vm86.c revision 331722
1/*-
2 * Copyright (c) 1997 Jonathan Lemon
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/i386/i386/vm86.c 331722 2018-03-29 02:50:57Z eadler $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/priv.h>
33#include <sys/proc.h>
34#include <sys/lock.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37
38#include <vm/vm.h>
39#include <vm/pmap.h>
40#include <vm/vm_map.h>
41#include <vm/vm_page.h>
42
43#include <machine/md_var.h>
44#include <machine/pcb.h>
45#include <machine/pcb_ext.h>
46#include <machine/psl.h>
47#include <machine/specialreg.h>
48#include <machine/sysarch.h>
49
50extern int vm86pa;
51extern struct pcb *vm86pcb;
52
53static struct mtx vm86_lock;
54
55extern int vm86_bioscall(struct vm86frame *);
56extern void vm86_biosret(struct vm86frame *);
57
58void vm86_prepcall(struct vm86frame *);
59
60struct system_map {
61	int		type;
62	vm_offset_t	start;
63	vm_offset_t	end;
64};
65
66#define	HLT	0xf4
67#define	CLI	0xfa
68#define	STI	0xfb
69#define	PUSHF	0x9c
70#define	POPF	0x9d
71#define	INTn	0xcd
72#define	IRET	0xcf
73#define	CALLm	0xff
74#define OPERAND_SIZE_PREFIX	0x66
75#define ADDRESS_SIZE_PREFIX	0x67
76#define PUSH_MASK	~(PSL_VM | PSL_RF | PSL_I)
77#define POP_MASK	~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)
78
79static __inline caddr_t
80MAKE_ADDR(u_short sel, u_short off)
81{
82	return ((caddr_t)((sel << 4) + off));
83}
84
85static __inline void
86GET_VEC(u_int vec, u_short *sel, u_short *off)
87{
88	*sel = vec >> 16;
89	*off = vec & 0xffff;
90}
91
92static __inline u_int
93MAKE_VEC(u_short sel, u_short off)
94{
95	return ((sel << 16) | off);
96}
97
98static __inline void
99PUSH(u_short x, struct vm86frame *vmf)
100{
101	vmf->vmf_sp -= 2;
102	suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
103}
104
105static __inline void
106PUSHL(u_int x, struct vm86frame *vmf)
107{
108	vmf->vmf_sp -= 4;
109	suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
110}
111
112static __inline u_short
113POP(struct vm86frame *vmf)
114{
115	u_short x = fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
116
117	vmf->vmf_sp += 2;
118	return (x);
119}
120
121static __inline u_int
122POPL(struct vm86frame *vmf)
123{
124	u_int x = fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));
125
126	vmf->vmf_sp += 4;
127	return (x);
128}
129
130int
131vm86_emulate(vmf)
132	struct vm86frame *vmf;
133{
134	struct vm86_kernel *vm86;
135	caddr_t addr;
136	u_char i_byte;
137	u_int temp_flags;
138	int inc_ip = 1;
139	int retcode = 0;
140
141	/*
142	 * pcb_ext contains the address of the extension area, or zero if
143	 * the extension is not present.  (This check should not be needed,
144	 * as we can't enter vm86 mode until we set up an extension area)
145	 */
146	if (curpcb->pcb_ext == 0)
147		return (SIGBUS);
148	vm86 = &curpcb->pcb_ext->ext_vm86;
149
150	if (vmf->vmf_eflags & PSL_T)
151		retcode = SIGTRAP;
152
153	addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
154	i_byte = fubyte(addr);
155	if (i_byte == ADDRESS_SIZE_PREFIX) {
156		i_byte = fubyte(++addr);
157		inc_ip++;
158	}
159
160	if (vm86->vm86_has_vme) {
161		switch (i_byte) {
162		case OPERAND_SIZE_PREFIX:
163			i_byte = fubyte(++addr);
164			inc_ip++;
165			switch (i_byte) {
166			case PUSHF:
167				if (vmf->vmf_eflags & PSL_VIF)
168					PUSHL((vmf->vmf_eflags & PUSH_MASK)
169					    | PSL_IOPL | PSL_I, vmf);
170				else
