kern_proc.c revision 304843
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/kern/kern_proc.c 304843 2016-08-26 10:04:10Z kib $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_ktrace.h"
38#include "opt_kstack_pages.h"
39#include "opt_stack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/elf.h>
44#include <sys/eventhandler.h>
45#include <sys/exec.h>
46#include <sys/jail.h>
47#include <sys/kernel.h>
48#include <sys/limits.h>
49#include <sys/lock.h>
50#include <sys/loginclass.h>
51#include <sys/malloc.h>
52#include <sys/mman.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/ptrace.h>
57#include <sys/refcount.h>
58#include <sys/resourcevar.h>
59#include <sys/rwlock.h>
60#include <sys/sbuf.h>
61#include <sys/sysent.h>
62#include <sys/sched.h>
63#include <sys/smp.h>
64#include <sys/stack.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/filedesc.h>
68#include <sys/tty.h>
69#include <sys/signalvar.h>
70#include <sys/sdt.h>
71#include <sys/sx.h>
72#include <sys/user.h>
73#include <sys/vnode.h>
74#include <sys/wait.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96    "int");
97SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98    "int");
99SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100    "struct thread *");
101SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104
105MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106MALLOC_DEFINE(M_SESSION, "session", "session header");
107static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110static void doenterpgrp(struct proc *, struct pgrp *);
111static void orphanpg(struct pgrp *pg);
112static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115    int preferthread);
116static void pgadjustjobc(struct pgrp *pgrp, int entering);
117static void pgdelete(struct pgrp *);
118static int proc_ctor(void *mem, int size, void *arg, int flags);
119static void proc_dtor(void *mem, int size, void *arg);
120static int proc_init(void *mem, int size, int flags);
121static void proc_fini(void *mem, int size);
122static void pargs_free(struct pargs *pa);
123static struct proc *zpfind_locked(pid_t pid);
124
125/*
126 * Other process lists
127 */
128struct pidhashhead *pidhashtbl;
129u_long pidhash;
130struct pgrphashhead *pgrphashtbl;
131u_long pgrphash;
132struct proclist allproc;
133struct proclist zombproc;
134struct sx allproc_lock;
135struct sx proctree_lock;
136struct mtx ppeers_lock;
137uma_zone_t proc_zone;
138
139/*
140 * The offset of various fields in struct proc and struct thread.
141 * These are used by kernel debuggers to enumerate kernel threads and
142 * processes.
143 */
144const int proc_off_p_pid = offsetof(struct proc, p_pid);
145const int proc_off_p_comm = offsetof(struct proc, p_comm);
146const int proc_off_p_list = offsetof(struct proc, p_list);
147const int proc_off_p_threads = offsetof(struct proc, p_threads);
148const int thread_off_td_tid = offsetof(struct thread, td_tid);
149const int thread_off_td_name = offsetof(struct thread, td_name);
150const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152const int thread_off_td_plist = offsetof(struct thread, td_plist);
153
154int kstack_pages = KSTACK_PAGES;
155SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156    "Kernel stack size in pages");
157static int vmmap_skip_res_cnt = 0;
158SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159    &vmmap_skip_res_cnt, 0,
160    "Skip calculation of the pages resident count in kern.proc.vmmap");
161
162CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163#ifdef COMPAT_FREEBSD32
164CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165#endif
166
167/*
168 * Initialize global process hashing structures.
169 */
170void
171procinit(void)
172{
173
174	sx_init(&allproc_lock, "allproc");
175	sx_init(&proctree_lock, "proctree");
176	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177	LIST_INIT(&allproc);
178	LIST_INIT(&zombproc);
179	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182	    proc_ctor, proc_dtor, proc_init, proc_fini,
183	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184	uihashinit();
185}
186
187/*
188 * Prepare a proc for use.
189 */
190static int
191proc_ctor(void *mem, int size, void *arg, int flags)
192{
193	struct proc *p;
194
195	p = (struct proc *)mem;
196	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
197	EVENTHANDLER_INVOKE(process_ctor, p);
198	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
199	return (0);
200}
201
202/*
203 * Reclaim a proc after use.
204 */
205static void
206proc_dtor(void *mem, int size, void *arg)
207{
208	struct proc *p;
209	struct thread *td;
210
211	/* INVARIANTS checks go here */
212	p = (struct proc *)mem;
213	td = FIRST_THREAD_IN_PROC(p);
214	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
215	if (td != NULL) {
216#ifdef INVARIANTS
217		KASSERT((p->p_numthreads == 1),
218		    ("bad number of threads in exiting process"));
219		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
220#endif
221		/* Free all OSD associated to this thread. */
222		osd_thread_exit(td);
223	}
224	EVENTHANDLER_INVOKE(process_dtor, p);
225	if (p->p_ksi != NULL)
226		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
227	SDT_PROBE3(proc, , dtor, return, p, size, arg);
228}
229
230/*
231 * Initialize type-stable parts of a proc (when newly created).
232 */
233static int
234proc_init(void *mem, int size, int flags)
235{
236	struct proc *p;
237
238	p = (struct proc *)mem;
239	SDT_PROBE3(proc, , init, entry, p, size, flags);
240	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
241	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
242	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
243	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
244	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
245	cv_init(&p->p_pwait, "ppwait");
246	cv_init(&p->p_dbgwait, "dbgwait");
247	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
248	EVENTHANDLER_INVOKE(process_init, p);
249	p->p_stats = pstats_alloc();
250	p->p_pgrp = NULL;
251	SDT_PROBE3(proc, , init, return, p, size, flags);
252	return (0);
253}
254
255/*
256 * UMA should ensure that this function is never called.
257 * Freeing a proc structure would violate type stability.
258 */
259static void
260proc_fini(void *mem, int size)
261{
262#ifdef notnow
263	struct proc *p;
264
265	p = (struct proc *)mem;
266	EVENTHANDLER_INVOKE(process_fini, p);
267	pstats_free(p->p_stats);
268	thread_free(FIRST_THREAD_IN_PROC(p));
269	mtx_destroy(&p->p_mtx);
270	if (p->p_ksi != NULL)
271		ksiginfo_free(p->p_ksi);
272#else
273	panic("proc reclaimed");
274#endif
275}
276
277/*
278 * Is p an inferior of the current process?
279 */
280int
281inferior(struct proc *p)
282{
283
284	sx_assert(&proctree_lock, SX_LOCKED);
285	PROC_LOCK_ASSERT(p, MA_OWNED);
286	for (; p != curproc; p = proc_realparent(p)) {
287		if (p->p_pid == 0)
288			return (0);
289	}
290	return (1);
291}
292
293struct proc *
294pfind_locked(pid_t pid)
295{
296	struct proc *p;
297
298	sx_assert(&allproc_lock, SX_LOCKED);
299	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
300		if (p->p_pid == pid) {
301			PROC_LOCK(p);
302			if (p->p_state == PRS_NEW) {
303				PROC_UNLOCK(p);
304				p = NULL;
305			}
306			break;
307		}
308	}
309	return (p);
310}
311
312/*
313 * Locate a process by number; return only "live" processes -- i.e., neither
314 * zombies nor newly born but incompletely initialized processes.  By not
315 * returning processes in the PRS_NEW state, we allow callers to avoid
316 * testing for that condition to avoid dereferencing p_ucred, et al.
317 */
318struct proc *
319pfind(pid_t pid)
320{
321	struct proc *p;
322
323	sx_slock(&allproc_lock);
324	p = pfind_locked(pid);
325	sx_sunlock(&allproc_lock);
326	return (p);
327}
328
329static struct proc *
330pfind_tid_locked(pid_t tid)
331{
332	struct proc *p;
333	struct thread *td;
334
335	sx_assert(&allproc_lock, SX_LOCKED);
336	FOREACH_PROC_IN_SYSTEM(p) {
337		PROC_LOCK(p);
338		if (p->p_state == PRS_NEW) {
339			PROC_UNLOCK(p);
340			continue;
341		}
342		FOREACH_THREAD_IN_PROC(p, td) {
343			if (td->td_tid == tid)
344				goto found;
345		}
346		PROC_UNLOCK(p);
347	}
348found:
349	return (p);
350}
351
352/*
353 * Locate a process group by number.
354 * The caller must hold proctree_lock.
355 */
356struct pgrp *
357pgfind(pgid)
358	register pid_t pgid;
359{
360	register struct pgrp *pgrp;
361
362	sx_assert(&proctree_lock, SX_LOCKED);
363
364	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
365		if (pgrp->pg_id == pgid) {
366			PGRP_LOCK(pgrp);
367			return (pgrp);
368		}
369	}
370	return (NULL);
371}
372
373/*
374 * Locate process and do additional manipulations, depending on flags.
375 */
376int
377pget(pid_t pid, int flags, struct proc **pp)
378{
379	struct proc *p;
380	int error;
381
382	sx_slock(&allproc_lock);
383	if (pid <= PID_MAX) {
384		p = pfind_locked(pid);
385		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
386			p = zpfind_locked(pid);
387	} else if ((flags & PGET_NOTID) == 0) {
388		p = pfind_tid_locked(pid);
389	} else {
390		p = NULL;
391	}
392	sx_sunlock(&allproc_lock);
393	if (p == NULL)
394		return (ESRCH);
395	if ((flags & PGET_CANSEE) != 0) {
396		error = p_cansee(curthread, p);
397		if (error != 0)
398			goto errout;
399	}
400	if ((flags & PGET_CANDEBUG) != 0) {
401		error = p_candebug(curthread, p);
402		if (error != 0)
403			goto errout;
404	}
405	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
406		error = EPERM;
407		goto errout;
408	}
409	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
410		error = ESRCH;
411		goto errout;
412	}
413	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
414		/*
415		 * XXXRW: Not clear ESRCH is the right error during proc
416		 * execve().
417		 */
418		error = ESRCH;
419		goto errout;
420	}
421	if ((flags & PGET_HOLD) != 0) {
422		_PHOLD(p);
423		PROC_UNLOCK(p);
424	}
425	*pp = p;
426	return (0);
427errout:
428	PROC_UNLOCK(p);
429	return (error);
430}
431
432/*
433 * Create a new process group.
434 * pgid must be equal to the pid of p.
435 * Begin a new session if required.
436 */
437int
438enterpgrp(p, pgid, pgrp, sess)
439	register struct proc *p;
440	pid_t pgid;
441	struct pgrp *pgrp;
442	struct session *sess;
443{
444
445	sx_assert(&proctree_lock, SX_XLOCKED);
446
447	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
448	KASSERT(p->p_pid == pgid,
449	    ("enterpgrp: new pgrp and pid != pgid"));
450	KASSERT(pgfind(pgid) == NULL,
451	    ("enterpgrp: pgrp with pgid exists"));
452	KASSERT(!SESS_LEADER(p),
453	    ("enterpgrp: session leader attempted setpgrp"));
454
455	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
456
457	if (sess != NULL) {
458		/*
459		 * new session
460		 */
461		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
462		PROC_LOCK(p);
463		p->p_flag &= ~P_CONTROLT;
464		PROC_UNLOCK(p);
465		PGRP_LOCK(pgrp);
466		sess->s_leader = p;
467		sess->s_sid = p->p_pid;
468		refcount_init(&sess->s_count, 1);
469		sess->s_ttyvp = NULL;
470		sess->s_ttydp = NULL;
471		sess->s_ttyp = NULL;
472		bcopy(p->p_session->s_login, sess->s_login,
473			    sizeof(sess->s_login));
474		pgrp->pg_session = sess;
475		KASSERT(p == curproc,
476		    ("enterpgrp: mksession and p != curproc"));
477	} else {
478		pgrp->pg_session = p->p_session;
479		sess_hold(pgrp->pg_session);
480		PGRP_LOCK(pgrp);
481	}
482	pgrp->pg_id = pgid;
483	LIST_INIT(&pgrp->pg_members);
484
485	/*
486	 * As we have an exclusive lock of proctree_lock,
487	 * this should not deadlock.
