */
946		if (dl->pass <= bus_current_pass)
947			continue;
948
949		/*
950		 * Bail once we hit a driver with a pass level that is
951		 * too high.
952		 */
953		if (dl->pass > pass)
954			break;
955
956		/*
957		 * Raise the pass level to the next level and rescan
958		 * the tree.
959		 */
960		bus_current_pass = dl->pass;
961		BUS_NEW_PASS(root_bus);
962	}
963
964	/*
965	 * If there isn't a driver registered for the requested pass,
966	 * then bus_current_pass might still be less than 'pass'.  Set
967	 * it to 'pass' in that case.
968	 */
969	if (bus_current_pass < pass)
970		bus_current_pass = pass;
971	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972}
973
974/*
975 * Devclass implementation
976 */
977
978static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979
980/**
981 * @internal
982 * @brief Find or create a device class
983 *
984 * If a device class with the name @p classname exists, return it,
985 * otherwise if @p create is non-zero create and return a new device
986 * class.
987 *
988 * If @p parentname is non-NULL, the parent of the devclass is set to
989 * the devclass of that name.
990 *
991 * @param classname	the devclass name to find or create
992 * @param parentname	the parent devclass name or @c NULL
993 * @param create	non-zero to create a devclass
994 */
995static devclass_t
996devclass_find_internal(const char *classname, const char *parentname,
997		       int create)
998{
999	devclass_t dc;
1000
1001	PDEBUG(("looking for %s", classname));
1002	if (!classname)
1003		return (NULL);
1004
1005	TAILQ_FOREACH(dc, &devclasses, link) {
1006		if (!strcmp(dc->name, classname))
1007			break;
1008	}
1009
1010	if (create && !dc) {
1011		PDEBUG(("creating %s", classname));
1012		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013		    M_BUS, M_NOWAIT | M_ZERO);
1014		if (!dc)
1015			return (NULL);
1016		dc->parent = NULL;
1017		dc->name = (char*) (dc + 1);
1018		strcpy(dc->name, classname);
1019		TAILQ_INIT(&dc->drivers);
1020		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021
1022		bus_data_generation_update();
1023	}
1024
1025	/*
1026	 * If a parent class is specified, then set that as our parent so
1027	 * that this devclass will support drivers for the parent class as
1028	 * well.  If the parent class has the same name don't do this though
1029	 * as it creates a cycle that can trigger an infinite loop in
1030	 * device_probe_child() if a device exists for which there is no
1031	 * suitable driver.
1032	 */
1033	if (parentname && dc && !dc->parent &&
1034	    strcmp(classname, parentname) != 0) {
1035		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036		dc->parent->flags |= DC_HAS_CHILDREN;
1037	}
1038
1039	return (dc);
1040}
1041
1042/**
1043 * @brief Create a device class
1044 *
1045 * If a device class with the name @p classname exists, return it,
1046 * otherwise create and return a new device class.
1047 *
1048 * @param classname	the devclass name to find or create
1049 */
1050devclass_t
1051devclass_create(const char *classname)
1052{
1053	return (devclass_find_internal(classname, NULL, TRUE));
1054}
1055
1056/**
1057 * @brief Find a device class
1058 *
1059 * If a device class with the name @p classname exists, return it,
1060 * otherwise return @c NULL.
1061 *
1062 * @param classname	the devclass name to find
1063 */
1064devclass_t
1065devclass_find(const char *classname)
1066{
1067	return (devclass_find_internal(classname, NULL, FALSE));
1068}
1069
1070/**
1071 * @brief Register that a device driver has been added to a devclass
1072 *
1073 * Register that a device driver has been added to a devclass.  This
1074 * is called by devclass_add_driver to accomplish the recursive
1075 * notification of all the children classes of dc, as well as dc.
1076 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077 * the devclass.
1078 *
1079 * We do a full search here of the devclass list at each iteration
1080 * level to save storing children-lists in the devclass structure.  If
1081 * we ever move beyond a few dozen devices doing this, we may need to
1082 * reevaluate...
1083 *
1084 * @param dc		the devclass to edit
1085 * @param driver	the driver that was just added
1086 */
1087static void
1088devclass_driver_added(devclass_t dc, driver_t *driver)
1089{
1090	devclass_t parent;
1091	int i;
1092
1093	/*
1094	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095	 */
1096	for (i = 0; i < dc->maxunit; i++)
1097		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099
1100	/*
1101	 * Walk through the children classes.  Since we only keep a
1102	 * single parent pointer around, we walk the entire list of
1103	 * devclasses looking for children.  We set the
1104	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105	 * the parent, so we only walk the list for those devclasses
1106	 * that have children.
1107	 */
1108	if (!(dc->flags & DC_HAS_CHILDREN))
1109		return;
1110	parent = dc;
1111	TAILQ_FOREACH(dc, &devclasses, link) {
1112		if (dc->parent == parent)
1113			devclass_driver_added(dc, driver);
1114	}
1115}
1116
1117/**
1118 * @brief Add a device driver to a device class
1119 *
1120 * Add a device driver to a devclass. This is normally called
1121 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122 * all devices in the devclass will be called to allow them to attempt
1123 * to re-probe any unmatched children.
1124 *
1125 * @param dc		the devclass to edit
1126 * @param driver	the driver to register
1127 */
1128int
1129devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130{
1131	driverlink_t dl;
1132	const char *parentname;
1133
1134	PDEBUG(("%s", DRIVERNAME(driver)));
1135
1136	/* Don't allow invalid pass values. */
1137	if (pass <= BUS_PASS_ROOT)
1138		return (EINVAL);
1139
1140	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141	if (!dl)
1142		return (ENOMEM);
1143
1144	/*
1145	 * Compile the driver's methods. Also increase the reference count
1146	 * so that the class doesn't get freed when the last instance
1147	 * goes. This means we can safely use static methods and avoids a
1148	 * double-free in devclass_delete_driver.
1149	 */
1150	kobj_class_compile((kobj_class_t) driver);
1151
1152	/*
1153	 * If the driver has any base classes, make the
1154	 * devclass inherit from the devclass of the driver's
1155	 * first base class. This will allow the system to
1156	 * search for drivers in both devclasses for children
1157	 * of a device using this driver.
1158	 */
1159	if (driver->baseclasses)
1160		parentname = driver->baseclasses[0]->name;
1161	else
1162		parentname = NULL;
1163	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164
1165	dl->driver = driver;
1166	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167	driver->refs++;		/* XXX: kobj_mtx */
1168	dl->pass = pass;
1169	driver_register_pass(dl);
1170
1171	devclass_driver_added(dc, driver);
1172	bus_data_generation_update();
1173	return (0);
1174}
1175
1176/**
1177 * @brief Register that a device driver has been deleted from a devclass
1178 *
1179 * Register that a device driver has been removed from a devclass.
1180 * This is called by devclass_delete_driver to accomplish the
1181 * recursive notification of all the children classes of busclass, as
1182 * well as busclass.  Each layer will attempt to detach the driver
1183 * from any devices that are children of the bus's devclass.  The function
1184 * will return an error if a device fails to detach.
1185 *
1186 * We do a full search here of the devclass list at each iteration
1187 * level to save storing children-lists in the devclass structure.  If
1188 * we ever move beyond a few dozen devices doing this, we may need to
1189 * reevaluate...
1190 *
1191 * @param busclass	the devclass of the parent bus
1192 * @param dc		the devclass of the driver being deleted
1193 * @param driver	the driver being deleted
1194 */
1195static int
1196devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197{
1198	devclass_t parent;
1199	device_t dev;
1200	int error, i;
1201
1202	/*
1203	 * Disassociate from any devices.  We iterate through all the
1204	 * devices in the devclass of the driver and detach any which are
1205	 * using the driver and which have a parent in the devclass which
1206	 * we are deleting from.
1207	 *
1208	 * Note that since a driver can be in multiple devclasses, we
1209	 * should not detach devices which are not children of devices in
1210	 * the affected devclass.
1211	 */
1212	for (i = 0; i < dc->maxunit; i++) {
1213		if (dc->devices[i]) {
1214			dev = dc->devices[i];
1215			if (dev->driver == driver && dev->parent &&
1216			    dev->parent->devclass == busclass) {
1217				if ((error = device_detach(dev)) != 0)
1218					return (error);
1219				BUS_PROBE_NOMATCH(dev->parent, dev);
1220				devnomatch(dev);
1221				dev->flags |= DF_DONENOMATCH;
1222			}
1223		}
1224	}
1225
1226	/*
1227	 * Walk through the children classes.  Since we only keep a
1228	 * single parent pointer around, we walk the entire list of
1229	 * devclasses looking for children.  We set the
1230	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231	 * the parent, so we only walk the list for those devclasses
1232	 * that have children.
1233	 */
1234	if (!(busclass->flags & DC_HAS_CHILDREN))
1235		return (0);
1236	parent = busclass;
1237	TAILQ_FOREACH(busclass, &devclasses, link) {
1238		if (busclass->parent == parent) {
1239			error = devclass_driver_deleted(busclass, dc, driver);
1240			if (error)
1241				return (error);
1242		}
1243	}
1244	return (0);
1245}
1246
1247/**
1248 * @brief Delete a device driver from a device class
1249 *
1250 * Delete a device driver from a devclass. This is normally called
1251 * automatically by DRIVER_MODULE().
1252 *
1253 * If the driver is currently attached to any devices,
1254 * devclass_delete_driver() will first attempt to detach from each
1255 * device. If one of the detach calls fails, the driver will not be
1256 * deleted.
1257 *
1258 * @param dc		the devclass to edit
1259 * @param driver	the driver to unregister
1260 */
1261int
1262devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263{
1264	devclass_t dc = devclass_find(driver->name);
1265	driverlink_t dl;
1266	int error;
1267
1268	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269
1270	if (!dc)
1271		return (0);
1272
1273	/*
1274	 * Find the link structure in the bus' list of drivers.
1275	 */
1276	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277		if (dl->driver == driver)
1278			break;
1279	}
1280
1281	if (!dl) {
1282		PDEBUG(("%s not found in %s list", driver->name,
1283		    busclass->name));
1284		return (ENOENT);
1285	}
1286
1287	error = devclass_driver_deleted(busclass, dc, driver);
1288	if (error != 0)
1289		return (error);
1290
1291	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292	free(dl, M_BUS);
1293
1294	/* XXX: kobj_mtx */
1295	driver->refs--;
1296	if (driver->refs == 0)
1297		kobj_class_free((kobj_class_t) driver);
1298
1299	bus_data_generation_update();
1300	return (0);
1301}
1302
1303/**
1304 * @brief Quiesces a set of device drivers from a device class
1305 *
1306 * Quiesce a device driver from a devclass. This is normally called
1307 * automatically by DRIVER_MODULE().
1308 *
1309 * If the driver is currently attached to any devices,
1310 * devclass_quiesece_driver() will first attempt to quiesce each
1311 * device.
1312 *
1313 * @param dc		the devclass to edit
1314 * @param driver	the driver to unregister
1315 */
1316static int
1317devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318{
1319	devclass_t dc = devclass_find(driver->name);
1320	driverlink_t dl;
1321	device_t dev;
1322	int i;
1323	int error;
1324
1325	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326
1327	if (!dc)
1328		return (0);
1329
1330	/*
1331	 * Find the link structure in the bus' list of drivers.
1332	 */
1333	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334		if (dl->driver == driver)
1335			break;
1336	}
1337
1338	if (!dl) {
1339		PDEBUG(("%s not found in %s list", driver->name,
1340		    busclass->name));
1341		return (ENOENT);
1342	}
1343
1344	/*
1345	 * Quiesce all devices.  We iterate through all the devices in
1346	 * the devclass of the driver and quiesce any which are using
1347	 * the driver and which have a parent in the devclass which we
1348	 * are quiescing.
1349	 *
1350	 * Note that since a driver can be in multiple devclasses, we
1351	 * should not quiesce devices which are not children of
1352	 * devices in the affected devclass.
1353	 */
1354	for (i = 0; i < dc->maxunit; i++) {
1355		if (dc->devices[i]) {
1356			dev = dc->devices[i];
1357			if (dev->driver == driver && dev->parent &&
1358			    dev->parent->devclass == busclass) {
1359				if ((error = device_quiesce(dev)) != 0)
1360					return (error);
1361			}
1362		}
1363	}
1364
1365	return (0);
1366}
1367
1368/**
1369 * @internal
1370 */
1371static driverlink_t
1372devclass_find_driver_internal(devclass_t dc, const char *classname)
1373{
1374	driverlink_t dl;
1375
1376	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377
1378	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379		if (!strcmp(dl->driver->name, classname))
1380			return (dl);
1381	}
1382
1383	PDEBUG(("not found"));
1384	return (NULL);
1385}
1386
1387/**
1388 * @brief Return the name of the devclass
1389 */
1390const char *
1391devclass_get_name(devclass_t dc)
1392{
1393	return (dc->name);
1394}
1395
1396/**
1397 * @brief Find a device given a unit number
1398 *
1399 * @param dc		the devclass to search
1400 * @param unit		the unit number to search for
1401 *
1402 * @returns		the device with the given unit number or @c
1403 *			NULL if there is no such device
1404 */
1405device_t
1406devclass_get_device(devclass_t dc, int unit)
1407{
1408	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409		return (NULL);
1410	return (dc->devices[unit]);
1411}
1412
1413/**
1414 * @brief Find the softc field of a device given a unit number
1415 *
1416 * @param dc		the devclass to search
1417 * @param unit		the unit number to search for
1418 *
1419 * @returns		the softc field of the device with the given
1420 *			unit number or @c NULL if there is no such
1421 *			device
1422 */
1423void *
1424devclass_get_softc(devclass_t dc, int unit)
1425{
1426	device_t dev;
1427
1428	dev = devclass_get_device(dc, unit);
1429	if (!dev)
1430		return (NULL);
1431
1432	return (device_get_softc(dev));
1433}
1434
1435/**
1436 * @brief Get a list of devices in the devclass
1437 *
1438 * An array containing a list of all the devices in the given devclass
1439 * is allocated and returned in @p *devlistp. The number of devices
1440 * in the array is returned in @p *devcountp. The caller should free
1441 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442 *
1443 * @param dc		the devclass to examine
1444 * @param devlistp	points at location for array pointer return
1445 *			value
1446 * @param devcountp	points at location for array size return value
1447 *
1448 * @retval 0		success
1449 * @retval ENOMEM	the array allocation failed
1450 */
1451int
1452devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453{
1454	int count, i;
1455	device_t *list;
1456
1457	count = devclass_get_count(dc);
1458	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459	if (!list)
1460		return (ENOMEM);
1461
1462	count = 0;
1463	for (i = 0; i < dc->maxunit; i++) {
1464		if (dc->devices[i]) {
1465			list[count] = dc->devices[i];
1466			count++;
1467		}
1468	}
1469
1470	*devlistp = list;
1471	*devcountp = count;
1472
1473	return (0);
1474}
1475
1476/**
1477 * @brief Get a list of drivers in the devclass
1478 *
1479 * An array containing a list of pointers to all the drivers in the
1480 * given devclass is allocated and returned in @p *listp.  The number
1481 * of drivers in the array is returned in @p *countp. The caller should
1482 * free the array using @c free(p, M_TEMP).
