pmap.c revision 328386
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/11/sys/i386/i386/pmap.c 328386 2018-01-25 02:45:21Z pkelsey $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_vm.h"
104#include "opt_xbox.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/kernel.h>
109#include <sys/ktr.h>
110#include <sys/lock.h>
111#include <sys/malloc.h>
112#include <sys/mman.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/rwlock.h>
117#include <sys/sf_buf.h>
118#include <sys/sx.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#include <sys/smp.h>
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/vm_phys.h>
134#include <vm/vm_radix.h>
135#include <vm/vm_reserv.h>
136#include <vm/uma.h>
137
138#ifdef DEV_APIC
139#include <sys/bus.h>
140#include <machine/intr_machdep.h>
141#include <x86/apicvar.h>
142#endif
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#ifndef PMAP_SHPGPERPROC
157#define PMAP_SHPGPERPROC 200
158#endif
159
160#if !defined(DIAGNOSTIC)
161#ifdef __GNUC_GNU_INLINE__
162#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
163#else
164#define PMAP_INLINE	extern inline
165#endif
166#else
167#define PMAP_INLINE
168#endif
169
170#ifdef PV_STATS
171#define PV_STAT(x)	do { x ; } while (0)
172#else
173#define PV_STAT(x)	do { } while (0)
174#endif
175
176#define	pa_index(pa)	((pa) >> PDRSHIFT)
177#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178
179/*
180 * Get PDEs and PTEs for user/kernel address space
181 */
182#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184
185#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190
191#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192    atomic_clear_int((u_int *)(pte), PG_W))
193#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194
195struct pmap kernel_pmap_store;
196LIST_HEAD(pmaplist, pmap);
197static struct pmaplist allpmaps;
198static struct mtx allpmaps_lock;
199
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt = NKPT;
206vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
207extern u_int32_t KERNend;
208extern u_int32_t KPTphys;
209
210#if defined(PAE) || defined(PAE_TABLES)
211pt_entry_t pg_nx;
212static uma_zone_t pdptzone;
213#endif
214
215static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
216
217static int pat_works = 1;
218SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
219    "Is page attribute table fully functional?");
220
221static int pg_ps_enabled = 1;
222SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
223    &pg_ps_enabled, 0, "Are large page mappings enabled?");
224
225#define	PAT_INDEX_SIZE	8
226static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
227
228/*
229 * pmap_mapdev support pre initialization (i.e. console)
230 */
231#define	PMAP_PREINIT_MAPPING_COUNT	8
232static struct pmap_preinit_mapping {
233	vm_paddr_t	pa;
234	vm_offset_t	va;
235	vm_size_t	sz;
236	int		mode;
237} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
238static int pmap_initialized;
239
240static struct rwlock_padalign pvh_global_lock;
241
242/*
243 * Data for the pv entry allocation mechanism
244 */
245static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
246static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
247static struct md_page *pv_table;
248static int shpgperproc = PMAP_SHPGPERPROC;
249
250struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
251int pv_maxchunks;			/* How many chunks we have KVA for */
252vm_offset_t pv_vafree;			/* freelist stored in the PTE */
253
254/*
255 * All those kernel PT submaps that BSD is so fond of
256 */
257pt_entry_t *CMAP3;
258static pd_entry_t *KPTD;
259caddr_t ptvmmap = 0;
260caddr_t CADDR3;
261struct msgbuf *msgbufp = NULL;
262
263/*
264 * Crashdump maps.
265 */
266static caddr_t crashdumpmap;
267
268static pt_entry_t *PMAP1 = NULL, *PMAP2;
269static pt_entry_t *PADDR1 = NULL, *PADDR2;
270#ifdef SMP
271static int PMAP1cpu;
272static int PMAP1changedcpu;
273SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
274	   &PMAP1changedcpu, 0,
275	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
276#endif
277static int PMAP1changed;
278SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
279	   &PMAP1changed, 0,
280	   "Number of times pmap_pte_quick changed PMAP1");
281static int PMAP1unchanged;
282SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
283	   &PMAP1unchanged, 0,
284	   "Number of times pmap_pte_quick didn't change PMAP1");
285static struct mtx PMAP2mutex;
286
287static void	free_pv_chunk(struct pv_chunk *pc);
288static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
289static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
290static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
291static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
292#if VM_NRESERVLEVEL > 0
293static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294#endif
295static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
296static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
297		    vm_offset_t va);
298static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
299
300static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
301static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
302    vm_prot_t prot);
303static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
304    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
305static void pmap_flush_page(vm_page_t m);
306static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
307static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
308		    pd_entry_t pde);
309static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
310static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
311static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
312static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
313static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
314static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
315#if VM_NRESERVLEVEL > 0
316static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
317#endif
318static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
319    vm_prot_t prot);
320static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
321static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
322    struct spglist *free);
323static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
324    struct spglist *free);
325static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
326static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
327    struct spglist *free);
328static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
329					vm_offset_t va);
330static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
331static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
332    vm_page_t m);
333static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
334    pd_entry_t newpde);
335static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
336
337static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
338
339static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
340static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
341static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
342static void pmap_pte_release(pt_entry_t *pte);
343static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
344#if defined(PAE) || defined(PAE_TABLES)
345static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
346    int wait);
347#endif
348static void pmap_set_pg(void);
349
350static __inline void pagezero(void *page);
351
352CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
353CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
354
355/*
356 * If you get an error here, then you set KVA_PAGES wrong! See the
357 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
358 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
359 */
360CTASSERT(KERNBASE % (1 << 24) == 0);
361
362/*
363 *	Bootstrap the system enough to run with virtual memory.
364 *
365 *	On the i386 this is called after mapping has already been enabled
366 *	and just syncs the pmap module with what has already been done.
367 *	[We can't call it easily with mapping off since the kernel is not
368 *	mapped with PA == VA, hence we would have to relocate every address
369 *	from the linked base (virtual) address "KERNBASE" to the actual
370 *	(physical) address starting relative to 0]
371 */
372void
373pmap_bootstrap(vm_paddr_t firstaddr)
374{
375	vm_offset_t va;
376	pt_entry_t *pte, *unused;
377	struct pcpu *pc;
378	int i;
379
380	/*
381	 * Add a physical memory segment (vm_phys_seg) corresponding to the
382	 * preallocated kernel page table pages so that vm_page structures
383	 * representing these pages will be created.  The vm_page structures
384	 * are required for promotion of the corresponding kernel virtual
385	 * addresses to superpage mappings.
386	 */
387	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
388
389	/*
390	 * Initialize the first available kernel virtual address.  However,
391	 * using "firstaddr" may waste a few pages of the kernel virtual
392	 * address space, because locore may not have mapped every physical
393	 * page that it allocated.  Preferably, locore would provide a first
394	 * unused virtual address in addition to "firstaddr".
395	 */
396	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
397
398	virtual_end = VM_MAX_KERNEL_ADDRESS;
399
400	/*
401	 * Initialize the kernel pmap (which is statically allocated).
402	 */
403	PMAP_LOCK_INIT(kernel_pmap);
404	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
405#if defined(PAE) || defined(PAE_TABLES)
406	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
407#endif
408	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
409	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
410
411 	/*
412	 * Initialize the global pv list lock.
413	 */
414	rw_init(&pvh_global_lock, "pmap pv global");
415
416	LIST_INIT(&allpmaps);
417
418	/*
419	 * Request a spin mutex so that changes to allpmaps cannot be
420	 * preempted by smp_rendezvous_cpus().  Otherwise,
421	 * pmap_update_pde_kernel() could access allpmaps while it is
422	 * being changed.
423	 */
424	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
425	mtx_lock_spin(&allpmaps_lock);
426	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
427	mtx_unlock_spin(&allpmaps_lock);
428
429	/*
430	 * Reserve some special page table entries/VA space for temporary
431	 * mapping of pages.
432	 */
433#define	SYSMAP(c, p, v, n)	\
434	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
435
436	va = virtual_avail;
437	pte = vtopte(va);
438
439
440	/*
441	 * Initialize temporary map objects on the current CPU for use
442	 * during early boot.
443	 * CMAP1/CMAP2 are used for zeroing and copying pages.
444	 * CMAP3 is used for the idle process page zeroing.
445	 */
446	pc = get_pcpu();
447	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
448	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
449	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
450	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
451
452	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
453
454	/*
455	 * Crashdump maps.
456	 */
457	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
458
459	/*
460	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
461	 */
462	SYSMAP(caddr_t, unused, ptvmmap, 1)
463
464	/*
465	 * msgbufp is used to map the system message buffer.
466	 */
467	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
468
469	/*
470	 * KPTmap is used by pmap_kextract().
471	 *
472	 * KPTmap is first initialized by locore.  However, that initial
473	 * KPTmap can only support NKPT page table pages.  Here, a larger
474	 * KPTmap is created that can support KVA_PAGES page table pages.
475	 */
476	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
477
478	for (i = 0; i < NKPT; i++)
479		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
480
481	/*
482	 * Adjust the start of the KPTD and KPTmap so that the implementation
483	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
484	 */
485	KPTD -= KPTDI;
486	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
487
488	/*
489	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
490	 * respectively.
491	 */
492	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
493	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
494
495	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
496
497	virtual_avail = va;
498
499	/*
500	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
501	 * physical memory region that is used by the ACPI wakeup code.  This
502	 * mapping must not have PG_G set.
503	 */
504#ifdef XBOX
505	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
506	 * an early stadium, we cannot yet neatly map video memory ... :-(
507	 * Better fixes are very welcome! */
508	if (!arch_i386_is_xbox)
509#endif
510	for (i = 1; i < NKPT; i++)
511		PTD[i] = 0;
512
513	/*
514	 * Initialize the PAT MSR if present.
515	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
516	 * side-effect, invalidates stale PG_G TLB entries that might
517	 * have been created in our pre-boot environment.  We assume
518	 * that PAT support implies PGE and in reverse, PGE presence
519	 * comes with PAT.  Both features were added for Pentium Pro.
520	 */
521	pmap_init_pat();
522
523	/* Turn on PG_G on kernel page(s) */
524	pmap_set_pg();
525}
526
527static void
528pmap_init_reserved_pages(void)
529{
530	struct pcpu *pc;
531	vm_offset_t pages;
532	int i;
533
534	CPU_FOREACH(i) {
535		pc = pcpu_find(i);
536		/*
537		 * Skip if the mapping has already been initialized,
538		 * i.e. this is the BSP.
539		 */
540		if (pc->pc_cmap_addr1 != 0)
541			continue;
542		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
543		pages = kva_alloc(PAGE_SIZE * 3);
544		if (pages == 0)
545			panic("%s: unable to allocate KVA", __func__);
546		pc->pc_cmap_pte1 = vtopte(pages);
547		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
548		pc->pc_cmap_addr1 = (caddr_t)pages;
549		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
550		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
551	}
552}
553
554SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
555
556/*
557 * Setup the PAT MSR.
