kern_fork.c revision 333162
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/kern/kern_fork.c 333162 2018-05-02 07:57:36Z kib $");
39
40#include "opt_ktrace.h"
41#include "opt_kstack_pages.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysproto.h>
46#include <sys/eventhandler.h>
47#include <sys/fcntl.h>
48#include <sys/filedesc.h>
49#include <sys/jail.h>
50#include <sys/kernel.h>
51#include <sys/kthread.h>
52#include <sys/sysctl.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/procdesc.h>
59#include <sys/pioctl.h>
60#include <sys/ptrace.h>
61#include <sys/racct.h>
62#include <sys/resourcevar.h>
63#include <sys/sched.h>
64#include <sys/syscall.h>
65#include <sys/vmmeter.h>
66#include <sys/vnode.h>
67#include <sys/acct.h>
68#include <sys/ktr.h>
69#include <sys/ktrace.h>
70#include <sys/unistd.h>
71#include <sys/sdt.h>
72#include <sys/sx.h>
73#include <sys/sysent.h>
74#include <sys/signalvar.h>
75
76#include <security/audit/audit.h>
77#include <security/mac/mac_framework.h>
78
79#include <vm/vm.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_extern.h>
83#include <vm/uma.h>
84#include <vm/vm_domain.h>
85
86#ifdef KDTRACE_HOOKS
87#include <sys/dtrace_bsd.h>
88dtrace_fork_func_t	dtrace_fasttrap_fork;
89#endif
90
91SDT_PROVIDER_DECLARE(proc);
92SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
93
94#ifndef _SYS_SYSPROTO_H_
95struct fork_args {
96	int     dummy;
97};
98#endif
99
100EVENTHANDLER_LIST_DECLARE(process_fork);
101
102/* ARGSUSED */
103int
104sys_fork(struct thread *td, struct fork_args *uap)
105{
106	struct fork_req fr;
107	int error, pid;
108
109	bzero(&fr, sizeof(fr));
110	fr.fr_flags = RFFDG | RFPROC;
111	fr.fr_pidp = &pid;
112	error = fork1(td, &fr);
113	if (error == 0) {
114		td->td_retval[0] = pid;
115		td->td_retval[1] = 0;
116	}
117	return (error);
118}
119
120/* ARGUSED */
121int
122sys_pdfork(struct thread *td, struct pdfork_args *uap)
123{
124	struct fork_req fr;
125	int error, fd, pid;
126
127	bzero(&fr, sizeof(fr));
128	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129	fr.fr_pidp = &pid;
130	fr.fr_pd_fd = &fd;
131	fr.fr_pd_flags = uap->flags;
132	/*
133	 * It is necessary to return fd by reference because 0 is a valid file
134	 * descriptor number, and the child needs to be able to distinguish
135	 * itself from the parent using the return value.
136	 */
137	error = fork1(td, &fr);
138	if (error == 0) {
139		td->td_retval[0] = pid;
140		td->td_retval[1] = 0;
141		error = copyout(&fd, uap->fdp, sizeof(fd));
142	}
143	return (error);
144}
145
146/* ARGSUSED */
147int
148sys_vfork(struct thread *td, struct vfork_args *uap)
149{
150	struct fork_req fr;
151	int error, pid;
152
153	bzero(&fr, sizeof(fr));
154	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155	fr.fr_pidp = &pid;
156	error = fork1(td, &fr);
157	if (error == 0) {
158		td->td_retval[0] = pid;
159		td->td_retval[1] = 0;
160	}
161	return (error);
162}
163
164int
165sys_rfork(struct thread *td, struct rfork_args *uap)
166{
167	struct fork_req fr;
168	int error, pid;
169
170	/* Don't allow kernel-only flags. */
171	if ((uap->flags & RFKERNELONLY) != 0)
172		return (EINVAL);
173
174	AUDIT_ARG_FFLAGS(uap->flags);
175	bzero(&fr, sizeof(fr));
176	fr.fr_flags = uap->flags;
177	fr.fr_pidp = &pid;
178	error = fork1(td, &fr);
179	if (error == 0) {
180		td->td_retval[0] = pid;
181		td->td_retval[1] = 0;
182	}
183	return (error);
184}
185
186int	nprocs = 1;		/* process 0 */
187int	lastpid = 0;
188SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
189    "Last used PID");
190
191/*
192 * Random component to lastpid generation.  We mix in a random factor to make
193 * it a little harder to predict.  We sanity check the modulus value to avoid
194 * doing it in critical paths.  Don't let it be too small or we pointlessly
195 * waste randomness entropy, and don't let it be impossibly large.  Using a
196 * modulus that is too big causes a LOT more process table scans and slows
197 * down fork processing as the pidchecked caching is defeated.