1483 *
1484 * @param dc		the devclass to examine
1485 * @param listp		gives location for array pointer return value
1486 * @param countp	gives location for number of array elements
1487 *			return value
1488 *
1489 * @retval 0		success
1490 * @retval ENOMEM	the array allocation failed
1491 */
1492int
1493devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494{
1495	driverlink_t dl;
1496	driver_t **list;
1497	int count;
1498
1499	count = 0;
1500	TAILQ_FOREACH(dl, &dc->drivers, link)
1501		count++;
1502	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503	if (list == NULL)
1504		return (ENOMEM);
1505
1506	count = 0;
1507	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508		list[count] = dl->driver;
1509		count++;
1510	}
1511	*listp = list;
1512	*countp = count;
1513
1514	return (0);
1515}
1516
1517/**
1518 * @brief Get the number of devices in a devclass
1519 *
1520 * @param dc		the devclass to examine
1521 */
1522int
1523devclass_get_count(devclass_t dc)
1524{
1525	int count, i;
1526
1527	count = 0;
1528	for (i = 0; i < dc->maxunit; i++)
1529		if (dc->devices[i])
1530			count++;
1531	return (count);
1532}
1533
1534/**
1535 * @brief Get the maximum unit number used in a devclass
1536 *
1537 * Note that this is one greater than the highest currently-allocated
1538 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539 * that not even the devclass has been allocated yet.
1540 *
1541 * @param dc		the devclass to examine
1542 */
1543int
1544devclass_get_maxunit(devclass_t dc)
1545{
1546	if (dc == NULL)
1547		return (-1);
1548	return (dc->maxunit);
1549}
1550
1551/**
1552 * @brief Find a free unit number in a devclass
1553 *
1554 * This function searches for the first unused unit number greater
1555 * that or equal to @p unit.
1556 *
1557 * @param dc		the devclass to examine
1558 * @param unit		the first unit number to check
1559 */
1560int
1561devclass_find_free_unit(devclass_t dc, int unit)
1562{
1563	if (dc == NULL)
1564		return (unit);
1565	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566		unit++;
1567	return (unit);
1568}
1569
1570/**
1571 * @brief Set the parent of a devclass
1572 *
1573 * The parent class is normally initialised automatically by
1574 * DRIVER_MODULE().
1575 *
1576 * @param dc		the devclass to edit
1577 * @param pdc		the new parent devclass
1578 */
1579void
1580devclass_set_parent(devclass_t dc, devclass_t pdc)
1581{
1582	dc->parent = pdc;
1583}
1584
1585/**
1586 * @brief Get the parent of a devclass
1587 *
1588 * @param dc		the devclass to examine
1589 */
1590devclass_t
1591devclass_get_parent(devclass_t dc)
1592{
1593	return (dc->parent);
1594}
1595
1596struct sysctl_ctx_list *
1597devclass_get_sysctl_ctx(devclass_t dc)
1598{
1599	return (&dc->sysctl_ctx);
1600}
1601
1602struct sysctl_oid *
1603devclass_get_sysctl_tree(devclass_t dc)
1604{
1605	return (dc->sysctl_tree);
1606}
1607
1608/**
1609 * @internal
1610 * @brief Allocate a unit number
1611 *
1612 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613 * will do). The allocated unit number is returned in @p *unitp.
1614
1615 * @param dc		the devclass to allocate from
1616 * @param unitp		points at the location for the allocated unit
1617 *			number
1618 *
1619 * @retval 0		success
1620 * @retval EEXIST	the requested unit number is already allocated
1621 * @retval ENOMEM	memory allocation failure
1622 */
1623static int
1624devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625{
1626	const char *s;
1627	int unit = *unitp;
1628
1629	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630
1631	/* Ask the parent bus if it wants to wire this device. */
1632	if (unit == -1)
1633		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634		    &unit);
1635
1636	/* If we were given a wired unit number, check for existing device */
1637	/* XXX imp XXX */
1638	if (unit != -1) {
1639		if (unit >= 0 && unit < dc->maxunit &&
1640		    dc->devices[unit] != NULL) {
1641			if (bootverbose)
1642				printf("%s: %s%d already exists; skipping it\n",
1643				    dc->name, dc->name, *unitp);
1644			return (EEXIST);
1645		}
1646	} else {
1647		/* Unwired device, find the next available slot for it */
1648		unit = 0;
1649		for (unit = 0;; unit++) {
1650			/* If there is an "at" hint for a unit then skip it. */
1651			if (resource_string_value(dc->name, unit, "at", &s) ==
1652			    0)
1653				continue;
1654
1655			/* If this device slot is already in use, skip it. */
1656			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657				continue;
1658
1659			break;
1660		}
1661	}
1662
1663	/*
1664	 * We've selected a unit beyond the length of the table, so let's
1665	 * extend the table to make room for all units up to and including
1666	 * this one.
1667	 */
1668	if (unit >= dc->maxunit) {
1669		device_t *newlist, *oldlist;
1670		int newsize;
1671
1672		oldlist = dc->devices;
1673		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675		if (!newlist)
1676			return (ENOMEM);
1677		if (oldlist != NULL)
1678			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679		bzero(newlist + dc->maxunit,
1680		    sizeof(device_t) * (newsize - dc->maxunit));
1681		dc->devices = newlist;
1682		dc->maxunit = newsize;
1683		if (oldlist != NULL)
1684			free(oldlist, M_BUS);
1685	}
1686	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687
1688	*unitp = unit;
1689	return (0);
1690}
1691
1692/**
1693 * @internal
1694 * @brief Add a device to a devclass
1695 *
1696 * A unit number is allocated for the device (using the device's
1697 * preferred unit number if any) and the device is registered in the
1698 * devclass. This allows the device to be looked up by its unit
1699 * number, e.g. by decoding a dev_t minor number.
1700 *
1701 * @param dc		the devclass to add to
1702 * @param dev		the device to add
1703 *
1704 * @retval 0		success
1705 * @retval EEXIST	the requested unit number is already allocated
1706 * @retval ENOMEM	memory allocation failure
1707 */
1708static int
1709devclass_add_device(devclass_t dc, device_t dev)
1710{
1711	int buflen, error;
1712
1713	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714
1715	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716	if (buflen < 0)
1717		return (ENOMEM);
1718	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719	if (!dev->nameunit)
1720		return (ENOMEM);
1721
1722	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723		free(dev->nameunit, M_BUS);
1724		dev->nameunit = NULL;
1725		return (error);
1726	}
1727	dc->devices[dev->unit] = dev;
1728	dev->devclass = dc;
1729	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730
1731	return (0);
1732}
1733
1734/**
1735 * @internal
1736 * @brief Delete a device from a devclass
1737 *
1738 * The device is removed from the devclass's device list and its unit
1739 * number is freed.
1740
1741 * @param dc		the devclass to delete from
1742 * @param dev		the device to delete
1743 *
1744 * @retval 0		success
1745 */
1746static int
1747devclass_delete_device(devclass_t dc, device_t dev)
1748{
1749	if (!dc || !dev)
1750		return (0);
1751
1752	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753
1754	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755		panic("devclass_delete_device: inconsistent device class");
1756	dc->devices[dev->unit] = NULL;
1757	if (dev->flags & DF_WILDCARD)
1758		dev->unit = -1;
1759	dev->devclass = NULL;
1760	free(dev->nameunit, M_BUS);
1761	dev->nameunit = NULL;
1762
1763	return (0);
1764}
1765
1766/**
1767 * @internal
1768 * @brief Make a new device and add it as a child of @p parent
1769 *
1770 * @param parent	the parent of the new device
1771 * @param name		the devclass name of the new device or @c NULL
1772 *			to leave the devclass unspecified
1773 * @parem unit		the unit number of the new device of @c -1 to
1774 *			leave the unit number unspecified
1775 *
1776 * @returns the new device
1777 */
1778static device_t
1779make_device(device_t parent, const char *name, int unit)
1780{
1781	device_t dev;
1782	devclass_t dc;
1783
1784	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785
1786	if (name) {
1787		dc = devclass_find_internal(name, NULL, TRUE);
1788		if (!dc) {
1789			printf("make_device: can't find device class %s\n",
1790			    name);
1791			return (NULL);
1792		}
1793	} else {
1794		dc = NULL;
1795	}
1796
1797	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1798	if (!dev)
1799		return (NULL);
1800
1801	dev->parent = parent;
1802	TAILQ_INIT(&dev->children);
1803	kobj_init((kobj_t) dev, &null_class);
1804	dev->driver = NULL;
1805	dev->devclass = NULL;
1806	dev->unit = unit;
1807	dev->nameunit = NULL;
1808	dev->desc = NULL;
1809	dev->busy = 0;
1810	dev->devflags = 0;
1811	dev->flags = DF_ENABLED;
1812	dev->order = 0;
1813	if (unit == -1)
1814		dev->flags |= DF_WILDCARD;
1815	if (name) {
1816		dev->flags |= DF_FIXEDCLASS;
1817		if (devclass_add_device(dc, dev)) {
1818			kobj_delete((kobj_t) dev, M_BUS);
1819			return (NULL);
1820		}
1821	}
1822	dev->ivars = NULL;
1823	dev->softc = NULL;
1824
1825	dev->state = DS_NOTPRESENT;
1826
1827	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828	bus_data_generation_update();
1829
1830	return (dev);
1831}
1832
1833/**
1834 * @internal
1835 * @brief Print a description of a device.
1836 */
1837static int
1838device_print_child(device_t dev, device_t child)
1839{
1840	int retval = 0;
1841
1842	if (device_is_alive(child))
1843		retval += BUS_PRINT_CHILD(dev, child);
1844	else
1845		retval += device_printf(child, " not found\n");
1846
1847	return (retval);
1848}
1849
1850/**
1851 * @brief Create a new device
1852 *
1853 * This creates a new device and adds it as a child of an existing
1854 * parent device. The new device will be added after the last existing
1855 * child with order zero.
1856 *
1857 * @param dev		the device which will be the parent of the
1858 *			new child device
1859 * @param name		devclass name for new device or @c NULL if not
1860 *			specified
1861 * @param unit		unit number for new device or @c -1 if not
1862 *			specified
1863 *
1864 * @returns		the new device
1865 */
1866device_t
1867device_add_child(device_t dev, const char *name, int unit)
1868{
1869	return (device_add_child_ordered(dev, 0, name, unit));
1870}
1871
1872/**
1873 * @brief Create a new device
1874 *
1875 * This creates a new device and adds it as a child of an existing
1876 * parent device. The new device will be added after the last existing
1877 * child with the same order.
1878 *
1879 * @param dev		the device which will be the parent of the
1880 *			new child device
1881 * @param order		a value which is used to partially sort the
1882 *			children of @p dev - devices created using
1883 *			lower values of @p order appear first in @p
1884 *			dev's list of children
1885 * @param name		devclass name for new device or @c NULL if not
1886 *			specified
1887 * @param unit		unit number for new device or @c -1 if not
1888 *			specified
1889 *
1890 * @returns		the new device
1891 */
1892device_t
1893device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894{
1895	device_t child;
1896	device_t place;
1897
1898	PDEBUG(("%s at %s with order %u as unit %d",
1899	    name, DEVICENAME(dev), order, unit));
1900	KASSERT(name != NULL || unit == -1,
1901	    ("child device with wildcard name and specific unit number"));
1902
1903	child = make_device(dev, name, unit);
1904	if (child == NULL)
1905		return (child);
1906	child->order = order;
1907
1908	TAILQ_FOREACH(place, &dev->children, link) {
1909		if (place->order > order)
1910			break;
1911	}
1912
1913	if (place) {
1914		/*
1915		 * The device 'place' is the first device whose order is
1916		 * greater than the new child.
1917		 */
1918		TAILQ_INSERT_BEFORE(place, child, link);
1919	} else {
1920		/*
1921		 * The new child's order is greater or equal to the order of
1922		 * any existing device. Add the child to the tail of the list.
1923		 */
1924		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925	}
1926
1927	bus_data_generation_update();
1928	return (child);
1929}
1930
1931/**
1932 * @brief Delete a device
1933 *
1934 * This function deletes a device along with all of its children. If
1935 * the device currently has a driver attached to it, the device is
1936 * detached first using device_detach().
1937 *
1938 * @param dev		the parent device
1939 * @param child		the device to delete
1940 *
1941 * @retval 0		success
1942 * @retval non-zero	a unit error code describing the error
1943 */
1944int
1945device_delete_child(device_t dev, device_t child)
1946{
1947	int error;
1948	device_t grandchild;
1949
1950	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951
1952	/* detach parent before deleting children, if any */
1953	if ((error = device_detach(child)) != 0)
1954		return (error);
1955
1956	/* remove children second */
1957	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1958		error = device_delete_child(child, grandchild);
1959		if (error)
1960			return (error);
1961	}
1962
1963	if (child->devclass)
1964		devclass_delete_device(child->devclass, child);
1965	if (child->parent)
1966		BUS_CHILD_DELETED(dev, child);
1967	TAILQ_REMOVE(&dev->children, child, link);
1968	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1969	kobj_delete((kobj_t) child, M_BUS);
1970
1971	bus_data_generation_update();
1972	return (0);
1973}
1974
1975/**
1976 * @brief Delete all children devices of the given device, if any.
1977 *
1978 * This function deletes all children devices of the given device, if
1979 * any, using the device_delete_child() function for each device it
1980 * finds. If a child device cannot be deleted, this function will
1981 * return an error code.
1982 *
1983 * @param dev		the parent device
1984 *
1985 * @retval 0		success
1986 * @retval non-zero	a device would not detach
1987 */
1988int
1989device_delete_children(device_t dev)
1990{
1991	device_t child;
1992	int error;
1993
1994	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1995
1996	error = 0;
1997
1998	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1999		error = device_delete_child(dev, child);
2000		if (error) {
2001			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2002			break;
2003		}
2004	}
2005	return (error);
2006}
2007
2008/**
2009 * @brief Find a device given a unit number
2010 *
2011 * This is similar to devclass_get_devices() but only searches for
2012 * devices which have @p dev as a parent.
2013 *
2014 * @param dev		the parent device to search
2015 * @param unit		the unit number to search for.  If the unit is -1,
2016 *			return the first child of @p dev which has name
2017 *			@p classname (that is, the one with the lowest unit.)
2018 *
2019 * @returns		the device with the given unit number or @c
2020 *			NULL if there is no such device
2021 */
2022device_t
2023device_find_child(device_t dev, const char *classname, int unit)
2024{
2025	devclass_t dc;
2026	device_t child;
2027
2028	dc = devclass_find(classname);
2029	if (!dc)
2030		return (NULL);
2031
2032	if (unit != -1) {
2033		child = devclass_get_device(dc, unit);
2034		if (child && child->parent == dev)
2035			return (child);
2036	} else {
2037		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2038			child = devclass_get_device(dc, unit);
2039			if (child && child->parent == dev)
2040				return (child);
2041		}
2042	}
2043	return (NULL);
2044}
2045
2046/**
2047 * @internal
2048 */
2049static driverlink_t
2050first_matching_driver(devclass_t dc, device_t dev)
2051{
2052	if (dev->devclass)
2053		return (devclass_find_driver_internal(dc, dev->devclass->name));
2054	return (TAILQ_FIRST(&dc->drivers));
2055}
2056
2057/**
2058 * @internal
2059 */
2060static driverlink_t
2061next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2062{
2063	if (dev->devclass) {
2064		driverlink_t dl;
2065		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2066			if (!strcmp(dev->devclass->name, dl->driver->name))
2067				return (dl);
2068		return (NULL);
2069	}
2070	return (TAILQ_NEXT(last, link));
2071}
2072
2073/**
2074 * @internal
2075 */
2076int
2077device_probe_child(device_t dev, device_t child)
2078{
2079	devclass_t dc;
2080	driverlink_t best = NULL;
2081	driverlink_t dl;
2082	int result, pri = 0;
2083	int hasclass = (child->devclass != NULL);
2084
2085	GIANT_REQUIRED;
2086
2087	dc = dev->devclass;
2088	if (!dc)
2089		panic("device_probe_child: parent device has no devclass");
2090
2091	/*
2092	 * If the state is already probed, then return.  However, don't
2093	 * return if we can rebid this object.