171					PUSHL((vmf->vmf_eflags & PUSH_MASK)
172					    | PSL_IOPL, vmf);
173				vmf->vmf_ip += inc_ip;
174				return (retcode);
175
176			case POPF:
177				temp_flags = POPL(vmf) & POP_MASK;
178				vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
179				    | temp_flags | PSL_VM | PSL_I;
180				vmf->vmf_ip += inc_ip;
181				if (temp_flags & PSL_I) {
182					vmf->vmf_eflags |= PSL_VIF;
183					if (vmf->vmf_eflags & PSL_VIP)
184						break;
185				} else {
186					vmf->vmf_eflags &= ~PSL_VIF;
187				}
188				return (retcode);
189			}
190			break;
191
192		/* VME faults here if VIP is set, but does not set VIF. */
193		case STI:
194			vmf->vmf_eflags |= PSL_VIF;
195			vmf->vmf_ip += inc_ip;
196			if ((vmf->vmf_eflags & PSL_VIP) == 0) {
197				uprintf("fatal sti\n");
198				return (SIGKILL);
199			}
200			break;
201
202		/* VME if no redirection support */
203		case INTn:
204			break;
205
206		/* VME if trying to set PSL_T, or PSL_I when VIP is set */
207		case POPF:
208			temp_flags = POP(vmf) & POP_MASK;
209			vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
210			    | temp_flags | PSL_VM | PSL_I;
211			vmf->vmf_ip += inc_ip;
212			if (temp_flags & PSL_I) {
213				vmf->vmf_eflags |= PSL_VIF;
214				if (vmf->vmf_eflags & PSL_VIP)
215					break;
216			} else {
217				vmf->vmf_eflags &= ~PSL_VIF;
218			}
219			return (retcode);
220
221		/* VME if trying to set PSL_T, or PSL_I when VIP is set */
222		case IRET:
223			vmf->vmf_ip = POP(vmf);
224			vmf->vmf_cs = POP(vmf);
225			temp_flags = POP(vmf) & POP_MASK;
226			vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
227			    | temp_flags | PSL_VM | PSL_I;
228			if (temp_flags & PSL_I) {
229				vmf->vmf_eflags |= PSL_VIF;
230				if (vmf->vmf_eflags & PSL_VIP)
231					break;
232			} else {
233				vmf->vmf_eflags &= ~PSL_VIF;
234			}
235			return (retcode);
236
237		}
238		return (SIGBUS);
239	}
240
241	switch (i_byte) {
242	case OPERAND_SIZE_PREFIX:
243		i_byte = fubyte(++addr);
244		inc_ip++;
245		switch (i_byte) {
246		case PUSHF:
247			if (vm86->vm86_eflags & PSL_VIF)
248				PUSHL((vmf->vmf_flags & PUSH_MASK)
249				    | PSL_IOPL | PSL_I, vmf);
250			else
251				PUSHL((vmf->vmf_flags & PUSH_MASK)
252				    | PSL_IOPL, vmf);
253			vmf->vmf_ip += inc_ip;
254			return (retcode);
255
256		case POPF:
257			temp_flags = POPL(vmf) & POP_MASK;
258			vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
259			    | temp_flags | PSL_VM | PSL_I;
260			vmf->vmf_ip += inc_ip;
261			if (temp_flags & PSL_I) {
262				vm86->vm86_eflags |= PSL_VIF;
263				if (vm86->vm86_eflags & PSL_VIP)
264					break;
265			} else {
266				vm86->vm86_eflags &= ~PSL_VIF;
267			}
268			return (retcode);
269		}
270		return (SIGBUS);
271
272	case CLI:
273		vm86->vm86_eflags &= ~PSL_VIF;
274		vmf->vmf_ip += inc_ip;
275		return (retcode);
276
277	case STI:
278		/* if there is a pending interrupt, go to the emulator */
279		vm86->vm86_eflags |= PSL_VIF;
280		vmf->vmf_ip += inc_ip;
281		if (vm86->vm86_eflags & PSL_VIP)
282			break;
283		return (retcode);
284
285	case PUSHF:
286		if (vm86->vm86_eflags & PSL_VIF)
287			PUSH((vmf->vmf_flags & PUSH_MASK)
288			    | PSL_IOPL | PSL_I, vmf);
289		else
290			PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
291		vmf->vmf_ip += inc_ip;
292		return (retcode);
293
294	case INTn:
295		i_byte = fubyte(addr + 1);
296		if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