198 */
199static int randompid = 0;
200
201static int
202sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
203{
204	int error, pid;
205
206	error = sysctl_wire_old_buffer(req, sizeof(int));
207	if (error != 0)
208		return(error);
209	sx_xlock(&allproc_lock);
210	pid = randompid;
211	error = sysctl_handle_int(oidp, &pid, 0, req);
212	if (error == 0 && req->newptr != NULL) {
213		if (pid == 0)
214			randompid = 0;
215		else if (pid == 1)
216			/* generate a random PID modulus between 100 and 1123 */
217			randompid = 100 + arc4random() % 1024;
218		else if (pid < 0 || pid > pid_max - 100)
219			/* out of range */
220			randompid = pid_max - 100;
221		else if (pid < 100)
222			/* Make it reasonable */
223			randompid = 100;
224		else
225			randompid = pid;
226	}
227	sx_xunlock(&allproc_lock);
228	return (error);
229}
230
231SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
232    0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
233
234static int
235fork_findpid(int flags)
236{
237	struct proc *p;
238	int trypid;
239	static int pidchecked = 0;
240
241	/*
242	 * Requires allproc_lock in order to iterate over the list
243	 * of processes, and proctree_lock to access p_pgrp.
244	 */
245	sx_assert(&allproc_lock, SX_LOCKED);
246	sx_assert(&proctree_lock, SX_LOCKED);
247
248	/*
249	 * Find an unused process ID.  We remember a range of unused IDs
250	 * ready to use (from lastpid+1 through pidchecked-1).
251	 *
252	 * If RFHIGHPID is set (used during system boot), do not allocate
253	 * low-numbered pids.
254	 */
255	trypid = lastpid + 1;
256	if (flags & RFHIGHPID) {
257		if (trypid < 10)
258			trypid = 10;
259	} else {
260		if (randompid)
261			trypid += arc4random() % randompid;
262	}
263retry:
264	/*
265	 * If the process ID prototype has wrapped around,
266	 * restart somewhat above 0, as the low-numbered procs
267	 * tend to include daemons that don't exit.
268	 */
269	if (trypid >= pid_max) {
270		trypid = trypid % pid_max;
271		if (trypid < 100)
272			trypid += 100;
273		pidchecked = 0;
274	}
275	if (trypid >= pidchecked) {
276		int doingzomb = 0;
277
278		pidchecked = PID_MAX;
279		/*
280		 * Scan the active and zombie procs to check whether this pid
281		 * is in use.  Remember the lowest pid that's greater
282		 * than trypid, so we can avoid checking for a while.
283		 *
284		 * Avoid reuse of the process group id, session id or
285		 * the reaper subtree id.  Note that for process group
286		 * and sessions, the amount of reserved pids is
287		 * limited by process limit.  For the subtree ids, the
288		 * id is kept reserved only while there is a
289		 * non-reaped process in the subtree, so amount of
290		 * reserved pids is limited by process limit times
291		 * two.
292		 */
293		p = LIST_FIRST(&allproc);
294again:
295		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
296			while (p->p_pid == trypid ||
297			    p->p_reapsubtree == trypid ||
298			    (p->p_pgrp != NULL &&
299			    (p->p_pgrp->pg_id == trypid ||
300			    (p->p_session != NULL &&
301			    p->p_session->s_sid == trypid)))) {
302				trypid++;
303				if (trypid >= pidchecked)
304					goto retry;
305			}
306			if (p->p_pid > trypid && pidchecked > p->p_pid)
307				pidchecked = p->p_pid;
308			if (p->p_pgrp != NULL) {
309				if (p->p_pgrp->pg_id > trypid &&
310				    pidchecked > p->p_pgrp->pg_id)
311					pidchecked = p->p_pgrp->pg_id;
312				if (p->p_session != NULL &&
313				    p->p_session->s_sid > trypid &&
314				    pidchecked > p->p_session->s_sid)
315					pidchecked = p->p_session->s_sid;
316			}
317		}
318		if (!doingzomb) {
319			doingzomb = 1;
320			p = LIST_FIRST(&zombproc);
321			goto again;
322		}
323	}
324
325	/*
326	 * RFHIGHPID does not mess with the lastpid counter during boot.