2094	 */
2095	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2096		return (0);
2097
2098	for (; dc; dc = dc->parent) {
2099		for (dl = first_matching_driver(dc, child);
2100		     dl;
2101		     dl = next_matching_driver(dc, child, dl)) {
2102			/* If this driver's pass is too high, then ignore it. */
2103			if (dl->pass > bus_current_pass)
2104				continue;
2105
2106			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2107			result = device_set_driver(child, dl->driver);
2108			if (result == ENOMEM)
2109				return (result);
2110			else if (result != 0)
2111				continue;
2112			if (!hasclass) {
2113				if (device_set_devclass(child,
2114				    dl->driver->name) != 0) {
2115					char const * devname =
2116					    device_get_name(child);
2117					if (devname == NULL)
2118						devname = "(unknown)";
2119					printf("driver bug: Unable to set "
2120					    "devclass (class: %s "
2121					    "devname: %s)\n",
2122					    dl->driver->name,
2123					    devname);
2124					(void)device_set_driver(child, NULL);
2125					continue;
2126				}
2127			}
2128
2129			/* Fetch any flags for the device before probing. */
2130			resource_int_value(dl->driver->name, child->unit,
2131			    "flags", &child->devflags);
2132
2133			result = DEVICE_PROBE(child);
2134
2135			/* Reset flags and devclass before the next probe. */
2136			child->devflags = 0;
2137			if (!hasclass)
2138				(void)device_set_devclass(child, NULL);
2139
2140			/*
2141			 * If the driver returns SUCCESS, there can be
2142			 * no higher match for this device.
2143			 */
2144			if (result == 0) {
2145				best = dl;
2146				pri = 0;
2147				break;
2148			}
2149
2150			/*
2151			 * Reset DF_QUIET in case this driver doesn't
2152			 * end up as the best driver.
2153			 */
2154			device_verbose(child);
2155
2156			/*
2157			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2158			 * only match on devices whose driver was explicitly
2159			 * specified.
2160			 */
2161			if (result <= BUS_PROBE_NOWILDCARD &&
2162			    !(child->flags & DF_FIXEDCLASS)) {
2163				result = ENXIO;
2164			}
2165
2166			/*
2167			 * The driver returned an error so it
2168			 * certainly doesn't match.
2169			 */
2170			if (result > 0) {
2171				(void)device_set_driver(child, NULL);
2172				continue;
2173			}
2174
2175			/*
2176			 * A priority lower than SUCCESS, remember the
2177			 * best matching driver. Initialise the value
2178			 * of pri for the first match.
2179			 */
2180			if (best == NULL || result > pri) {
2181				best = dl;
2182				pri = result;
2183				continue;
2184			}
2185		}
2186		/*
2187		 * If we have an unambiguous match in this devclass,
2188		 * don't look in the parent.
2189		 */
2190		if (best && pri == 0)
2191			break;
2192	}
2193
2194	/*
2195	 * If we found a driver, change state and initialise the devclass.
2196	 */
2197	/* XXX What happens if we rebid and got no best? */
2198	if (best) {
2199		/*
2200		 * If this device was attached, and we were asked to
2201		 * rescan, and it is a different driver, then we have
2202		 * to detach the old driver and reattach this new one.
2203		 * Note, we don't have to check for DF_REBID here
2204		 * because if the state is > DS_ALIVE, we know it must
2205		 * be.
2206		 *
2207		 * This assumes that all DF_REBID drivers can have
2208		 * their probe routine called at any time and that
2209		 * they are idempotent as well as completely benign in
2210		 * normal operations.
2211		 *
2212		 * We also have to make sure that the detach
2213		 * succeeded, otherwise we fail the operation (or
2214		 * maybe it should just fail silently?  I'm torn).
2215		 */
2216		if (child->state > DS_ALIVE && best->driver != child->driver)
2217			if ((result = device_detach(dev)) != 0)
2218				return (result);
2219
2220		/* Set the winning driver, devclass, and flags. */
2221		if (!child->devclass) {
2222			result = device_set_devclass(child, best->driver->name);
2223			if (result != 0)
2224				return (result);
2225		}
2226		result = device_set_driver(child, best->driver);
2227		if (result != 0)
2228			return (result);
2229		resource_int_value(best->driver->name, child->unit,
2230		    "flags", &child->devflags);
2231
2232		if (pri < 0) {
2233			/*
2234			 * A bit bogus. Call the probe method again to make
2235			 * sure that we have the right description.
2236			 */
2237			DEVICE_PROBE(child);
2238#if 0
2239			child->flags |= DF_REBID;
2240#endif
2241		} else
2242			child->flags &= ~DF_REBID;
2243		child->state = DS_ALIVE;
2244
2245		bus_data_generation_update();
2246		return (0);
2247	}
2248
2249	return (ENXIO);
2250}
2251
2252/**
2253 * @brief Return the parent of a device
2254 */
2255device_t
2256device_get_parent(device_t dev)
2257{
2258	return (dev->parent);
2259}
2260
2261/**
2262 * @brief Get a list of children of a device
2263 *
2264 * An array containing a list of all the children of the given device
2265 * is allocated and returned in @p *devlistp. The number of devices
2266 * in the array is returned in @p *devcountp. The caller should free
2267 * the array using @c free(p, M_TEMP).
2268 *
2269 * @param dev		the device to examine
2270 * @param devlistp	points at location for array pointer return
2271 *			value
2272 * @param devcountp	points at location for array size return value
2273 *
2274 * @retval 0		success
2275 * @retval ENOMEM	the array allocation failed
2276 */
2277int
2278device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2279{
2280	int count;
2281	device_t child;
2282	device_t *list;
2283
2284	count = 0;
2285	TAILQ_FOREACH(child, &dev->children, link) {
2286		count++;
2287	}
2288	if (count == 0) {
2289		*devlistp = NULL;
2290		*devcountp = 0;
2291		return (0);
2292	}
2293
2294	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2295	if (!list)
2296		return (ENOMEM);
2297
2298	count = 0;
2299	TAILQ_FOREACH(child, &dev->children, link) {
2300		list[count] = child;
2301		count++;
2302	}
2303
2304	*devlistp = list;
2305	*devcountp = count;
2306
2307	return (0);
2308}
2309
2310/**
2311 * @brief Return the current driver for the device or @c NULL if there
2312 * is no driver currently attached
2313 */
2314driver_t *
2315device_get_driver(device_t dev)
2316{
2317	return (dev->driver);
2318}
2319
2320/**
2321 * @brief Return the current devclass for the device or @c NULL if
2322 * there is none.
2323 */
2324devclass_t
2325device_get_devclass(device_t dev)
2326{
2327	return (dev->devclass);
2328}
2329
2330/**
2331 * @brief Return the name of the device's devclass or @c NULL if there
2332 * is none.
2333 */
2334const char *
2335device_get_name(device_t dev)
2336{
2337	if (dev != NULL && dev->devclass)
2338		return (devclass_get_name(dev->devclass));
2339	return (NULL);
2340}
2341
2342/**
2343 * @brief Return a string containing the device's devclass name
2344 * followed by an ascii representation of the device's unit number
2345 * (e.g. @c "foo2").
2346 */
2347const char *
2348device_get_nameunit(device_t dev)
2349{
2350	return (dev->nameunit);
2351}
2352
2353/**
2354 * @brief Return the device's unit number.
2355 */
2356int
2357device_get_unit(device_t dev)
2358{
2359	return (dev->unit);
2360}
2361
2362/**
2363 * @brief Return the device's description string
2364 */
2365const char *
2366device_get_desc(device_t dev)
2367{
2368	return (dev->desc);
2369}
2370
2371/**
2372 * @brief Return the device's flags
2373 */
2374uint32_t
2375device_get_flags(device_t dev)
2376{
2377	return (dev->devflags);
2378}
2379
2380struct sysctl_ctx_list *
2381device_get_sysctl_ctx(device_t dev)
2382{
2383	return (&dev->sysctl_ctx);
2384}
2385
2386struct sysctl_oid *
2387device_get_sysctl_tree(device_t dev)
2388{
2389	return (dev->sysctl_tree);
2390}
2391
2392/**
2393 * @brief Print the name of the device followed by a colon and a space
2394 *
2395 * @returns the number of characters printed
2396 */
2397int
2398device_print_prettyname(device_t dev)
2399{
2400	const char *name = device_get_name(dev);
2401
2402	if (name == NULL)
2403		return (printf("unknown: "));
2404	return (printf("%s%d: ", name, device_get_unit(dev)));
2405}
2406
2407/**
2408 * @brief Print the name of the device followed by a colon, a space
2409 * and the result of calling vprintf() with the value of @p fmt and
2410 * the following arguments.
2411 *
2412 * @returns the number of characters printed
2413 */
2414int
2415device_printf(device_t dev, const char * fmt, ...)
2416{
2417	va_list ap;
2418	int retval;
2419
2420	retval = device_print_prettyname(dev);
2421	va_start(ap, fmt);
2422	retval += vprintf(fmt, ap);
2423	va_end(ap);
2424	return (retval);
2425}
2426
2427/**
2428 * @internal
2429 */
2430static void
2431device_set_desc_internal(device_t dev, const char* desc, int copy)
2432{
2433	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2434		free(dev->desc, M_BUS);
2435		dev->flags &= ~DF_DESCMALLOCED;
2436		dev->desc = NULL;
2437	}
2438
2439	if (copy && desc) {
2440		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2441		if (dev->desc) {
2442			strcpy(dev->desc, desc);
2443			dev->flags |= DF_DESCMALLOCED;
2444		}
2445	} else {
2446		/* Avoid a -Wcast-qual warning */
2447		dev->desc = (char *)(uintptr_t) desc;
2448	}
2449
2450	bus_data_generation_update();
2451}
2452
2453/**
2454 * @brief Set the device's description
2455 *
2456 * The value of @c desc should be a string constant that will not
2457 * change (at least until the description is changed in a subsequent
2458 * call to device_set_desc() or device_set_desc_copy()).
2459 */
2460void
2461device_set_desc(device_t dev, const char* desc)
2462{
2463	device_set_desc_internal(dev, desc, FALSE);
2464}
2465
2466/**
2467 * @brief Set the device's description
2468 *
2469 * The string pointed to by @c desc is copied. Use this function if
2470 * the device description is generated, (e.g. with sprintf()).
2471 */
2472void
2473device_set_desc_copy(device_t dev, const char* desc)
2474{
2475	device_set_desc_internal(dev, desc, TRUE);
2476}
2477
2478/**
2479 * @brief Set the device's flags
2480 */
2481void
2482device_set_flags(device_t dev, uint32_t flags)
2483{
2484	dev->devflags = flags;
2485}
2486
2487/**
2488 * @brief Return the device's softc field
2489 *
2490 * The softc is allocated and zeroed when a driver is attached, based
2491 * on the size field of the driver.
2492 */
2493void *
2494device_get_softc(device_t dev)
2495{
2496	return (dev->softc);
2497}
2498
2499/**
2500 * @brief Set the device's softc field
2501 *
2502 * Most drivers do not need to use this since the softc is allocated
2503 * automatically when the driver is attached.
2504 */
2505void
2506device_set_softc(device_t dev, void *softc)
2507{
2508	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2509		free(dev->softc, M_BUS_SC);
2510	dev->softc = softc;
2511	if (dev->softc)
2512		dev->flags |= DF_EXTERNALSOFTC;
2513	else
2514		dev->flags &= ~DF_EXTERNALSOFTC;
2515}
2516
2517/**
2518 * @brief Free claimed softc
2519 *
2520 * Most drivers do not need to use this since the softc is freed
2521 * automatically when the driver is detached.
2522 */
2523void
2524device_free_softc(void *softc)
2525{
2526	free(softc, M_BUS_SC);
2527}
2528
2529/**
2530 * @brief Claim softc
2531 *
2532 * This function can be used to let the driver free the automatically
2533 * allocated softc using "device_free_softc()". This function is
2534 * useful when the driver is refcounting the softc and the softc
2535 * cannot be freed when the "device_detach" method is called.
2536 */
2537void
2538device_claim_softc(device_t dev)
2539{
2540	if (dev->softc)
2541		dev->flags |= DF_EXTERNALSOFTC;
2542	else
2543		dev->flags &= ~DF_EXTERNALSOFTC;
2544}
2545
2546/**
2547 * @brief Get the device's ivars field
2548 *
2549 * The ivars field is used by the parent device to store per-device
2550 * state (e.g. the physical location of the device or a list of
2551 * resources).
2552 */
2553void *
2554device_get_ivars(device_t dev)
2555{
2556
2557	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2558	return (dev->ivars);
2559}
2560
2561/**
2562 * @brief Set the device's ivars field
2563 */
2564void
2565device_set_ivars(device_t dev, void * ivars)
2566{
2567
2568	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2569	dev->ivars = ivars;
2570}
2571
2572/**
2573 * @brief Return the device's state
2574 */
2575device_state_t
2576device_get_state(device_t dev)
2577{
2578	return (dev->state);
2579}
2580
2581/**
2582 * @brief Set the DF_ENABLED flag for the device
2583 */
2584void
2585device_enable(device_t dev)
2586{
2587	dev->flags |= DF_ENABLED;
2588}
2589
2590/**
2591 * @brief Clear the DF_ENABLED flag for the device
2592 */
2593void
2594device_disable(device_t dev)
2595{
2596	dev->flags &= ~DF_ENABLED;
2597}
2598
2599/**
2600 * @brief Increment the busy counter for the device
2601 */
2602void
2603device_busy(device_t dev)
2604{
2605	if (dev->state < DS_ATTACHING)
2606		panic("device_busy: called for unattached device");
2607	if (dev->busy == 0 && dev->parent)
2608		device_busy(dev->parent);
2609	dev->busy++;
2610	if (dev->state == DS_ATTACHED)
2611		dev->state = DS_BUSY;
2612}
2613
2614/**
2615 * @brief Decrement the busy counter for the device
2616 */
2617void
2618device_unbusy(device_t dev)
2619{
2620	if (dev->busy != 0 && dev->state != DS_BUSY &&
2621	    dev->state != DS_ATTACHING)
2622		panic("device_unbusy: called for non-busy device %s",
2623		    device_get_nameunit(dev));
2624	dev->busy--;
2625	if (dev->busy == 0) {
2626		if (dev->parent)
2627			device_unbusy(dev->parent);
2628		if (dev->state == DS_BUSY)
2629			dev->state = DS_ATTACHED;
2630	}
2631}
2632
2633/**
2634 * @brief Set the DF_QUIET flag for the device
2635 */
2636void
2637device_quiet(device_t dev)
2638{
2639	dev->flags |= DF_QUIET;
2640}
2641
2642/**
2643 * @brief Clear the DF_QUIET flag for the device
2644 */
2645void
2646device_verbose(device_t dev)
2647{
2648	dev->flags &= ~DF_QUIET;
2649}
2650
2651/**
2652 * @brief Return non-zero if the DF_QUIET flag is set on the device
2653 */
2654int
2655device_is_quiet(device_t dev)
2656{
2657	return ((dev->flags & DF_QUIET) != 0);
2658}
2659
2660/**
2661 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2662 */
2663int
2664device_is_enabled(device_t dev)
2665{
2666	return ((dev->flags & DF_ENABLED) != 0);
2667}
2668
2669/**
2670 * @brief Return non-zero if the device was successfully probed
2671 */
2672int
2673device_is_alive(device_t dev)
2674{
2675	return (dev->state >= DS_ALIVE);
2676}
2677
2678/**
2679 * @brief Return non-zero if the device currently has a driver
2680 * attached to it
2681 */
2682int
2683device_is_attached(device_t dev)
2684{
2685	return (dev->state >= DS_ATTACHED);
2686}
2687
2688/**
2689 * @brief Return non-zero if the device is currently suspended.