297			break;
298		if (vm86->vm86_eflags & PSL_VIF)
299			PUSH((vmf->vmf_flags & PUSH_MASK)
300			    | PSL_IOPL | PSL_I, vmf);
301		else
302			PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
303		PUSH(vmf->vmf_cs, vmf);
304		PUSH(vmf->vmf_ip + inc_ip + 1, vmf);	/* increment IP */
305		GET_VEC(fuword((caddr_t)(i_byte * 4)),
306		     &vmf->vmf_cs, &vmf->vmf_ip);
307		vmf->vmf_flags &= ~PSL_T;
308		vm86->vm86_eflags &= ~PSL_VIF;
309		return (retcode);
310
311	case IRET:
312		vmf->vmf_ip = POP(vmf);
313		vmf->vmf_cs = POP(vmf);
314		temp_flags = POP(vmf) & POP_MASK;
315		vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
316		    | temp_flags | PSL_VM | PSL_I;
317		if (temp_flags & PSL_I) {
318			vm86->vm86_eflags |= PSL_VIF;
319			if (vm86->vm86_eflags & PSL_VIP)
320				break;
321		} else {
322			vm86->vm86_eflags &= ~PSL_VIF;
323		}
324		return (retcode);
325
326	case POPF:
327		temp_flags = POP(vmf) & POP_MASK;
328		vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
329		    | temp_flags | PSL_VM | PSL_I;
330		vmf->vmf_ip += inc_ip;
331		if (temp_flags & PSL_I) {
332			vm86->vm86_eflags |= PSL_VIF;
333			if (vm86->vm86_eflags & PSL_VIP)
334				break;
335		} else {
336			vm86->vm86_eflags &= ~PSL_VIF;
337		}
338		return (retcode);
339	}
340	return (SIGBUS);
341}
342
343#define PGTABLE_SIZE	((1024 + 64) * 1024 / PAGE_SIZE)
344#define INTMAP_SIZE	32
345#define IOMAP_SIZE	ctob(IOPAGES)
346#define TSS_SIZE \
347	(sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
348	 INTMAP_SIZE + IOMAP_SIZE + 1)
349
350struct vm86_layout {
351	pt_entry_t	vml_pgtbl[PGTABLE_SIZE];
352	struct 	pcb vml_pcb;
353	struct	pcb_ext vml_ext;
354	char	vml_intmap[INTMAP_SIZE];
355	char	vml_iomap[IOMAP_SIZE];
356	char	vml_iomap_trailer;
357};
358
359void
360vm86_initialize(void)
361{
362	int i;
363	u_int *addr;
364	struct vm86_layout *vml = (struct vm86_layout *)vm86paddr;
365	struct pcb *pcb;
366	struct pcb_ext *ext;
367	struct soft_segment_descriptor ssd = {
368		0,			/* segment base address (overwritten) */
369		0,			/* length (overwritten) */
370		SDT_SYS386TSS,		/* segment type */
371		0,			/* priority level */
372		1,			/* descriptor present */
373		0, 0,
374		0,			/* default 16 size */
375		0			/* granularity */
376	};
377
378	/*
379	 * this should be a compile time error, but cpp doesn't grok sizeof().
380	 */
381	if (sizeof(struct vm86_layout) > ctob(3))
382		panic("struct vm86_layout exceeds space allocated in locore.s");
383
384	/*
385	 * Below is the memory layout that we use for the vm86 region.
386	 *
387	 * +--------+
388	 * |        |
389	 * |        |
390	 * | page 0 |
391	 * |        | +--------+
392	 * |        | | stack  |
393	 * +--------+ +--------+ <--------- vm86paddr
394	 * |        | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
395	 * |        | +--------+
396	 * |        | |  PCB   | size: ~240 bytes
397	 * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
398	 * |        | +--------+
399	 * |        | |int map |
400	 * |        | +--------+
401	 * +--------+ |        |
402	 * | page 2 | |  I/O   |
403	 * +--------+ | bitmap |
404	 * | page 3 | |        |
405	 * |        | +--------+
406	 * +--------+
407	 */
408
409	/*
410	 * A rudimentary PCB must be installed, in order to get to the
411	 * PCB extension area.  We use the PCB area as a scratchpad for
412	 * data storage, the layout of which is shown below.