488	 */
489	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
490	pgrp->pg_jobc = 0;
491	SLIST_INIT(&pgrp->pg_sigiolst);
492	PGRP_UNLOCK(pgrp);
493
494	doenterpgrp(p, pgrp);
495
496	return (0);
497}
498
499/*
500 * Move p to an existing process group
501 */
502int
503enterthispgrp(p, pgrp)
504	register struct proc *p;
505	struct pgrp *pgrp;
506{
507
508	sx_assert(&proctree_lock, SX_XLOCKED);
509	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
510	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
511	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
512	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
513	KASSERT(pgrp->pg_session == p->p_session,
514		("%s: pgrp's session %p, p->p_session %p.\n",
515		__func__,
516		pgrp->pg_session,
517		p->p_session));
518	KASSERT(pgrp != p->p_pgrp,
519		("%s: p belongs to pgrp.", __func__));
520
521	doenterpgrp(p, pgrp);
522
523	return (0);
524}
525
526/*
527 * Move p to a process group
528 */
529static void
530doenterpgrp(p, pgrp)
531	struct proc *p;
532	struct pgrp *pgrp;
533{
534	struct pgrp *savepgrp;
535
536	sx_assert(&proctree_lock, SX_XLOCKED);
537	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
538	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
539	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
540	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
541
542	savepgrp = p->p_pgrp;
543
544	/*
545	 * Adjust eligibility of affected pgrps to participate in job control.
546	 * Increment eligibility counts before decrementing, otherwise we
547	 * could reach 0 spuriously during the first call.
548	 */
549	fixjobc(p, pgrp, 1);
550	fixjobc(p, p->p_pgrp, 0);
551
552	PGRP_LOCK(pgrp);
553	PGRP_LOCK(savepgrp);
554	PROC_LOCK(p);
555	LIST_REMOVE(p, p_pglist);
556	p->p_pgrp = pgrp;
557	PROC_UNLOCK(p);
558	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
559	PGRP_UNLOCK(savepgrp);
560	PGRP_UNLOCK(pgrp);
561	if (LIST_EMPTY(&savepgrp->pg_members))
562		pgdelete(savepgrp);
563}
564
565/*
566 * remove process from process group
567 */
568int
569leavepgrp(p)
570	register struct proc *p;
571{
572	struct pgrp *savepgrp;
573
574	sx_assert(&proctree_lock, SX_XLOCKED);
575	savepgrp = p->p_pgrp;
576	PGRP_LOCK(savepgrp);
577	PROC_LOCK(p);
578	LIST_REMOVE(p, p_pglist);
579	p->p_pgrp = NULL;
580	PROC_UNLOCK(p);
581	PGRP_UNLOCK(savepgrp);
582	if (LIST_EMPTY(&savepgrp->pg_members))
583		pgdelete(savepgrp);
584	return (0);
585}
586
587/*
588 * delete a process group
589 */
590static void
591pgdelete(pgrp)
592	register struct pgrp *pgrp;
593{
594	struct session *savesess;
595	struct tty *tp;
596
597	sx_assert(&proctree_lock, SX_XLOCKED);
598	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
599	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
600
601	/*
602	 * Reset any sigio structures pointing to us as a result of
603	 * F_SETOWN with our pgid.
604	 */
605	funsetownlst(&pgrp->pg_sigiolst);
606
607	PGRP_LOCK(pgrp);
608	tp = pgrp->pg_session->s_ttyp;
609	LIST_REMOVE(pgrp, pg_hash);
610	savesess = pgrp->pg_session;
611	PGRP_UNLOCK(pgrp);
612
613	/* Remove the reference to the pgrp before deallocating it. */
614	if (tp != NULL) {
615		tty_lock(tp);
616		tty_rel_pgrp(tp, pgrp);
617	}
618
619	mtx_destroy(&pgrp->pg_mtx);
620	free(pgrp, M_PGRP);
621	sess_release(savesess);
622}
623
624static void
625pgadjustjobc(pgrp, entering)
626	struct pgrp *pgrp;
627	int entering;
628{
629
630	PGRP_LOCK(pgrp);
631	if (entering)
632		pgrp->pg_jobc++;
633	else {
634		--pgrp->pg_jobc;
635		if (pgrp->pg_jobc == 0)
636			orphanpg(pgrp);
637	}
638	PGRP_UNLOCK(pgrp);
639}
640
641/*
642 * Adjust pgrp jobc counters when specified process changes process group.
643 * We count the number of processes in each process group that "qualify"
644 * the group for terminal job control (those with a parent in a different
645 * process group of the same session).  If that count reaches zero, the
646 * process group becomes orphaned.  Check both the specified process'
647 * process group and that of its children.
648 * entering == 0 => p is leaving specified group.
649 * entering == 1 => p is entering specified group.
650 */
651void
652fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
653{
654	struct pgrp *hispgrp;
655	struct session *mysession;
656	struct proc *q;
657
658	sx_assert(&proctree_lock, SX_LOCKED);
659	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
660	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
661	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
662
663	/*
664	 * Check p's parent to see whether p qualifies its own process
665	 * group; if so, adjust count for p's process group.
666	 */
667	mysession = pgrp->pg_session;
668	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
669	    hispgrp->pg_session == mysession)
670		pgadjustjobc(pgrp, entering);
671
672	/*
673	 * Check this process' children to see whether they qualify
674	 * their process groups; if so, adjust counts for children's
675	 * process groups.
676	 */
677	LIST_FOREACH(q, &p->p_children, p_sibling) {
678		hispgrp = q->p_pgrp;
679		if (hispgrp == pgrp ||
680		    hispgrp->pg_session != mysession)
681			continue;
682		if (q->p_state == PRS_ZOMBIE)
683			continue;
684		pgadjustjobc(hispgrp, entering);
685	}
686}
687
688void
689killjobc(void)
690{
691	struct session *sp;
692	struct tty *tp;
693	struct proc *p;
694	struct vnode *ttyvp;
695
696	p = curproc;
697	MPASS(p->p_flag & P_WEXIT);
698	/*
699	 * Do a quick check to see if there is anything to do with the
700	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
701	 */
702	PROC_LOCK(p);
703	if (!SESS_LEADER(p) &&
704	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
705	    LIST_EMPTY(&p->p_children)) {
706		PROC_UNLOCK(p);
707		return;
708	}
709	PROC_UNLOCK(p);
710
711	sx_xlock(&proctree_lock);
712	if (SESS_LEADER(p)) {
713		sp = p->p_session;
714
715		/*
716		 * s_ttyp is not zero'd; we use this to indicate that
717		 * the session once had a controlling terminal. (for
718		 * logging and informational purposes)
719		 */
720		SESS_LOCK(sp);
721		ttyvp = sp->s_ttyvp;
722		tp = sp->s_ttyp;
723		sp->s_ttyvp = NULL;
724		sp->s_ttydp = NULL;
725		sp->s_leader = NULL;
726		SESS_UNLOCK(sp);
727
728		/*
729		 * Signal foreground pgrp and revoke access to
730		 * controlling terminal if it has not been revoked
731		 * already.
732		 *
733		 * Because the TTY may have been revoked in the mean
734		 * time and could already have a new session associated
735		 * with it, make sure we don't send a SIGHUP to a
736		 * foreground process group that does not belong to this
737		 * session.
738		 */
739
740		if (tp != NULL) {
741			tty_lock(tp);
742			if (tp->t_session == sp)
743				tty_signal_pgrp(tp, SIGHUP);
744			tty_unlock(tp);
745		}
746
747		if (ttyvp != NULL) {
748			sx_xunlock(&proctree_lock);
749			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
750				VOP_REVOKE(ttyvp, REVOKEALL);
751				VOP_UNLOCK(ttyvp, 0);
752			}
753			vrele(ttyvp);
754			sx_xlock(&proctree_lock);
755		}
756	}
757	fixjobc(p, p->p_pgrp, 0);
758	sx_xunlock(&proctree_lock);
759}
760
761/*
762 * A process group has become orphaned;
763 * if there are any stopped processes in the group,
764 * hang-up all process in that group.
765 */
766static void
767orphanpg(pg)
768	struct pgrp *pg;
769{
770	register struct proc *p;
771
772	PGRP_LOCK_ASSERT(pg, MA_OWNED);
773
774	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
775		PROC_LOCK(p);
776		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
777			PROC_UNLOCK(p);
778			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
779				PROC_LOCK(p);
780				kern_psignal(p, SIGHUP);
781				kern_psignal(p, SIGCONT);
782				PROC_UNLOCK(p);
783			}
784			return;
785		}
786		PROC_UNLOCK(p);
787	}
788}
789
790void
791sess_hold(struct session *s)
792{
793
794	refcount_acquire(&s->s_count);
795}
796
797void
798sess_release(struct session *s)
799{
800
801	if (refcount_release(&s->s_count)) {
802		if (s->s_ttyp != NULL) {
803			tty_lock(s->s_ttyp);
804			tty_rel_sess(s->s_ttyp, s);
805		}
806		mtx_destroy(&s->s_mtx);
807		free(s, M_SESSION);
808	}
809}
810
811#ifdef DDB
812
813DB_SHOW_COMMAND(pgrpdump, pgrpdump)
814{
815	register struct pgrp *pgrp;
816	register struct proc *p;
817	register int i;
818
819	for (i = 0; i <= pgrphash; i++) {
820		if (!LIST_EMPTY(&pgrphashtbl[i])) {
821			printf("\tindx %d\n", i);
822			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
823				printf(
824			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
825				    (void *)pgrp, (long)pgrp->pg_id,
826				    (void *)pgrp->pg_session,
827				    pgrp->pg_session->s_count,
828				    (void *)LIST_FIRST(&pgrp->pg_members));
829				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
830					printf("\t\tpid %ld addr %p pgrp %p\n",
831					    (long)p->p_pid, (void *)p,
832					    (void *)p->p_pgrp);
833				}
834			}
835		}
836	}
837}
838#endif /* DDB */
839
840/*
841 * Calculate the kinfo_proc members which contain process-wide
842 * informations.
843 * Must be called with the target process locked.
844 */
845static void
846fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
847{
848	struct thread *td;
849
850	PROC_LOCK_ASSERT(p, MA_OWNED);
851
852	kp->ki_estcpu = 0;
853	kp->ki_pctcpu = 0;
854	FOREACH_THREAD_IN_PROC(p, td) {
855		thread_lock(td);
856		kp->ki_pctcpu += sched_pctcpu(td);
857		kp->ki_estcpu += sched_estcpu(td);
858		thread_unlock(td);
859	}
860}
861
862/*
863 * Clear kinfo_proc and fill in any information that is common
864 * to all threads in the process.
865 * Must be called with the target process locked.