2690 */
2691int
2692device_is_suspended(device_t dev)
2693{
2694	return ((dev->flags & DF_SUSPENDED) != 0);
2695}
2696
2697/**
2698 * @brief Set the devclass of a device
2699 * @see devclass_add_device().
2700 */
2701int
2702device_set_devclass(device_t dev, const char *classname)
2703{
2704	devclass_t dc;
2705	int error;
2706
2707	if (!classname) {
2708		if (dev->devclass)
2709			devclass_delete_device(dev->devclass, dev);
2710		return (0);
2711	}
2712
2713	if (dev->devclass) {
2714		printf("device_set_devclass: device class already set\n");
2715		return (EINVAL);
2716	}
2717
2718	dc = devclass_find_internal(classname, NULL, TRUE);
2719	if (!dc)
2720		return (ENOMEM);
2721
2722	error = devclass_add_device(dc, dev);
2723
2724	bus_data_generation_update();
2725	return (error);
2726}
2727
2728/**
2729 * @brief Set the devclass of a device and mark the devclass fixed.
2730 * @see device_set_devclass()
2731 */
2732int
2733device_set_devclass_fixed(device_t dev, const char *classname)
2734{
2735	int error;
2736
2737	if (classname == NULL)
2738		return (EINVAL);
2739
2740	error = device_set_devclass(dev, classname);
2741	if (error)
2742		return (error);
2743	dev->flags |= DF_FIXEDCLASS;
2744	return (0);
2745}
2746
2747/**
2748 * @brief Set the driver of a device
2749 *
2750 * @retval 0		success
2751 * @retval EBUSY	the device already has a driver attached
2752 * @retval ENOMEM	a memory allocation failure occurred
2753 */
2754int
2755device_set_driver(device_t dev, driver_t *driver)
2756{
2757	if (dev->state >= DS_ATTACHED)
2758		return (EBUSY);
2759
2760	if (dev->driver == driver)
2761		return (0);
2762
2763	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2764		free(dev->softc, M_BUS_SC);
2765		dev->softc = NULL;
2766	}
2767	device_set_desc(dev, NULL);
2768	kobj_delete((kobj_t) dev, NULL);
2769	dev->driver = driver;
2770	if (driver) {
2771		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2772		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2773			dev->softc = malloc(driver->size, M_BUS_SC,
2774			    M_NOWAIT | M_ZERO);
2775			if (!dev->softc) {
2776				kobj_delete((kobj_t) dev, NULL);
2777				kobj_init((kobj_t) dev, &null_class);
2778				dev->driver = NULL;
2779				return (ENOMEM);
2780			}
2781		}
2782	} else {
2783		kobj_init((kobj_t) dev, &null_class);
2784	}
2785
2786	bus_data_generation_update();
2787	return (0);
2788}
2789
2790/**
2791 * @brief Probe a device, and return this status.
2792 *
2793 * This function is the core of the device autoconfiguration
2794 * system. Its purpose is to select a suitable driver for a device and
2795 * then call that driver to initialise the hardware appropriately. The
2796 * driver is selected by calling the DEVICE_PROBE() method of a set of
2797 * candidate drivers and then choosing the driver which returned the
2798 * best value. This driver is then attached to the device using
2799 * device_attach().
2800 *
2801 * The set of suitable drivers is taken from the list of drivers in
2802 * the parent device's devclass. If the device was originally created
2803 * with a specific class name (see device_add_child()), only drivers
2804 * with that name are probed, otherwise all drivers in the devclass
2805 * are probed. If no drivers return successful probe values in the
2806 * parent devclass, the search continues in the parent of that
2807 * devclass (see devclass_get_parent()) if any.
2808 *
2809 * @param dev		the device to initialise
2810 *
2811 * @retval 0		success
2812 * @retval ENXIO	no driver was found
2813 * @retval ENOMEM	memory allocation failure
2814 * @retval non-zero	some other unix error code
2815 * @retval -1		Device already attached
2816 */
2817int
2818device_probe(device_t dev)
2819{
2820	int error;
2821
2822	GIANT_REQUIRED;
2823
2824	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2825		return (-1);
2826
2827	if (!(dev->flags & DF_ENABLED)) {
2828		if (bootverbose && device_get_name(dev) != NULL) {
2829			device_print_prettyname(dev);
2830			printf("not probed (disabled)\n");
2831		}
2832		return (-1);
2833	}
2834	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2835		if (bus_current_pass == BUS_PASS_DEFAULT &&
2836		    !(dev->flags & DF_DONENOMATCH)) {
2837			BUS_PROBE_NOMATCH(dev->parent, dev);
2838			devnomatch(dev);
2839			dev->flags |= DF_DONENOMATCH;
2840		}
2841		return (error);
2842	}
2843	return (0);
2844}
2845
2846/**
2847 * @brief Probe a device and attach a driver if possible
2848 *
2849 * calls device_probe() and attaches if that was successful.
2850 */
2851int
2852device_probe_and_attach(device_t dev)
2853{
2854	int error;
2855
2856	GIANT_REQUIRED;
2857
2858	error = device_probe(dev);
2859	if (error == -1)
2860		return (0);
2861	else if (error != 0)
2862		return (error);
2863
2864	CURVNET_SET_QUIET(vnet0);
2865	error = device_attach(dev);
2866	CURVNET_RESTORE();
2867	return error;
2868}
2869
2870/**
2871 * @brief Attach a device driver to a device
2872 *
2873 * This function is a wrapper around the DEVICE_ATTACH() driver
2874 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2875 * device's sysctl tree, optionally prints a description of the device
2876 * and queues a notification event for user-based device management
2877 * services.
2878 *
2879 * Normally this function is only called internally from
2880 * device_probe_and_attach().
2881 *
2882 * @param dev		the device to initialise
2883 *
2884 * @retval 0		success
2885 * @retval ENXIO	no driver was found
2886 * @retval ENOMEM	memory allocation failure
2887 * @retval non-zero	some other unix error code
2888 */
2889int
2890device_attach(device_t dev)
2891{
2892	uint64_t attachtime;
2893	int error;
2894
2895	if (resource_disabled(dev->driver->name, dev->unit)) {
2896		device_disable(dev);
2897		if (bootverbose)
2898			 device_printf(dev, "disabled via hints entry\n");
2899		return (ENXIO);
2900	}
2901
2902	device_sysctl_init(dev);
2903	if (!device_is_quiet(dev))
2904		device_print_child(dev->parent, dev);
2905	attachtime = get_cyclecount();
2906	dev->state = DS_ATTACHING;
2907	if ((error = DEVICE_ATTACH(dev)) != 0) {
2908		printf("device_attach: %s%d attach returned %d\n",
2909		    dev->driver->name, dev->unit, error);
2910		if (!(dev->flags & DF_FIXEDCLASS))
2911			devclass_delete_device(dev->devclass, dev);
2912		(void)device_set_driver(dev, NULL);
2913		device_sysctl_fini(dev);
2914		KASSERT(dev->busy == 0, ("attach failed but busy"));
2915		dev->state = DS_NOTPRESENT;
2916		return (error);
2917	}
2918	attachtime = get_cyclecount() - attachtime;
2919	/*
2920	 * 4 bits per device is a reasonable value for desktop and server
2921	 * hardware with good get_cyclecount() implementations, but WILL
2922	 * need to be adjusted on other platforms.
2923	 */
2924#define	RANDOM_PROBE_BIT_GUESS	4
2925	if (bootverbose)
2926		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2927		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2928		    dev->driver->name, dev->unit);
2929	random_harvest_direct(&attachtime, sizeof(attachtime),
2930	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2931	device_sysctl_update(dev);
2932	if (dev->busy)
2933		dev->state = DS_BUSY;
2934	else
2935		dev->state = DS_ATTACHED;
2936	dev->flags &= ~DF_DONENOMATCH;
2937	devadded(dev);
2938	return (0);
2939}
2940
2941/**
2942 * @brief Detach a driver from a device
2943 *
2944 * This function is a wrapper around the DEVICE_DETACH() driver
2945 * method. If the call to DEVICE_DETACH() succeeds, it calls
2946 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2947 * notification event for user-based device management services and
2948 * cleans up the device's sysctl tree.
2949 *
2950 * @param dev		the device to un-initialise
2951 *
2952 * @retval 0		success
2953 * @retval ENXIO	no driver was found
2954 * @retval ENOMEM	memory allocation failure
2955 * @retval non-zero	some other unix error code
2956 */
2957int
2958device_detach(device_t dev)
2959{
2960	int error;
2961
2962	GIANT_REQUIRED;
2963
2964	PDEBUG(("%s", DEVICENAME(dev)));
2965	if (dev->state == DS_BUSY)
2966		return (EBUSY);
2967	if (dev->state != DS_ATTACHED)
2968		return (0);
2969
2970	if ((error = DEVICE_DETACH(dev)) != 0)
2971		return (error);
2972	devremoved(dev);
2973	if (!device_is_quiet(dev))
2974		device_printf(dev, "detached\n");
2975	if (dev->parent)
2976		BUS_CHILD_DETACHED(dev->parent, dev);
2977
2978	if (!(dev->flags & DF_FIXEDCLASS))
2979		devclass_delete_device(dev->devclass, dev);
2980
2981	device_verbose(dev);
2982	dev->state = DS_NOTPRESENT;
2983	(void)device_set_driver(dev, NULL);
2984	device_sysctl_fini(dev);
2985
2986	return (0);
2987}
2988
2989/**
2990 * @brief Tells a driver to quiesce itself.
2991 *
2992 * This function is a wrapper around the DEVICE_QUIESCE() driver
2993 * method. If the call to DEVICE_QUIESCE() succeeds.
2994 *
2995 * @param dev		the device to quiesce
2996 *
2997 * @retval 0		success
2998 * @retval ENXIO	no driver was found
2999 * @retval ENOMEM	memory allocation failure
3000 * @retval non-zero	some other unix error code
3001 */
3002int
3003device_quiesce(device_t dev)
3004{
3005
3006	PDEBUG(("%s", DEVICENAME(dev)));
3007	if (dev->state == DS_BUSY)
3008		return (EBUSY);
3009	if (dev->state != DS_ATTACHED)
3010		return (0);
3011
3012	return (DEVICE_QUIESCE(dev));
3013}
3014
3015/**
3016 * @brief Notify a device of system shutdown
3017 *
3018 * This function calls the DEVICE_SHUTDOWN() driver method if the
3019 * device currently has an attached driver.
3020 *
3021 * @returns the value returned by DEVICE_SHUTDOWN()
3022 */
3023int
3024device_shutdown(device_t dev)
3025{
3026	if (dev->state < DS_ATTACHED)
3027		return (0);
3028	return (DEVICE_SHUTDOWN(dev));
3029}
3030
3031/**
3032 * @brief Set the unit number of a device
3033 *
3034 * This function can be used to override the unit number used for a
3035 * device (e.g. to wire a device to a pre-configured unit number).
3036 */
3037int
3038device_set_unit(device_t dev, int unit)
3039{
3040	devclass_t dc;
3041	int err;
3042
3043	dc = device_get_devclass(dev);
3044	if (unit < dc->maxunit && dc->devices[unit])
3045		return (EBUSY);
3046	err = devclass_delete_device(dc, dev);
3047	if (err)
3048		return (err);
3049	dev->unit = unit;
3050	err = devclass_add_device(dc, dev);
3051	if (err)
3052		return (err);
3053
3054	bus_data_generation_update();
3055	return (0);
3056}
3057
3058/*======================================*/
3059/*
3060 * Some useful method implementations to make life easier for bus drivers.
3061 */
3062
3063void
3064resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3065{
3066
3067	bzero(args, sz);
3068	args->size = sz;
3069	args->memattr = VM_MEMATTR_UNCACHEABLE;
3070}
3071
3072/**
3073 * @brief Initialise a resource list.
3074 *
3075 * @param rl		the resource list to initialise
3076 */
3077void
3078resource_list_init(struct resource_list *rl)
3079{
3080	STAILQ_INIT(rl);
3081}
3082
3083/**
3084 * @brief Reclaim memory used by a resource list.
3085 *
3086 * This function frees the memory for all resource entries on the list
3087 * (if any).
3088 *
3089 * @param rl		the resource list to free
3090 */
3091void
3092resource_list_free(struct resource_list *rl)
3093{
3094	struct resource_list_entry *rle;
3095
3096	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3097		if (rle->res)
3098			panic("resource_list_free: resource entry is busy");
3099		STAILQ_REMOVE_HEAD(rl, link);
3100		free(rle, M_BUS);
3101	}
3102}
3103
3104/**
3105 * @brief Add a resource entry.
3106 *
3107 * This function adds a resource entry using the given @p type, @p
3108 * start, @p end and @p count values. A rid value is chosen by
3109 * searching sequentially for the first unused rid starting at zero.
3110 *
3111 * @param rl		the resource list to edit
3112 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3113 * @param start		the start address of the resource
3114 * @param end		the end address of the resource
3115 * @param count		XXX end-start+1
3116 */
3117int
3118resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3119    rman_res_t end, rman_res_t count)
3120{
3121	int rid;
3122
3123	rid = 0;
3124	while (resource_list_find(rl, type, rid) != NULL)
3125		rid++;
3126	resource_list_add(rl, type, rid, start, end, count);
3127	return (rid);
3128}
3129
3130/**
3131 * @brief Add or modify a resource entry.
3132 *
3133 * If an existing entry exists with the same type and rid, it will be
3134 * modified using the given values of @p start, @p end and @p
3135 * count. If no entry exists, a new one will be created using the
3136 * given values.  The resource list entry that matches is then returned.
3137 *
3138 * @param rl		the resource list to edit
3139 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3140 * @param rid		the resource identifier
3141 * @param start		the start address of the resource
3142 * @param end		the end address of the resource
3143 * @param count		XXX end-start+1
3144 */
3145struct resource_list_entry *
3146resource_list_add(struct resource_list *rl, int type, int rid,
3147    rman_res_t start, rman_res_t end, rman_res_t count)
3148{
3149	struct resource_list_entry *rle;
3150
3151	rle = resource_list_find(rl, type, rid);
3152	if (!rle) {
3153		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3154		    M_NOWAIT);
3155		if (!rle)
3156			panic("resource_list_add: can't record entry");
3157		STAILQ_INSERT_TAIL(rl, rle, link);
3158		rle->type = type;
3159		rle->rid = rid;
3160		rle->res = NULL;
3161		rle->flags = 0;
3162	}
3163
3164	if (rle->res)
3165		panic("resource_list_add: resource entry is busy");
3166
3167	rle->start = start;
3168	rle->end = end;
3169	rle->count = count;
3170	return (rle);
3171}
3172
3173/**
3174 * @brief Determine if a resource entry is busy.
3175 *
3176 * Returns true if a resource entry is busy meaning that it has an
3177 * associated resource that is not an unallocated "reserved" resource.
3178 *
3179 * @param rl		the resource list to search
3180 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3181 * @param rid		the resource identifier
3182 *
3183 * @returns Non-zero if the entry is busy, zero otherwise.
3184 */
3185int
3186resource_list_busy(struct resource_list *rl, int type, int rid)
3187{
3188	struct resource_list_entry *rle;
3189
3190	rle = resource_list_find(rl, type, rid);
3191	if (rle == NULL || rle->res == NULL)
3192		return (0);
3193	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3194		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3195		    ("reserved resource is active"));
3196		return (0);
3197	}
3198	return (1);
3199}
3200
3201/**
3202 * @brief Determine if a resource entry is reserved.