327	 */
328	if (flags & RFHIGHPID)
329		pidchecked = 0;
330	else
331		lastpid = trypid;
332
333	return (trypid);
334}
335
336static int
337fork_norfproc(struct thread *td, int flags)
338{
339	int error;
340	struct proc *p1;
341
342	KASSERT((flags & RFPROC) == 0,
343	    ("fork_norfproc called with RFPROC set"));
344	p1 = td->td_proc;
345
346	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
347	    (flags & (RFCFDG | RFFDG))) {
348		PROC_LOCK(p1);
349		if (thread_single(p1, SINGLE_BOUNDARY)) {
350			PROC_UNLOCK(p1);
351			return (ERESTART);
352		}
353		PROC_UNLOCK(p1);
354	}
355
356	error = vm_forkproc(td, NULL, NULL, NULL, flags);
357	if (error)
358		goto fail;
359
360	/*
361	 * Close all file descriptors.
362	 */
363	if (flags & RFCFDG) {
364		struct filedesc *fdtmp;
365		fdtmp = fdinit(td->td_proc->p_fd, false);
366		fdescfree(td);
367		p1->p_fd = fdtmp;
368	}
369
370	/*
371	 * Unshare file descriptors (from parent).
372	 */
373	if (flags & RFFDG)
374		fdunshare(td);
375
376fail:
377	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
378	    (flags & (RFCFDG | RFFDG))) {
379		PROC_LOCK(p1);
380		thread_single_end(p1, SINGLE_BOUNDARY);
381		PROC_UNLOCK(p1);
382	}
383	return (error);
384}
385
386static void
387do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
388    struct vmspace *vm2, struct file *fp_procdesc)
389{
390	struct proc *p1, *pptr;
391	int trypid;
392	struct filedesc *fd;
393	struct filedesc_to_leader *fdtol;
394	struct sigacts *newsigacts;
395
396	sx_assert(&proctree_lock, SX_SLOCKED);
397	sx_assert(&allproc_lock, SX_XLOCKED);
398
399	p1 = td->td_proc;
400
401	trypid = fork_findpid(fr->fr_flags);
402
403	sx_sunlock(&proctree_lock);
404
405	p2->p_state = PRS_NEW;		/* protect against others */
406	p2->p_pid = trypid;
407	AUDIT_ARG_PID(p2->p_pid);
408	LIST_INSERT_HEAD(&allproc, p2, p_list);
409	allproc_gen++;
410	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
411	tidhash_add(td2);
412	PROC_LOCK(p2);
413	PROC_LOCK(p1);
414
415	sx_xunlock(&allproc_lock);
416
417	bcopy(&p1->p_startcopy, &p2->p_startcopy,
418	    __rangeof(struct proc, p_startcopy, p_endcopy));
419	p2->p_elf_machine = p1->p_elf_machine;
420	p2->p_elf_flags = p1->p_elf_flags;
421	pargs_hold(p2->p_args);
422
423	PROC_UNLOCK(p1);
424
425	bzero(&p2->p_startzero,
426	    __rangeof(struct proc, p_startzero, p_endzero));
427	p2->p_ptevents = 0;
428	p2->p_pdeathsig = 0;
429
430	/* Tell the prison that we exist. */
431	prison_proc_hold(p2->p_ucred->cr_prison);
432
433	PROC_UNLOCK(p2);
434
435	/*
436	 * Malloc things while we don't hold any locks.
437	 */
438	if (fr->fr_flags & RFSIGSHARE)
439		newsigacts = NULL;
440	else
441		newsigacts = sigacts_alloc();
442
443	/*
444	 * Copy filedesc.
445	 */
446	if (fr->fr_flags & RFCFDG) {
447		fd = fdinit(p1->p_fd, false);
448		fdtol = NULL;
449	} else if (fr->fr_flags & RFFDG) {
450		fd = fdcopy(p1->p_fd);
451		fdtol = NULL;
452	} else {
453		fd = fdshare(p1->p_fd);
454		if (p1->p_fdtol == NULL)
455			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
456			    p1->p_leader);
457		if ((fr->fr_flags & RFTHREAD) != 0) {
458			/*
459			 * Shared file descriptor table, and shared
460			 * process leaders.