866 */
867static void
868fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
869{
870	struct thread *td0;
871	struct tty *tp;
872	struct session *sp;
873	struct ucred *cred;
874	struct sigacts *ps;
875	struct timeval boottime;
876
877	/* For proc_realparent. */
878	sx_assert(&proctree_lock, SX_LOCKED);
879	PROC_LOCK_ASSERT(p, MA_OWNED);
880	bzero(kp, sizeof(*kp));
881
882	kp->ki_structsize = sizeof(*kp);
883	kp->ki_paddr = p;
884	kp->ki_addr =/* p->p_addr; */0; /* XXX */
885	kp->ki_args = p->p_args;
886	kp->ki_textvp = p->p_textvp;
887#ifdef KTRACE
888	kp->ki_tracep = p->p_tracevp;
889	kp->ki_traceflag = p->p_traceflag;
890#endif
891	kp->ki_fd = p->p_fd;
892	kp->ki_vmspace = p->p_vmspace;
893	kp->ki_flag = p->p_flag;
894	kp->ki_flag2 = p->p_flag2;
895	cred = p->p_ucred;
896	if (cred) {
897		kp->ki_uid = cred->cr_uid;
898		kp->ki_ruid = cred->cr_ruid;
899		kp->ki_svuid = cred->cr_svuid;
900		kp->ki_cr_flags = 0;
901		if (cred->cr_flags & CRED_FLAG_CAPMODE)
902			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
903		/* XXX bde doesn't like KI_NGROUPS */
904		if (cred->cr_ngroups > KI_NGROUPS) {
905			kp->ki_ngroups = KI_NGROUPS;
906			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
907		} else
908			kp->ki_ngroups = cred->cr_ngroups;
909		bcopy(cred->cr_groups, kp->ki_groups,
910		    kp->ki_ngroups * sizeof(gid_t));
911		kp->ki_rgid = cred->cr_rgid;
912		kp->ki_svgid = cred->cr_svgid;
913		/* If jailed(cred), emulate the old P_JAILED flag. */
914		if (jailed(cred)) {
915			kp->ki_flag |= P_JAILED;
916			/* If inside the jail, use 0 as a jail ID. */
917			if (cred->cr_prison != curthread->td_ucred->cr_prison)
918				kp->ki_jid = cred->cr_prison->pr_id;
919		}
920		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
921		    sizeof(kp->ki_loginclass));
922	}
923	ps = p->p_sigacts;
924	if (ps) {
925		mtx_lock(&ps->ps_mtx);
926		kp->ki_sigignore = ps->ps_sigignore;
927		kp->ki_sigcatch = ps->ps_sigcatch;
928		mtx_unlock(&ps->ps_mtx);
929	}
930	if (p->p_state != PRS_NEW &&
931	    p->p_state != PRS_ZOMBIE &&
932	    p->p_vmspace != NULL) {
933		struct vmspace *vm = p->p_vmspace;
934
935		kp->ki_size = vm->vm_map.size;
936		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
937		FOREACH_THREAD_IN_PROC(p, td0) {
938			if (!TD_IS_SWAPPED(td0))
939				kp->ki_rssize += td0->td_kstack_pages;
940		}
941		kp->ki_swrss = vm->vm_swrss;
942		kp->ki_tsize = vm->vm_tsize;
943		kp->ki_dsize = vm->vm_dsize;
944		kp->ki_ssize = vm->vm_ssize;
945	} else if (p->p_state == PRS_ZOMBIE)
946		kp->ki_stat = SZOMB;
947	if (kp->ki_flag & P_INMEM)
948		kp->ki_sflag = PS_INMEM;
949	else
950		kp->ki_sflag = 0;
951	/* Calculate legacy swtime as seconds since 'swtick'. */
952	kp->ki_swtime = (ticks - p->p_swtick) / hz;
953	kp->ki_pid = p->p_pid;
954	kp->ki_nice = p->p_nice;
955	kp->ki_fibnum = p->p_fibnum;
956	kp->ki_start = p->p_stats->p_start;
957	getboottime(&boottime);
958	timevaladd(&kp->ki_start, &boottime);
959	PROC_STATLOCK(p);
960	rufetch(p, &kp->ki_rusage);
961	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
962	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
963	PROC_STATUNLOCK(p);
964	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
965	/* Some callers want child times in a single value. */
966	kp->ki_childtime = kp->ki_childstime;
967	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
968
969	FOREACH_THREAD_IN_PROC(p, td0)
970		kp->ki_cow += td0->td_cow;
971
972	tp = NULL;
973	if (p->p_pgrp) {
974		kp->ki_pgid = p->p_pgrp->pg_id;
975		kp->ki_jobc = p->p_pgrp->pg_jobc;
976		sp = p->p_pgrp->pg_session;
977
978		if (sp != NULL) {
979			kp->ki_sid = sp->s_sid;
980			SESS_LOCK(sp);
981			strlcpy(kp->ki_login, sp->s_login,
982			    sizeof(kp->ki_login));
983			if (sp->s_ttyvp)
984				kp->ki_kiflag |= KI_CTTY;
985			if (SESS_LEADER(p))
986				kp->ki_kiflag |= KI_SLEADER;
987			/* XXX proctree_lock */
988			tp = sp->s_ttyp;
989			SESS_UNLOCK(sp);
990		}
991	}
992	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
993		kp->ki_tdev = tty_udev(tp);
994		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
995		if (tp->t_session)
996			kp->ki_tsid = tp->t_session->s_sid;
997	} else
998		kp->ki_tdev = NODEV;
999	if (p->p_comm[0] != '\0')
1000		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1001	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1002	    p->p_sysent->sv_name[0] != '\0')
1003		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1004	kp->ki_siglist = p->p_siglist;
1005	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1006	kp->ki_acflag = p->p_acflag;
1007	kp->ki_lock = p->p_lock;
1008	if (p->p_pptr) {
1009		kp->ki_ppid = proc_realparent(p)->p_pid;
1010		if (p->p_flag & P_TRACED)
1011			kp->ki_tracer = p->p_pptr->p_pid;
1012	}
1013}
1014
1015/*
1016 * Fill in information that is thread specific.  Must be called with
1017 * target process locked.  If 'preferthread' is set, overwrite certain
1018 * process-related fields that are maintained for both threads and
1019 * processes.
1020 */
1021static void
1022fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1023{
1024	struct proc *p;
1025
1026	p = td->td_proc;
1027	kp->ki_tdaddr = td;
1028	PROC_LOCK_ASSERT(p, MA_OWNED);
1029
1030	if (preferthread)
1031		PROC_STATLOCK(p);
1032	thread_lock(td);
1033	if (td->td_wmesg != NULL)
1034		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1035	else
1036		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1037	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
1038	if (TD_ON_LOCK(td)) {
1039		kp->ki_kiflag |= KI_LOCKBLOCK;
1040		strlcpy(kp->ki_lockname, td->td_lockname,
1041		    sizeof(kp->ki_lockname));
1042	} else {
1043		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1044		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1045	}
1046
1047	if (p->p_state == PRS_NORMAL) { /* approximate. */
1048		if (TD_ON_RUNQ(td) ||
1049		    TD_CAN_RUN(td) ||
1050		    TD_IS_RUNNING(td)) {
1051			kp->ki_stat = SRUN;
1052		} else if (P_SHOULDSTOP(p)) {
1053			kp->ki_stat = SSTOP;
1054		} else if (TD_IS_SLEEPING(td)) {
1055			kp->ki_stat = SSLEEP;
1056		} else if (TD_ON_LOCK(td)) {
1057			kp->ki_stat = SLOCK;
1058		} else {
1059			kp->ki_stat = SWAIT;
1060		}
1061	} else if (p->p_state == PRS_ZOMBIE) {
1062		kp->ki_stat = SZOMB;
1063	} else {
1064		kp->ki_stat = SIDL;
1065	}
1066
1067	/* Things in the thread */
1068	kp->ki_wchan = td->td_wchan;
1069	kp->ki_pri.pri_level = td->td_priority;
1070	kp->ki_pri.pri_native = td->td_base_pri;
1071
1072	/*
1073	 * Note: legacy fields; clamp at the old NOCPU value and/or
1074	 * the maximum u_char CPU value.
1075	 */
1076	if (td->td_lastcpu == NOCPU)
1077		kp->ki_lastcpu_old = NOCPU_OLD;
1078	else if (td->td_lastcpu > MAXCPU_OLD)
1079		kp->ki_lastcpu_old = MAXCPU_OLD;
1080	else
1081		kp->ki_lastcpu_old = td->td_lastcpu;
1082
1083	if (td->td_oncpu == NOCPU)
1084		kp->ki_oncpu_old = NOCPU_OLD;
1085	else if (td->td_oncpu > MAXCPU_OLD)
1086		kp->ki_oncpu_old = MAXCPU_OLD;
1087	else
1088		kp->ki_oncpu_old = td->td_oncpu;
1089
1090	kp->ki_lastcpu = td->td_lastcpu;
1091	kp->ki_oncpu = td->td_oncpu;
1092	kp->ki_tdflags = td->td_flags;
1093	kp->ki_tid = td->td_tid;
1094	kp->ki_numthreads = p->p_numthreads;
1095	kp->ki_pcb = td->td_pcb;
1096	kp->ki_kstack = (void *)td->td_kstack;
1097	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1098	kp->ki_pri.pri_class = td->td_pri_class;
1099	kp->ki_pri.pri_user = td->td_user_pri;
1100
1101	if (preferthread) {
1102		rufetchtd(td, &kp->ki_rusage);
1103		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1104		kp->ki_pctcpu = sched_pctcpu(td);
1105		kp->ki_estcpu = sched_estcpu(td);
1106		kp->ki_cow = td->td_cow;
1107	}
1108
1109	/* We can't get this anymore but ps etc never used it anyway. */
1110	kp->ki_rqindex = 0;
1111
1112	if (preferthread)
1113		kp->ki_siglist = td->td_siglist;
1114	kp->ki_sigmask = td->td_sigmask;
1115	thread_unlock(td);
1116	if (preferthread)
1117		PROC_STATUNLOCK(p);
1118}
1119
1120/*
1121 * Fill in a kinfo_proc structure for the specified process.
1122 * Must be called with the target process locked.
1123 */
1124void
1125fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1126{
1127
1128	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1129
1130	fill_kinfo_proc_only(p, kp);
1131	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1132	fill_kinfo_aggregate(p, kp);
1133}
1134
1135struct pstats *
1136pstats_alloc(void)
1137{
1138
1139	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1140}
1141
1142/*
1143 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1144 */
1145void
1146pstats_fork(struct pstats *src, struct pstats *dst)
1147{
1148
1149	bzero(&dst->pstat_startzero,
1150	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1151	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1152	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1153}
1154
1155void
1156pstats_free(struct pstats *ps)
1157{
1158
1159	free(ps, M_SUBPROC);
1160}
1161
1162static struct proc *
1163zpfind_locked(pid_t pid)
1164{
1165	struct proc *p;
1166
1167	sx_assert(&allproc_lock, SX_LOCKED);
1168	LIST_FOREACH(p, &zombproc, p_list) {
1169		if (p->p_pid == pid) {
1170			PROC_LOCK(p);
1171			break;
1172		}
1173	}
1174	return (p);
1175}
1176
1177/*
1178 * Locate a zombie process by number
1179 */
1180struct proc *
1181zpfind(pid_t pid)
1182{
1183	struct proc *p;
1184
1185	sx_slock(&allproc_lock);
1186	p = zpfind_locked(pid);
1187	sx_sunlock(&allproc_lock);
1188	return (p);
1189}
1190
1191#ifdef COMPAT_FREEBSD32
1192
1193/*
1194 * This function is typically used to copy out the kernel address, so
1195 * it can be replaced by assignment of zero.