3203 *
3204 * Returns true if a resource entry is reserved meaning that it has an
3205 * associated "reserved" resource.  The resource can either be
3206 * allocated or unallocated.
3207 *
3208 * @param rl		the resource list to search
3209 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3210 * @param rid		the resource identifier
3211 *
3212 * @returns Non-zero if the entry is reserved, zero otherwise.
3213 */
3214int
3215resource_list_reserved(struct resource_list *rl, int type, int rid)
3216{
3217	struct resource_list_entry *rle;
3218
3219	rle = resource_list_find(rl, type, rid);
3220	if (rle != NULL && rle->flags & RLE_RESERVED)
3221		return (1);
3222	return (0);
3223}
3224
3225/**
3226 * @brief Find a resource entry by type and rid.
3227 *
3228 * @param rl		the resource list to search
3229 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3230 * @param rid		the resource identifier
3231 *
3232 * @returns the resource entry pointer or NULL if there is no such
3233 * entry.
3234 */
3235struct resource_list_entry *
3236resource_list_find(struct resource_list *rl, int type, int rid)
3237{
3238	struct resource_list_entry *rle;
3239
3240	STAILQ_FOREACH(rle, rl, link) {
3241		if (rle->type == type && rle->rid == rid)
3242			return (rle);
3243	}
3244	return (NULL);
3245}
3246
3247/**
3248 * @brief Delete a resource entry.
3249 *
3250 * @param rl		the resource list to edit
3251 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3252 * @param rid		the resource identifier
3253 */
3254void
3255resource_list_delete(struct resource_list *rl, int type, int rid)
3256{
3257	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3258
3259	if (rle) {
3260		if (rle->res != NULL)
3261			panic("resource_list_delete: resource has not been released");
3262		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3263		free(rle, M_BUS);
3264	}
3265}
3266
3267/**
3268 * @brief Allocate a reserved resource
3269 *
3270 * This can be used by busses to force the allocation of resources
3271 * that are always active in the system even if they are not allocated
3272 * by a driver (e.g. PCI BARs).  This function is usually called when
3273 * adding a new child to the bus.  The resource is allocated from the
3274 * parent bus when it is reserved.  The resource list entry is marked
3275 * with RLE_RESERVED to note that it is a reserved resource.
3276 *
3277 * Subsequent attempts to allocate the resource with
3278 * resource_list_alloc() will succeed the first time and will set
3279 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3280 * resource that has been allocated is released with
3281 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3282 * the actual resource remains allocated.  The resource can be released to
3283 * the parent bus by calling resource_list_unreserve().
3284 *
3285 * @param rl		the resource list to allocate from
3286 * @param bus		the parent device of @p child
3287 * @param child		the device for which the resource is being reserved
3288 * @param type		the type of resource to allocate
3289 * @param rid		a pointer to the resource identifier
3290 * @param start		hint at the start of the resource range - pass
3291 *			@c 0 for any start address
3292 * @param end		hint at the end of the resource range - pass
3293 *			@c ~0 for any end address
3294 * @param count		hint at the size of range required - pass @c 1
3295 *			for any size
3296 * @param flags		any extra flags to control the resource
3297 *			allocation - see @c RF_XXX flags in
3298 *			<sys/rman.h> for details
3299 *
3300 * @returns		the resource which was allocated or @c NULL if no
3301 *			resource could be allocated
3302 */
3303struct resource *
3304resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3305    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3306{
3307	struct resource_list_entry *rle = NULL;
3308	int passthrough = (device_get_parent(child) != bus);
3309	struct resource *r;
3310
3311	if (passthrough)
3312		panic(
3313    "resource_list_reserve() should only be called for direct children");
3314	if (flags & RF_ACTIVE)
3315		panic(
3316    "resource_list_reserve() should only reserve inactive resources");
3317
3318	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3319	    flags);
3320	if (r != NULL) {
3321		rle = resource_list_find(rl, type, *rid);
3322		rle->flags |= RLE_RESERVED;
3323	}
3324	return (r);
3325}
3326
3327/**
3328 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3329 *
3330 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3331 * and passing the allocation up to the parent of @p bus. This assumes
3332 * that the first entry of @c device_get_ivars(child) is a struct
3333 * resource_list. This also handles 'passthrough' allocations where a
3334 * child is a remote descendant of bus by passing the allocation up to
3335 * the parent of bus.
3336 *
3337 * Typically, a bus driver would store a list of child resources
3338 * somewhere in the child device's ivars (see device_get_ivars()) and
3339 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3340 * then call resource_list_alloc() to perform the allocation.
3341 *
3342 * @param rl		the resource list to allocate from
3343 * @param bus		the parent device of @p child
3344 * @param child		the device which is requesting an allocation
3345 * @param type		the type of resource to allocate
3346 * @param rid		a pointer to the resource identifier
3347 * @param start		hint at the start of the resource range - pass
3348 *			@c 0 for any start address
3349 * @param end		hint at the end of the resource range - pass
3350 *			@c ~0 for any end address
3351 * @param count		hint at the size of range required - pass @c 1
3352 *			for any size
3353 * @param flags		any extra flags to control the resource
3354 *			allocation - see @c RF_XXX flags in
3355 *			<sys/rman.h> for details
3356 *
3357 * @returns		the resource which was allocated or @c NULL if no
3358 *			resource could be allocated
3359 */
3360struct resource *
3361resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3362    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3363{
3364	struct resource_list_entry *rle = NULL;
3365	int passthrough = (device_get_parent(child) != bus);
3366	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3367
3368	if (passthrough) {
3369		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3370		    type, rid, start, end, count, flags));
3371	}
3372
3373	rle = resource_list_find(rl, type, *rid);
3374
3375	if (!rle)
3376		return (NULL);		/* no resource of that type/rid */
3377
3378	if (rle->res) {
3379		if (rle->flags & RLE_RESERVED) {
3380			if (rle->flags & RLE_ALLOCATED)
3381				return (NULL);
3382			if ((flags & RF_ACTIVE) &&
3383			    bus_activate_resource(child, type, *rid,
3384			    rle->res) != 0)
3385				return (NULL);
3386			rle->flags |= RLE_ALLOCATED;
3387			return (rle->res);
3388		}
3389		device_printf(bus,
3390		    "resource entry %#x type %d for child %s is busy\n", *rid,
3391		    type, device_get_nameunit(child));
3392		return (NULL);
3393	}
3394
3395	if (isdefault) {
3396		start = rle->start;
3397		count = ulmax(count, rle->count);
3398		end = ulmax(rle->end, start + count - 1);
3399	}
3400
3401	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3402	    type, rid, start, end, count, flags);
3403
3404	/*
3405	 * Record the new range.
3406	 */
3407	if (rle->res) {
3408		rle->start = rman_get_start(rle->res);
3409		rle->end = rman_get_end(rle->res);
3410		rle->count = count;
3411	}
3412
3413	return (rle->res);
3414}
3415
3416/**
3417 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3418 *
3419 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3420 * used with resource_list_alloc().
3421 *
3422 * @param rl		the resource list which was allocated from
3423 * @param bus		the parent device of @p child
3424 * @param child		the device which is requesting a release
3425 * @param type		the type of resource to release
3426 * @param rid		the resource identifier
3427 * @param res		the resource to release
3428 *
3429 * @retval 0		success
3430 * @retval non-zero	a standard unix error code indicating what
3431 *			error condition prevented the operation
3432 */
3433int
3434resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3435    int type, int rid, struct resource *res)
3436{
3437	struct resource_list_entry *rle = NULL;
3438	int passthrough = (device_get_parent(child) != bus);
3439	int error;
3440
3441	if (passthrough) {
3442		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3443		    type, rid, res));
3444	}
3445
3446	rle = resource_list_find(rl, type, rid);
3447
3448	if (!rle)
3449		panic("resource_list_release: can't find resource");
3450	if (!rle->res)
3451		panic("resource_list_release: resource entry is not busy");
3452	if (rle->flags & RLE_RESERVED) {
3453		if (rle->flags & RLE_ALLOCATED) {
3454			if (rman_get_flags(res) & RF_ACTIVE) {
3455				error = bus_deactivate_resource(child, type,
3456				    rid, res);
3457				if (error)
3458					return (error);
3459			}
3460			rle->flags &= ~RLE_ALLOCATED;
3461			return (0);
3462		}
3463		return (EINVAL);
3464	}
3465
3466	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3467	    type, rid, res);
3468	if (error)
3469		return (error);
3470
3471	rle->res = NULL;
3472	return (0);
3473}
3474
3475/**
3476 * @brief Release all active resources of a given type
3477 *
3478 * Release all active resources of a specified type.  This is intended
3479 * to be used to cleanup resources leaked by a driver after detach or
3480 * a failed attach.
3481 *
3482 * @param rl		the resource list which was allocated from
3483 * @param bus		the parent device of @p child
3484 * @param child		the device whose active resources are being released
3485 * @param type		the type of resources to release
3486 *
3487 * @retval 0		success
3488 * @retval EBUSY	at least one resource was active
3489 */
3490int
3491resource_list_release_active(struct resource_list *rl, device_t bus,
3492    device_t child, int type)
3493{
3494	struct resource_list_entry *rle;
3495	int error, retval;
3496
3497	retval = 0;
3498	STAILQ_FOREACH(rle, rl, link) {
3499		if (rle->type != type)
3500			continue;
3501		if (rle->res == NULL)
3502			continue;
3503		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3504		    RLE_RESERVED)
3505			continue;
3506		retval = EBUSY;
3507		error = resource_list_release(rl, bus, child, type,
3508		    rman_get_rid(rle->res), rle->res);
3509		if (error != 0)
3510			device_printf(bus,
3511			    "Failed to release active resource: %d\n", error);
3512	}
3513	return (retval);
3514}
3515
3516
3517/**
3518 * @brief Fully release a reserved resource
3519 *
3520 * Fully releases a resource reserved via resource_list_reserve().
3521 *
3522 * @param rl		the resource list which was allocated from
3523 * @param bus		the parent device of @p child
3524 * @param child		the device whose reserved resource is being released
3525 * @param type		the type of resource to release
3526 * @param rid		the resource identifier
3527 * @param res		the resource to release
3528 *
3529 * @retval 0		success
3530 * @retval non-zero	a standard unix error code indicating what
3531 *			error condition prevented the operation
3532 */
3533int
3534resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3535    int type, int rid)
3536{
3537	struct resource_list_entry *rle = NULL;
3538	int passthrough = (device_get_parent(child) != bus);
3539
3540	if (passthrough)
3541		panic(
3542    "resource_list_unreserve() should only be called for direct children");
3543
3544	rle = resource_list_find(rl, type, rid);
3545
3546	if (!rle)
3547		panic("resource_list_unreserve: can't find resource");
3548	if (!(rle->flags & RLE_RESERVED))
3549		return (EINVAL);
3550	if (rle->flags & RLE_ALLOCATED)
3551		return (EBUSY);
3552	rle->flags &= ~RLE_RESERVED;
3553	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3554}
3555
3556/**
3557 * @brief Print a description of resources in a resource list
3558 *
3559 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3560 * The name is printed if at least one resource of the given type is available.
3561 * The format is used to print resource start and end.
3562 *
3563 * @param rl		the resource list to print
3564 * @param name		the name of @p type, e.g. @c "memory"
3565 * @param type		type type of resource entry to print
3566 * @param format	printf(9) format string to print resource
3567 *			start and end values
3568 *
3569 * @returns		the number of characters printed
3570 */
3571int
3572resource_list_print_type(struct resource_list *rl, const char *name, int type,
3573    const char *format)
3574{
3575	struct resource_list_entry *rle;
3576	int printed, retval;
3577
3578	printed = 0;
3579	retval = 0;
3580	/* Yes, this is kinda cheating */
3581	STAILQ_FOREACH(rle, rl, link) {
3582		if (rle->type == type) {
3583			if (printed == 0)
3584				retval += printf(" %s ", name);
3585			else
3586				retval += printf(",");
3587			printed++;
3588			retval += printf(format, rle->start);
3589			if (rle->count > 1) {
3590				retval += printf("-");
3591				retval += printf(format, rle->start +
3592						 rle->count - 1);
3593			}
3594		}
3595	}
3596	return (retval);
3597}
3598
3599/**
3600 * @brief Releases all the resources in a list.
3601 *
3602 * @param rl		The resource list to purge.
3603 *
3604 * @returns		nothing
3605 */
3606void
3607resource_list_purge(struct resource_list *rl)
3608{
3609	struct resource_list_entry *rle;
3610
3611	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3612		if (rle->res)
3613			bus_release_resource(rman_get_device(rle->res),
3614			    rle->type, rle->rid, rle->res);
3615		STAILQ_REMOVE_HEAD(rl, link);
3616		free(rle, M_BUS);
3617	}
3618}
3619
3620device_t
3621bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3622{
3623
3624	return (device_add_child_ordered(dev, order, name, unit));
3625}
3626
3627/**
3628 * @brief Helper function for implementing DEVICE_PROBE()
3629 *
3630 * This function can be used to help implement the DEVICE_PROBE() for
3631 * a bus (i.e. a device which has other devices attached to it). It
3632 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3633 * devclass.
3634 */
3635int
3636bus_generic_probe(device_t dev)
3637{
3638	devclass_t dc = dev->devclass;
3639	driverlink_t dl;
3640
3641	TAILQ_FOREACH(dl, &dc->drivers, link) {
3642		/*
3643		 * If this driver's pass is too high, then ignore it.
3644		 * For most drivers in the default pass, this will
3645		 * never be true.  For early-pass drivers they will
3646		 * only call the identify routines of eligible drivers
3647		 * when this routine is called.  Drivers for later
3648		 * passes should have their identify routines called
3649		 * on early-pass busses during BUS_NEW_PASS().
3650		 */
3651		if (dl->pass > bus_current_pass)
3652			continue;
3653		DEVICE_IDENTIFY(dl->driver, dev);
3654	}
3655
3656	return (0);
3657}
3658
3659/**
3660 * @brief Helper function for implementing DEVICE_ATTACH()
3661 *
3662 * This function can be used to help implement the DEVICE_ATTACH() for
3663 * a bus. It calls device_probe_and_attach() for each of the device's
3664 * children.
3665 */
3666int
3667bus_generic_attach(device_t dev)
3668{
3669	device_t child;
3670
3671	TAILQ_FOREACH(child, &dev->children, link) {
3672		device_probe_and_attach(child);
3673	}
3674
3675	return (0);
3676}
3677
3678/**
3679 * @brief Helper function for implementing DEVICE_DETACH()
3680 *
3681 * This function can be used to help implement the DEVICE_DETACH() for
3682 * a bus. It calls device_detach() for each of the device's
3683 * children.
3684 */
3685int
3686bus_generic_detach(device_t dev)
3687{
3688	device_t child;
3689	int error;
3690
3691	if (dev->state != DS_ATTACHED)
3692		return (EBUSY);
3693
3694	TAILQ_FOREACH(child, &dev->children, link) {
3695		if ((error = device_detach(child)) != 0)
3696			return (error);
3697	}
3698
3699	return (0);
3700}
3701
3702/**
3703 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3704 *
3705 * This function can be used to help implement the DEVICE_SHUTDOWN()
3706 * for a bus. It calls device_shutdown() for each of the device's
3707 * children.
3708 */
3709int
3710bus_generic_shutdown(device_t dev)
3711{
3712	device_t child;
3713
3714	TAILQ_FOREACH(child, &dev->children, link) {
3715		device_shutdown(child);
3716	}
3717
3718	return (0);
3719}
3720
3721/**
3722 * @brief Default function for suspending a child device.