558 */
559void
560pmap_init_pat(void)
561{
562	int pat_table[PAT_INDEX_SIZE];
563	uint64_t pat_msr;
564	u_long cr0, cr4;
565	int i;
566
567	/* Set default PAT index table. */
568	for (i = 0; i < PAT_INDEX_SIZE; i++)
569		pat_table[i] = -1;
570	pat_table[PAT_WRITE_BACK] = 0;
571	pat_table[PAT_WRITE_THROUGH] = 1;
572	pat_table[PAT_UNCACHEABLE] = 3;
573	pat_table[PAT_WRITE_COMBINING] = 3;
574	pat_table[PAT_WRITE_PROTECTED] = 3;
575	pat_table[PAT_UNCACHED] = 3;
576
577	/*
578	 * Bail if this CPU doesn't implement PAT.
579	 * We assume that PAT support implies PGE.
580	 */
581	if ((cpu_feature & CPUID_PAT) == 0) {
582		for (i = 0; i < PAT_INDEX_SIZE; i++)
583			pat_index[i] = pat_table[i];
584		pat_works = 0;
585		return;
586	}
587
588	/*
589	 * Due to some Intel errata, we can only safely use the lower 4
590	 * PAT entries.
591	 *
592	 *   Intel Pentium III Processor Specification Update
593	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
594	 * or Mode C Paging)
595	 *
596	 *   Intel Pentium IV  Processor Specification Update
597	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
598	 */
599	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
600	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
601		pat_works = 0;
602
603	/* Initialize default PAT entries. */
604	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
605	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
606	    PAT_VALUE(2, PAT_UNCACHED) |
607	    PAT_VALUE(3, PAT_UNCACHEABLE) |
608	    PAT_VALUE(4, PAT_WRITE_BACK) |
609	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
610	    PAT_VALUE(6, PAT_UNCACHED) |
611	    PAT_VALUE(7, PAT_UNCACHEABLE);
612
613	if (pat_works) {
614		/*
615		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
616		 * Program 5 and 6 as WP and WC.
617		 * Leave 4 and 7 as WB and UC.
618		 */
619		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
620		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
621		    PAT_VALUE(6, PAT_WRITE_COMBINING);
622		pat_table[PAT_UNCACHED] = 2;
623		pat_table[PAT_WRITE_PROTECTED] = 5;
624		pat_table[PAT_WRITE_COMBINING] = 6;
625	} else {
626		/*
627		 * Just replace PAT Index 2 with WC instead of UC-.
628		 */
629		pat_msr &= ~PAT_MASK(2);
630		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
631		pat_table[PAT_WRITE_COMBINING] = 2;
632	}
633
634	/* Disable PGE. */
635	cr4 = rcr4();
636	load_cr4(cr4 & ~CR4_PGE);
637
638	/* Disable caches (CD = 1, NW = 0). */
639	cr0 = rcr0();
640	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
641
642	/* Flushes caches and TLBs. */
643	wbinvd();
644	invltlb();
645
646	/* Update PAT and index table. */
647	wrmsr(MSR_PAT, pat_msr);
648	for (i = 0; i < PAT_INDEX_SIZE; i++)
649		pat_index[i] = pat_table[i];
650
651	/* Flush caches and TLBs again. */
652	wbinvd();
653	invltlb();
654
655	/* Restore caches and PGE. */
656	load_cr0(cr0);
657	load_cr4(cr4);
658}
659
660/*
661 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
662 */
663static void
664pmap_set_pg(void)
665{
666	pt_entry_t *pte;
667	vm_offset_t va, endva;
668
669	if (pgeflag == 0)
670		return;
671
672	endva = KERNBASE + KERNend;
673
674	if (pseflag) {
675		va = KERNBASE + KERNLOAD;
676		while (va  < endva) {
677			pdir_pde(PTD, va) |= pgeflag;
678			invltlb();	/* Flush non-PG_G entries. */
679			va += NBPDR;
680		}
681	} else {
682		va = (vm_offset_t)btext;
683		while (va < endva) {
684			pte = vtopte(va);
685			if (*pte)
686				*pte |= pgeflag;
687			invltlb();	/* Flush non-PG_G entries. */
688			va += PAGE_SIZE;
689		}
690	}
691}
692
693/*
694 * Initialize a vm_page's machine-dependent fields.
695 */
696void
697pmap_page_init(vm_page_t m)
698{
699
700	TAILQ_INIT(&m->md.pv_list);
701	m->md.pat_mode = PAT_WRITE_BACK;
702}
703
704#if defined(PAE) || defined(PAE_TABLES)
705static void *
706pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
707{
708
709	/* Inform UMA that this allocator uses kernel_map/object. */
710	*flags = UMA_SLAB_KERNEL;
711	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
712	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
713}
714#endif
715
716/*
717 * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
718 * Requirements:
719 *  - Must deal with pages in order to ensure that none of the PG_* bits
720 *    are ever set, PG_V in particular.
721 *  - Assumes we can write to ptes without pte_store() atomic ops, even
722 *    on PAE systems.  This should be ok.
723 *  - Assumes nothing will ever test these addresses for 0 to indicate
724 *    no mapping instead of correctly checking PG_V.
725 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
726 * Because PG_V is never set, there can be no mappings to invalidate.
727 */
728static vm_offset_t
729pmap_ptelist_alloc(vm_offset_t *head)
730{
731	pt_entry_t *pte;
732	vm_offset_t va;
733
734	va = *head;
735	if (va == 0)
736		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
737	pte = vtopte(va);
738	*head = *pte;
739	if (*head & PG_V)
740		panic("pmap_ptelist_alloc: va with PG_V set!");
741	*pte = 0;
742	return (va);
743}
744
745static void
746pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
747{
748	pt_entry_t *pte;
749
750	if (va & PG_V)
751		panic("pmap_ptelist_free: freeing va with PG_V set!");
752	pte = vtopte(va);
753	*pte = *head;		/* virtual! PG_V is 0 though */
754	*head = va;
755}
756
757static void
758pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
759{
760	int i;
761	vm_offset_t va;
762
763	*head = 0;
764	for (i = npages - 1; i >= 0; i--) {
765		va = (vm_offset_t)base + i * PAGE_SIZE;
766		pmap_ptelist_free(head, va);
767	}
768}
769
770
771/*
772 *	Initialize the pmap module.
773 *	Called by vm_init, to initialize any structures that the pmap
774 *	system needs to map virtual memory.
775 */
776void
777pmap_init(void)
778{
779	struct pmap_preinit_mapping *ppim;
780	vm_page_t mpte;
781	vm_size_t s;
782	int i, pv_npg;
783
784	/*
785	 * Initialize the vm page array entries for the kernel pmap's
786	 * page table pages.
787	 */
788	for (i = 0; i < NKPT; i++) {
789		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
790		KASSERT(mpte >= vm_page_array &&
791		    mpte < &vm_page_array[vm_page_array_size],
792		    ("pmap_init: page table page is out of range"));
793		mpte->pindex = i + KPTDI;
794		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
795	}
796
797	/*
798	 * Initialize the address space (zone) for the pv entries.  Set a
799	 * high water mark so that the system can recover from excessive
800	 * numbers of pv entries.
801	 */
802	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
803	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
804	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
805	pv_entry_max = roundup(pv_entry_max, _NPCPV);
806	pv_entry_high_water = 9 * (pv_entry_max / 10);
807
808	/*
809	 * If the kernel is running on a virtual machine, then it must assume
810	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
811	 * be prepared for the hypervisor changing the vendor and family that
812	 * are reported by CPUID.  Consequently, the workaround for AMD Family
813	 * 10h Erratum 383 is enabled if the processor's feature set does not
814	 * include at least one feature that is only supported by older Intel
815	 * or newer AMD processors.
816	 */
817	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
818	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
819	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
820	    AMDID2_FMA4)) == 0)
821		workaround_erratum383 = 1;
822
823	/*
824	 * Are large page mappings supported and enabled?
825	 */
826	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
827	if (pseflag == 0)
828		pg_ps_enabled = 0;
829	else if (pg_ps_enabled) {
830		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
831		    ("pmap_init: can't assign to pagesizes[1]"));
832		pagesizes[1] = NBPDR;
833	}
834
835	/*
836	 * Calculate the size of the pv head table for superpages.
837	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
838	 */
839	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
840	    PAGE_SIZE) / NBPDR + 1;
841
842	/*
843	 * Allocate memory for the pv head table for superpages.
844	 */
845	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
846	s = round_page(s);
847	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
848	    M_WAITOK | M_ZERO);
849	for (i = 0; i < pv_npg; i++)
850		TAILQ_INIT(&pv_table[i].pv_list);
851
852	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
853	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
854	if (pv_chunkbase == NULL)
855		panic("pmap_init: not enough kvm for pv chunks");
856	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
857#if defined(PAE) || defined(PAE_TABLES)
858	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
859	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
860	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
861	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
862#endif
863
864	pmap_initialized = 1;
865	if (!bootverbose)
866		return;
867	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
868		ppim = pmap_preinit_mapping + i;
869		if (ppim->va == 0)
870			continue;
871		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
872		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
873	}
874}
875
876
877SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
878	"Max number of PV entries");
879SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
880	"Page share factor per proc");
881
882static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
883    "2/4MB page mapping counters");
884
885static u_long pmap_pde_demotions;
886SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
887    &pmap_pde_demotions, 0, "2/4MB page demotions");
888
889static u_long pmap_pde_mappings;
890SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
891    &pmap_pde_mappings, 0, "2/4MB page mappings");
892
893static u_long pmap_pde_p_failures;
894SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
895    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
896
897static u_long pmap_pde_promotions;
898SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
899    &pmap_pde_promotions, 0, "2/4MB page promotions");
900
901/***************************************************
902 * Low level helper routines.....
903 ***************************************************/
904
905/*
906 * Determine the appropriate bits to set in a PTE or PDE for a specified
907 * caching mode.
908 */
909int
910pmap_cache_bits(int mode, boolean_t is_pde)
911{
912	int cache_bits, pat_flag, pat_idx;
913
914	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
915		panic("Unknown caching mode %d\n", mode);
916
917	/* The PAT bit is different for PTE's and PDE's. */
918	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
919
920	/* Map the caching mode to a PAT index. */
921	pat_idx = pat_index[mode];
922
923	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
924	cache_bits = 0;
925	if (pat_idx & 0x4)
926		cache_bits |= pat_flag;
927	if (pat_idx & 0x2)
928		cache_bits |= PG_NC_PCD;
929	if (pat_idx & 0x1)
930		cache_bits |= PG_NC_PWT;
931	return (cache_bits);
932}
933
934/*
935 * The caller is responsible for maintaining TLB consistency.