1196 */
1197static inline uint32_t
1198ptr32_trim(void *ptr)
1199{
1200	uintptr_t uptr;
1201
1202	uptr = (uintptr_t)ptr;
1203	return ((uptr > UINT_MAX) ? 0 : uptr);
1204}
1205
1206#define PTRTRIM_CP(src,dst,fld) \
1207	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1208
1209static void
1210freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1211{
1212	int i;
1213
1214	bzero(ki32, sizeof(struct kinfo_proc32));
1215	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1216	CP(*ki, *ki32, ki_layout);
1217	PTRTRIM_CP(*ki, *ki32, ki_args);
1218	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1219	PTRTRIM_CP(*ki, *ki32, ki_addr);
1220	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1221	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1222	PTRTRIM_CP(*ki, *ki32, ki_fd);
1223	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1224	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1225	CP(*ki, *ki32, ki_pid);
1226	CP(*ki, *ki32, ki_ppid);
1227	CP(*ki, *ki32, ki_pgid);
1228	CP(*ki, *ki32, ki_tpgid);
1229	CP(*ki, *ki32, ki_sid);
1230	CP(*ki, *ki32, ki_tsid);
1231	CP(*ki, *ki32, ki_jobc);
1232	CP(*ki, *ki32, ki_tdev);
1233	CP(*ki, *ki32, ki_siglist);
1234	CP(*ki, *ki32, ki_sigmask);
1235	CP(*ki, *ki32, ki_sigignore);
1236	CP(*ki, *ki32, ki_sigcatch);
1237	CP(*ki, *ki32, ki_uid);
1238	CP(*ki, *ki32, ki_ruid);
1239	CP(*ki, *ki32, ki_svuid);
1240	CP(*ki, *ki32, ki_rgid);
1241	CP(*ki, *ki32, ki_svgid);
1242	CP(*ki, *ki32, ki_ngroups);
1243	for (i = 0; i < KI_NGROUPS; i++)
1244		CP(*ki, *ki32, ki_groups[i]);
1245	CP(*ki, *ki32, ki_size);
1246	CP(*ki, *ki32, ki_rssize);
1247	CP(*ki, *ki32, ki_swrss);
1248	CP(*ki, *ki32, ki_tsize);
1249	CP(*ki, *ki32, ki_dsize);
1250	CP(*ki, *ki32, ki_ssize);
1251	CP(*ki, *ki32, ki_xstat);
1252	CP(*ki, *ki32, ki_acflag);
1253	CP(*ki, *ki32, ki_pctcpu);
1254	CP(*ki, *ki32, ki_estcpu);
1255	CP(*ki, *ki32, ki_slptime);
1256	CP(*ki, *ki32, ki_swtime);
1257	CP(*ki, *ki32, ki_cow);
1258	CP(*ki, *ki32, ki_runtime);
1259	TV_CP(*ki, *ki32, ki_start);
1260	TV_CP(*ki, *ki32, ki_childtime);
1261	CP(*ki, *ki32, ki_flag);
1262	CP(*ki, *ki32, ki_kiflag);
1263	CP(*ki, *ki32, ki_traceflag);
1264	CP(*ki, *ki32, ki_stat);
1265	CP(*ki, *ki32, ki_nice);
1266	CP(*ki, *ki32, ki_lock);
1267	CP(*ki, *ki32, ki_rqindex);
1268	CP(*ki, *ki32, ki_oncpu);
1269	CP(*ki, *ki32, ki_lastcpu);
1270
1271	/* XXX TODO: wrap cpu value as appropriate */
1272	CP(*ki, *ki32, ki_oncpu_old);
1273	CP(*ki, *ki32, ki_lastcpu_old);
1274
1275	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1276	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1277	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1278	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1279	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1280	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1281	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1282	CP(*ki, *ki32, ki_tracer);
1283	CP(*ki, *ki32, ki_flag2);
1284	CP(*ki, *ki32, ki_fibnum);
1285	CP(*ki, *ki32, ki_cr_flags);
1286	CP(*ki, *ki32, ki_jid);
1287	CP(*ki, *ki32, ki_numthreads);
1288	CP(*ki, *ki32, ki_tid);
1289	CP(*ki, *ki32, ki_pri);
1290	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1291	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1292	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1293	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1294	PTRTRIM_CP(*ki, *ki32, ki_udata);
1295	CP(*ki, *ki32, ki_sflag);
1296	CP(*ki, *ki32, ki_tdflags);
1297}
1298#endif
1299
1300int
1301kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1302{
1303	struct thread *td;
1304	struct kinfo_proc ki;
1305#ifdef COMPAT_FREEBSD32
1306	struct kinfo_proc32 ki32;
1307#endif
1308	int error;
1309
1310	PROC_LOCK_ASSERT(p, MA_OWNED);
1311	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1312
1313	error = 0;
1314	fill_kinfo_proc(p, &ki);
1315	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1316#ifdef COMPAT_FREEBSD32
1317		if ((flags & KERN_PROC_MASK32) != 0) {
1318			freebsd32_kinfo_proc_out(&ki, &ki32);
1319			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1320				error = ENOMEM;
1321		} else
1322#endif
1323			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1324				error = ENOMEM;
1325	} else {
1326		FOREACH_THREAD_IN_PROC(p, td) {
1327			fill_kinfo_thread(td, &ki, 1);
1328#ifdef COMPAT_FREEBSD32
1329			if ((flags & KERN_PROC_MASK32) != 0) {
1330				freebsd32_kinfo_proc_out(&ki, &ki32);
1331				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1332					error = ENOMEM;
1333			} else
1334#endif
1335				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1336					error = ENOMEM;
1337			if (error != 0)
1338				break;
1339		}
1340	}
1341	PROC_UNLOCK(p);
1342	return (error);
1343}
1344
1345static int
1346sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1347    int doingzomb)
1348{
1349	struct sbuf sb;
1350	struct kinfo_proc ki;
1351	struct proc *np;
1352	int error, error2;
1353	pid_t pid;
1354
1355	pid = p->p_pid;
1356	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1357	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1358	error = kern_proc_out(p, &sb, flags);
1359	error2 = sbuf_finish(&sb);
1360	sbuf_delete(&sb);
1361	if (error != 0)
1362		return (error);
1363	else if (error2 != 0)
1364		return (error2);
1365	if (doingzomb)
1366		np = zpfind(pid);
1367	else {
1368		if (pid == 0)
1369			return (0);
1370		np = pfind(pid);
1371	}
1372	if (np == NULL)
1373		return (ESRCH);
1374	if (np != p) {
1375		PROC_UNLOCK(np);
1376		return (ESRCH);
1377	}
1378	PROC_UNLOCK(np);
1379	return (0);
1380}
1381
1382static int
1383sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1384{
1385	int *name = (int *)arg1;
1386	u_int namelen = arg2;
1387	struct proc *p;
1388	int flags, doingzomb, oid_number;
1389	int error = 0;
1390
1391	oid_number = oidp->oid_number;
1392	if (oid_number != KERN_PROC_ALL &&
1393	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1394		flags = KERN_PROC_NOTHREADS;
1395	else {
1396		flags = 0;
1397		oid_number &= ~KERN_PROC_INC_THREAD;
1398	}
1399#ifdef COMPAT_FREEBSD32
1400	if (req->flags & SCTL_MASK32)
1401		flags |= KERN_PROC_MASK32;
1402#endif
1403	if (oid_number == KERN_PROC_PID) {
1404		if (namelen != 1)
1405			return (EINVAL);
1406		error = sysctl_wire_old_buffer(req, 0);
1407		if (error)
1408			return (error);
1409		sx_slock(&proctree_lock);
1410		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1411		if (error == 0)
1412			error = sysctl_out_proc(p, req, flags, 0);
1413		sx_sunlock(&proctree_lock);
1414		return (error);
1415	}
1416
1417	switch (oid_number) {
1418	case KERN_PROC_ALL:
1419		if (namelen != 0)
1420			return (EINVAL);
1421		break;
1422	case KERN_PROC_PROC:
1423		if (namelen != 0 && namelen != 1)
1424			return (EINVAL);
1425		break;
1426	default:
1427		if (namelen != 1)
1428			return (EINVAL);
1429		break;
1430	}
1431
1432	if (!req->oldptr) {
1433		/* overestimate by 5 procs */
1434		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1435		if (error)
1436			return (error);
1437	}
1438	error = sysctl_wire_old_buffer(req, 0);
1439	if (error != 0)
1440		return (error);
1441	sx_slock(&proctree_lock);
1442	sx_slock(&allproc_lock);
1443	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1444		if (!doingzomb)
1445			p = LIST_FIRST(&allproc);
1446		else
1447			p = LIST_FIRST(&zombproc);
1448		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1449			/*
1450			 * Skip embryonic processes.
1451			 */
1452			PROC_LOCK(p);
1453			if (p->p_state == PRS_NEW) {
1454				PROC_UNLOCK(p);
1455				continue;
1456			}
1457			KASSERT(p->p_ucred != NULL,
1458			    ("process credential is NULL for non-NEW proc"));
1459			/*
1460			 * Show a user only appropriate processes.
1461			 */
1462			if (p_cansee(curthread, p)) {
1463				PROC_UNLOCK(p);
1464				continue;
1465			}
1466			/*
1467			 * TODO - make more efficient (see notes below).
1468			 * do by session.
1469			 */
1470			switch (oid_number) {
1471
1472			case KERN_PROC_GID:
1473				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1474					PROC_UNLOCK(p);
1475					continue;
1476				}
1477				break;
1478
1479			case KERN_PROC_PGRP:
1480				/* could do this by traversing pgrp */
1481				if (p->p_pgrp == NULL ||
1482				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1483					PROC_UNLOCK(p);
1484					continue;
1485				}
1486				break;
1487
1488			case KERN_PROC_RGID:
1489				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1490					PROC_UNLOCK(p);
1491					continue;
1492				}
1493				break;
1494
1495			case KERN_PROC_SESSION:
1496				if (p->p_session == NULL ||
1497				    p->p_session->s_sid != (pid_t)name[0]) {
1498					PROC_UNLOCK(p);
1499					continue;
1500				}
1501				break;
1502
1503			case KERN_PROC_TTY:
1504				if ((p->p_flag & P_CONTROLT) == 0 ||
1505				    p->p_session == NULL) {
1506					PROC_UNLOCK(p);
1507					continue;
1508				}
1509				/* XXX proctree_lock */
1510				SESS_LOCK(p->p_session);
1511				if (p->p_session->s_ttyp == NULL ||
1512				    tty_udev(p->p_session->s_ttyp) !=
1513				    (dev_t)name[0]) {
1514					SESS_UNLOCK(p->p_session);
1515					PROC_UNLOCK(p);
1516					continue;
1517				}
1518				SESS_UNLOCK(p->p_session);
1519				break;
1520
1521			case KERN_PROC_UID:
1522				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1523					PROC_UNLOCK(p);
1524					continue;
1525				}
1526				break;
1527
1528			case KERN_PROC_RUID:
1529				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1530					PROC_UNLOCK(p);
1531					continue;
1532				}
1533				break;
1534
1535			case KERN_PROC_PROC:
1536				break;
1537
1538			default:
1539				break;
1540
1541			}
1542
1543			error = sysctl_out_proc(p, req, flags, doingzomb);
1544			if (error) {
1545				sx_sunlock(&allproc_lock);
1546				sx_sunlock(&proctree_lock);
1547				return (error);
1548			}
1549		}
1550	}
1551	sx_sunlock(&allproc_lock);
1552	sx_sunlock(&proctree_lock);
1553	return (0);
1554}
1555
1556struct pargs *
1557pargs_alloc(int len)
1558{
1559	struct pargs *pa;
1560
1561	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1562		M_WAITOK);
1563	refcount_init(&pa->ar_ref, 1);
1564	pa->ar_length = len;
1565	return (pa);
1566}
1567
1568static void
1569pargs_free(struct pargs *pa)
1570{
1571
1572	free(pa, M_PARGS);
1573}
1574
1575void
1576pargs_hold(struct pargs *pa)
1577{
1578
1579	if (pa == NULL)
1580		return;
1581	refcount_acquire(&pa->ar_ref);
1582}
1583
1584void
1585pargs_drop(struct pargs *pa)
1586{
1587
1588	if (pa == NULL)
1589		return;
1590	if (refcount_release(&pa->ar_ref))
1591		pargs_free(pa);
1592}
1593
1594static int
1595proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1596    size_t len)
1597{
1598	ssize_t n;
1599
1600	/*
1601	 * This may return a short read if the string is shorter than the chunk
1602	 * and is aligned at the end of the page, and the following page is not
1603	 * mapped.