461			 */
462			fdtol = p1->p_fdtol;
463			FILEDESC_XLOCK(p1->p_fd);
464			fdtol->fdl_refcount++;
465			FILEDESC_XUNLOCK(p1->p_fd);
466		} else {
467			/*
468			 * Shared file descriptor table, and different
469			 * process leaders.
470			 */
471			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
472			    p1->p_fd, p2);
473		}
474	}
475	/*
476	 * Make a proc table entry for the new process.
477	 * Start by zeroing the section of proc that is zero-initialized,
478	 * then copy the section that is copied directly from the parent.
479	 */
480
481	PROC_LOCK(p2);
482	PROC_LOCK(p1);
483
484	bzero(&td2->td_startzero,
485	    __rangeof(struct thread, td_startzero, td_endzero));
486	td2->td_sleeptimo = 0;
487	td2->td_vslock_sz = 0;
488	bzero(&td2->td_si, sizeof(td2->td_si));
489
490	bcopy(&td->td_startcopy, &td2->td_startcopy,
491	    __rangeof(struct thread, td_startcopy, td_endcopy));
492	td2->td_sa = td->td_sa;
493
494	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
495	td2->td_sigstk = td->td_sigstk;
496	td2->td_flags = TDF_INMEM;
497	td2->td_lend_user_pri = PRI_MAX;
498
499#ifdef VIMAGE
500	td2->td_vnet = NULL;
501	td2->td_vnet_lpush = NULL;
502#endif
503
504	/*
505	 * Allow the scheduler to initialize the child.
506	 */
507	thread_lock(td);
508	sched_fork(td, td2);
509	thread_unlock(td);
510
511	/*
512	 * Duplicate sub-structures as needed.
513	 * Increase reference counts on shared objects.
514	 */
515	p2->p_flag = P_INMEM;
516	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
517	p2->p_swtick = ticks;
518	if (p1->p_flag & P_PROFIL)
519		startprofclock(p2);
520
521	/*
522	 * Whilst the proc lock is held, copy the VM domain data out
523	 * using the VM domain method.
524	 */
525	vm_domain_policy_init(&p2->p_vm_dom_policy);
526	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
527	    &p1->p_vm_dom_policy);
528
529	if (fr->fr_flags & RFSIGSHARE) {
530		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
531	} else {
532		sigacts_copy(newsigacts, p1->p_sigacts);
533		p2->p_sigacts = newsigacts;
534	}
535
536	if (fr->fr_flags & RFTSIGZMB)
537	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
538	else if (fr->fr_flags & RFLINUXTHPN)
539	        p2->p_sigparent = SIGUSR1;
540	else
541	        p2->p_sigparent = SIGCHLD;
542
543	p2->p_textvp = p1->p_textvp;
544	p2->p_fd = fd;
545	p2->p_fdtol = fdtol;
546
547	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
548		p2->p_flag |= P_PROTECTED;
549		p2->p_flag2 |= P2_INHERIT_PROTECTED;
550	}
551
552	/*
553	 * p_limit is copy-on-write.  Bump its refcount.
554	 */
555	lim_fork(p1, p2);
556
557	thread_cow_get_proc(td2, p2);
558
559	pstats_fork(p1->p_stats, p2->p_stats);
560
561	PROC_UNLOCK(p1);
562	PROC_UNLOCK(p2);
563
564	/* Bump references to the text vnode (for procfs). */
565	if (p2->p_textvp)
566		vrefact(p2->p_textvp);
567
568	/*
569	 * Set up linkage for kernel based threading.
570	 */
571	if ((fr->fr_flags & RFTHREAD) != 0) {
572		mtx_lock(&ppeers_lock);
573		p2->p_peers = p1->p_peers;
574		p1->p_peers = p2;
575		p2->p_leader = p1->p_leader;
576		mtx_unlock(&ppeers_lock);
577		PROC_LOCK(p1->p_leader);
578		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
579			PROC_UNLOCK(p1->p_leader);
580			/*
581			 * The task leader is exiting, so process p1 is
582			 * going to be killed shortly.  Since p1 obviously
583			 * isn't dead yet, we know that the leader is either
584			 * sending SIGKILL's to all the processes in this
585			 * task or is sleeping waiting for all the peers to
586			 * exit.  We let p1 complete the fork, but we need
587			 * to go ahead and kill the new process p2 since
588			 * the task leader may not get a chance to send
589			 * SIGKILL to it.  We leave it on the list so that
590			 * the task leader will wait for this new process
591			 * to commit suicide.