936 */
937static void
938pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
939{
940	pd_entry_t *pde;
941	pmap_t pmap;
942	boolean_t PTD_updated;
943
944	PTD_updated = FALSE;
945	mtx_lock_spin(&allpmaps_lock);
946	LIST_FOREACH(pmap, &allpmaps, pm_list) {
947		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
948		    PG_FRAME))
949			PTD_updated = TRUE;
950		pde = pmap_pde(pmap, va);
951		pde_store(pde, newpde);
952	}
953	mtx_unlock_spin(&allpmaps_lock);
954	KASSERT(PTD_updated,
955	    ("pmap_kenter_pde: current page table is not in allpmaps"));
956}
957
958/*
959 * After changing the page size for the specified virtual address in the page
960 * table, flush the corresponding entries from the processor's TLB.  Only the
961 * calling processor's TLB is affected.
962 *
963 * The calling thread must be pinned to a processor.
964 */
965static void
966pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
967{
968	u_long cr4;
969
970	if ((newpde & PG_PS) == 0)
971		/* Demotion: flush a specific 2MB page mapping. */
972		invlpg(va);
973	else if ((newpde & PG_G) == 0)
974		/*
975		 * Promotion: flush every 4KB page mapping from the TLB
976		 * because there are too many to flush individually.
977		 */
978		invltlb();
979	else {
980		/*
981		 * Promotion: flush every 4KB page mapping from the TLB,
982		 * including any global (PG_G) mappings.
983		 */
984		cr4 = rcr4();
985		load_cr4(cr4 & ~CR4_PGE);
986		/*
987		 * Although preemption at this point could be detrimental to
988		 * performance, it would not lead to an error.  PG_G is simply
989		 * ignored if CR4.PGE is clear.  Moreover, in case this block
990		 * is re-entered, the load_cr4() either above or below will
991		 * modify CR4.PGE flushing the TLB.
992		 */
993		load_cr4(cr4 | CR4_PGE);
994	}
995}
996
997void
998invltlb_glob(void)
999{
1000	uint64_t cr4;
1001
1002	if (pgeflag == 0) {
1003		invltlb();
1004	} else {
1005		cr4 = rcr4();
1006		load_cr4(cr4 & ~CR4_PGE);
1007		load_cr4(cr4 | CR4_PGE);
1008	}
1009}
1010
1011
1012#ifdef SMP
1013/*
1014 * For SMP, these functions have to use the IPI mechanism for coherence.
1015 *
1016 * N.B.: Before calling any of the following TLB invalidation functions,
1017 * the calling processor must ensure that all stores updating a non-
1018 * kernel page table are globally performed.  Otherwise, another
1019 * processor could cache an old, pre-update entry without being
1020 * invalidated.  This can happen one of two ways: (1) The pmap becomes
1021 * active on another processor after its pm_active field is checked by
1022 * one of the following functions but before a store updating the page
1023 * table is globally performed. (2) The pmap becomes active on another
1024 * processor before its pm_active field is checked but due to
1025 * speculative loads one of the following functions stills reads the
1026 * pmap as inactive on the other processor.
1027 *
1028 * The kernel page table is exempt because its pm_active field is
1029 * immutable.  The kernel page table is always active on every
1030 * processor.
1031 */
1032void
1033pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1034{
1035	cpuset_t *mask, other_cpus;
1036	u_int cpuid;
1037
1038	sched_pin();
1039	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1040		invlpg(va);
1041		mask = &all_cpus;
1042	} else {
1043		cpuid = PCPU_GET(cpuid);
1044		other_cpus = all_cpus;
1045		CPU_CLR(cpuid, &other_cpus);
1046		if (CPU_ISSET(cpuid, &pmap->pm_active))
1047			invlpg(va);
1048		CPU_AND(&other_cpus, &pmap->pm_active);
1049		mask = &other_cpus;
1050	}
1051	smp_masked_invlpg(*mask, va);
1052	sched_unpin();
1053}
1054
1055/* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1056#define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1057
1058void
1059pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1060{
1061	cpuset_t *mask, other_cpus;
1062	vm_offset_t addr;
1063	u_int cpuid;
1064
1065	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1066		pmap_invalidate_all(pmap);
1067		return;
1068	}
1069
1070	sched_pin();
1071	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1072		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1073			invlpg(addr);
1074		mask = &all_cpus;
1075	} else {
1076		cpuid = PCPU_GET(cpuid);
1077		other_cpus = all_cpus;
1078		CPU_CLR(cpuid, &other_cpus);
1079		if (CPU_ISSET(cpuid, &pmap->pm_active))
1080			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1081				invlpg(addr);
1082		CPU_AND(&other_cpus, &pmap->pm_active);
1083		mask = &other_cpus;
1084	}
1085	smp_masked_invlpg_range(*mask, sva, eva);
1086	sched_unpin();
1087}
1088
1089void
1090pmap_invalidate_all(pmap_t pmap)
1091{
1092	cpuset_t *mask, other_cpus;
1093	u_int cpuid;
1094
1095	sched_pin();
1096	if (pmap == kernel_pmap) {
1097		invltlb_glob();
1098		mask = &all_cpus;
1099	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1100		invltlb();
1101		mask = &all_cpus;
1102	} else {
1103		cpuid = PCPU_GET(cpuid);
1104		other_cpus = all_cpus;
1105		CPU_CLR(cpuid, &other_cpus);
1106		if (CPU_ISSET(cpuid, &pmap->pm_active))
1107			invltlb();
1108		CPU_AND(&other_cpus, &pmap->pm_active);
1109		mask = &other_cpus;
1110	}
1111	smp_masked_invltlb(*mask, pmap);
1112	sched_unpin();
1113}
1114
1115void
1116pmap_invalidate_cache(void)
1117{
1118
1119	sched_pin();
1120	wbinvd();
1121	smp_cache_flush();
1122	sched_unpin();
1123}
1124
1125struct pde_action {
1126	cpuset_t invalidate;	/* processors that invalidate their TLB */
1127	vm_offset_t va;
1128	pd_entry_t *pde;
1129	pd_entry_t newpde;
1130	u_int store;		/* processor that updates the PDE */
1131};
1132
1133static void
1134pmap_update_pde_kernel(void *arg)
1135{
1136	struct pde_action *act = arg;
1137	pd_entry_t *pde;
1138	pmap_t pmap;
1139
1140	if (act->store == PCPU_GET(cpuid)) {
1141
1142		/*
1143		 * Elsewhere, this operation requires allpmaps_lock for
1144		 * synchronization.  Here, it does not because it is being
1145		 * performed in the context of an all_cpus rendezvous.
1146		 */
1147		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1148			pde = pmap_pde(pmap, act->va);
1149			pde_store(pde, act->newpde);
1150		}
1151	}
1152}
1153
1154static void
1155pmap_update_pde_user(void *arg)
1156{
1157	struct pde_action *act = arg;
1158
1159	if (act->store == PCPU_GET(cpuid))
1160		pde_store(act->pde, act->newpde);
1161}
1162
1163static void
1164pmap_update_pde_teardown(void *arg)
1165{
1166	struct pde_action *act = arg;
1167
1168	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1169		pmap_update_pde_invalidate(act->va, act->newpde);
1170}
1171
1172/*
1173 * Change the page size for the specified virtual address in a way that
1174 * prevents any possibility of the TLB ever having two entries that map the
1175 * same virtual address using different page sizes.  This is the recommended
1176 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1177 * machine check exception for a TLB state that is improperly diagnosed as a
1178 * hardware error.
1179 */
1180static void
1181pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1182{
1183	struct pde_action act;
1184	cpuset_t active, other_cpus;
1185	u_int cpuid;
1186
1187	sched_pin();
1188	cpuid = PCPU_GET(cpuid);
1189	other_cpus = all_cpus;
1190	CPU_CLR(cpuid, &other_cpus);
1191	if (pmap == kernel_pmap)
1192		active = all_cpus;
1193	else
1194		active = pmap->pm_active;
1195	if (CPU_OVERLAP(&active, &other_cpus)) {
1196		act.store = cpuid;
1197		act.invalidate = active;
1198		act.va = va;
1199		act.pde = pde;
1200		act.newpde = newpde;
1201		CPU_SET(cpuid, &active);
1202		smp_rendezvous_cpus(active,
1203		    smp_no_rendezvous_barrier, pmap == kernel_pmap ?
1204		    pmap_update_pde_kernel : pmap_update_pde_user,
1205		    pmap_update_pde_teardown, &act);
1206	} else {
1207		if (pmap == kernel_pmap)
1208			pmap_kenter_pde(va, newpde);
1209		else
1210			pde_store(pde, newpde);
1211		if (CPU_ISSET(cpuid, &active))
1212			pmap_update_pde_invalidate(va, newpde);
1213	}
1214	sched_unpin();
1215}
1216#else /* !SMP */
1217/*
1218 * Normal, non-SMP, 486+ invalidation functions.
1219 * We inline these within pmap.c for speed.
1220 */
1221PMAP_INLINE void
1222pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1223{
1224
1225	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1226		invlpg(va);
1227}
1228
1229PMAP_INLINE void
1230pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1231{
1232	vm_offset_t addr;
1233
1234	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1235		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1236			invlpg(addr);
1237}
1238
1239PMAP_INLINE void
1240pmap_invalidate_all(pmap_t pmap)
1241{
1242
1243	if (pmap == kernel_pmap)
1244		invltlb_glob();
1245	else if (!CPU_EMPTY(&pmap->pm_active))
1246		invltlb();
1247}
1248
1249PMAP_INLINE void
1250pmap_invalidate_cache(void)
1251{
1252
1253	wbinvd();
1254}
1255
1256static void
1257pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1258{
1259
1260	if (pmap == kernel_pmap)
1261		pmap_kenter_pde(va, newpde);
1262	else
1263		pde_store(pde, newpde);
1264	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1265		pmap_update_pde_invalidate(va, newpde);
1266}
1267#endif /* !SMP */
1268
1269static void
1270pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1271{
1272
1273	/*
1274	 * When the PDE has PG_PROMOTED set, the 2- or 4MB page mapping was
1275	 * created by a promotion that did not invalidate the 512 or 1024 4KB
1276	 * page mappings that might exist in the TLB.  Consequently, at this
1277	 * point, the TLB may hold both 4KB and 2- or 4MB page mappings for
1278	 * the address range [va, va + NBPDR).  Therefore, the entire range
1279	 * must be invalidated here.  In contrast, when PG_PROMOTED is clear,
1280	 * the TLB will not hold any 4KB page mappings for the address range
1281	 * [va, va + NBPDR), and so a single INVLPG suffices to invalidate the
1282	 * 2- or 4MB page mapping from the TLB.