1604	 */
1605	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1606	if (n <= 0)
1607		return (ENOMEM);
1608	return (0);
1609}
1610
1611#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1612
1613enum proc_vector_type {
1614	PROC_ARG,
1615	PROC_ENV,
1616	PROC_AUX,
1617};
1618
1619#ifdef COMPAT_FREEBSD32
1620static int
1621get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1622    size_t *vsizep, enum proc_vector_type type)
1623{
1624	struct freebsd32_ps_strings pss;
1625	Elf32_Auxinfo aux;
1626	vm_offset_t vptr, ptr;
1627	uint32_t *proc_vector32;
1628	char **proc_vector;
1629	size_t vsize, size;
1630	int i, error;
1631
1632	error = 0;
1633	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1634	    sizeof(pss)) != sizeof(pss))
1635		return (ENOMEM);
1636	switch (type) {
1637	case PROC_ARG:
1638		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1639		vsize = pss.ps_nargvstr;
1640		if (vsize > ARG_MAX)
1641			return (ENOEXEC);
1642		size = vsize * sizeof(int32_t);
1643		break;
1644	case PROC_ENV:
1645		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1646		vsize = pss.ps_nenvstr;
1647		if (vsize > ARG_MAX)
1648			return (ENOEXEC);
1649		size = vsize * sizeof(int32_t);
1650		break;
1651	case PROC_AUX:
1652		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1653		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1654		if (vptr % 4 != 0)
1655			return (ENOEXEC);
1656		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1657			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1658			    sizeof(aux))
1659				return (ENOMEM);
1660			if (aux.a_type == AT_NULL)
1661				break;
1662			ptr += sizeof(aux);
1663		}
1664		if (aux.a_type != AT_NULL)
1665			return (ENOEXEC);
1666		vsize = i + 1;
1667		size = vsize * sizeof(aux);
1668		break;
1669	default:
1670		KASSERT(0, ("Wrong proc vector type: %d", type));
1671		return (EINVAL);
1672	}
1673	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1674	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1675		error = ENOMEM;
1676		goto done;
1677	}
1678	if (type == PROC_AUX) {
1679		*proc_vectorp = (char **)proc_vector32;
1680		*vsizep = vsize;
1681		return (0);
1682	}
1683	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1684	for (i = 0; i < (int)vsize; i++)
1685		proc_vector[i] = PTRIN(proc_vector32[i]);
1686	*proc_vectorp = proc_vector;
1687	*vsizep = vsize;
1688done:
1689	free(proc_vector32, M_TEMP);
1690	return (error);
1691}
1692#endif
1693
1694static int
1695get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1696    size_t *vsizep, enum proc_vector_type type)
1697{
1698	struct ps_strings pss;
1699	Elf_Auxinfo aux;
1700	vm_offset_t vptr, ptr;
1701	char **proc_vector;
1702	size_t vsize, size;
1703	int i;
1704
1705#ifdef COMPAT_FREEBSD32
1706	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1707		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1708#endif
1709	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1710	    sizeof(pss)) != sizeof(pss))
1711		return (ENOMEM);
1712	switch (type) {
1713	case PROC_ARG:
1714		vptr = (vm_offset_t)pss.ps_argvstr;
1715		vsize = pss.ps_nargvstr;
1716		if (vsize > ARG_MAX)
1717			return (ENOEXEC);
1718		size = vsize * sizeof(char *);
1719		break;
1720	case PROC_ENV:
1721		vptr = (vm_offset_t)pss.ps_envstr;
1722		vsize = pss.ps_nenvstr;
1723		if (vsize > ARG_MAX)
1724			return (ENOEXEC);
1725		size = vsize * sizeof(char *);
1726		break;
1727	case PROC_AUX:
1728		/*
1729		 * The aux array is just above env array on the stack. Check
1730		 * that the address is naturally aligned.
1731		 */
1732		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1733		    * sizeof(char *);
1734#if __ELF_WORD_SIZE == 64
1735		if (vptr % sizeof(uint64_t) != 0)
1736#else
1737		if (vptr % sizeof(uint32_t) != 0)
1738#endif
1739			return (ENOEXEC);
1740		/*
1741		 * We count the array size reading the aux vectors from the
1742		 * stack until AT_NULL vector is returned.  So (to keep the code
1743		 * simple) we read the process stack twice: the first time here
1744		 * to find the size and the second time when copying the vectors
1745		 * to the allocated proc_vector.
1746		 */
1747		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1748			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1749			    sizeof(aux))
1750				return (ENOMEM);
1751			if (aux.a_type == AT_NULL)
1752				break;
1753			ptr += sizeof(aux);
1754		}
1755		/*
1756		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1757		 * not reached AT_NULL, it is most likely we are reading wrong
1758		 * data: either the process doesn't have auxv array or data has
1759		 * been modified. Return the error in this case.
1760		 */
1761		if (aux.a_type != AT_NULL)
1762			return (ENOEXEC);
1763		vsize = i + 1;
1764		size = vsize * sizeof(aux);
1765		break;
1766	default:
1767		KASSERT(0, ("Wrong proc vector type: %d", type));
1768		return (EINVAL); /* In case we are built without INVARIANTS. */
1769	}
1770	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1771	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1772		free(proc_vector, M_TEMP);
1773		return (ENOMEM);
1774	}
1775	*proc_vectorp = proc_vector;
1776	*vsizep = vsize;
1777
1778	return (0);
1779}
1780
1781#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1782
1783static int
1784get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1785    enum proc_vector_type type)
1786{
1787	size_t done, len, nchr, vsize;
1788	int error, i;
1789	char **proc_vector, *sptr;
1790	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1791
1792	PROC_ASSERT_HELD(p);
1793
1794	/*
1795	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1796	 */
1797	nchr = 2 * (PATH_MAX + ARG_MAX);
1798
1799	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1800	if (error != 0)
1801		return (error);
1802	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1803		/*
1804		 * The program may have scribbled into its argv array, e.g. to
1805		 * remove some arguments.  If that has happened, break out
1806		 * before trying to read from NULL.
1807		 */
1808		if (proc_vector[i] == NULL)
1809			break;
1810		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1811			error = proc_read_string(td, p, sptr, pss_string,
1812			    sizeof(pss_string));
1813			if (error != 0)
1814				goto done;
1815			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1816			if (done + len >= nchr)
1817				len = nchr - done - 1;
1818			sbuf_bcat(sb, pss_string, len);
1819			if (len != GET_PS_STRINGS_CHUNK_SZ)
1820				break;
1821			done += GET_PS_STRINGS_CHUNK_SZ;
1822		}
1823		sbuf_bcat(sb, "", 1);
1824		done += len + 1;
1825	}
1826done:
1827	free(proc_vector, M_TEMP);
1828	return (error);
1829}
1830
1831int
1832proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1833{
1834
1835	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1836}
1837
1838int
1839proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1840{
1841
1842	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1843}
1844
1845int
1846proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1847{
1848	size_t vsize, size;
1849	char **auxv;
1850	int error;
1851
1852	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1853	if (error == 0) {
1854#ifdef COMPAT_FREEBSD32
1855		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1856			size = vsize * sizeof(Elf32_Auxinfo);
1857		else
1858#endif
1859			size = vsize * sizeof(Elf_Auxinfo);
1860		if (sbuf_bcat(sb, auxv, size) != 0)
1861			error = ENOMEM;
1862		free(auxv, M_TEMP);
1863	}
1864	return (error);
1865}
1866
1867/*
1868 * This sysctl allows a process to retrieve the argument list or process
1869 * title for another process without groping around in the address space
1870 * of the other process.  It also allow a process to set its own "process
1871 * title to a string of its own choice.
1872 */
1873static int
1874sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1875{
1876	int *name = (int *)arg1;
1877	u_int namelen = arg2;
1878	struct pargs *newpa, *pa;
1879	struct proc *p;
1880	struct sbuf sb;
1881	int flags, error = 0, error2;
1882
1883	if (namelen != 1)
1884		return (EINVAL);
1885
1886	flags = PGET_CANSEE;
1887	if (req->newptr != NULL)
1888		flags |= PGET_ISCURRENT;
1889	error = pget((pid_t)name[0], flags, &p);
1890	if (error)
1891		return (error);
1892
1893	pa = p->p_args;
1894	if (pa != NULL) {
1895		pargs_hold(pa);
1896		PROC_UNLOCK(p);
1897		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1898		pargs_drop(pa);
1899	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1900		_PHOLD(p);
1901		PROC_UNLOCK(p);
1902		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1903		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1904		error = proc_getargv(curthread, p, &sb);
1905		error2 = sbuf_finish(&sb);
1906		PRELE(p);
1907		sbuf_delete(&sb);
1908		if (error == 0 && error2 != 0)
1909			error = error2;
1910	} else {
1911		PROC_UNLOCK(p);
1912	}
1913	if (error != 0 || req->newptr == NULL)
1914		return (error);
1915
1916	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1917		return (ENOMEM);
1918	newpa = pargs_alloc(req->newlen);
1919	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1920	if (error != 0) {
1921		pargs_free(newpa);
1922		return (error);
1923	}
1924	PROC_LOCK(p);
1925	pa = p->p_args;
1926	p->p_args = newpa;
1927	PROC_UNLOCK(p);
1928	pargs_drop(pa);
1929	return (0);
1930}
1931
1932/*
1933 * This sysctl allows a process to retrieve environment of another process.
1934 */
1935static int
1936sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1937{
1938	int *name = (int *)arg1;
1939	u_int namelen = arg2;
1940	struct proc *p;
1941	struct sbuf sb;
1942	int error, error2;
1943
1944	if (namelen != 1)
1945		return (EINVAL);
1946
1947	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1948	if (error != 0)
1949		return (error);
1950	if ((p->p_flag & P_SYSTEM) != 0) {
1951		PRELE(p);
1952		return (0);
1953	}
1954
1955	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1956	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1957	error = proc_getenvv(curthread, p, &sb);
1958	error2 = sbuf_finish(&sb);
1959	PRELE(p);
1960	sbuf_delete(&sb);
1961	return (error != 0 ? error : error2);
1962}
1963
1964/*
1965 * This sysctl allows a process to retrieve ELF auxiliary vector of
1966 * another process.