592			 */
593			PROC_LOCK(p2);
594			kern_psignal(p2, SIGKILL);
595			PROC_UNLOCK(p2);
596		} else
597			PROC_UNLOCK(p1->p_leader);
598	} else {
599		p2->p_peers = NULL;
600		p2->p_leader = p2;
601	}
602
603	sx_xlock(&proctree_lock);
604	PGRP_LOCK(p1->p_pgrp);
605	PROC_LOCK(p2);
606	PROC_LOCK(p1);
607
608	/*
609	 * Preserve some more flags in subprocess.  P_PROFIL has already
610	 * been preserved.
611	 */
612	p2->p_flag |= p1->p_flag & P_SUGID;
613	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
614	SESS_LOCK(p1->p_session);
615	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
616		p2->p_flag |= P_CONTROLT;
617	SESS_UNLOCK(p1->p_session);
618	if (fr->fr_flags & RFPPWAIT)
619		p2->p_flag |= P_PPWAIT;
620
621	p2->p_pgrp = p1->p_pgrp;
622	LIST_INSERT_AFTER(p1, p2, p_pglist);
623	PGRP_UNLOCK(p1->p_pgrp);
624	LIST_INIT(&p2->p_children);
625	LIST_INIT(&p2->p_orphans);
626
627	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
628
629	/*
630	 * If PF_FORK is set, the child process inherits the
631	 * procfs ioctl flags from its parent.
632	 */
633	if (p1->p_pfsflags & PF_FORK) {
634		p2->p_stops = p1->p_stops;
635		p2->p_pfsflags = p1->p_pfsflags;
636	}
637
638	/*
639	 * This begins the section where we must prevent the parent
640	 * from being swapped.
641	 */
642	_PHOLD(p1);
643	PROC_UNLOCK(p1);
644
645	/*
646	 * Attach the new process to its parent.
647	 *
648	 * If RFNOWAIT is set, the newly created process becomes a child
649	 * of init.  This effectively disassociates the child from the
650	 * parent.
651	 */
652	if ((fr->fr_flags & RFNOWAIT) != 0) {
653		pptr = p1->p_reaper;
654		p2->p_reaper = pptr;
655	} else {
656		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
657		    p1 : p1->p_reaper;
658		pptr = p1;
659	}
660	p2->p_pptr = pptr;
661	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
662	LIST_INIT(&p2->p_reaplist);
663	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
664	if (p2->p_reaper == p1)
665		p2->p_reapsubtree = p2->p_pid;
666	sx_xunlock(&proctree_lock);
667
668	/* Inform accounting that we have forked. */
669	p2->p_acflag = AFORK;
670	PROC_UNLOCK(p2);
671
672#ifdef KTRACE
673	ktrprocfork(p1, p2);
674#endif
675
676	/*
677	 * Finish creating the child process.  It will return via a different
678	 * execution path later.  (ie: directly into user mode)
679	 */
680	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
681
682	if (fr->fr_flags == (RFFDG | RFPROC)) {
683		PCPU_INC(cnt.v_forks);
684		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
685		    p2->p_vmspace->vm_ssize);
686	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
687		PCPU_INC(cnt.v_vforks);
688		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
689		    p2->p_vmspace->vm_ssize);
690	} else if (p1 == &proc0) {
691		PCPU_INC(cnt.v_kthreads);
692		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
693		    p2->p_vmspace->vm_ssize);
694	} else {
695		PCPU_INC(cnt.v_rforks);
696		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
697		    p2->p_vmspace->vm_ssize);
698	}
699
700	/*
701	 * Associate the process descriptor with the process before anything
702	 * can happen that might cause that process to need the descriptor.
703	 * However, don't do this until after fork(2) can no longer fail.
704	 */
705	if (fr->fr_flags & RFPROCDESC)
706		procdesc_new(p2, fr->fr_pd_flags);
707
708	/*
709	 * Both processes are set up, now check if any loadable modules want
710	 * to adjust anything.
711	 */
712	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
713
714	/*
715	 * Set the child start time and mark the process as being complete.