1283	 */
1284	if ((pde & PG_PROMOTED) != 0)
1285		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
1286	else
1287		pmap_invalidate_page(pmap, va);
1288}
1289
1290#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1291
1292void
1293pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1294{
1295
1296	if (force) {
1297		sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
1298	} else {
1299		KASSERT((sva & PAGE_MASK) == 0,
1300		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1301		KASSERT((eva & PAGE_MASK) == 0,
1302		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1303	}
1304
1305	if ((cpu_feature & CPUID_SS) != 0 && !force)
1306		; /* If "Self Snoop" is supported and allowed, do nothing. */
1307	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
1308	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1309#ifdef DEV_APIC
1310		/*
1311		 * XXX: Some CPUs fault, hang, or trash the local APIC
1312		 * registers if we use CLFLUSH on the local APIC
1313		 * range.  The local APIC is always uncached, so we
1314		 * don't need to flush for that range anyway.
1315		 */
1316		if (pmap_kextract(sva) == lapic_paddr)
1317			return;
1318#endif
1319		/*
1320		 * Otherwise, do per-cache line flush.  Use the sfence
1321		 * instruction to insure that previous stores are
1322		 * included in the write-back.  The processor
1323		 * propagates flush to other processors in the cache
1324		 * coherence domain.
1325		 */
1326		sfence();
1327		for (; sva < eva; sva += cpu_clflush_line_size)
1328			clflushopt(sva);
1329		sfence();
1330	} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1331	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1332#ifdef DEV_APIC
1333		if (pmap_kextract(sva) == lapic_paddr)
1334			return;
1335#endif
1336		/*
1337		 * Writes are ordered by CLFLUSH on Intel CPUs.
1338		 */
1339		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1340			mfence();
1341		for (; sva < eva; sva += cpu_clflush_line_size)
1342			clflush(sva);
1343		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1344			mfence();
1345	} else {
1346
1347		/*
1348		 * No targeted cache flush methods are supported by CPU,
1349		 * or the supplied range is bigger than 2MB.
1350		 * Globally invalidate cache.
1351		 */
1352		pmap_invalidate_cache();
1353	}
1354}
1355
1356void
1357pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1358{
1359	int i;
1360
1361	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1362	    (cpu_feature & CPUID_CLFSH) == 0) {
1363		pmap_invalidate_cache();
1364	} else {
1365		for (i = 0; i < count; i++)
1366			pmap_flush_page(pages[i]);
1367	}
1368}
1369
1370/*
1371 * Are we current address space or kernel?
1372 */
1373static __inline int
1374pmap_is_current(pmap_t pmap)
1375{
1376
1377	return (pmap == kernel_pmap || pmap ==
1378	    vmspace_pmap(curthread->td_proc->p_vmspace));
1379}
1380
1381/*
1382 * If the given pmap is not the current or kernel pmap, the returned pte must
1383 * be released by passing it to pmap_pte_release().
1384 */
1385pt_entry_t *
1386pmap_pte(pmap_t pmap, vm_offset_t va)
1387{
1388	pd_entry_t newpf;
1389	pd_entry_t *pde;
1390
1391	pde = pmap_pde(pmap, va);
1392	if (*pde & PG_PS)
1393		return (pde);
1394	if (*pde != 0) {
1395		/* are we current address space or kernel? */
1396		if (pmap_is_current(pmap))
1397			return (vtopte(va));
1398		mtx_lock(&PMAP2mutex);
1399		newpf = *pde & PG_FRAME;
1400		if ((*PMAP2 & PG_FRAME) != newpf) {
1401			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1402			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1403		}
1404		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1405	}
1406	return (NULL);
1407}
1408
1409/*
1410 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1411 * being NULL.
1412 */
1413static __inline void
1414pmap_pte_release(pt_entry_t *pte)
1415{
1416
1417	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1418		mtx_unlock(&PMAP2mutex);
1419}
1420
1421/*
1422 * NB:  The sequence of updating a page table followed by accesses to the
1423 * corresponding pages is subject to the situation described in the "AMD64
1424 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1425 * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1426 * right after modifying the PTE bits is crucial.
1427 */
1428static __inline void
1429invlcaddr(void *caddr)
1430{
1431
1432	invlpg((u_int)caddr);
1433}
1434
1435/*
1436 * Super fast pmap_pte routine best used when scanning
1437 * the pv lists.  This eliminates many coarse-grained
1438 * invltlb calls.  Note that many of the pv list
1439 * scans are across different pmaps.  It is very wasteful
1440 * to do an entire invltlb for checking a single mapping.
1441 *
1442 * If the given pmap is not the current pmap, pvh_global_lock
1443 * must be held and curthread pinned to a CPU.
1444 */
1445static pt_entry_t *
1446pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1447{
1448	pd_entry_t newpf;
1449	pd_entry_t *pde;
1450
1451	pde = pmap_pde(pmap, va);
1452	if (*pde & PG_PS)
1453		return (pde);
1454	if (*pde != 0) {
1455		/* are we current address space or kernel? */
1456		if (pmap_is_current(pmap))
1457			return (vtopte(va));
1458		rw_assert(&pvh_global_lock, RA_WLOCKED);
1459		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1460		newpf = *pde & PG_FRAME;
1461		if ((*PMAP1 & PG_FRAME) != newpf) {
1462			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1463#ifdef SMP
1464			PMAP1cpu = PCPU_GET(cpuid);
1465#endif
1466			invlcaddr(PADDR1);
1467			PMAP1changed++;
1468		} else
1469#ifdef SMP
1470		if (PMAP1cpu != PCPU_GET(cpuid)) {
1471			PMAP1cpu = PCPU_GET(cpuid);
1472			invlcaddr(PADDR1);
1473			PMAP1changedcpu++;
1474		} else
1475#endif
1476			PMAP1unchanged++;
1477		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1478	}
1479	return (0);
1480}
1481
1482/*
1483 *	Routine:	pmap_extract
1484 *	Function:
1485 *		Extract the physical page address associated
1486 *		with the given map/virtual_address pair.
1487 */
1488vm_paddr_t
1489pmap_extract(pmap_t pmap, vm_offset_t va)
1490{
1491	vm_paddr_t rtval;
1492	pt_entry_t *pte;
1493	pd_entry_t pde;
1494
1495	rtval = 0;
1496	PMAP_LOCK(pmap);
1497	pde = pmap->pm_pdir[va >> PDRSHIFT];
1498	if (pde != 0) {
1499		if ((pde & PG_PS) != 0)
1500			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1501		else {
1502			pte = pmap_pte(pmap, va);
1503			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1504			pmap_pte_release(pte);
1505		}
1506	}
1507	PMAP_UNLOCK(pmap);
1508	return (rtval);
1509}
1510
1511/*
1512 *	Routine:	pmap_extract_and_hold
1513 *	Function:
1514 *		Atomically extract and hold the physical page
1515 *		with the given pmap and virtual address pair
1516 *		if that mapping permits the given protection.
1517 */
1518vm_page_t
1519pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1520{
1521	pd_entry_t pde;
1522	pt_entry_t pte, *ptep;
1523	vm_page_t m;
1524	vm_paddr_t pa;
1525
1526	pa = 0;
1527	m = NULL;
1528	PMAP_LOCK(pmap);
1529retry:
1530	pde = *pmap_pde(pmap, va);
1531	if (pde != 0) {
1532		if (pde & PG_PS) {
1533			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1534				if (vm_page_pa_tryrelock(pmap, (pde &
1535				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1536					goto retry;
1537				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1538				    (va & PDRMASK));
1539				vm_page_hold(m);
1540			}
1541		} else {
1542			ptep = pmap_pte(pmap, va);
1543			pte = *ptep;
1544			pmap_pte_release(ptep);
1545			if (pte != 0 &&
1546			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1547				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1548				    &pa))
1549					goto retry;
1550				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1551				vm_page_hold(m);
1552			}
1553		}
1554	}
1555	PA_UNLOCK_COND(pa);
1556	PMAP_UNLOCK(pmap);
1557	return (m);
1558}
1559
1560/***************************************************
1561 * Low level mapping routines.....
1562 ***************************************************/
1563
1564/*
1565 * Add a wired page to the kva.
1566 * Note: not SMP coherent.
1567 *
1568 * This function may be used before pmap_bootstrap() is called.
1569 */
1570PMAP_INLINE void
1571pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1572{
1573	pt_entry_t *pte;
1574
1575	pte = vtopte(va);
1576	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1577}
1578
1579static __inline void
1580pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1581{
1582	pt_entry_t *pte;
1583
1584	pte = vtopte(va);
1585	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1586}
1587
1588/*
1589 * Remove a page from the kernel pagetables.
1590 * Note: not SMP coherent.
1591 *
1592 * This function may be used before pmap_bootstrap() is called.
1593 */
1594PMAP_INLINE void
1595pmap_kremove(vm_offset_t va)
1596{
1597	pt_entry_t *pte;
1598
1599	pte = vtopte(va);
1600	pte_clear(pte);
1601}
1602
1603/*
1604 *	Used to map a range of physical addresses into kernel
1605 *	virtual address space.
1606 *
1607 *	The value passed in '*virt' is a suggested virtual address for
1608 *	the mapping. Architectures which can support a direct-mapped
1609 *	physical to virtual region can return the appropriate address
1610 *	within that region, leaving '*virt' unchanged. Other
1611 *	architectures should map the pages starting at '*virt' and
1612 *	update '*virt' with the first usable address after the mapped
1613 *	region.
1614 */
1615vm_offset_t
1616pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1617{
1618	vm_offset_t va, sva;
1619	vm_paddr_t superpage_offset;
1620	pd_entry_t newpde;
1621
1622	va = *virt;
1623	/*
1624	 * Does the physical address range's size and alignment permit at
1625	 * least one superpage mapping to be created?
1626	 */
1627	superpage_offset = start & PDRMASK;
1628	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1629		/*
1630		 * Increase the starting virtual address so that its alignment
1631		 * does not preclude the use of superpage mappings.
1632		 */
1633		if ((va & PDRMASK) < superpage_offset)
1634			va = (va & ~PDRMASK) + superpage_offset;
1635		else if ((va & PDRMASK) > superpage_offset)
1636			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1637	}
1638	sva = va;
1639	while (start < end) {
1640		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1641		    pseflag) {
1642			KASSERT((va & PDRMASK) == 0,
1643			    ("pmap_map: misaligned va %#x", va));
1644			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1645			pmap_kenter_pde(va, newpde);
1646			va += NBPDR;
1647			start += NBPDR;
1648		} else {
1649			pmap_kenter(va, start);
1650			va += PAGE_SIZE;
1651			start += PAGE_SIZE;
1652		}
1653	}
1654	pmap_invalidate_range(kernel_pmap, sva, va);
1655	*virt = va;
1656	return (sva);
1657}
1658
1659
1660/*
1661 * Add a list of wired pages to the kva
1662 * this routine is only used for temporary
1663 * kernel mappings that do not need to have
1664 * page modification or references recorded.