1967 */
1968static int
1969sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1970{
1971	int *name = (int *)arg1;
1972	u_int namelen = arg2;
1973	struct proc *p;
1974	struct sbuf sb;
1975	int error, error2;
1976
1977	if (namelen != 1)
1978		return (EINVAL);
1979
1980	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1981	if (error != 0)
1982		return (error);
1983	if ((p->p_flag & P_SYSTEM) != 0) {
1984		PRELE(p);
1985		return (0);
1986	}
1987	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1988	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1989	error = proc_getauxv(curthread, p, &sb);
1990	error2 = sbuf_finish(&sb);
1991	PRELE(p);
1992	sbuf_delete(&sb);
1993	return (error != 0 ? error : error2);
1994}
1995
1996/*
1997 * This sysctl allows a process to retrieve the path of the executable for
1998 * itself or another process.
1999 */
2000static int
2001sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2002{
2003	pid_t *pidp = (pid_t *)arg1;
2004	unsigned int arglen = arg2;
2005	struct proc *p;
2006	struct vnode *vp;
2007	char *retbuf, *freebuf;
2008	int error;
2009
2010	if (arglen != 1)
2011		return (EINVAL);
2012	if (*pidp == -1) {	/* -1 means this process */
2013		p = req->td->td_proc;
2014	} else {
2015		error = pget(*pidp, PGET_CANSEE, &p);
2016		if (error != 0)
2017			return (error);
2018	}
2019
2020	vp = p->p_textvp;
2021	if (vp == NULL) {
2022		if (*pidp != -1)
2023			PROC_UNLOCK(p);
2024		return (0);
2025	}
2026	vref(vp);
2027	if (*pidp != -1)
2028		PROC_UNLOCK(p);
2029	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2030	vrele(vp);
2031	if (error)
2032		return (error);
2033	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2034	free(freebuf, M_TEMP);
2035	return (error);
2036}
2037
2038static int
2039sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2040{
2041	struct proc *p;
2042	char *sv_name;
2043	int *name;
2044	int namelen;
2045	int error;
2046
2047	namelen = arg2;
2048	if (namelen != 1)
2049		return (EINVAL);
2050
2051	name = (int *)arg1;
2052	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2053	if (error != 0)
2054		return (error);
2055	sv_name = p->p_sysent->sv_name;
2056	PROC_UNLOCK(p);
2057	return (sysctl_handle_string(oidp, sv_name, 0, req));
2058}
2059
2060#ifdef KINFO_OVMENTRY_SIZE
2061CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2062#endif
2063
2064#ifdef COMPAT_FREEBSD7
2065static int
2066sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2067{
2068	vm_map_entry_t entry, tmp_entry;
2069	unsigned int last_timestamp;
2070	char *fullpath, *freepath;
2071	struct kinfo_ovmentry *kve;
2072	struct vattr va;
2073	struct ucred *cred;
2074	int error, *name;
2075	struct vnode *vp;
2076	struct proc *p;
2077	vm_map_t map;
2078	struct vmspace *vm;
2079
2080	name = (int *)arg1;
2081	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2082	if (error != 0)
2083		return (error);
2084	vm = vmspace_acquire_ref(p);
2085	if (vm == NULL) {
2086		PRELE(p);
2087		return (ESRCH);
2088	}
2089	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2090
2091	map = &vm->vm_map;
2092	vm_map_lock_read(map);
2093	for (entry = map->header.next; entry != &map->header;
2094	    entry = entry->next) {
2095		vm_object_t obj, tobj, lobj;
2096		vm_offset_t addr;
2097
2098		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2099			continue;
2100
2101		bzero(kve, sizeof(*kve));
2102		kve->kve_structsize = sizeof(*kve);
2103
2104		kve->kve_private_resident = 0;
2105		obj = entry->object.vm_object;
2106		if (obj != NULL) {
2107			VM_OBJECT_RLOCK(obj);
2108			if (obj->shadow_count == 1)
2109				kve->kve_private_resident =
2110				    obj->resident_page_count;
2111		}
2112		kve->kve_resident = 0;
2113		addr = entry->start;
2114		while (addr < entry->end) {
2115			if (pmap_extract(map->pmap, addr))
2116				kve->kve_resident++;
2117			addr += PAGE_SIZE;
2118		}
2119
2120		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2121			if (tobj != obj)
2122				VM_OBJECT_RLOCK(tobj);
2123			if (lobj != obj)
2124				VM_OBJECT_RUNLOCK(lobj);
2125			lobj = tobj;
2126		}
2127
2128		kve->kve_start = (void*)entry->start;
2129		kve->kve_end = (void*)entry->end;
2130		kve->kve_offset = (off_t)entry->offset;
2131
2132		if (entry->protection & VM_PROT_READ)
2133			kve->kve_protection |= KVME_PROT_READ;
2134		if (entry->protection & VM_PROT_WRITE)
2135			kve->kve_protection |= KVME_PROT_WRITE;
2136		if (entry->protection & VM_PROT_EXECUTE)
2137			kve->kve_protection |= KVME_PROT_EXEC;
2138
2139		if (entry->eflags & MAP_ENTRY_COW)
2140			kve->kve_flags |= KVME_FLAG_COW;
2141		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2142			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2143		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2144			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2145
2146		last_timestamp = map->timestamp;
2147		vm_map_unlock_read(map);
2148
2149		kve->kve_fileid = 0;
2150		kve->kve_fsid = 0;
2151		freepath = NULL;
2152		fullpath = "";
2153		if (lobj) {
2154			vp = NULL;
2155			switch (lobj->type) {
2156			case OBJT_DEFAULT:
2157				kve->kve_type = KVME_TYPE_DEFAULT;
2158				break;
2159			case OBJT_VNODE:
2160				kve->kve_type = KVME_TYPE_VNODE;
2161				vp = lobj->handle;
2162				vref(vp);
2163				break;
2164			case OBJT_SWAP:
2165				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2166					kve->kve_type = KVME_TYPE_VNODE;
2167					if ((lobj->flags & OBJ_TMPFS) != 0) {
2168						vp = lobj->un_pager.swp.swp_tmpfs;
2169						vref(vp);
2170					}
2171				} else {
2172					kve->kve_type = KVME_TYPE_SWAP;
2173				}
2174				break;
2175			case OBJT_DEVICE:
2176				kve->kve_type = KVME_TYPE_DEVICE;
2177				break;
2178			case OBJT_PHYS:
2179				kve->kve_type = KVME_TYPE_PHYS;
2180				break;
2181			case OBJT_DEAD:
2182				kve->kve_type = KVME_TYPE_DEAD;
2183				break;
2184			case OBJT_SG:
2185				kve->kve_type = KVME_TYPE_SG;
2186				break;
2187			default:
2188				kve->kve_type = KVME_TYPE_UNKNOWN;
2189				break;
2190			}
2191			if (lobj != obj)
2192				VM_OBJECT_RUNLOCK(lobj);
2193
2194			kve->kve_ref_count = obj->ref_count;
2195			kve->kve_shadow_count = obj->shadow_count;
2196			VM_OBJECT_RUNLOCK(obj);
2197			if (vp != NULL) {
2198				vn_fullpath(curthread, vp, &fullpath,
2199				    &freepath);
2200				cred = curthread->td_ucred;
2201				vn_lock(vp, LK_SHARED | LK_RETRY);
2202				if (VOP_GETATTR(vp, &va, cred) == 0) {
2203					kve->kve_fileid = va.va_fileid;
2204					kve->kve_fsid = va.va_fsid;
2205				}
2206				vput(vp);
2207			}
2208		} else {
2209			kve->kve_type = KVME_TYPE_NONE;
2210			kve->kve_ref_count = 0;
2211			kve->kve_shadow_count = 0;
2212		}
2213
2214		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2215		if (freepath != NULL)
2216			free(freepath, M_TEMP);
2217
2218		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2219		vm_map_lock_read(map);
2220		if (error)
2221			break;
2222		if (last_timestamp != map->timestamp) {
2223			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2224			entry = tmp_entry;
2225		}
2226	}
2227	vm_map_unlock_read(map);
2228	vmspace_free(vm);
2229	PRELE(p);
2230	free(kve, M_TEMP);
2231	return (error);
2232}
2233#endif	/* COMPAT_FREEBSD7 */
2234
2235#ifdef KINFO_VMENTRY_SIZE
2236CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2237#endif
2238
2239static void
2240kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2241    struct kinfo_vmentry *kve)
2242{
2243	vm_object_t obj, tobj;
2244	vm_page_t m, m_adv;
2245	vm_offset_t addr;
2246	vm_paddr_t locked_pa;
2247	vm_pindex_t pi, pi_adv, pindex;
2248
2249	locked_pa = 0;
2250	obj = entry->object.vm_object;
2251	addr = entry->start;
2252	m_adv = NULL;
2253	pi = OFF_TO_IDX(entry->offset);
2254	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2255		if (m_adv != NULL) {
2256			m = m_adv;
2257		} else {
2258			pi_adv = OFF_TO_IDX(entry->end - addr);
2259			pindex = pi;
2260			for (tobj = obj;; tobj = tobj->backing_object) {
2261				m = vm_page_find_least(tobj, pindex);
2262				if (m != NULL) {
2263					if (m->pindex == pindex)
2264						break;
2265					if (pi_adv > m->pindex - pindex) {
2266						pi_adv = m->pindex - pindex;
2267						m_adv = m;
2268					}
2269				}
2270				if (tobj->backing_object == NULL)
2271					goto next;
2272				pindex += OFF_TO_IDX(tobj->
2273				    backing_object_offset);
2274			}
2275		}
2276		m_adv = NULL;
2277		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2278		    (addr & (pagesizes[1] - 1)) == 0 &&
2279		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2280		    MINCORE_SUPER) != 0) {
2281			kve->kve_flags |= KVME_FLAG_SUPER;
2282			pi_adv = OFF_TO_IDX(pagesizes[1]);
2283		} else {
2284			/*
2285			 * We do not test the found page on validity.
2286			 * Either the page is busy and being paged in,
2287			 * or it was invalidated.  The first case
2288			 * should be counted as resident, the second
2289			 * is not so clear; we do account both.
2290			 */
2291			pi_adv = 1;
2292		}
2293		kve->kve_resident += pi_adv;
2294next:;
2295	}
2296	PA_UNLOCK_COND(locked_pa);
2297}
2298
2299/*
2300 * Must be called with the process locked and will return unlocked.