716	 */
717	PROC_LOCK(p2);
718	PROC_LOCK(p1);
719	microuptime(&p2->p_stats->p_start);
720	PROC_SLOCK(p2);
721	p2->p_state = PRS_NORMAL;
722	PROC_SUNLOCK(p2);
723
724#ifdef KDTRACE_HOOKS
725	/*
726	 * Tell the DTrace fasttrap provider about the new process so that any
727	 * tracepoints inherited from the parent can be removed. We have to do
728	 * this only after p_state is PRS_NORMAL since the fasttrap module will
729	 * use pfind() later on.
730	 */
731	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
732		dtrace_fasttrap_fork(p1, p2);
733#endif
734	/*
735	 * Hold the process so that it cannot exit after we make it runnable,
736	 * but before we wait for the debugger.
737	 */
738	_PHOLD(p2);
739	if (p1->p_ptevents & PTRACE_FORK) {
740		/*
741		 * Arrange for debugger to receive the fork event.
742		 *
743		 * We can report PL_FLAG_FORKED regardless of
744		 * P_FOLLOWFORK settings, but it does not make a sense
745		 * for runaway child.
746		 */
747		td->td_dbgflags |= TDB_FORK;
748		td->td_dbg_forked = p2->p_pid;
749		td2->td_dbgflags |= TDB_STOPATFORK;
750	}
751	if (fr->fr_flags & RFPPWAIT) {
752		td->td_pflags |= TDP_RFPPWAIT;
753		td->td_rfppwait_p = p2;
754		td->td_dbgflags |= TDB_VFORK;
755	}
756	PROC_UNLOCK(p2);
757
758	/*
759	 * Now can be swapped.
760	 */
761	_PRELE(p1);
762	PROC_UNLOCK(p1);
763
764	/*
765	 * Tell any interested parties about the new process.
766	 */
767	knote_fork(p1->p_klist, p2->p_pid);
768	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
769
770	if (fr->fr_flags & RFPROCDESC) {
771		procdesc_finit(p2->p_procdesc, fp_procdesc);
772		fdrop(fp_procdesc, td);
773	}
774
775	if ((fr->fr_flags & RFSTOPPED) == 0) {
776		/*
777		 * If RFSTOPPED not requested, make child runnable and
778		 * add to run queue.
779		 */
780		thread_lock(td2);
781		TD_SET_CAN_RUN(td2);
782		sched_add(td2, SRQ_BORING);
783		thread_unlock(td2);
784		if (fr->fr_pidp != NULL)
785			*fr->fr_pidp = p2->p_pid;
786	} else {
787		*fr->fr_procp = p2;
788	}
789
790	PROC_LOCK(p2);
791	/*
792	 * Wait until debugger is attached to child.
793	 */
794	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
795		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
796	_PRELE(p2);
797	racct_proc_fork_done(p2);
798	PROC_UNLOCK(p2);
799}
800
801int
802fork1(struct thread *td, struct fork_req *fr)
803{
804	struct proc *p1, *newproc;
805	struct thread *td2;
806	struct vmspace *vm2;
807	struct file *fp_procdesc;
808	vm_ooffset_t mem_charged;
809	int error, nprocs_new, ok;
810	static int curfail;
811	static struct timeval lastfail;
812	int flags, pages;
813
814	flags = fr->fr_flags;
815	pages = fr->fr_pages;
816
817	if ((flags & RFSTOPPED) != 0)
818		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
819	else
820		MPASS(fr->fr_procp == NULL);
821
822	/* Check for the undefined or unimplemented flags. */
823	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
824		return (EINVAL);
825
826	/* Signal value requires RFTSIGZMB. */
827	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
828		return (EINVAL);
829
830	/* Can't copy and clear. */
831	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
832		return (EINVAL);
833
834	/* Check the validity of the signal number. */
835	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
836		return (EINVAL);
837
838	if ((flags & RFPROCDESC) != 0) {
839		/* Can't not create a process yet get a process descriptor. */
840		if ((flags & RFPROC) == 0)
841			return (EINVAL);
842
843		/* Must provide a place to put a procdesc if creating one. */
844		if (fr->fr_pd_fd == NULL)
845			return (EINVAL);
846
847		/* Check if we are using supported flags. */
848		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
849			return (EINVAL);
850	}
851
852	p1 = td->td_proc;
853
854	/*
855	 * Here we don't create a new process, but we divorce
856	 * certain parts of a process from itself.