1665 * Note that old mappings are simply written
1666 * over.  The page *must* be wired.
1667 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1668 */
1669void
1670pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1671{
1672	pt_entry_t *endpte, oldpte, pa, *pte;
1673	vm_page_t m;
1674
1675	oldpte = 0;
1676	pte = vtopte(sva);
1677	endpte = pte + count;
1678	while (pte < endpte) {
1679		m = *ma++;
1680		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1681		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1682			oldpte |= *pte;
1683			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1684		}
1685		pte++;
1686	}
1687	if (__predict_false((oldpte & PG_V) != 0))
1688		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1689		    PAGE_SIZE);
1690}
1691
1692/*
1693 * This routine tears out page mappings from the
1694 * kernel -- it is meant only for temporary mappings.
1695 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1696 */
1697void
1698pmap_qremove(vm_offset_t sva, int count)
1699{
1700	vm_offset_t va;
1701
1702	va = sva;
1703	while (count-- > 0) {
1704		pmap_kremove(va);
1705		va += PAGE_SIZE;
1706	}
1707	pmap_invalidate_range(kernel_pmap, sva, va);
1708}
1709
1710/***************************************************
1711 * Page table page management routines.....
1712 ***************************************************/
1713static __inline void
1714pmap_free_zero_pages(struct spglist *free)
1715{
1716	vm_page_t m;
1717	int count;
1718
1719	for (count = 0; (m = SLIST_FIRST(free)) != NULL; count++) {
1720		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1721		/* Preserve the page's PG_ZERO setting. */
1722		vm_page_free_toq(m);
1723	}
1724	atomic_subtract_int(&vm_cnt.v_wire_count, count);
1725}
1726
1727/*
1728 * Schedule the specified unused page table page to be freed.  Specifically,
1729 * add the page to the specified list of pages that will be released to the
1730 * physical memory manager after the TLB has been updated.
1731 */
1732static __inline void
1733pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1734    boolean_t set_PG_ZERO)
1735{
1736
1737	if (set_PG_ZERO)
1738		m->flags |= PG_ZERO;
1739	else
1740		m->flags &= ~PG_ZERO;
1741	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1742}
1743
1744/*
1745 * Inserts the specified page table page into the specified pmap's collection
1746 * of idle page table pages.  Each of a pmap's page table pages is responsible
1747 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1748 * ordered by this virtual address range.
1749 */
1750static __inline int
1751pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1752{
1753
1754	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1755	return (vm_radix_insert(&pmap->pm_root, mpte));
1756}
1757
1758/*
1759 * Removes the page table page mapping the specified virtual address from the
1760 * specified pmap's collection of idle page table pages, and returns it.
1761 * Otherwise, returns NULL if there is no page table page corresponding to the
1762 * specified virtual address.
1763 */
1764static __inline vm_page_t
1765pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1766{
1767
1768	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1769	return (vm_radix_remove(&pmap->pm_root, va >> PDRSHIFT));
1770}
1771
1772/*
1773 * Decrements a page table page's wire count, which is used to record the
1774 * number of valid page table entries within the page.  If the wire count
1775 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1776 * page table page was unmapped and FALSE otherwise.
1777 */
1778static inline boolean_t
1779pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1780{
1781
1782	--m->wire_count;
1783	if (m->wire_count == 0) {
1784		_pmap_unwire_ptp(pmap, m, free);
1785		return (TRUE);
1786	} else
1787		return (FALSE);
1788}
1789
1790static void
1791_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1792{
1793	vm_offset_t pteva;
1794
1795	/*
1796	 * unmap the page table page
1797	 */
1798	pmap->pm_pdir[m->pindex] = 0;
1799	--pmap->pm_stats.resident_count;
1800
1801	/*
1802	 * Do an invltlb to make the invalidated mapping
1803	 * take effect immediately.
1804	 */
1805	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1806	pmap_invalidate_page(pmap, pteva);
1807
1808	/*
1809	 * Put page on a list so that it is released after
1810	 * *ALL* TLB shootdown is done
1811	 */
1812	pmap_add_delayed_free_list(m, free, TRUE);
1813}
1814
1815/*
1816 * After removing a page table entry, this routine is used to
1817 * conditionally free the page, and manage the hold/wire counts.
1818 */
1819static int
1820pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1821{
1822	pd_entry_t ptepde;
1823	vm_page_t mpte;
1824
1825	if (va >= VM_MAXUSER_ADDRESS)
1826		return (0);
1827	ptepde = *pmap_pde(pmap, va);
1828	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1829	return (pmap_unwire_ptp(pmap, mpte, free));
1830}
1831
1832/*
1833 * Initialize the pmap for the swapper process.
1834 */
1835void
1836pmap_pinit0(pmap_t pmap)
1837{
1838
1839	PMAP_LOCK_INIT(pmap);
1840	/*
1841	 * Since the page table directory is shared with the kernel pmap,
1842	 * which is already included in the list "allpmaps", this pmap does
1843	 * not need to be inserted into that list.
1844	 */
1845	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1846#if defined(PAE) || defined(PAE_TABLES)
1847	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1848#endif
1849	pmap->pm_root.rt_root = 0;
1850	CPU_ZERO(&pmap->pm_active);
1851	PCPU_SET(curpmap, pmap);
1852	TAILQ_INIT(&pmap->pm_pvchunk);
1853	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1854}
1855
1856/*
1857 * Initialize a preallocated and zeroed pmap structure,
1858 * such as one in a vmspace structure.
1859 */
1860int
1861pmap_pinit(pmap_t pmap)
1862{
1863	vm_page_t m, ptdpg[NPGPTD];
1864	vm_paddr_t pa;
1865	int i;
1866
1867	/*
1868	 * No need to allocate page table space yet but we do need a valid
1869	 * page directory table.
1870	 */
1871	if (pmap->pm_pdir == NULL) {
1872		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1873		if (pmap->pm_pdir == NULL)
1874			return (0);
1875#if defined(PAE) || defined(PAE_TABLES)
1876		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1877		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1878		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1879		    ("pmap_pinit: pdpt misaligned"));
1880		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1881		    ("pmap_pinit: pdpt above 4g"));
1882#endif
1883		pmap->pm_root.rt_root = 0;
1884	}
1885	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1886	    ("pmap_pinit: pmap has reserved page table page(s)"));
1887
1888	/*
1889	 * allocate the page directory page(s)
1890	 */
1891	for (i = 0; i < NPGPTD;) {
1892		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1893		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1894		if (m == NULL)
1895			VM_WAIT;
1896		else {
1897			ptdpg[i++] = m;
1898		}
1899	}
1900
1901	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1902
1903	for (i = 0; i < NPGPTD; i++)
1904		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1905			pagezero(pmap->pm_pdir + (i * NPDEPG));
1906
1907	mtx_lock_spin(&allpmaps_lock);
1908	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1909	/* Copy the kernel page table directory entries. */
1910	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1911	mtx_unlock_spin(&allpmaps_lock);
1912
1913	/* install self-referential address mapping entry(s) */
1914	for (i = 0; i < NPGPTD; i++) {
1915		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1916		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1917#if defined(PAE) || defined(PAE_TABLES)
1918		pmap->pm_pdpt[i] = pa | PG_V;
1919#endif
1920	}
1921
1922	CPU_ZERO(&pmap->pm_active);
1923	TAILQ_INIT(&pmap->pm_pvchunk);
1924	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1925
1926	return (1);
1927}
1928
1929/*
1930 * this routine is called if the page table page is not
1931 * mapped correctly.
1932 */
1933static vm_page_t
1934_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1935{
1936	vm_paddr_t ptepa;
1937	vm_page_t m;
1938
1939	/*
1940	 * Allocate a page table page.
1941	 */
1942	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1943	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1944		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1945			PMAP_UNLOCK(pmap);
1946			rw_wunlock(&pvh_global_lock);
1947			VM_WAIT;
1948			rw_wlock(&pvh_global_lock);
1949			PMAP_LOCK(pmap);
1950		}
1951
1952		/*
1953		 * Indicate the need to retry.  While waiting, the page table
1954		 * page may have been allocated.
1955		 */
1956		return (NULL);
1957	}
1958	if ((m->flags & PG_ZERO) == 0)
1959		pmap_zero_page(m);
1960
1961	/*
1962	 * Map the pagetable page into the process address space, if
1963	 * it isn't already there.
1964	 */
1965
1966	pmap->pm_stats.resident_count++;
1967
1968	ptepa = VM_PAGE_TO_PHYS(m);
1969	pmap->pm_pdir[ptepindex] =
1970		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1971
1972	return (m);
1973}
1974
1975static vm_page_t
1976pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1977{
1978	u_int ptepindex;
1979	pd_entry_t ptepa;
1980	vm_page_t m;
1981
1982	/*
1983	 * Calculate pagetable page index
1984	 */
1985	ptepindex = va >> PDRSHIFT;
1986retry:
1987	/*
1988	 * Get the page directory entry
1989	 */
1990	ptepa = pmap->pm_pdir[ptepindex];
1991
1992	/*
1993	 * This supports switching from a 4MB page to a
1994	 * normal 4K page.
1995	 */
1996	if (ptepa & PG_PS) {
1997		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1998		ptepa = pmap->pm_pdir[ptepindex];
1999	}
2000
2001	/*
2002	 * If the page table page is mapped, we just increment the
2003	 * hold count, and activate it.
2004	 */
2005	if (ptepa) {
2006		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2007		m->wire_count++;
2008	} else {
2009		/*
2010		 * Here if the pte page isn't mapped, or if it has
2011		 * been deallocated.
2012		 */
2013		m = _pmap_allocpte(pmap, ptepindex, flags);
2014		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2015			goto retry;
2016	}
2017	return (m);
2018}
2019
2020
2021/***************************************************
2022* Pmap allocation/deallocation routines.
2023 ***************************************************/
2024
2025/*
2026 * Release any resources held by the given physical map.
2027 * Called when a pmap initialized by pmap_pinit is being released.
2028 * Should only be called if the map contains no valid mappings.