2301 */
2302int
2303kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2304{
2305	vm_map_entry_t entry, tmp_entry;
2306	struct vattr va;
2307	vm_map_t map;
2308	vm_object_t obj, tobj, lobj;
2309	char *fullpath, *freepath;
2310	struct kinfo_vmentry *kve;
2311	struct ucred *cred;
2312	struct vnode *vp;
2313	struct vmspace *vm;
2314	vm_offset_t addr;
2315	unsigned int last_timestamp;
2316	int error;
2317
2318	PROC_LOCK_ASSERT(p, MA_OWNED);
2319
2320	_PHOLD(p);
2321	PROC_UNLOCK(p);
2322	vm = vmspace_acquire_ref(p);
2323	if (vm == NULL) {
2324		PRELE(p);
2325		return (ESRCH);
2326	}
2327	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2328
2329	error = 0;
2330	map = &vm->vm_map;
2331	vm_map_lock_read(map);
2332	for (entry = map->header.next; entry != &map->header;
2333	    entry = entry->next) {
2334		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2335			continue;
2336
2337		addr = entry->end;
2338		bzero(kve, sizeof(*kve));
2339		obj = entry->object.vm_object;
2340		if (obj != NULL) {
2341			for (tobj = obj; tobj != NULL;
2342			    tobj = tobj->backing_object) {
2343				VM_OBJECT_RLOCK(tobj);
2344				lobj = tobj;
2345			}
2346			if (obj->backing_object == NULL)
2347				kve->kve_private_resident =
2348				    obj->resident_page_count;
2349			if (!vmmap_skip_res_cnt)
2350				kern_proc_vmmap_resident(map, entry, kve);
2351			for (tobj = obj; tobj != NULL;
2352			    tobj = tobj->backing_object) {
2353				if (tobj != obj && tobj != lobj)
2354					VM_OBJECT_RUNLOCK(tobj);
2355			}
2356		} else {
2357			lobj = NULL;
2358		}
2359
2360		kve->kve_start = entry->start;
2361		kve->kve_end = entry->end;
2362		kve->kve_offset = entry->offset;
2363
2364		if (entry->protection & VM_PROT_READ)
2365			kve->kve_protection |= KVME_PROT_READ;
2366		if (entry->protection & VM_PROT_WRITE)
2367			kve->kve_protection |= KVME_PROT_WRITE;
2368		if (entry->protection & VM_PROT_EXECUTE)
2369			kve->kve_protection |= KVME_PROT_EXEC;
2370
2371		if (entry->eflags & MAP_ENTRY_COW)
2372			kve->kve_flags |= KVME_FLAG_COW;
2373		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2374			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2375		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2376			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2377		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2378			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2379		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2380			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2381
2382		last_timestamp = map->timestamp;
2383		vm_map_unlock_read(map);
2384
2385		freepath = NULL;
2386		fullpath = "";
2387		if (lobj != NULL) {
2388			vp = NULL;
2389			switch (lobj->type) {
2390			case OBJT_DEFAULT:
2391				kve->kve_type = KVME_TYPE_DEFAULT;
2392				break;
2393			case OBJT_VNODE:
2394				kve->kve_type = KVME_TYPE_VNODE;
2395				vp = lobj->handle;
2396				vref(vp);
2397				break;
2398			case OBJT_SWAP:
2399				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2400					kve->kve_type = KVME_TYPE_VNODE;
2401					if ((lobj->flags & OBJ_TMPFS) != 0) {
2402						vp = lobj->un_pager.swp.swp_tmpfs;
2403						vref(vp);
2404					}
2405				} else {
2406					kve->kve_type = KVME_TYPE_SWAP;
2407				}
2408				break;
2409			case OBJT_DEVICE:
2410				kve->kve_type = KVME_TYPE_DEVICE;
2411				break;
2412			case OBJT_PHYS:
2413				kve->kve_type = KVME_TYPE_PHYS;
2414				break;
2415			case OBJT_DEAD:
2416				kve->kve_type = KVME_TYPE_DEAD;
2417				break;
2418			case OBJT_SG:
2419				kve->kve_type = KVME_TYPE_SG;
2420				break;
2421			case OBJT_MGTDEVICE:
2422				kve->kve_type = KVME_TYPE_MGTDEVICE;
2423				break;
2424			default:
2425				kve->kve_type = KVME_TYPE_UNKNOWN;
2426				break;
2427			}
2428			if (lobj != obj)
2429				VM_OBJECT_RUNLOCK(lobj);
2430
2431			kve->kve_ref_count = obj->ref_count;
2432			kve->kve_shadow_count = obj->shadow_count;
2433			VM_OBJECT_RUNLOCK(obj);
2434			if (vp != NULL) {
2435				vn_fullpath(curthread, vp, &fullpath,
2436				    &freepath);
2437				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2438				cred = curthread->td_ucred;
2439				vn_lock(vp, LK_SHARED | LK_RETRY);
2440				if (VOP_GETATTR(vp, &va, cred) == 0) {
2441					kve->kve_vn_fileid = va.va_fileid;
2442					kve->kve_vn_fsid = va.va_fsid;
2443					kve->kve_vn_mode =
2444					    MAKEIMODE(va.va_type, va.va_mode);
2445					kve->kve_vn_size = va.va_size;
2446					kve->kve_vn_rdev = va.va_rdev;
2447					kve->kve_status = KF_ATTR_VALID;
2448				}
2449				vput(vp);
2450			}
2451		} else {
2452			kve->kve_type = KVME_TYPE_NONE;
2453			kve->kve_ref_count = 0;
2454			kve->kve_shadow_count = 0;
2455		}
2456
2457		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2458		if (freepath != NULL)
2459			free(freepath, M_TEMP);
2460
2461		/* Pack record size down */
2462		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2463			kve->kve_structsize =
2464			    offsetof(struct kinfo_vmentry, kve_path) +
2465			    strlen(kve->kve_path) + 1;
2466		else
2467			kve->kve_structsize = sizeof(*kve);
2468		kve->kve_structsize = roundup(kve->kve_structsize,
2469		    sizeof(uint64_t));
2470
2471		/* Halt filling and truncate rather than exceeding maxlen */
2472		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2473			error = 0;
2474			vm_map_lock_read(map);
2475			break;
2476		} else if (maxlen != -1)
2477			maxlen -= kve->kve_structsize;
2478
2479		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2480			error = ENOMEM;
2481		vm_map_lock_read(map);
2482		if (error != 0)
2483			break;
2484		if (last_timestamp != map->timestamp) {
2485			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2486			entry = tmp_entry;
2487		}
2488	}
2489	vm_map_unlock_read(map);
2490	vmspace_free(vm);
2491	PRELE(p);
2492	free(kve, M_TEMP);
2493	return (error);
2494}
2495
2496static int
2497sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2498{
2499	struct proc *p;
2500	struct sbuf sb;
2501	int error, error2, *name;
2502
2503	name = (int *)arg1;
2504	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2505	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2506	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2507	if (error != 0) {
2508		sbuf_delete(&sb);
2509		return (error);
2510	}
2511	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2512	error2 = sbuf_finish(&sb);
2513	sbuf_delete(&sb);
2514	return (error != 0 ? error : error2);
2515}
2516
2517#if defined(STACK) || defined(DDB)
2518static int
2519sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2520{
2521	struct kinfo_kstack *kkstp;
2522	int error, i, *name, numthreads;
2523	lwpid_t *lwpidarray;
2524	struct thread *td;
2525	struct stack *st;
2526	struct sbuf sb;
2527	struct proc *p;
2528
2529	name = (int *)arg1;
2530	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2531	if (error != 0)
2532		return (error);
2533
2534	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2535	st = stack_create();
2536
2537	lwpidarray = NULL;
2538	PROC_LOCK(p);
2539	do {
2540		if (lwpidarray != NULL) {
2541			free(lwpidarray, M_TEMP);
2542			lwpidarray = NULL;
2543		}
2544		numthreads = p->p_numthreads;
2545		PROC_UNLOCK(p);
2546		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2547		    M_WAITOK | M_ZERO);
2548		PROC_LOCK(p);
2549	} while (numthreads < p->p_numthreads);
2550
2551	/*
2552	 * XXXRW: During the below loop, execve(2) and countless other sorts
2553	 * of changes could have taken place.  Should we check to see if the
2554	 * vmspace has been replaced, or the like, in order to prevent
2555	 * giving a snapshot that spans, say, execve(2), with some threads
2556	 * before and some after?  Among other things, the credentials could
2557	 * have changed, in which case the right to extract debug info might
2558	 * no longer be assured.
2559	 */
2560	i = 0;
2561	FOREACH_THREAD_IN_PROC(p, td) {
2562		KASSERT(i < numthreads,
2563		    ("sysctl_kern_proc_kstack: numthreads"));
2564		lwpidarray[i] = td->td_tid;
2565		i++;
2566	}
2567	numthreads = i;
2568	for (i = 0; i < numthreads; i++) {
2569		td = thread_find(p, lwpidarray[i]);
2570		if (td == NULL) {
2571			continue;
2572		}
2573		bzero(kkstp, sizeof(*kkstp));
2574		(void)sbuf_new(&sb, kkstp->kkst_trace,
2575		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2576		thread_lock(td);
2577		kkstp->kkst_tid = td->td_tid;
2578		if (TD_IS_SWAPPED(td)) {
2579			kkstp->kkst_state = KKST_STATE_SWAPPED;
2580		} else if (TD_IS_RUNNING(td)) {
2581			if (stack_save_td_running(st, td) == 0)
2582				kkstp->kkst_state = KKST_STATE_STACKOK;
2583			else
2584				kkstp->kkst_state = KKST_STATE_RUNNING;
2585		} else {
2586			kkstp->kkst_state = KKST_STATE_STACKOK;
2587			stack_save_td(st, td);
2588		}
2589		thread_unlock(td);
2590		PROC_UNLOCK(p);
2591		stack_sbuf_print(&sb, st);
2592		sbuf_finish(&sb);
2593		sbuf_delete(&sb);
2594		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2595		PROC_LOCK(p);
2596		if (error)
2597			break;
2598	}
2599	_PRELE(p);
2600	PROC_UNLOCK(p);
2601	if (lwpidarray != NULL)
2602		free(lwpidarray, M_TEMP);
2603	stack_destroy(st);
2604	free(kkstp, M_TEMP);
2605	return (error);
2606}
2607#endif
2608
2609/*
2610 * This sysctl allows a process to retrieve the full list of groups from
2611 * itself or another process.
2612 */
2613static int
2614sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2615{
2616	pid_t *pidp = (pid_t *)arg1;
2617	unsigned int arglen = arg2;
2618	struct proc *p;
2619	struct ucred *cred;
2620	int error;
2621
2622	if (arglen != 1)
2623		return (EINVAL);
2624	if (*pidp == -1) {	/* -1 means this process */
2625		p = req->td->td_proc;
2626		PROC_LOCK(p);
2627	} else {
2628		error = pget(*pidp, PGET_CANSEE, &p);
2629		if (error != 0)
2630			return (error);
2631	}
2632
2633	cred = crhold(p->p_ucred);
2634	PROC_UNLOCK(p);
2635
2636	error = SYSCTL_OUT(req, cred->cr_groups,
2637	    cred->cr_ngroups * sizeof(gid_t));
2638	crfree(cred);
2639	return (error);
2640}
2641
2642/*
2643 * This sysctl allows a process to retrieve or/and set the resource limit for
2644 * another process.
2645 */
2646static int
2647sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2648{
2649	int *name = (int *)arg1;
2650	u_int namelen = arg2;
2651	struct rlimit rlim;
2652	struct proc *p;
2653	u_int which;
2654	int flags, error;
2655
2656	if (namelen != 2)
2657		return (EINVAL);
2658
2659	which = (u_int)name[1];
2660	if (which >= RLIM_NLIMITS)
2661		return (EINVAL);
2662
2663	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2664		return (EINVAL);
2665
2666	flags = PGET_HOLD | PGET_NOTWEXIT;
2667	if (req->newptr != NULL)
2668		flags |= PGET_CANDEBUG;
2669	else
2670		flags |= PGET_CANSEE;
2671	error = pget((pid_t)name[0], flags, &p);
2672	if (error != 0)
2673		return (error);
2674
2675	/*
2676	 * Retrieve limit.