3723 *
3724 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3725 */
3726int
3727bus_generic_suspend_child(device_t dev, device_t child)
3728{
3729	int	error;
3730
3731	error = DEVICE_SUSPEND(child);
3732
3733	if (error == 0)
3734		child->flags |= DF_SUSPENDED;
3735
3736	return (error);
3737}
3738
3739/**
3740 * @brief Default function for resuming a child device.
3741 *
3742 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3743 */
3744int
3745bus_generic_resume_child(device_t dev, device_t child)
3746{
3747
3748	DEVICE_RESUME(child);
3749	child->flags &= ~DF_SUSPENDED;
3750
3751	return (0);
3752}
3753
3754/**
3755 * @brief Helper function for implementing DEVICE_SUSPEND()
3756 *
3757 * This function can be used to help implement the DEVICE_SUSPEND()
3758 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3759 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3760 * operation is aborted and any devices which were suspended are
3761 * resumed immediately by calling their DEVICE_RESUME() methods.
3762 */
3763int
3764bus_generic_suspend(device_t dev)
3765{
3766	int		error;
3767	device_t	child, child2;
3768
3769	TAILQ_FOREACH(child, &dev->children, link) {
3770		error = BUS_SUSPEND_CHILD(dev, child);
3771		if (error) {
3772			for (child2 = TAILQ_FIRST(&dev->children);
3773			     child2 && child2 != child;
3774			     child2 = TAILQ_NEXT(child2, link))
3775				BUS_RESUME_CHILD(dev, child2);
3776			return (error);
3777		}
3778	}
3779	return (0);
3780}
3781
3782/**
3783 * @brief Helper function for implementing DEVICE_RESUME()
3784 *
3785 * This function can be used to help implement the DEVICE_RESUME() for
3786 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3787 */
3788int
3789bus_generic_resume(device_t dev)
3790{
3791	device_t	child;
3792
3793	TAILQ_FOREACH(child, &dev->children, link) {
3794		BUS_RESUME_CHILD(dev, child);
3795		/* if resume fails, there's nothing we can usefully do... */
3796	}
3797	return (0);
3798}
3799
3800/**
3801 * @brief Helper function for implementing BUS_PRINT_CHILD().
3802 *
3803 * This function prints the first part of the ascii representation of
3804 * @p child, including its name, unit and description (if any - see
3805 * device_set_desc()).
3806 *
3807 * @returns the number of characters printed
3808 */
3809int
3810bus_print_child_header(device_t dev, device_t child)
3811{
3812	int	retval = 0;
3813
3814	if (device_get_desc(child)) {
3815		retval += device_printf(child, "<%s>", device_get_desc(child));
3816	} else {
3817		retval += printf("%s", device_get_nameunit(child));
3818	}
3819
3820	return (retval);
3821}
3822
3823/**
3824 * @brief Helper function for implementing BUS_PRINT_CHILD().
3825 *
3826 * This function prints the last part of the ascii representation of
3827 * @p child, which consists of the string @c " on " followed by the
3828 * name and unit of the @p dev.
3829 *
3830 * @returns the number of characters printed
3831 */
3832int
3833bus_print_child_footer(device_t dev, device_t child)
3834{
3835	return (printf(" on %s\n", device_get_nameunit(dev)));
3836}
3837
3838/**
3839 * @brief Helper function for implementing BUS_PRINT_CHILD().
3840 *
3841 * This function prints out the VM domain for the given device.
3842 *
3843 * @returns the number of characters printed
3844 */
3845int
3846bus_print_child_domain(device_t dev, device_t child)
3847{
3848	int domain;
3849
3850	/* No domain? Don't print anything */
3851	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3852		return (0);
3853
3854	return (printf(" numa-domain %d", domain));
3855}
3856
3857/**
3858 * @brief Helper function for implementing BUS_PRINT_CHILD().
3859 *
3860 * This function simply calls bus_print_child_header() followed by
3861 * bus_print_child_footer().
3862 *
3863 * @returns the number of characters printed
3864 */
3865int
3866bus_generic_print_child(device_t dev, device_t child)
3867{
3868	int	retval = 0;
3869
3870	retval += bus_print_child_header(dev, child);
3871	retval += bus_print_child_domain(dev, child);
3872	retval += bus_print_child_footer(dev, child);
3873
3874	return (retval);
3875}
3876
3877/**
3878 * @brief Stub function for implementing BUS_READ_IVAR().
3879 *
3880 * @returns ENOENT
3881 */
3882int
3883bus_generic_read_ivar(device_t dev, device_t child, int index,
3884    uintptr_t * result)
3885{
3886	return (ENOENT);
3887}
3888
3889/**
3890 * @brief Stub function for implementing BUS_WRITE_IVAR().
3891 *
3892 * @returns ENOENT
3893 */
3894int
3895bus_generic_write_ivar(device_t dev, device_t child, int index,
3896    uintptr_t value)
3897{
3898	return (ENOENT);
3899}
3900
3901/**
3902 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3903 *
3904 * @returns NULL
3905 */
3906struct resource_list *
3907bus_generic_get_resource_list(device_t dev, device_t child)
3908{
3909	return (NULL);
3910}
3911
3912/**
3913 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3914 *
3915 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3916 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3917 * and then calls device_probe_and_attach() for each unattached child.
3918 */
3919void
3920bus_generic_driver_added(device_t dev, driver_t *driver)
3921{
3922	device_t child;
3923
3924	DEVICE_IDENTIFY(driver, dev);
3925	TAILQ_FOREACH(child, &dev->children, link) {
3926		if (child->state == DS_NOTPRESENT ||
3927		    (child->flags & DF_REBID))
3928			device_probe_and_attach(child);
3929	}
3930}
3931
3932/**
3933 * @brief Helper function for implementing BUS_NEW_PASS().
3934 *
3935 * This implementing of BUS_NEW_PASS() first calls the identify
3936 * routines for any drivers that probe at the current pass.  Then it
3937 * walks the list of devices for this bus.  If a device is already
3938 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3939 * device is not already attached, it attempts to attach a driver to
3940 * it.
3941 */
3942void
3943bus_generic_new_pass(device_t dev)
3944{
3945	driverlink_t dl;
3946	devclass_t dc;
3947	device_t child;
3948
3949	dc = dev->devclass;
3950	TAILQ_FOREACH(dl, &dc->drivers, link) {
3951		if (dl->pass == bus_current_pass)
3952			DEVICE_IDENTIFY(dl->driver, dev);
3953	}
3954	TAILQ_FOREACH(child, &dev->children, link) {
3955		if (child->state >= DS_ATTACHED)
3956			BUS_NEW_PASS(child);
3957		else if (child->state == DS_NOTPRESENT)
3958			device_probe_and_attach(child);
3959	}
3960}
3961
3962/**
3963 * @brief Helper function for implementing BUS_SETUP_INTR().
3964 *
3965 * This simple implementation of BUS_SETUP_INTR() simply calls the
3966 * BUS_SETUP_INTR() method of the parent of @p dev.
3967 */
3968int
3969bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3970    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3971    void **cookiep)
3972{
3973	/* Propagate up the bus hierarchy until someone handles it. */
3974	if (dev->parent)
3975		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3976		    filter, intr, arg, cookiep));
3977	return (EINVAL);
3978}
3979
3980/**
3981 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3982 *
3983 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3984 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3985 */
3986int
3987bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3988    void *cookie)
3989{
3990	/* Propagate up the bus hierarchy until someone handles it. */
3991	if (dev->parent)
3992		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3993	return (EINVAL);
3994}
3995
3996/**
3997 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3998 *
3999 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4000 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4001 */
4002int
4003bus_generic_adjust_resource(device_t dev, device_t child, int type,
4004    struct resource *r, rman_res_t start, rman_res_t end)
4005{
4006	/* Propagate up the bus hierarchy until someone handles it. */
4007	if (dev->parent)
4008		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4009		    end));
4010	return (EINVAL);
4011}
4012
4013/**
4014 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4015 *
4016 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4017 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4018 */
4019struct resource *
4020bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4021    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4022{
4023	/* Propagate up the bus hierarchy until someone handles it. */
4024	if (dev->parent)
4025		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4026		    start, end, count, flags));
4027	return (NULL);
4028}
4029
4030/**
4031 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4032 *
4033 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4034 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4035 */
4036int
4037bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4038    struct resource *r)
4039{
4040	/* Propagate up the bus hierarchy until someone handles it. */
4041	if (dev->parent)
4042		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4043		    r));
4044	return (EINVAL);
4045}
4046
4047/**
4048 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4049 *
4050 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4051 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4052 */
4053int
4054bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4055    struct resource *r)
4056{
4057	/* Propagate up the bus hierarchy until someone handles it. */
4058	if (dev->parent)
4059		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4060		    r));
4061	return (EINVAL);
4062}
4063
4064/**
4065 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4066 *
4067 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4068 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4069 */
4070int
4071bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4072    int rid, struct resource *r)
4073{
4074	/* Propagate up the bus hierarchy until someone handles it. */
4075	if (dev->parent)
4076		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4077		    r));
4078	return (EINVAL);
4079}
4080
4081/**
4082 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4083 *
4084 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4085 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4086 */
4087int
4088bus_generic_map_resource(device_t dev, device_t child, int type,
4089    struct resource *r, struct resource_map_request *args,
4090    struct resource_map *map)
4091{
4092	/* Propagate up the bus hierarchy until someone handles it. */
4093	if (dev->parent)
4094		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4095		    map));
4096	return (EINVAL);
4097}
4098
4099/**
4100 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4101 *
4102 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4103 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4104 */
4105int
4106bus_generic_unmap_resource(device_t dev, device_t child, int type,
4107    struct resource *r, struct resource_map *map)
4108{
4109	/* Propagate up the bus hierarchy until someone handles it. */
4110	if (dev->parent)
4111		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4112	return (EINVAL);
4113}
4114
4115/**
4116 * @brief Helper function for implementing BUS_BIND_INTR().
4117 *
4118 * This simple implementation of BUS_BIND_INTR() simply calls the
4119 * BUS_BIND_INTR() method of the parent of @p dev.
4120 */
4121int
4122bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4123    int cpu)
4124{
4125
4126	/* Propagate up the bus hierarchy until someone handles it. */
4127	if (dev->parent)
4128		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4129	return (EINVAL);
4130}
4131
4132/**
4133 * @brief Helper function for implementing BUS_CONFIG_INTR().
4134 *
4135 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4136 * BUS_CONFIG_INTR() method of the parent of @p dev.
4137 */
4138int
4139bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4140    enum intr_polarity pol)
4141{
4142
4143	/* Propagate up the bus hierarchy until someone handles it. */
4144	if (dev->parent)
4145		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4146	return (EINVAL);
4147}
4148
4149/**
4150 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4151 *
4152 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4153 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4154 */
4155int
4156bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4157    void *cookie, const char *descr)
4158{
4159
4160	/* Propagate up the bus hierarchy until someone handles it. */
4161	if (dev->parent)
4162		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4163		    descr));
4164	return (EINVAL);
4165}
4166
4167/**
4168 * @brief Helper function for implementing BUS_GET_CPUS().
4169 *
4170 * This simple implementation of BUS_GET_CPUS() simply calls the
4171 * BUS_GET_CPUS() method of the parent of @p dev.
4172 */
4173int
4174bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4175    size_t setsize, cpuset_t *cpuset)
4176{
4177
4178	/* Propagate up the bus hierarchy until someone handles it. */
4179	if (dev->parent != NULL)
4180		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4181	return (EINVAL);
4182}
4183
4184/**
4185 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4186 *
4187 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4188 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4189 */
4190bus_dma_tag_t
4191bus_generic_get_dma_tag(device_t dev, device_t child)
4192{
4193
4194	/* Propagate up the bus hierarchy until someone handles it. */
4195	if (dev->parent != NULL)
4196		return (BUS_GET_DMA_TAG(dev->parent, child));
4197	return (NULL);
4198}
4199
4200/**
4201 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4202 *
4203 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4204 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4205 */
4206bus_space_tag_t
4207bus_generic_get_bus_tag(device_t dev, device_t child)
4208{
4209
4210	/* Propagate up the bus hierarchy until someone handles it. */
4211	if (dev->parent != NULL)
4212		return (BUS_GET_BUS_TAG(dev->parent, child));
4213	return ((bus_space_tag_t)0);
4214}
4215
4216/**
4217 * @brief Helper function for implementing BUS_GET_RESOURCE().
4218 *
4219 * This implementation of BUS_GET_RESOURCE() uses the
4220 * resource_list_find() function to do most of the work. It calls
4221 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4222 * search.
4223 */
4224int
4225bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4226    rman_res_t *startp, rman_res_t *countp)
4227{
4228	struct resource_list *		rl = NULL;
4229	struct resource_list_entry *	rle = NULL;
4230
4231	rl = BUS_GET_RESOURCE_LIST(dev, child);
4232	if (!rl)
4233		return (EINVAL);
4234
4235	rle = resource_list_find(rl, type, rid);
4236	if (!rle)
4237		return (ENOENT);
4238
4239	if (startp)
4240		*startp = rle->start;
4241	if (countp)
4242		*countp = rle->count;
4243
4244	return (0);
4245}
4246
4247/**
4248 * @brief Helper function for implementing BUS_SET_RESOURCE().
4249 *
4250 * This implementation of BUS_SET_RESOURCE() uses the
4251 * resource_list_add() function to do most of the work. It calls
4252 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4253 * edit.
4254 */
4255int
4256bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4257    rman_res_t start, rman_res_t count)
4258{
4259	struct resource_list *		rl = NULL;
4260
4261	rl = BUS_GET_RESOURCE_LIST(dev, child);
4262	if (!rl)
4263		return (EINVAL);
4264
4265	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4266
4267	return (0);
4268}
4269
4270/**
4271 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4272 *
4273 * This implementation of BUS_DELETE_RESOURCE() uses the
4274 * resource_list_delete() function to do most of the work. It calls
4275 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4276 * edit.
4277 */
4278void
4279bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4280{
4281	struct resource_list *		rl = NULL;
4282
4283	rl = BUS_GET_RESOURCE_LIST(dev, child);
4284	if (!rl)
4285		return;
4286
4287	resource_list_delete(rl, type, rid);
4288
4289	return;
4290}
4291
4292/**
4293 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4294 *
4295 * This implementation of BUS_RELEASE_RESOURCE() uses the
4296 * resource_list_release() function to do most of the work. It calls
4297 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4298 */
4299int
4300bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4301    int rid, struct resource *r)
4302{
4303	struct resource_list *		rl = NULL;
4304
4305	if (device_get_parent(child) != dev)
4306		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4307		    type, rid, r));
4308
4309	rl = BUS_GET_RESOURCE_LIST(dev, child);
4310	if (!rl)
4311		return (EINVAL);
4312
4313	return (resource_list_release(rl, dev, child, type, rid, r));
4314}
4315
4316/**
4317 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4318 *
4319 * This implementation of BUS_ALLOC_RESOURCE() uses the
4320 * resource_list_alloc() function to do most of the work. It calls
4321 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4322 */
4323struct resource *
4324bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4325    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4326{
4327	struct resource_list *		rl = NULL;
4328
4329	if (device_get_parent(child) != dev)
4330		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4331		    type, rid, start, end, count, flags));
4332
4333	rl = BUS_GET_RESOURCE_LIST(dev, child);
4334	if (!rl)
4335		return (NULL);
4336
4337	return (resource_list_alloc(rl, dev, child, type, rid,
4338	    start, end, count, flags));
4339}
4340
4341/**
4342 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4343 *
4344 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4345 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4346 */
4347int
4348bus_generic_child_present(device_t dev, device_t child)
4349{
4350	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4351}
4352
4353int
4354bus_generic_get_domain(device_t dev, device_t child, int *domain)
4355{
4356
4357	if (dev->parent)
4358		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4359
4360	return (ENOENT);
4361}
4362
4363/**
4364 * @brief Helper function for implementing BUS_RESCAN().