413	 *
414	 * pcb_esi	= new PTD entry 0
415	 * pcb_ebp	= pointer to frame on vm86 stack
416	 * pcb_esp	=    stack frame pointer at time of switch
417	 * pcb_ebx	= va of vm86 page table
418	 * pcb_eip	=    argument pointer to initial call
419	 * pcb_vm86[0]	=    saved TSS descriptor, word 0
420	 * pcb_vm86[1]	=    saved TSS descriptor, word 1
421	 */
422#define new_ptd		pcb_esi
423#define vm86_frame	pcb_ebp
424#define pgtable_va	pcb_ebx
425
426	pcb = &vml->vml_pcb;
427	ext = &vml->vml_ext;
428
429	mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);
430
431	bzero(pcb, sizeof(struct pcb));
432	pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
433	pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
434	pcb->pgtable_va = vm86paddr;
435	pcb->pcb_flags = PCB_VM86CALL;
436	pcb->pcb_ext = ext;
437
438	bzero(ext, sizeof(struct pcb_ext));
439	ext->ext_tss.tss_esp0 = vm86paddr;
440	ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
441	ext->ext_tss.tss_ioopt =
442		((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
443	ext->ext_iomap = vml->vml_iomap;
444	ext->ext_vm86.vm86_intmap = vml->vml_intmap;
445
446	if (cpu_feature & CPUID_VME)
447		ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
448
449	addr = (u_int *)ext->ext_vm86.vm86_intmap;
450	for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
451		*addr++ = 0;
452	vml->vml_iomap_trailer = 0xff;
453
454	ssd.ssd_base = (u_int)&ext->ext_tss;
455	ssd.ssd_limit = TSS_SIZE - 1;
456	ssdtosd(&ssd, &ext->ext_tssd);
457
458	vm86pcb = pcb;
459
460#if 0
461        /*
462         * use whatever is leftover of the vm86 page layout as a
463         * message buffer so we can capture early output.
464         */
465        msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
466            ctob(3) - sizeof(struct vm86_layout));
467#endif
468}
469
470vm_offset_t
471vm86_getpage(struct vm86context *vmc, int pagenum)
472{
473	int i;
474
475	for (i = 0; i < vmc->npages; i++)
476		if (vmc->pmap[i].pte_num == pagenum)
477			return (vmc->pmap[i].kva);
478	return (0);
479}
480
481vm_offset_t
482vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
483{
484	int i, flags = 0;
485
486	for (i = 0; i < vmc->npages; i++)
487		if (vmc->pmap[i].pte_num == pagenum)
488			goto overlap;
489
490	if (vmc->npages == VM86_PMAPSIZE)
491		goto full;			/* XXX grow map? */
492
493	if (kva == 0) {
494		kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
495		flags = VMAP_MALLOC;
496	}
497
498	i = vmc->npages++;
499	vmc->pmap[i].flags = flags;
500	vmc->pmap[i].kva = kva;
501	vmc->pmap[i].pte_num = pagenum;
502	return (kva);
503overlap:
504	panic("vm86_addpage: overlap");
505full:
506	panic("vm86_addpage: not enough room");
507}
508
509/*
510 * called from vm86_bioscall, while in vm86 address space, to finalize setup.
511 */
512void
513vm86_prepcall(struct vm86frame *vmf)
514{
515	struct vm86_kernel *vm86;
516	uint32_t *stack;
517	uint8_t *code;
518
519	code = (void *)0xa00;
520	stack = (void *)(0x1000 - 2);	/* keep aligned */
521	if ((vmf->vmf_trapno & PAGE_MASK) <= 0xff) {
522		/* interrupt call requested */
523		code[0] = INTn;
524		code[1] = vmf->vmf_trapno & 0xff;
525		code[2] = HLT;
526		vmf->vmf_ip = (uintptr_t)code;
527		vmf->vmf_cs = 0;
528	} else {
529		code[0] = HLT;
530		stack--;
531		stack[0] = MAKE_VEC(0, (uintptr_t)code);
532	}
533	vmf->vmf_sp = (uintptr_t)stack;
534	vmf->vmf_ss = 0;
535	vmf->kernel_fs = vmf->kernel_es = vmf->kernel_ds = 0;
536	vmf->vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;
537
538	vm86 = &curpcb->pcb_ext->ext_vm86;
539	if (!vm86->vm86_has_vme)
540		vm86->vm86_eflags = vmf->vmf_eflags;  /* save VIF, VIP */
541}
542
543/*
544 * vm86 trap handler; determines whether routine succeeded or not.
545 * Called while in vm86 space, returns to calling process.
546 */
547void
548vm86_trap(struct vm86frame *vmf)
549{
550	caddr_t addr;
551
552	/* "should not happen" */
553	if ((vmf->vmf_eflags & PSL_VM) == 0)
554		panic("vm86_trap called, but not in vm86 mode");
555
556	addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
557	if (*(u_char *)addr == HLT)
558		vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
559	else
560		vmf->vmf_trapno = vmf->vmf_trapno << 16;
561
562	vm86_biosret(vmf);
563}
564
565int
566vm86_intcall(int intnum, struct vm86frame *vmf)
567{
568	int retval;
569
570	if (intnum < 0 || intnum > 0xff)
571		return (EINVAL);
572
573	vmf->vmf_trapno = intnum;
574	mtx_lock(&vm86_lock);
575	critical_enter();
576	retval = vm86_bioscall(vmf);
577	critical_exit();
578	mtx_unlock(&vm86_lock);
579	return (retval);
580}
581
582/*
583 * struct vm86context contains the page table to use when making
584 * vm86 calls.  If intnum is a valid interrupt number (0-255), then
585 * the "interrupt trampoline" will be used, otherwise we use the
586 * caller's cs:ip routine.