857	 */
858	if ((flags & RFPROC) == 0) {
859		if (fr->fr_procp != NULL)
860			*fr->fr_procp = NULL;
861		else if (fr->fr_pidp != NULL)
862			*fr->fr_pidp = 0;
863		return (fork_norfproc(td, flags));
864	}
865
866	fp_procdesc = NULL;
867	newproc = NULL;
868	vm2 = NULL;
869
870	/*
871	 * Increment the nprocs resource before allocations occur.
872	 * Although process entries are dynamically created, we still
873	 * keep a global limit on the maximum number we will
874	 * create. There are hard-limits as to the number of processes
875	 * that can run, established by the KVA and memory usage for
876	 * the process data.
877	 *
878	 * Don't allow a nonprivileged user to use the last ten
879	 * processes; don't let root exceed the limit.
880	 */
881	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
882	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
883	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
884		error = EAGAIN;
885		sx_xlock(&allproc_lock);
886		if (ppsratecheck(&lastfail, &curfail, 1)) {
887			printf("maxproc limit exceeded by uid %u (pid %d); "
888			    "see tuning(7) and login.conf(5)\n",
889			    td->td_ucred->cr_ruid, p1->p_pid);
890		}
891		sx_xunlock(&allproc_lock);
892		goto fail2;
893	}
894
895	/*
896	 * If required, create a process descriptor in the parent first; we
897	 * will abandon it if something goes wrong. We don't finit() until
898	 * later.
899	 */
900	if (flags & RFPROCDESC) {
901		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
902		    fr->fr_pd_flags, fr->fr_pd_fcaps);
903		if (error != 0)
904			goto fail2;
905	}
906
907	mem_charged = 0;
908	if (pages == 0)
909		pages = kstack_pages;
910	/* Allocate new proc. */
911	newproc = uma_zalloc(proc_zone, M_WAITOK);
912	td2 = FIRST_THREAD_IN_PROC(newproc);
913	if (td2 == NULL) {
914		td2 = thread_alloc(pages);
915		if (td2 == NULL) {
916			error = ENOMEM;
917			goto fail2;
918		}
919		proc_linkup(newproc, td2);
920	} else {
921		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
922			if (td2->td_kstack != 0)
923				vm_thread_dispose(td2);
924			if (!thread_alloc_stack(td2, pages)) {
925				error = ENOMEM;
926				goto fail2;
927			}
928		}
929	}
930
931	if ((flags & RFMEM) == 0) {
932		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
933		if (vm2 == NULL) {
934			error = ENOMEM;
935			goto fail2;
936		}
937		if (!swap_reserve(mem_charged)) {
938			/*
939			 * The swap reservation failed. The accounting
940			 * from the entries of the copied vm2 will be
941			 * subtracted in vmspace_free(), so force the
942			 * reservation there.
943			 */
944			swap_reserve_force(mem_charged);
945			error = ENOMEM;
946			goto fail2;
947		}
948	} else
949		vm2 = NULL;
950
951	/*
952	 * XXX: This is ugly; when we copy resource usage, we need to bump
953	 *      per-cred resource counters.
954	 */
955	proc_set_cred_init(newproc, crhold(td->td_ucred));
956
957	/*
958	 * Initialize resource accounting for the child process.
959	 */
960	error = racct_proc_fork(p1, newproc);
961	if (error != 0) {
962		error = EAGAIN;
963		goto fail1;
964	}
965
966#ifdef MAC
967	mac_proc_init(newproc);
968#endif
969	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
970	STAILQ_INIT(&newproc->p_ktr);
971
972	/* We have to lock the process tree while we look for a pid. */
973	sx_slock(&proctree_lock);
974	sx_xlock(&allproc_lock);
975
976	/*
977	 * Increment the count of procs running with this uid. Don't allow
978	 * a nonprivileged user to exceed their current limit.
979	 *
980	 * XXXRW: Can we avoid privilege here if it's not needed?
981	 */
982	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
983	if (error == 0)
984		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
985	else {
986		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
987		    lim_cur(td, RLIMIT_NPROC));
988	}
989	if (ok) {
990		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
991		return (0);
992	}
993
994	error = EAGAIN;
995	sx_sunlock(&proctree_lock);
996	sx_xunlock(&allproc_lock);
997#ifdef MAC
998	mac_proc_destroy(newproc);
999#endif
1000	racct_proc_exit(newproc);
1001fail1:
1002	crfree(newproc->p_ucred);
1003	newproc->p_ucred = NULL;
1004fail2:
1005	if (vm2 != NULL)
1006		vmspace_free(vm2);
1007	uma_zfree(proc_zone, newproc);
1008	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1009		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1010		fdrop(fp_procdesc, td);
1011	}
1012	atomic_add_int(&nprocs, -1);
1013	pause("fork", hz / 2);
1014	return (error);
1015}
1016
1017/*
1018 * Handle the return of a child process from fork1().  This function
1019 * is called from the MD fork_trampoline() entry point.