4365 *
4366 * This null implementation of BUS_RESCAN() always fails to indicate
4367 * the bus does not support rescanning.
4368 */
4369int
4370bus_null_rescan(device_t dev)
4371{
4372
4373	return (ENXIO);
4374}
4375
4376/*
4377 * Some convenience functions to make it easier for drivers to use the
4378 * resource-management functions.  All these really do is hide the
4379 * indirection through the parent's method table, making for slightly
4380 * less-wordy code.  In the future, it might make sense for this code
4381 * to maintain some sort of a list of resources allocated by each device.
4382 */
4383
4384int
4385bus_alloc_resources(device_t dev, struct resource_spec *rs,
4386    struct resource **res)
4387{
4388	int i;
4389
4390	for (i = 0; rs[i].type != -1; i++)
4391		res[i] = NULL;
4392	for (i = 0; rs[i].type != -1; i++) {
4393		res[i] = bus_alloc_resource_any(dev,
4394		    rs[i].type, &rs[i].rid, rs[i].flags);
4395		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4396			bus_release_resources(dev, rs, res);
4397			return (ENXIO);
4398		}
4399	}
4400	return (0);
4401}
4402
4403void
4404bus_release_resources(device_t dev, const struct resource_spec *rs,
4405    struct resource **res)
4406{
4407	int i;
4408
4409	for (i = 0; rs[i].type != -1; i++)
4410		if (res[i] != NULL) {
4411			bus_release_resource(
4412			    dev, rs[i].type, rs[i].rid, res[i]);
4413			res[i] = NULL;
4414		}
4415}
4416
4417/**
4418 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4419 *
4420 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4421 * parent of @p dev.
4422 */
4423struct resource *
4424bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4425    rman_res_t end, rman_res_t count, u_int flags)
4426{
4427	struct resource *res;
4428
4429	if (dev->parent == NULL)
4430		return (NULL);
4431	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4432	    count, flags);
4433	return (res);
4434}
4435
4436/**
4437 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4438 *
4439 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4440 * parent of @p dev.
4441 */
4442int
4443bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4444    rman_res_t end)
4445{
4446	if (dev->parent == NULL)
4447		return (EINVAL);
4448	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4449}
4450
4451/**
4452 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4453 *
4454 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4455 * parent of @p dev.
4456 */
4457int
4458bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4459{
4460	if (dev->parent == NULL)
4461		return (EINVAL);
4462	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4463}
4464
4465/**
4466 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4467 *
4468 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4469 * parent of @p dev.
4470 */
4471int
4472bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4473{
4474	if (dev->parent == NULL)
4475		return (EINVAL);
4476	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4477}
4478
4479/**
4480 * @brief Wrapper function for BUS_MAP_RESOURCE().
4481 *
4482 * This function simply calls the BUS_MAP_RESOURCE() method of the
4483 * parent of @p dev.
4484 */
4485int
4486bus_map_resource(device_t dev, int type, struct resource *r,
4487    struct resource_map_request *args, struct resource_map *map)
4488{
4489	if (dev->parent == NULL)
4490		return (EINVAL);
4491	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4492}
4493
4494/**
4495 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4496 *
4497 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4498 * parent of @p dev.
4499 */
4500int
4501bus_unmap_resource(device_t dev, int type, struct resource *r,
4502    struct resource_map *map)
4503{
4504	if (dev->parent == NULL)
4505		return (EINVAL);
4506	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4507}
4508
4509/**
4510 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4511 *
4512 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4513 * parent of @p dev.
4514 */
4515int
4516bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4517{
4518	int rv;
4519
4520	if (dev->parent == NULL)
4521		return (EINVAL);
4522	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4523	return (rv);
4524}
4525
4526/**
4527 * @brief Wrapper function for BUS_SETUP_INTR().
4528 *
4529 * This function simply calls the BUS_SETUP_INTR() method of the
4530 * parent of @p dev.
4531 */
4532int
4533bus_setup_intr(device_t dev, struct resource *r, int flags,
4534    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4535{
4536	int error;
4537
4538	if (dev->parent == NULL)
4539		return (EINVAL);
4540	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4541	    arg, cookiep);
4542	if (error != 0)
4543		return (error);
4544	if (handler != NULL && !(flags & INTR_MPSAFE))
4545		device_printf(dev, "[GIANT-LOCKED]\n");
4546	return (0);
4547}
4548
4549/**
4550 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4551 *
4552 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4553 * parent of @p dev.
4554 */
4555int
4556bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4557{
4558	if (dev->parent == NULL)
4559		return (EINVAL);
4560	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4561}
4562
4563/**
4564 * @brief Wrapper function for BUS_BIND_INTR().
4565 *
4566 * This function simply calls the BUS_BIND_INTR() method of the
4567 * parent of @p dev.
4568 */
4569int
4570bus_bind_intr(device_t dev, struct resource *r, int cpu)
4571{
4572	if (dev->parent == NULL)
4573		return (EINVAL);
4574	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4575}
4576
4577/**
4578 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4579 *
4580 * This function first formats the requested description into a
4581 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4582 * the parent of @p dev.
4583 */
4584int
4585bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4586    const char *fmt, ...)
4587{
4588	va_list ap;
4589	char descr[MAXCOMLEN + 1];
4590
4591	if (dev->parent == NULL)
4592		return (EINVAL);
4593	va_start(ap, fmt);
4594	vsnprintf(descr, sizeof(descr), fmt, ap);
4595	va_end(ap);
4596	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4597}
4598
4599/**
4600 * @brief Wrapper function for BUS_SET_RESOURCE().
4601 *
4602 * This function simply calls the BUS_SET_RESOURCE() method of the
4603 * parent of @p dev.
4604 */
4605int
4606bus_set_resource(device_t dev, int type, int rid,
4607    rman_res_t start, rman_res_t count)
4608{
4609	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4610	    start, count));
4611}
4612
4613/**
4614 * @brief Wrapper function for BUS_GET_RESOURCE().
4615 *
4616 * This function simply calls the BUS_GET_RESOURCE() method of the
4617 * parent of @p dev.
4618 */
4619int
4620bus_get_resource(device_t dev, int type, int rid,
4621    rman_res_t *startp, rman_res_t *countp)
4622{
4623	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4624	    startp, countp));
4625}
4626
4627/**
4628 * @brief Wrapper function for BUS_GET_RESOURCE().
4629 *
4630 * This function simply calls the BUS_GET_RESOURCE() method of the
4631 * parent of @p dev and returns the start value.
4632 */
4633rman_res_t
4634bus_get_resource_start(device_t dev, int type, int rid)
4635{
4636	rman_res_t start;
4637	rman_res_t count;
4638	int error;
4639
4640	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4641	    &start, &count);
4642	if (error)
4643		return (0);
4644	return (start);
4645}
4646
4647/**
4648 * @brief Wrapper function for BUS_GET_RESOURCE().
4649 *
4650 * This function simply calls the BUS_GET_RESOURCE() method of the
4651 * parent of @p dev and returns the count value.
4652 */
4653rman_res_t
4654bus_get_resource_count(device_t dev, int type, int rid)
4655{
4656	rman_res_t start;
4657	rman_res_t count;
4658	int error;
4659
4660	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4661	    &start, &count);
4662	if (error)
4663		return (0);
4664	return (count);
4665}
4666
4667/**
4668 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4669 *
4670 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4671 * parent of @p dev.
4672 */
4673void
4674bus_delete_resource(device_t dev, int type, int rid)
4675{
4676	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4677}
4678
4679/**
4680 * @brief Wrapper function for BUS_CHILD_PRESENT().
4681 *
4682 * This function simply calls the BUS_CHILD_PRESENT() method of the
4683 * parent of @p dev.
4684 */
4685int
4686bus_child_present(device_t child)
4687{
4688	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4689}
4690
4691/**
4692 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4693 *
4694 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4695 * parent of @p dev.
4696 */
4697int
4698bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4699{
4700	device_t parent;
4701
4702	parent = device_get_parent(child);
4703	if (parent == NULL) {
4704		*buf = '\0';
4705		return (0);
4706	}
4707	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4708}
4709
4710/**
4711 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4712 *
4713 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4714 * parent of @p dev.
4715 */
4716int
4717bus_child_location_str(device_t child, char *buf, size_t buflen)
4718{
4719	device_t parent;
4720
4721	parent = device_get_parent(child);
4722	if (parent == NULL) {
4723		*buf = '\0';
4724		return (0);
4725	}
4726	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4727}
4728
4729/**
4730 * @brief Wrapper function for BUS_GET_CPUS().
4731 *
4732 * This function simply calls the BUS_GET_CPUS() method of the
4733 * parent of @p dev.
4734 */
4735int
4736bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4737{
4738	device_t parent;
4739
4740	parent = device_get_parent(dev);
4741	if (parent == NULL)
4742		return (EINVAL);
4743	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4744}
4745
4746/**
4747 * @brief Wrapper function for BUS_GET_DMA_TAG().
4748 *
4749 * This function simply calls the BUS_GET_DMA_TAG() method of the
4750 * parent of @p dev.
4751 */
4752bus_dma_tag_t
4753bus_get_dma_tag(device_t dev)
4754{
4755	device_t parent;
4756
4757	parent = device_get_parent(dev);
4758	if (parent == NULL)
4759		return (NULL);
4760	return (BUS_GET_DMA_TAG(parent, dev));
4761}
4762
4763/**
4764 * @brief Wrapper function for BUS_GET_BUS_TAG().
4765 *
4766 * This function simply calls the BUS_GET_BUS_TAG() method of the
4767 * parent of @p dev.
4768 */
4769bus_space_tag_t
4770bus_get_bus_tag(device_t dev)
4771{
4772	device_t parent;
4773
4774	parent = device_get_parent(dev);
4775	if (parent == NULL)
4776		return ((bus_space_tag_t)0);
4777	return (BUS_GET_BUS_TAG(parent, dev));
4778}
4779
4780/**
4781 * @brief Wrapper function for BUS_GET_DOMAIN().
4782 *
4783 * This function simply calls the BUS_GET_DOMAIN() method of the
4784 * parent of @p dev.
4785 */
4786int
4787bus_get_domain(device_t dev, int *domain)
4788{
4789	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4790}
4791
4792/* Resume all devices and then notify userland that we're up again. */
4793static int
4794root_resume(device_t dev)
4795{
4796	int error;
4797
4798	error = bus_generic_resume(dev);
4799	if (error == 0)
4800		devctl_notify("kern", "power", "resume", NULL);
4801	return (error);
4802}
4803
4804static int
4805root_print_child(device_t dev, device_t child)
4806{
4807	int	retval = 0;
4808
4809	retval += bus_print_child_header(dev, child);
4810	retval += printf("\n");
4811
4812	return (retval);
4813}
4814
4815static int
4816root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4817    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4818{
4819	/*
4820	 * If an interrupt mapping gets to here something bad has happened.
4821	 */
4822	panic("root_setup_intr");
4823}
4824
4825/*
4826 * If we get here, assume that the device is permanent and really is
4827 * present in the system.  Removable bus drivers are expected to intercept
4828 * this call long before it gets here.  We return -1 so that drivers that
4829 * really care can check vs -1 or some ERRNO returned higher in the food
4830 * chain.
4831 */
4832static int
4833root_child_present(device_t dev, device_t child)
4834{
4835	return (-1);
4836}
4837
4838static int
4839root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4840    cpuset_t *cpuset)
4841{
4842
4843	switch (op) {
4844	case INTR_CPUS:
4845		/* Default to returning the set of all CPUs. */
4846		if (setsize != sizeof(cpuset_t))
4847			return (EINVAL);
4848		*cpuset = all_cpus;
4849		return (0);
4850	default:
4851		return (EINVAL);
4852	}
4853}
4854
4855static kobj_method_t root_methods[] = {
4856	/* Device interface */
4857	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4858	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4859	KOBJMETHOD(device_resume,	root_resume),
4860
4861	/* Bus interface */
4862	KOBJMETHOD(bus_print_child,	root_print_child),
4863	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4864	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4865	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4866	KOBJMETHOD(bus_child_present,	root_child_present),
4867	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4868
4869	KOBJMETHOD_END
4870};
4871
4872static driver_t root_driver = {
4873	"root",
4874	root_methods,
4875	1,			/* no softc */
4876};
4877
4878device_t	root_bus;
4879devclass_t	root_devclass;
4880
4881static int
4882root_bus_module_handler(module_t mod, int what, void* arg)
4883{
4884	switch (what) {
4885	case MOD_LOAD:
4886		TAILQ_INIT(&bus_data_devices);
4887		kobj_class_compile((kobj_class_t) &root_driver);
4888		root_bus = make_device(NULL, "root", 0);
4889		root_bus->desc = "System root bus";
4890		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4891		root_bus->driver = &root_driver;
4892		root_bus->state = DS_ATTACHED;
4893		root_devclass = devclass_find_internal("root", NULL, FALSE);
4894		devinit();
4895		return (0);
4896
4897	case MOD_SHUTDOWN:
4898		device_shutdown(root_bus);
4899		return (0);
4900	default:
4901		return (EOPNOTSUPP);
4902	}
4903
4904	return (0);
4905}
4906
4907static moduledata_t root_bus_mod = {
4908	"rootbus",
4909	root_bus_module_handler,
4910	NULL
4911};
4912DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4913
4914/**
4915 * @brief Automatically configure devices
4916 *
4917 * This function begins the autoconfiguration process by calling
4918 * device_probe_and_attach() for each child of the @c root0 device.
4919 */
4920void
4921root_bus_configure(void)
4922{
4923
4924	PDEBUG(("."));
4925
4926	/* Eventually this will be split up, but this is sufficient for now. */
4927	bus_set_pass(BUS_PASS_DEFAULT);
4928}
4929
4930/**
4931 * @brief Module handler for registering device drivers
4932 *
4933 * This module handler is used to automatically register device
4934 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4935 * devclass_add_driver() for the driver described by the
4936 * driver_module_data structure pointed to by @p arg
4937 */
4938int
4939driver_module_handler(module_t mod, int what, void *arg)
4940{
4941	struct driver_module_data *dmd;
4942	devclass_t bus_devclass;
4943	kobj_class_t driver;
4944	int error, pass;
4945
4946	dmd = (struct driver_module_data *)arg;
4947	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4948	error = 0;
4949
4950	switch (what) {
4951	case MOD_LOAD:
4952		if (dmd->dmd_chainevh)
4953			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4954
4955		pass = dmd->dmd_pass;
4956		driver = dmd->dmd_driver;
4957		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4958		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4959		error = devclass_add_driver(bus_devclass, driver, pass,
4960		    dmd->dmd_devclass);
4961		break;
4962
4963	case MOD_UNLOAD:
4964		PDEBUG(("Unloading module: driver %s from bus %s",
4965		    DRIVERNAME(dmd->dmd_driver),
4966		    dmd->dmd_busname));
4967		error = devclass_delete_driver(bus_devclass,
4968		    dmd->dmd_driver);
4969
4970		if (!error && dmd->dmd_chainevh)
4971			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4972		break;
4973	case MOD_QUIESCE:
4974		PDEBUG(("Quiesce module: driver %s from bus %s",
4975		    DRIVERNAME(dmd->dmd_driver),
4976		    dmd->dmd_busname));
4977		error = devclass_quiesce_driver(bus_devclass,
4978		    dmd->dmd_driver);
4979
4980		if (!error && dmd->dmd_chainevh)
4981			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4982		break;
4983	default:
4984		error = EOPNOTSUPP;
4985		break;
4986	}
4987
4988	return (error);
4989}
4990
4991/**
4992 * @brief Enumerate all hinted devices for this bus.