587 */
588int
589vm86_datacall(intnum, vmf, vmc)
590	int intnum;
591	struct vm86frame *vmf;
592	struct vm86context *vmc;
593{
594	pt_entry_t *pte = (pt_entry_t *)vm86paddr;
595	vm_paddr_t page;
596	int i, entry, retval;
597
598	mtx_lock(&vm86_lock);
599	for (i = 0; i < vmc->npages; i++) {
600		page = vtophys(vmc->pmap[i].kva & PG_FRAME);
601		entry = vmc->pmap[i].pte_num;
602		vmc->pmap[i].old_pte = pte[entry];
603		pte[entry] = page | PG_V | PG_RW | PG_U;
604		pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
605	}
606
607	vmf->vmf_trapno = intnum;
608	critical_enter();
609	retval = vm86_bioscall(vmf);
610	critical_exit();
611
612	for (i = 0; i < vmc->npages; i++) {
613		entry = vmc->pmap[i].pte_num;
614		pte[entry] = vmc->pmap[i].old_pte;
615		pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
616	}
617	mtx_unlock(&vm86_lock);
618
619	return (retval);
620}
621
622vm_offset_t
623vm86_getaddr(struct vm86context *vmc, u_short sel, u_short off)
624{
625	int i, page;
626	vm_offset_t addr;
627
628	addr = (vm_offset_t)MAKE_ADDR(sel, off);
629	page = addr >> PAGE_SHIFT;
630	for (i = 0; i < vmc->npages; i++)
631		if (page == vmc->pmap[i].pte_num)
632			return (vmc->pmap[i].kva + (addr & PAGE_MASK));
633	return (0);
634}
635
636int
637vm86_getptr(vmc, kva, sel, off)
638	struct vm86context *vmc;
639	vm_offset_t kva;
640	u_short *sel;
641	u_short *off;
642{
643	int i;
644
645	for (i = 0; i < vmc->npages; i++)
646		if (kva >= vmc->pmap[i].kva &&
647		    kva < vmc->pmap[i].kva + PAGE_SIZE) {
648			*off = kva - vmc->pmap[i].kva;
649			*sel = vmc->pmap[i].pte_num << 8;
650			return (1);
651		}
652	return (0);
653}
654
655int
656vm86_sysarch(td, args)
657	struct thread *td;
658	char *args;
659{
660	int error = 0;
661	struct i386_vm86_args ua;
662	struct vm86_kernel *vm86;
663
664	if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
665		return (error);
666
667	if (td->td_pcb->pcb_ext == 0)
668		if ((error = i386_extend_pcb(td)) != 0)
669			return (error);
670	vm86 = &td->td_pcb->pcb_ext->ext_vm86;
671
672	switch (ua.sub_op) {
673	case VM86_INIT: {
674		struct vm86_init_args sa;
675
676		if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
677			return (error);
678		if (cpu_feature & CPUID_VME)
679			vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
680		else
681			vm86->vm86_has_vme = 0;
682		vm86->vm86_inited = 1;
683		vm86->vm86_debug = sa.debug;
684		bcopy(&sa.int_map, vm86->vm86_intmap, 32);
685		}
686		break;
687
688#if 0
689	case VM86_SET_VME: {
690		struct vm86_vme_args sa;
691
692		if ((cpu_feature & CPUID_VME) == 0)
693			return (ENODEV);
694
695		if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
696			return (error);
697		if (sa.state)
698			load_cr4(rcr4() | CR4_VME);
699		else
700			load_cr4(rcr4() & ~CR4_VME);
701		}
702		break;
703#endif
704
705	case VM86_GET_VME: {
706		struct vm86_vme_args sa;
707
708		sa.state = (rcr4() & CR4_VME ? 1 : 0);
709        	error = copyout(&sa, ua.sub_args, sizeof(sa));
710		}
711		break;
712
713	case VM86_INTCALL: {
714		struct vm86_intcall_args sa;
715
716		if ((error = priv_check(td, PRIV_VM86_INTCALL)))
717			return (error);
718		if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
719			return (error);
720		if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
721			return (error);
722		error = copyout(&sa, ua.sub_args, sizeof(sa));
723		}
724		break;
725
726	default:
727		error = EINVAL;
728	}
729	return (error);
730}
731