2677	 */
2678	if (req->oldptr != NULL) {
2679		PROC_LOCK(p);
2680		lim_rlimit_proc(p, which, &rlim);
2681		PROC_UNLOCK(p);
2682	}
2683	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2684	if (error != 0)
2685		goto errout;
2686
2687	/*
2688	 * Set limit.
2689	 */
2690	if (req->newptr != NULL) {
2691		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2692		if (error == 0)
2693			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2694	}
2695
2696errout:
2697	PRELE(p);
2698	return (error);
2699}
2700
2701/*
2702 * This sysctl allows a process to retrieve ps_strings structure location of
2703 * another process.
2704 */
2705static int
2706sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2707{
2708	int *name = (int *)arg1;
2709	u_int namelen = arg2;
2710	struct proc *p;
2711	vm_offset_t ps_strings;
2712	int error;
2713#ifdef COMPAT_FREEBSD32
2714	uint32_t ps_strings32;
2715#endif
2716
2717	if (namelen != 1)
2718		return (EINVAL);
2719
2720	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2721	if (error != 0)
2722		return (error);
2723#ifdef COMPAT_FREEBSD32
2724	if ((req->flags & SCTL_MASK32) != 0) {
2725		/*
2726		 * We return 0 if the 32 bit emulation request is for a 64 bit
2727		 * process.
2728		 */
2729		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2730		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2731		PROC_UNLOCK(p);
2732		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2733		return (error);
2734	}
2735#endif
2736	ps_strings = p->p_sysent->sv_psstrings;
2737	PROC_UNLOCK(p);
2738	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2739	return (error);
2740}
2741
2742/*
2743 * This sysctl allows a process to retrieve umask of another process.
2744 */
2745static int
2746sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2747{
2748	int *name = (int *)arg1;
2749	u_int namelen = arg2;
2750	struct proc *p;
2751	int error;
2752	u_short fd_cmask;
2753
2754	if (namelen != 1)
2755		return (EINVAL);
2756
2757	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2758	if (error != 0)
2759		return (error);
2760
2761	FILEDESC_SLOCK(p->p_fd);
2762	fd_cmask = p->p_fd->fd_cmask;
2763	FILEDESC_SUNLOCK(p->p_fd);
2764	PRELE(p);
2765	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2766	return (error);
2767}
2768
2769/*
2770 * This sysctl allows a process to set and retrieve binary osreldate of
2771 * another process.
2772 */
2773static int
2774sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2775{
2776	int *name = (int *)arg1;
2777	u_int namelen = arg2;
2778	struct proc *p;
2779	int flags, error, osrel;
2780
2781	if (namelen != 1)
2782		return (EINVAL);
2783
2784	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2785		return (EINVAL);
2786
2787	flags = PGET_HOLD | PGET_NOTWEXIT;
2788	if (req->newptr != NULL)
2789		flags |= PGET_CANDEBUG;
2790	else
2791		flags |= PGET_CANSEE;
2792	error = pget((pid_t)name[0], flags, &p);
2793	if (error != 0)
2794		return (error);
2795
2796	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2797	if (error != 0)
2798		goto errout;
2799
2800	if (req->newptr != NULL) {
2801		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2802		if (error != 0)
2803			goto errout;
2804		if (osrel < 0) {
2805			error = EINVAL;
2806			goto errout;
2807		}
2808		p->p_osrel = osrel;
2809	}
2810errout:
2811	PRELE(p);
2812	return (error);
2813}
2814
2815static int
2816sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2817{
2818	int *name = (int *)arg1;
2819	u_int namelen = arg2;
2820	struct proc *p;
2821	struct kinfo_sigtramp kst;
2822	const struct sysentvec *sv;
2823	int error;
2824#ifdef COMPAT_FREEBSD32
2825	struct kinfo_sigtramp32 kst32;
2826#endif
2827
2828	if (namelen != 1)
2829		return (EINVAL);
2830
2831	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2832	if (error != 0)
2833		return (error);
2834	sv = p->p_sysent;
2835#ifdef COMPAT_FREEBSD32
2836	if ((req->flags & SCTL_MASK32) != 0) {
2837		bzero(&kst32, sizeof(kst32));
2838		if (SV_PROC_FLAG(p, SV_ILP32)) {
2839			if (sv->sv_sigcode_base != 0) {
2840				kst32.ksigtramp_start = sv->sv_sigcode_base;
2841				kst32.ksigtramp_end = sv->sv_sigcode_base +
2842				    *sv->sv_szsigcode;
2843			} else {
2844				kst32.ksigtramp_start = sv->sv_psstrings -
2845				    *sv->sv_szsigcode;
2846				kst32.ksigtramp_end = sv->sv_psstrings;
2847			}
2848		}
2849		PROC_UNLOCK(p);
2850		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2851		return (error);
2852	}
2853#endif
2854	bzero(&kst, sizeof(kst));
2855	if (sv->sv_sigcode_base != 0) {
2856		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2857		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2858		    *sv->sv_szsigcode;
2859	} else {
2860		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2861		    *sv->sv_szsigcode;
2862		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2863	}
2864	PROC_UNLOCK(p);
2865	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2866	return (error);
2867}
2868
2869SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2870
2871SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2872	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2873	"Return entire process table");
2874
2875static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2876	sysctl_kern_proc, "Process table");
2877
2878static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2879	sysctl_kern_proc, "Process table");
2880
2881static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2882	sysctl_kern_proc, "Process table");
2883
2884static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2885	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2886
2887static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2888	sysctl_kern_proc, "Process table");
2889
2890static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2891	sysctl_kern_proc, "Process table");
2892
2893static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2894	sysctl_kern_proc, "Process table");
2895
2896static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2897	sysctl_kern_proc, "Process table");
2898
2899static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2900	sysctl_kern_proc, "Return process table, no threads");
2901
2902static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2903	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2904	sysctl_kern_proc_args, "Process argument list");
2905
2906static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2907	sysctl_kern_proc_env, "Process environment");
2908
2909static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2910	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2911
2912static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2913	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2914
2915static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2916	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2917	"Process syscall vector name (ABI type)");
2918
2919static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2920	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2921
2922static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2923	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2924
2925static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2926	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2927
2928static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2929	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2930
2931static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2932	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2933
2934static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2935	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2936
2937static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2938	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2939
2940static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2941	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2942
2943static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2944	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2945	"Return process table, no threads");
2946
2947#ifdef COMPAT_FREEBSD7
2948static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2949	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2950#endif
2951
2952static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2953	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2954
2955#if defined(STACK) || defined(DDB)
2956static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2957	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2958#endif
2959
2960static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2961	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2962
2963static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2964	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2965	"Process resource limits");
2966
2967static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2968	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2969	"Process ps_strings location");
2970
2971static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2972	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2973
2974static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2975	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2976	"Process binary osreldate");
2977
2978static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2979	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2980	"Process signal trampoline location");
2981
2982int allproc_gen;
2983
2984/*
2985 * stop_all_proc() purpose is to stop all process which have usermode,
2986 * except current process for obvious reasons.  This makes it somewhat
2987 * unreliable when invoked from multithreaded process.  The service
2988 * must not be user-callable anyway.
2989 */
2990void
2991stop_all_proc(void)
2992{
2993	struct proc *cp, *p;
2994	int r, gen;
2995	bool restart, seen_stopped, seen_exiting, stopped_some;
2996
2997	cp = curproc;
2998allproc_loop:
2999	sx_xlock(&allproc_lock);
3000	gen = allproc_gen;
3001	seen_exiting = seen_stopped = stopped_some = restart = false;
3002	LIST_REMOVE(cp, p_list);
3003	LIST_INSERT_HEAD(&allproc, cp, p_list);
3004	for (;;) {
3005		p = LIST_NEXT(cp, p_list);
3006		if (p == NULL)
3007			break;
3008		LIST_REMOVE(cp, p_list);
3009		LIST_INSERT_AFTER(p, cp, p_list);
3010		PROC_LOCK(p);
3011		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3012			PROC_UNLOCK(p);
3013			continue;
3014		}
3015		if ((p->p_flag & P_WEXIT) != 0) {
3016			seen_exiting = true;
3017			PROC_UNLOCK(p);
3018			continue;
3019		}
3020		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3021			/*
3022			 * Stopped processes are tolerated when there
3023			 * are no other processes which might continue
3024			 * them.  P_STOPPED_SINGLE but not
3025			 * P_TOTAL_STOP process still has at least one
3026			 * thread running.
3027			 */
3028			seen_stopped = true;
3029			PROC_UNLOCK(p);
3030			continue;
3031		}
3032		_PHOLD(p);
3033		sx_xunlock(&allproc_lock);
3034		r = thread_single(p, SINGLE_ALLPROC);
3035		if (r != 0)
3036			restart = true;
3037		else
3038			stopped_some = true;
3039		_PRELE(p);
3040		PROC_UNLOCK(p);
3041		sx_xlock(&allproc_lock);
3042	}
3043	/* Catch forked children we did not see in iteration. */
3044	if (gen != allproc_gen)
3045		restart = true;
3046	sx_xunlock(&allproc_lock);
3047	if (restart || stopped_some || seen_exiting || seen_stopped) {
3048		kern_yield(PRI_USER);
3049		goto allproc_loop;
3050	}
3051}
3052
3053void
3054resume_all_proc(void)
3055{
3056	struct proc *cp, *p;
3057
3058	cp = curproc;
3059	sx_xlock(&allproc_lock);
3060	LIST_REMOVE(cp, p_list);
3061	LIST_INSERT_HEAD(&allproc, cp, p_list);
3062	for (;;) {
3063		p = LIST_NEXT(cp, p_list);
3064		if (p == NULL)
3065			break;
3066		LIST_REMOVE(cp, p_list);
3067		LIST_INSERT_AFTER(p, cp, p_list);
3068		PROC_LOCK(p);
3069		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3070			sx_xunlock(&allproc_lock);
3071			_PHOLD(p);
3072			thread_single_end(p, SINGLE_ALLPROC);
3073			_PRELE(p);
3074			PROC_UNLOCK(p);
3075			sx_xlock(&allproc_lock);
3076		} else {
3077			PROC_UNLOCK(p);
3078		}
3079	}
3080	sx_xunlock(&allproc_lock);
3081}
3082
3083/* #define	TOTAL_STOP_DEBUG	1 */
3084#ifdef TOTAL_STOP_DEBUG
3085volatile static int ap_resume;
3086#include <sys/mount.h>
3087
3088static int
3089sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3090{
3091	int error, val;
3092
3093	val = 0;
3094	ap_resume = 0;
3095	error = sysctl_handle_int(oidp, &val, 0, req);
3096	if (error != 0 || req->newptr == NULL)
3097		return (error);
3098	if (val != 0) {
3099		stop_all_proc();
3100		syncer_suspend();
3101		while (ap_resume == 0)
3102			;
3103		syncer_resume();
3104		resume_all_proc();
3105	}
3106	return (0);
3107}
3108
3109SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3110    CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3111    sysctl_debug_stop_all_proc, "I",
3112    "");
3113#endif
3114