1020 */
1021void
1022fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1023    struct trapframe *frame)
1024{
1025	struct proc *p;
1026	struct thread *td;
1027	struct thread *dtd;
1028
1029	td = curthread;
1030	p = td->td_proc;
1031	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1032
1033	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1034	    td, td_get_sched(td), p->p_pid, td->td_name);
1035
1036	sched_fork_exit(td);
1037	/*
1038	* Processes normally resume in mi_switch() after being
1039	* cpu_switch()'ed to, but when children start up they arrive here
1040	* instead, so we must do much the same things as mi_switch() would.
1041	*/
1042	if ((dtd = PCPU_GET(deadthread))) {
1043		PCPU_SET(deadthread, NULL);
1044		thread_stash(dtd);
1045	}
1046	thread_unlock(td);
1047
1048	/*
1049	 * cpu_fork_kthread_handler intercepts this function call to
1050	 * have this call a non-return function to stay in kernel mode.
1051	 * initproc has its own fork handler, but it does return.
1052	 */
1053	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1054	callout(arg, frame);
1055
1056	/*
1057	 * Check if a kernel thread misbehaved and returned from its main
1058	 * function.
1059	 */
1060	if (p->p_flag & P_KPROC) {
1061		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1062		    td->td_name, p->p_pid);
1063		kthread_exit();
1064	}
1065	mtx_assert(&Giant, MA_NOTOWNED);
1066
1067	if (p->p_sysent->sv_schedtail != NULL)
1068		(p->p_sysent->sv_schedtail)(td);
1069	td->td_pflags &= ~TDP_FORKING;
1070}
1071
1072/*
1073 * Simplified back end of syscall(), used when returning from fork()
1074 * directly into user mode.  This function is passed in to fork_exit()
1075 * as the first parameter and is called when returning to a new
1076 * userland process.
1077 */
1078void
1079fork_return(struct thread *td, struct trapframe *frame)
1080{
1081	struct proc *p, *dbg;
1082
1083	p = td->td_proc;
1084	if (td->td_dbgflags & TDB_STOPATFORK) {
1085		sx_xlock(&proctree_lock);
1086		PROC_LOCK(p);
1087		if (p->p_pptr->p_ptevents & PTRACE_FORK) {
1088			/*
1089			 * If debugger still wants auto-attach for the
1090			 * parent's children, do it now.
1091			 */
1092			dbg = p->p_pptr->p_pptr;
1093			proc_set_traced(p, true);
1094			CTR2(KTR_PTRACE,
1095		    "fork_return: attaching to new child pid %d: oppid %d",
1096			    p->p_pid, p->p_oppid);
1097			proc_reparent(p, dbg);
1098			sx_xunlock(&proctree_lock);
1099			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1100			ptracestop(td, SIGSTOP, NULL);
1101			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1102		} else {
1103			/*
1104			 * ... otherwise clear the request.
1105			 */
1106			sx_xunlock(&proctree_lock);
1107			td->td_dbgflags &= ~TDB_STOPATFORK;
1108			cv_broadcast(&p->p_dbgwait);
1109		}
1110		PROC_UNLOCK(p);
1111	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1112 		/*
1113		 * This is the start of a new thread in a traced
1114		 * process.  Report a system call exit event.
1115		 */
1116		PROC_LOCK(p);
1117		td->td_dbgflags |= TDB_SCX;
1118		_STOPEVENT(p, S_SCX, td->td_sa.code);
1119		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1120		    (td->td_dbgflags & TDB_BORN) != 0)
1121			ptracestop(td, SIGTRAP, NULL);
1122		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1123		PROC_UNLOCK(p);
1124	}
1125
1126	userret(td, frame);
1127
1128#ifdef KTRACE
1129	if (KTRPOINT(td, KTR_SYSRET))
1130		ktrsysret(SYS_fork, 0, 0);
1131#endif
1132}
1133