2029 */
2030void
2031pmap_release(pmap_t pmap)
2032{
2033	vm_page_t m, ptdpg[NPGPTD];
2034	int i;
2035
2036	KASSERT(pmap->pm_stats.resident_count == 0,
2037	    ("pmap_release: pmap resident count %ld != 0",
2038	    pmap->pm_stats.resident_count));
2039	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2040	    ("pmap_release: pmap has reserved page table page(s)"));
2041	KASSERT(CPU_EMPTY(&pmap->pm_active),
2042	    ("releasing active pmap %p", pmap));
2043
2044	mtx_lock_spin(&allpmaps_lock);
2045	LIST_REMOVE(pmap, pm_list);
2046	mtx_unlock_spin(&allpmaps_lock);
2047
2048	for (i = 0; i < NPGPTD; i++)
2049		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2050		    PG_FRAME);
2051
2052	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2053	    sizeof(*pmap->pm_pdir));
2054
2055	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2056
2057	for (i = 0; i < NPGPTD; i++) {
2058		m = ptdpg[i];
2059#if defined(PAE) || defined(PAE_TABLES)
2060		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2061		    ("pmap_release: got wrong ptd page"));
2062#endif
2063		m->wire_count--;
2064		vm_page_free_zero(m);
2065	}
2066	atomic_subtract_int(&vm_cnt.v_wire_count, NPGPTD);
2067}
2068
2069static int
2070kvm_size(SYSCTL_HANDLER_ARGS)
2071{
2072	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2073
2074	return (sysctl_handle_long(oidp, &ksize, 0, req));
2075}
2076SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2077    0, 0, kvm_size, "IU", "Size of KVM");
2078
2079static int
2080kvm_free(SYSCTL_HANDLER_ARGS)
2081{
2082	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2083
2084	return (sysctl_handle_long(oidp, &kfree, 0, req));
2085}
2086SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2087    0, 0, kvm_free, "IU", "Amount of KVM free");
2088
2089/*
2090 * grow the number of kernel page table entries, if needed
2091 */
2092void
2093pmap_growkernel(vm_offset_t addr)
2094{
2095	vm_paddr_t ptppaddr;
2096	vm_page_t nkpg;
2097	pd_entry_t newpdir;
2098
2099	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2100	addr = roundup2(addr, NBPDR);
2101	if (addr - 1 >= kernel_map->max_offset)
2102		addr = kernel_map->max_offset;
2103	while (kernel_vm_end < addr) {
2104		if (pdir_pde(PTD, kernel_vm_end)) {
2105			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2106			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2107				kernel_vm_end = kernel_map->max_offset;
2108				break;
2109			}
2110			continue;
2111		}
2112
2113		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2114		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2115		    VM_ALLOC_ZERO);
2116		if (nkpg == NULL)
2117			panic("pmap_growkernel: no memory to grow kernel");
2118
2119		nkpt++;
2120
2121		if ((nkpg->flags & PG_ZERO) == 0)
2122			pmap_zero_page(nkpg);
2123		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2124		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2125		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2126
2127		pmap_kenter_pde(kernel_vm_end, newpdir);
2128		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2129		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2130			kernel_vm_end = kernel_map->max_offset;
2131			break;
2132		}
2133	}
2134}
2135
2136
2137/***************************************************
2138 * page management routines.
2139 ***************************************************/
2140
2141CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2142CTASSERT(_NPCM == 11);
2143CTASSERT(_NPCPV == 336);
2144
2145static __inline struct pv_chunk *
2146pv_to_chunk(pv_entry_t pv)
2147{
2148
2149	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2150}
2151
2152#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2153
2154#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2155#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2156
2157static const uint32_t pc_freemask[_NPCM] = {
2158	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2159	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2160	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2161	PC_FREE0_9, PC_FREE10
2162};
2163
2164SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2165	"Current number of pv entries");
2166
2167#ifdef PV_STATS
2168static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2169
2170SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2171	"Current number of pv entry chunks");
2172SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2173	"Current number of pv entry chunks allocated");
2174SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2175	"Current number of pv entry chunks frees");
2176SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2177	"Number of times tried to get a chunk page but failed.");
2178
2179static long pv_entry_frees, pv_entry_allocs;
2180static int pv_entry_spare;
2181
2182SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2183	"Current number of pv entry frees");
2184SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2185	"Current number of pv entry allocs");
2186SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2187	"Current number of spare pv entries");
2188#endif
2189
2190/*
2191 * We are in a serious low memory condition.  Resort to
2192 * drastic measures to free some pages so we can allocate
2193 * another pv entry chunk.
2194 */
2195static vm_page_t
2196pmap_pv_reclaim(pmap_t locked_pmap)
2197{
2198	struct pch newtail;
2199	struct pv_chunk *pc;
2200	struct md_page *pvh;
2201	pd_entry_t *pde;
2202	pmap_t pmap;
2203	pt_entry_t *pte, tpte;
2204	pv_entry_t pv;
2205	vm_offset_t va;
2206	vm_page_t m, m_pc;
2207	struct spglist free;
2208	uint32_t inuse;
2209	int bit, field, freed;
2210
2211	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2212	pmap = NULL;
2213	m_pc = NULL;
2214	SLIST_INIT(&free);
2215	TAILQ_INIT(&newtail);
2216	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2217	    SLIST_EMPTY(&free))) {
2218		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2219		if (pmap != pc->pc_pmap) {
2220			if (pmap != NULL) {
2221				pmap_invalidate_all(pmap);
2222				if (pmap != locked_pmap)
2223					PMAP_UNLOCK(pmap);
2224			}
2225			pmap = pc->pc_pmap;
2226			/* Avoid deadlock and lock recursion. */
2227			if (pmap > locked_pmap)
2228				PMAP_LOCK(pmap);
2229			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2230				pmap = NULL;
2231				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2232				continue;
2233			}
2234		}
2235
2236		/*
2237		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2238		 */
2239		freed = 0;
2240		for (field = 0; field < _NPCM; field++) {
2241			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2242			    inuse != 0; inuse &= ~(1UL << bit)) {
2243				bit = bsfl(inuse);
2244				pv = &pc->pc_pventry[field * 32 + bit];
2245				va = pv->pv_va;
2246				pde = pmap_pde(pmap, va);
2247				if ((*pde & PG_PS) != 0)
2248					continue;
2249				pte = pmap_pte(pmap, va);
2250				tpte = *pte;
2251				if ((tpte & PG_W) == 0)
2252					tpte = pte_load_clear(pte);
2253				pmap_pte_release(pte);
2254				if ((tpte & PG_W) != 0)
2255					continue;
2256				KASSERT(tpte != 0,
2257				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2258				    pmap, va));
2259				if ((tpte & PG_G) != 0)
2260					pmap_invalidate_page(pmap, va);
2261				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2262				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2263					vm_page_dirty(m);
2264				if ((tpte & PG_A) != 0)
2265					vm_page_aflag_set(m, PGA_REFERENCED);
2266				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2267				if (TAILQ_EMPTY(&m->md.pv_list) &&
2268				    (m->flags & PG_FICTITIOUS) == 0) {
2269					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2270					if (TAILQ_EMPTY(&pvh->pv_list)) {
2271						vm_page_aflag_clear(m,
2272						    PGA_WRITEABLE);
2273					}
2274				}
2275				pc->pc_map[field] |= 1UL << bit;
2276				pmap_unuse_pt(pmap, va, &free);
2277				freed++;
2278			}
2279		}
2280		if (freed == 0) {
2281			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2282			continue;
2283		}
2284		/* Every freed mapping is for a 4 KB page. */
2285		pmap->pm_stats.resident_count -= freed;
2286		PV_STAT(pv_entry_frees += freed);
2287		PV_STAT(pv_entry_spare += freed);
2288		pv_entry_count -= freed;
2289		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2290		for (field = 0; field < _NPCM; field++)
2291			if (pc->pc_map[field] != pc_freemask[field]) {
2292				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2293				    pc_list);
2294				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2295
2296				/*
2297				 * One freed pv entry in locked_pmap is
2298				 * sufficient.
2299				 */
2300				if (pmap == locked_pmap)
2301					goto out;
2302				break;
2303			}
2304		if (field == _NPCM) {
2305			PV_STAT(pv_entry_spare -= _NPCPV);
2306			PV_STAT(pc_chunk_count--);
2307			PV_STAT(pc_chunk_frees++);
2308			/* Entire chunk is free; return it. */
2309			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2310			pmap_qremove((vm_offset_t)pc, 1);
2311			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2312			break;
2313		}
2314	}
2315out:
2316	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2317	if (pmap != NULL) {
2318		pmap_invalidate_all(pmap);
2319		if (pmap != locked_pmap)
2320			PMAP_UNLOCK(pmap);
2321	}
2322	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2323		m_pc = SLIST_FIRST(&free);
2324		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2325		/* Recycle a freed page table page. */
2326		m_pc->wire_count = 1;
2327	}
2328	pmap_free_zero_pages(&free);
2329	return (m_pc);
2330}
2331
2332/*
2333 * free the pv_entry back to the free list
2334 */
2335static void
2336free_pv_entry(pmap_t pmap, pv_entry_t pv)
2337{
2338	struct pv_chunk *pc;
2339	int idx, field, bit;
2340
2341	rw_assert(&pvh_global_lock, RA_WLOCKED);
2342	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2343	PV_STAT(pv_entry_frees++);
2344	PV_STAT(pv_entry_spare++);
2345	pv_entry_count--;
2346	pc = pv_to_chunk(pv);
2347	idx = pv - &pc->pc_pventry[0];
2348	field = idx / 32;
2349	bit = idx % 32;
2350	pc->pc_map[field] |= 1ul << bit;
2351	for (idx = 0; idx < _NPCM; idx++)
2352		if (pc->pc_map[idx] != pc_freemask[idx]) {
2353			/*
2354			 * 98% of the time, pc is already at the head of the
2355			 * list.  If it isn't already, move it to the head.
2356			 */
2357			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2358			    pc)) {
2359				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2360				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2361				    pc_list);
2362			}
2363			return;
2364		}
2365	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2366	free_pv_chunk(pc);
2367}
2368
2369static void
2370free_pv_chunk(struct pv_chunk *pc)
2371{
2372	vm_page_t m;
2373
2374 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2375	PV_STAT(pv_entry_spare -= _NPCPV);
2376	PV_STAT(pc_chunk_count--);
2377	PV_STAT(pc_chunk_frees++);
2378	/* entire chunk is free, return it */
2379	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2380	pmap_qremove((vm_offset_t)pc, 1);
2381	vm_page_unwire(m, PQ_NONE);
2382	vm_page_free(m);
2383	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2384}
2385
2386/*
2387 * get a new pv_entry, allocating a block from the system
2388 * when needed.