4993 *
4994 * Walks through the hints for this bus and calls the bus_hinted_child
4995 * routine for each one it fines.  It searches first for the specific
4996 * bus that's being probed for hinted children (eg isa0), and then for
4997 * generic children (eg isa).
4998 *
4999 * @param	dev	bus device to enumerate
5000 */
5001void
5002bus_enumerate_hinted_children(device_t bus)
5003{
5004	int i;
5005	const char *dname, *busname;
5006	int dunit;
5007
5008	/*
5009	 * enumerate all devices on the specific bus
5010	 */
5011	busname = device_get_nameunit(bus);
5012	i = 0;
5013	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5014		BUS_HINTED_CHILD(bus, dname, dunit);
5015
5016	/*
5017	 * and all the generic ones.
5018	 */
5019	busname = device_get_name(bus);
5020	i = 0;
5021	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5022		BUS_HINTED_CHILD(bus, dname, dunit);
5023}
5024
5025#ifdef BUS_DEBUG
5026
5027/* the _short versions avoid iteration by not calling anything that prints
5028 * more than oneliners. I love oneliners.
5029 */
5030
5031static void
5032print_device_short(device_t dev, int indent)
5033{
5034	if (!dev)
5035		return;
5036
5037	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5038	    dev->unit, dev->desc,
5039	    (dev->parent? "":"no "),
5040	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5041	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5042	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5043	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5044	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5045	    (dev->flags&DF_REBID? "rebiddable,":""),
5046	    (dev->ivars? "":"no "),
5047	    (dev->softc? "":"no "),
5048	    dev->busy));
5049}
5050
5051static void
5052print_device(device_t dev, int indent)
5053{
5054	if (!dev)
5055		return;
5056
5057	print_device_short(dev, indent);
5058
5059	indentprintf(("Parent:\n"));
5060	print_device_short(dev->parent, indent+1);
5061	indentprintf(("Driver:\n"));
5062	print_driver_short(dev->driver, indent+1);
5063	indentprintf(("Devclass:\n"));
5064	print_devclass_short(dev->devclass, indent+1);
5065}
5066
5067void
5068print_device_tree_short(device_t dev, int indent)
5069/* print the device and all its children (indented) */
5070{
5071	device_t child;
5072
5073	if (!dev)
5074		return;
5075
5076	print_device_short(dev, indent);
5077
5078	TAILQ_FOREACH(child, &dev->children, link) {
5079		print_device_tree_short(child, indent+1);
5080	}
5081}
5082
5083void
5084print_device_tree(device_t dev, int indent)
5085/* print the device and all its children (indented) */
5086{
5087	device_t child;
5088
5089	if (!dev)
5090		return;
5091
5092	print_device(dev, indent);
5093
5094	TAILQ_FOREACH(child, &dev->children, link) {
5095		print_device_tree(child, indent+1);
5096	}
5097}
5098
5099static void
5100print_driver_short(driver_t *driver, int indent)
5101{
5102	if (!driver)
5103		return;
5104
5105	indentprintf(("driver %s: softc size = %zd\n",
5106	    driver->name, driver->size));
5107}
5108
5109static void
5110print_driver(driver_t *driver, int indent)
5111{
5112	if (!driver)
5113		return;
5114
5115	print_driver_short(driver, indent);
5116}
5117
5118static void
5119print_driver_list(driver_list_t drivers, int indent)
5120{
5121	driverlink_t driver;
5122
5123	TAILQ_FOREACH(driver, &drivers, link) {
5124		print_driver(driver->driver, indent);
5125	}
5126}
5127
5128static void
5129print_devclass_short(devclass_t dc, int indent)
5130{
5131	if ( !dc )
5132		return;
5133
5134	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5135}
5136
5137static void
5138print_devclass(devclass_t dc, int indent)
5139{
5140	int i;
5141
5142	if ( !dc )
5143		return;
5144
5145	print_devclass_short(dc, indent);
5146	indentprintf(("Drivers:\n"));
5147	print_driver_list(dc->drivers, indent+1);
5148
5149	indentprintf(("Devices:\n"));
5150	for (i = 0; i < dc->maxunit; i++)
5151		if (dc->devices[i])
5152			print_device(dc->devices[i], indent+1);
5153}
5154
5155void
5156print_devclass_list_short(void)
5157{
5158	devclass_t dc;
5159
5160	printf("Short listing of devclasses, drivers & devices:\n");
5161	TAILQ_FOREACH(dc, &devclasses, link) {
5162		print_devclass_short(dc, 0);
5163	}
5164}
5165
5166void
5167print_devclass_list(void)
5168{
5169	devclass_t dc;
5170
5171	printf("Full listing of devclasses, drivers & devices:\n");
5172	TAILQ_FOREACH(dc, &devclasses, link) {
5173		print_devclass(dc, 0);
5174	}
5175}
5176
5177#endif
5178
5179/*
5180 * User-space access to the device tree.
5181 *
5182 * We implement a small set of nodes:
5183 *
5184 * hw.bus			Single integer read method to obtain the
5185 *				current generation count.
5186 * hw.bus.devices		Reads the entire device tree in flat space.
5187 * hw.bus.rman			Resource manager interface
5188 *
5189 * We might like to add the ability to scan devclasses and/or drivers to
5190 * determine what else is currently loaded/available.
5191 */
5192
5193static int
5194sysctl_bus(SYSCTL_HANDLER_ARGS)
5195{
5196	struct u_businfo	ubus;
5197
5198	ubus.ub_version = BUS_USER_VERSION;
5199	ubus.ub_generation = bus_data_generation;
5200
5201	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5202}
5203SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5204    "bus-related data");
5205
5206static int
5207sysctl_devices(SYSCTL_HANDLER_ARGS)
5208{
5209	int			*name = (int *)arg1;
5210	u_int			namelen = arg2;
5211	int			index;
5212	struct device		*dev;
5213	struct u_device		udev;	/* XXX this is a bit big */
5214	int			error;
5215
5216	if (namelen != 2)
5217		return (EINVAL);
5218
5219	if (bus_data_generation_check(name[0]))
5220		return (EINVAL);
5221
5222	index = name[1];
5223
5224	/*
5225	 * Scan the list of devices, looking for the requested index.
5226	 */
5227	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5228		if (index-- == 0)
5229			break;
5230	}
5231	if (dev == NULL)
5232		return (ENOENT);
5233
5234	/*
5235	 * Populate the return array.
5236	 */
5237	bzero(&udev, sizeof(udev));
5238	udev.dv_handle = (uintptr_t)dev;
5239	udev.dv_parent = (uintptr_t)dev->parent;
5240	if (dev->nameunit != NULL)
5241		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5242	if (dev->desc != NULL)
5243		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5244	if (dev->driver != NULL && dev->driver->name != NULL)
5245		strlcpy(udev.dv_drivername, dev->driver->name,
5246		    sizeof(udev.dv_drivername));
5247	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5248	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5249	udev.dv_devflags = dev->devflags;
5250	udev.dv_flags = dev->flags;
5251	udev.dv_state = dev->state;
5252	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5253	return (error);
5254}
5255
5256SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5257    "system device tree");
5258
5259int
5260bus_data_generation_check(int generation)
5261{
5262	if (generation != bus_data_generation)
5263		return (1);
5264
5265	/* XXX generate optimised lists here? */
5266	return (0);
5267}
5268
5269void
5270bus_data_generation_update(void)
5271{
5272	bus_data_generation++;
5273}
5274
5275int
5276bus_free_resource(device_t dev, int type, struct resource *r)
5277{
5278	if (r == NULL)
5279		return (0);
5280	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5281}
5282
5283device_t
5284device_lookup_by_name(const char *name)
5285{
5286	device_t dev;
5287
5288	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5289		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5290			return (dev);
5291	}
5292	return (NULL);
5293}
5294
5295/*
5296 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5297 * implicit semantics on open, so it could not be reused for this.
5298 * Another option would be to call this /dev/bus?
5299 */
5300static int
5301find_device(struct devreq *req, device_t *devp)
5302{
5303	device_t dev;
5304
5305	/*
5306	 * First, ensure that the name is nul terminated.
5307	 */
5308	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5309		return (EINVAL);
5310
5311	/*
5312	 * Second, try to find an attached device whose name matches
5313	 * 'name'.
5314	 */
5315	dev = device_lookup_by_name(req->dr_name);
5316	if (dev != NULL) {
5317		*devp = dev;
5318		return (0);
5319	}
5320
5321	/* Finally, give device enumerators a chance. */
5322	dev = NULL;
5323	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5324	if (dev == NULL)
5325		return (ENOENT);
5326	*devp = dev;
5327	return (0);
5328}
5329
5330static bool
5331driver_exists(device_t bus, const char *driver)
5332{
5333	devclass_t dc;
5334
5335	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5336		if (devclass_find_driver_internal(dc, driver) != NULL)
5337			return (true);
5338	}
5339	return (false);
5340}
5341
5342static int
5343devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5344    struct thread *td)
5345{
5346	struct devreq *req;
5347	device_t dev;
5348	int error, old;
5349
5350	/* Locate the device to control. */
5351	mtx_lock(&Giant);
5352	req = (struct devreq *)data;
5353	switch (cmd) {
5354	case DEV_ATTACH:
5355	case DEV_DETACH:
5356	case DEV_ENABLE:
5357	case DEV_DISABLE:
5358	case DEV_SUSPEND:
5359	case DEV_RESUME:
5360	case DEV_SET_DRIVER:
5361	case DEV_CLEAR_DRIVER:
5362	case DEV_RESCAN:
5363	case DEV_DELETE:
5364		error = priv_check(td, PRIV_DRIVER);
5365		if (error == 0)
5366			error = find_device(req, &dev);
5367		break;
5368	default:
5369		error = ENOTTY;
5370		break;
5371	}
5372	if (error) {
5373		mtx_unlock(&Giant);
5374		return (error);
5375	}
5376
5377	/* Perform the requested operation. */
5378	switch (cmd) {
5379	case DEV_ATTACH:
5380		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5381			error = EBUSY;
5382		else if (!device_is_enabled(dev))
5383			error = ENXIO;
5384		else
5385			error = device_probe_and_attach(dev);
5386		break;
5387	case DEV_DETACH:
5388		if (!device_is_attached(dev)) {
5389			error = ENXIO;
5390			break;
5391		}
5392		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5393			error = device_quiesce(dev);
5394			if (error)
5395				break;
5396		}
5397		error = device_detach(dev);
5398		break;
5399	case DEV_ENABLE:
5400		if (device_is_enabled(dev)) {
5401			error = EBUSY;
5402			break;
5403		}
5404
5405		/*
5406		 * If the device has been probed but not attached (e.g.
5407		 * when it has been disabled by a loader hint), just
5408		 * attach the device rather than doing a full probe.
5409		 */
5410		device_enable(dev);
5411		if (device_is_alive(dev)) {
5412			/*
5413			 * If the device was disabled via a hint, clear
5414			 * the hint.
5415			 */
5416			if (resource_disabled(dev->driver->name, dev->unit))
5417				resource_unset_value(dev->driver->name,
5418				    dev->unit, "disabled");
5419			error = device_attach(dev);
5420		} else
5421			error = device_probe_and_attach(dev);
5422		break;
5423	case DEV_DISABLE:
5424		if (!device_is_enabled(dev)) {
5425			error = ENXIO;
5426			break;
5427		}
5428
5429		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5430			error = device_quiesce(dev);
5431			if (error)
5432				break;
5433		}
5434
5435		/*
5436		 * Force DF_FIXEDCLASS on around detach to preserve
5437		 * the existing name.
5438		 */
5439		old = dev->flags;
5440		dev->flags |= DF_FIXEDCLASS;
5441		error = device_detach(dev);
5442		if (!(old & DF_FIXEDCLASS))
5443			dev->flags &= ~DF_FIXEDCLASS;
5444		if (error == 0)
5445			device_disable(dev);
5446		break;
5447	case DEV_SUSPEND:
5448		if (device_is_suspended(dev)) {
5449			error = EBUSY;
5450			break;
5451		}
5452		if (device_get_parent(dev) == NULL) {
5453			error = EINVAL;
5454			break;
5455		}
5456		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5457		break;
5458	case DEV_RESUME:
5459		if (!device_is_suspended(dev)) {
5460			error = EINVAL;
5461			break;
5462		}
5463		if (device_get_parent(dev) == NULL) {
5464			error = EINVAL;
5465			break;
5466		}
5467		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5468		break;
5469	case DEV_SET_DRIVER: {
5470		devclass_t dc;
5471		char driver[128];
5472
5473		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5474		if (error)
5475			break;
5476		if (driver[0] == '\0') {
5477			error = EINVAL;
5478			break;
5479		}
5480		if (dev->devclass != NULL &&
5481		    strcmp(driver, dev->devclass->name) == 0)
5482			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5483			break;
5484
5485		/*
5486		 * Scan drivers for this device's bus looking for at
5487		 * least one matching driver.
5488		 */
5489		if (dev->parent == NULL) {
5490			error = EINVAL;
5491			break;
5492		}
5493		if (!driver_exists(dev->parent, driver)) {
5494			error = ENOENT;
5495			break;
5496		}
5497		dc = devclass_create(driver);
5498		if (dc == NULL) {
5499			error = ENOMEM;
5500			break;
5501		}
5502
5503		/* Detach device if necessary. */
5504		if (device_is_attached(dev)) {
5505			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5506				error = device_detach(dev);
5507			else
5508				error = EBUSY;
5509			if (error)
5510				break;
5511		}
5512
5513		/* Clear any previously-fixed device class and unit. */
5514		if (dev->flags & DF_FIXEDCLASS)
5515			devclass_delete_device(dev->devclass, dev);
5516		dev->flags |= DF_WILDCARD;
5517		dev->unit = -1;
5518
5519		/* Force the new device class. */
5520		error = devclass_add_device(dc, dev);
5521		if (error)
5522			break;
5523		dev->flags |= DF_FIXEDCLASS;
5524		error = device_probe_and_attach(dev);
5525		break;
5526	}
5527	case DEV_CLEAR_DRIVER:
5528		if (!(dev->flags & DF_FIXEDCLASS)) {
5529			error = 0;
5530			break;
5531		}
5532		if (device_is_attached(dev)) {
5533			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5534				error = device_detach(dev);
5535			else
5536				error = EBUSY;
5537			if (error)
5538				break;
5539		}
5540
5541		dev->flags &= ~DF_FIXEDCLASS;
5542		dev->flags |= DF_WILDCARD;
5543		devclass_delete_device(dev->devclass, dev);
5544		error = device_probe_and_attach(dev);
5545		break;
5546	case DEV_RESCAN:
5547		if (!device_is_attached(dev)) {
5548			error = ENXIO;
5549			break;
5550		}
5551		error = BUS_RESCAN(dev);
5552		break;
5553	case DEV_DELETE: {
5554		device_t parent;
5555
5556		parent = device_get_parent(dev);
5557		if (parent == NULL) {
5558			error = EINVAL;
5559			break;
5560		}
5561		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5562			if (bus_child_present(dev) != 0) {
5563				error = EBUSY;
5564				break;
5565			}
5566		}
5567
5568		error = device_delete_child(parent, dev);
5569		break;
5570	}
5571	}
5572	mtx_unlock(&Giant);
5573	return (error);
5574}
5575
5576static struct cdevsw devctl2_cdevsw = {
5577	.d_version =	D_VERSION,
5578	.d_ioctl =	devctl2_ioctl,
5579	.d_name =	"devctl2",
5580};
5581
5582static void
5583devctl2_init(void)
5584{
5585
5586	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5587	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5588}
5589