2389 */
2390static pv_entry_t
2391get_pv_entry(pmap_t pmap, boolean_t try)
2392{
2393	static const struct timeval printinterval = { 60, 0 };
2394	static struct timeval lastprint;
2395	int bit, field;
2396	pv_entry_t pv;
2397	struct pv_chunk *pc;
2398	vm_page_t m;
2399
2400	rw_assert(&pvh_global_lock, RA_WLOCKED);
2401	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2402	PV_STAT(pv_entry_allocs++);
2403	pv_entry_count++;
2404	if (pv_entry_count > pv_entry_high_water)
2405		if (ratecheck(&lastprint, &printinterval))
2406			printf("Approaching the limit on PV entries, consider "
2407			    "increasing either the vm.pmap.shpgperproc or the "
2408			    "vm.pmap.pv_entry_max tunable.\n");
2409retry:
2410	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2411	if (pc != NULL) {
2412		for (field = 0; field < _NPCM; field++) {
2413			if (pc->pc_map[field]) {
2414				bit = bsfl(pc->pc_map[field]);
2415				break;
2416			}
2417		}
2418		if (field < _NPCM) {
2419			pv = &pc->pc_pventry[field * 32 + bit];
2420			pc->pc_map[field] &= ~(1ul << bit);
2421			/* If this was the last item, move it to tail */
2422			for (field = 0; field < _NPCM; field++)
2423				if (pc->pc_map[field] != 0) {
2424					PV_STAT(pv_entry_spare--);
2425					return (pv);	/* not full, return */
2426				}
2427			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2428			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2429			PV_STAT(pv_entry_spare--);
2430			return (pv);
2431		}
2432	}
2433	/*
2434	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2435	 * global lock.  If "pv_vafree" is currently non-empty, it will
2436	 * remain non-empty until pmap_ptelist_alloc() completes.
2437	 */
2438	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2439	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2440		if (try) {
2441			pv_entry_count--;
2442			PV_STAT(pc_chunk_tryfail++);
2443			return (NULL);
2444		}
2445		m = pmap_pv_reclaim(pmap);
2446		if (m == NULL)
2447			goto retry;
2448	}
2449	PV_STAT(pc_chunk_count++);
2450	PV_STAT(pc_chunk_allocs++);
2451	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2452	pmap_qenter((vm_offset_t)pc, &m, 1);
2453	pc->pc_pmap = pmap;
2454	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2455	for (field = 1; field < _NPCM; field++)
2456		pc->pc_map[field] = pc_freemask[field];
2457	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2458	pv = &pc->pc_pventry[0];
2459	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2460	PV_STAT(pv_entry_spare += _NPCPV - 1);
2461	return (pv);
2462}
2463
2464static __inline pv_entry_t
2465pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2466{
2467	pv_entry_t pv;
2468
2469	rw_assert(&pvh_global_lock, RA_WLOCKED);
2470	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2471		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2472			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2473			break;
2474		}
2475	}
2476	return (pv);
2477}
2478
2479static void
2480pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2481{
2482	struct md_page *pvh;
2483	pv_entry_t pv;
2484	vm_offset_t va_last;
2485	vm_page_t m;
2486
2487	rw_assert(&pvh_global_lock, RA_WLOCKED);
2488	KASSERT((pa & PDRMASK) == 0,
2489	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2490
2491	/*
2492	 * Transfer the 4mpage's pv entry for this mapping to the first
2493	 * page's pv list.
2494	 */
2495	pvh = pa_to_pvh(pa);
2496	va = trunc_4mpage(va);
2497	pv = pmap_pvh_remove(pvh, pmap, va);
2498	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2499	m = PHYS_TO_VM_PAGE(pa);
2500	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2501	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2502	va_last = va + NBPDR - PAGE_SIZE;
2503	do {
2504		m++;
2505		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2506		    ("pmap_pv_demote_pde: page %p is not managed", m));
2507		va += PAGE_SIZE;
2508		pmap_insert_entry(pmap, va, m);
2509	} while (va < va_last);
2510}
2511
2512#if VM_NRESERVLEVEL > 0
2513static void
2514pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2515{
2516	struct md_page *pvh;
2517	pv_entry_t pv;
2518	vm_offset_t va_last;
2519	vm_page_t m;
2520
2521	rw_assert(&pvh_global_lock, RA_WLOCKED);
2522	KASSERT((pa & PDRMASK) == 0,
2523	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2524
2525	/*
2526	 * Transfer the first page's pv entry for this mapping to the
2527	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2528	 * to get_pv_entry(), a transfer avoids the possibility that
2529	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2530	 * removes one of the mappings that is being promoted.
2531	 */
2532	m = PHYS_TO_VM_PAGE(pa);
2533	va = trunc_4mpage(va);
2534	pv = pmap_pvh_remove(&m->md, pmap, va);
2535	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2536	pvh = pa_to_pvh(pa);
2537	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2538	/* Free the remaining NPTEPG - 1 pv entries. */
2539	va_last = va + NBPDR - PAGE_SIZE;
2540	do {
2541		m++;
2542		va += PAGE_SIZE;
2543		pmap_pvh_free(&m->md, pmap, va);
2544	} while (va < va_last);
2545}
2546#endif /* VM_NRESERVLEVEL > 0 */
2547
2548static void
2549pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2550{
2551	pv_entry_t pv;
2552
2553	pv = pmap_pvh_remove(pvh, pmap, va);
2554	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2555	free_pv_entry(pmap, pv);
2556}
2557
2558static void
2559pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2560{
2561	struct md_page *pvh;
2562
2563	rw_assert(&pvh_global_lock, RA_WLOCKED);
2564	pmap_pvh_free(&m->md, pmap, va);
2565	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2566		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2567		if (TAILQ_EMPTY(&pvh->pv_list))
2568			vm_page_aflag_clear(m, PGA_WRITEABLE);
2569	}
2570}
2571
2572/*
2573 * Create a pv entry for page at pa for
2574 * (pmap, va).
2575 */
2576static void
2577pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2578{
2579	pv_entry_t pv;
2580
2581	rw_assert(&pvh_global_lock, RA_WLOCKED);
2582	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2583	pv = get_pv_entry(pmap, FALSE);
2584	pv->pv_va = va;
2585	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2586}
2587
2588/*
2589 * Conditionally create a pv entry.
2590 */
2591static boolean_t
2592pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2593{
2594	pv_entry_t pv;
2595
2596	rw_assert(&pvh_global_lock, RA_WLOCKED);
2597	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2598	if (pv_entry_count < pv_entry_high_water &&
2599	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2600		pv->pv_va = va;
2601		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2602		return (TRUE);
2603	} else
2604		return (FALSE);
2605}
2606
2607/*
2608 * Create the pv entries for each of the pages within a superpage.
2609 */
2610static boolean_t
2611pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2612{
2613	struct md_page *pvh;
2614	pv_entry_t pv;
2615
2616	rw_assert(&pvh_global_lock, RA_WLOCKED);
2617	if (pv_entry_count < pv_entry_high_water &&
2618	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2619		pv->pv_va = va;
2620		pvh = pa_to_pvh(pa);
2621		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2622		return (TRUE);
2623	} else
2624		return (FALSE);
2625}
2626
2627/*
2628 * Fills a page table page with mappings to consecutive physical pages.
2629 */
2630static void
2631pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2632{
2633	pt_entry_t *pte;
2634
2635	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2636		*pte = newpte;
2637		newpte += PAGE_SIZE;
2638	}
2639}
2640
2641/*
2642 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2643 * 2- or 4MB page mapping is invalidated.
2644 */
2645static boolean_t
2646pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2647{
2648	pd_entry_t newpde, oldpde;
2649	pt_entry_t *firstpte, newpte;
2650	vm_paddr_t mptepa;
2651	vm_page_t mpte;
2652	struct spglist free;
2653	vm_offset_t sva;
2654
2655	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2656	oldpde = *pde;
2657	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2658	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2659	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2660	    NULL) {
2661		KASSERT((oldpde & PG_W) == 0,
2662		    ("pmap_demote_pde: page table page for a wired mapping"
2663		    " is missing"));
2664
2665		/*
2666		 * Invalidate the 2- or 4MB page mapping and return
2667		 * "failure" if the mapping was never accessed or the
2668		 * allocation of the new page table page fails.
2669		 */
2670		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2671		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2672		    VM_ALLOC_WIRED)) == NULL) {
2673			SLIST_INIT(&free);
2674			sva = trunc_4mpage(va);
2675			pmap_remove_pde(pmap, pde, sva, &free);
2676			if ((oldpde & PG_G) == 0)
2677				pmap_invalidate_pde_page(pmap, sva, oldpde);
2678			pmap_free_zero_pages(&free);
2679			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2680			    " in pmap %p", va, pmap);
2681			return (FALSE);
2682		}
2683		if (va < VM_MAXUSER_ADDRESS)
2684			pmap->pm_stats.resident_count++;
2685	}
2686	mptepa = VM_PAGE_TO_PHYS(mpte);
2687
2688	/*
2689	 * If the page mapping is in the kernel's address space, then the
2690	 * KPTmap can provide access to the page table page.  Otherwise,
2691	 * temporarily map the page table page (mpte) into the kernel's
2692	 * address space at either PADDR1 or PADDR2.
2693	 */
2694	if (va >= KERNBASE)
2695		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2696	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2697		if ((*PMAP1 & PG_FRAME) != mptepa) {
2698			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2699#ifdef SMP
2700			PMAP1cpu = PCPU_GET(cpuid);
2701#endif
2702			invlcaddr(PADDR1);
2703			PMAP1changed++;
2704		} else
2705#ifdef SMP
2706		if (PMAP1cpu != PCPU_GET(cpuid)) {
2707			PMAP1cpu = PCPU_GET(cpuid);
2708			invlcaddr(PADDR1);
2709			PMAP1changedcpu++;
2710		} else
2711#endif
2712			PMAP1unchanged++;
2713		firstpte = PADDR1;
2714	} else {
2715		mtx_lock(&PMAP2mutex);
2716		if ((*PMAP2 & PG_FRAME) != mptepa) {
2717			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2718			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2719		}
2720		firstpte = PADDR2;
2721	}
2722	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2723	KASSERT((oldpde & PG_A) != 0,
2724	    ("pmap_demote_pde: oldpde is missing PG_A"));
2725	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2726	    ("pmap_demote_pde: oldpde is missing PG_M"));
2727	newpte = oldpde & ~PG_PS;
2728	if ((newpte & PG_PDE_PAT) != 0)
2729		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2730
2731	/*
2732	 * If the page table page is new, initialize it.
2733	 */
2734	if (mpte->wire_count == 1) {
2735		mpte->wire_count = NPTEPG;
2736		pmap_fill_ptp(firstpte, newpte);
2737	}
2738	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2739	    ("pmap_demote_pde: firstpte and newpte map different physical"
2740	    " addresses"));
2741
2742	/*
2743	 * If the mapping has changed attributes, update the page table
2744	 * entries.
2745	 */
2746	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2747		pmap_fill_ptp(firstpte, newpte);
2748
2749	/*
2750	 * Demote the mapping.  This pmap is locked.  The old PDE has
2751	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2752	 * set.  Thus, there is no danger of a race with another
2753	 * processor changing the setting of PG_A and/or PG_M between
2754	 * the read above and the store below.
2755	 */
2756	if (workaround_erratum383)
2757		pmap_update_pde(pmap, va, pde, newpde);
2758	else if (pmap == kernel_pmap)
2759		pmap_kenter_pde(va, newpde);
2760	else
2761		pde_store(pde, newpde);
2762	if (firstpte == PADDR2)
2763		mtx_unlock(&PMAP2mutex);
2764
2765	/*
2766	 * Invalidate the recursive mapping of the page table page.
2767	 */
2768	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2769
2770	/*
2771	 * Demote the pv entry.  This depends on the earlier demotion
2772	 * of the mapping.  Specifically, the (re)creation of a per-
2773	 * page pv entry might trigger the execution of pmap_collect(),
2774	 * which might reclaim a newly (re)created per-page pv entry
2775	 * and destroy the associated mapping.  In order to destroy
2776	 * the mapping, the PDE must have already changed from mapping
2777	 * the 2mpage to referencing the page table page.
2778	 */
2779	if ((oldpde & PG_MANAGED) != 0)
2780		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2781
2782	pmap_pde_demotions++;
2783	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2784	    " in pmap %p", va, pmap);
2785	return (TRUE);
2786}
2787
2788/*
2789 * Removes a 2- or 4MB page mapping from the kernel pmap.
2790 */
2791static void
2792pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2793{
2794	pd_entry_t newpde;
2795	vm_paddr_t mptepa;
2796	vm_page_t mpte;
2797
2798	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2799	mpte = pmap_remove_pt_page(pmap, va);
2800	if (mpte == NULL)
2801		panic("pmap_remove_kernel_pde: Missing pt page.");
2802
2803	mptepa = VM_PAGE_TO_PHYS(mpte);
2804	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2805
2806	/*
2807	 * Initialize the page table page.
2808	 */
2809	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2810
2811	/*
2812	 * Remove the mapping.
2813	 */
2814	if (workaround_erratum383)
2815		pmap_update_pde(pmap, va, pde, newpde);
2816	else
2817		pmap_kenter_pde(va, newpde);
2818
2819	/*
2820	 * Invalidate the recursive mapping of the page table page.
2821	 */
2822	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2823}
2824
2825/*
2826 * pmap_remove_pde: do the things to unmap a superpage in a process
2827 */
2828static void
2829pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2830    struct spglist *free)
2831{
2832	struct md_page *pvh;
2833	pd_entry_t oldpde;
2834	vm_offset_t eva, va;
2835	vm_page_t m, mpte;
2836
2837	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2838	KASSERT((sva & PDRMASK) == 0,
2839	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2840	oldpde = pte_load_clear(pdq);
2841	if (oldpde & PG_W)
2842		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2843
2844	/*
2845	 * Machines that don't support invlpg, also don't support
2846	 * PG_G.
2847	 */
2848	if ((oldpde & PG_G) != 0)
2849		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
2850
2851	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2852	if (oldpde & PG_MANAGED) {
2853		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2854		pmap_pvh_free(pvh, pmap, sva);
2855		eva = sva + NBPDR;
2856		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2857		    va < eva; va += PAGE_SIZE, m++) {
2858			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2859				vm_page_dirty(m);
2860			if (oldpde & PG_A)
2861				vm_page_aflag_set(m, PGA_REFERENCED);
2862			if (TAILQ_EMPTY(&m->md.pv_list) &&
2863			    TAILQ_EMPTY(&pvh->pv_list))
2864				vm_page_aflag_clear(m, PGA_WRITEABLE);
2865		}
2866	}
2867	if (pmap == kernel_pmap) {
2868		pmap_remove_kernel_pde(pmap, pdq, sva);
2869	} else {
2870		mpte = pmap_remove_pt_page(pmap, sva);
2871		if (mpte != NULL) {
2872			pmap->pm_stats.resident_count--;
2873			KASSERT(mpte->wire_count == NPTEPG,
2874			    ("pmap_remove_pde: pte page wire count error"));
2875			mpte->wire_count = 0;
2876			pmap_add_delayed_free_list(mpte, free, FALSE);
2877		}
2878	}
2879}
2880
2881/*
2882 * pmap_remove_pte: do the things to unmap a page in a process
2883 */
2884static int
2885pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2886    struct spglist *free)
2887{
2888	pt_entry_t oldpte;
2889	vm_page_t m;
2890
2891	rw_assert(&pvh_global_lock, RA_WLOCKED);
2892	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2893	oldpte = pte_load_clear(ptq);
2894	KASSERT(oldpte != 0,
2895	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2896	if (oldpte & PG_W)
2897		pmap->pm_stats.wired_count -= 1;
2898	/*
2899	 * Machines that don't support invlpg, also don't support
2900	 * PG_G.
2901	 */
2902	if (oldpte & PG_G)
2903		pmap_invalidate_page(kernel_pmap, va);
2904	pmap->pm_stats.resident_count -= 1;
2905	if (oldpte & PG_MANAGED) {
2906		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2907		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2908			vm_page_dirty(m);
2909		if (oldpte & PG_A)
2910			vm_page_aflag_set(m, PGA_REFERENCED);
2911		pmap_remove_entry(pmap, m, va);
2912	}
2913	return (pmap_unuse_pt(pmap, va, free));
2914}
2915
2916/*
2917 * Remove a single page from a process address space
2918 */
2919static void
2920pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2921{
2922	pt_entry_t *pte;
2923
2924	rw_assert(&pvh_global_lock, RA_WLOCKED);
2925	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2926	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2927	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2928		return;
2929	pmap_remove_pte(pmap, pte, va, free);
2930	pmap_invalidate_page(pmap, va);
2931}
2932
2933/*
2934 *	Remove the given range of addresses from the specified map.
2935 *
2936 *	It is assumed that the start and end are properly
2937 *	rounded to the page size.
2938 */
2939void
2940pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2941{
2942	vm_offset_t pdnxt;
2943	pd_entry_t ptpaddr;
2944	pt_entry_t *pte;
2945	struct spglist free;
2946	int anyvalid;
2947
2948	/*
2949	 * Perform an unsynchronized read.  This is, however, safe.
2950	 */
2951	if (pmap->pm_stats.resident_count == 0)
2952		return;
2953
2954	anyvalid = 0;
2955	SLIST_INIT(&free);
2956
2957	rw_wlock(&pvh_global_lock);
2958	sched_pin();
2959	PMAP_LOCK(pmap);
2960
2961	/*
2962	 * special handling of removing one page.  a very
2963	 * common operation and easy to short circuit some
2964	 * code.
2965	 */
2966	if ((sva + PAGE_SIZE == eva) &&
2967	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2968		pmap_remove_page(pmap, sva, &free);
2969		goto out;
2970	}
2971
2972	for (; sva < eva; sva = pdnxt) {
2973		u_int pdirindex;
2974
2975		/*
2976		 * Calculate index for next page table.
2977		 */
2978		pdnxt = (sva + NBPDR) & ~PDRMASK;
2979		if (pdnxt < sva)
2980			pdnxt = eva;
2981		if (pmap->pm_stats.resident_count == 0)
2982			break;
2983
2984		pdirindex = sva >> PDRSHIFT;
2985		ptpaddr = pmap->pm_pdir[pdirindex];
2986
2987		/*
2988		 * Weed out invalid mappings. Note: we assume that the page
2989		 * directory table is always allocated, and in kernel virtual.
2990		 */
2991		if (ptpaddr == 0)
2992			continue;
2993
2994		/*
2995		 * Check for large page.
2996		 */
2997		if ((ptpaddr & PG_PS) != 0) {
2998			/*
2999			 * Are we removing the entire large page?  If not,
3000			 * demote the mapping and fall through.
3001			 */
3002			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3003				/*
3004				 * The TLB entry for a PG_G mapping is
3005				 * invalidated by pmap_remove_pde().
3006				 */
3007				if ((ptpaddr & PG_G) == 0)
3008					anyvalid = 1;
3009				pmap_remove_pde(pmap,
3010				    &pmap->pm_pdir[pdirindex], sva, &free);
3011				continue;
3012			} else if (!pmap_demote_pde(pmap,
3013			    &pmap->pm_pdir[pdirindex], sva)) {
3014				/* The large page mapping was destroyed. */
3015				continue;
3016			}
3017		}
3018
3019		/*
3020		 * Limit our scan to either the end of the va represented
3021		 * by the current page table page, or to the end of the
3022		 * range being removed.
3023		 */
3024		if (pdnxt > eva)
3025			pdnxt = eva;
3026
3027		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3028		    sva += PAGE_SIZE) {
3029			if (*pte == 0)
3030				continue;
3031
3032			/*
3033			 * The TLB entry for a PG_G mapping is invalidated
3034			 * by pmap_remove_pte().
3035			 */
3036			if ((*pte & PG_G) == 0)
3037				anyvalid = 1;
3038			if (pmap_remove_pte(pmap, pte, sva, &free))
3039				break;
3040		}
3041	}
3042out:
3043	sched_unpin();
3044	if (anyvalid)
3045		pmap_invalidate_all(pmap);
3046	rw_wunlock(&pvh_global_lock);
3047	PMAP_UNLOCK(pmap);
3048	pmap_free_zero_pages(&free);
3049}
3050
3051/*
3052 *	Routine:	pmap_remove_all
3053 *	Function:
3054 *		Removes this physical page from
3055 *		all physical maps in which it resides.
3056 *		Reflects back modify bits to the pager.
3057 *
3058 *	Notes:
3059 *		Original versions of this routine were very
3060 *		inefficient because they iteratively called
3061 *		pmap_remove (slow...)
3062 */
3063
3064void
3065pmap_remove_all(vm_page_t m)
3066{
3067	struct md_page *pvh;
3068	pv_entry_t pv;
3069	pmap_t pmap;
3070	pt_entry_t *pte, tpte;
3071	pd_entry_t *pde;
3072	vm_offset_t va;
3073	struct spglist free;
3074
3075	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3076	    ("pmap_remove_all: page %p is not managed", m));
3077	SLIST_INIT(&free);
3078	rw_wlock(&pvh_global_lock);
3079	sched_pin();
3080	if ((m->flags & PG_FICTITIOUS) != 0)
3081		goto small_mappings;
3082	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3083	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3084		va = pv->pv_va;
3085		pmap = PV_PMAP(pv);
3086		PMAP_LOCK(pmap);
3087		pde = pmap_pde(pmap, va);
3088		(void)pmap_demote_pde(pmap, pde, va);
3089		PMAP_UNLOCK(pmap);
3090	}
3091small_mappings:
3092	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3093		pmap = PV_PMAP(pv);
3094		PMAP_LOCK(pmap);
3095		pmap->pm_stats.resident_count--;
3096		pde = pmap_pde(pmap, pv->pv_va);
3097		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3098		    " a 4mpage in page %p's pv list", m));
3099		pte = pmap_pte_quick(pmap, pv->pv_va);
3100		tpte = pte_load_clear(pte);
3101		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3102		    pmap, pv->pv_va));
3103		if (tpte & PG_W)
3104			pmap->pm_stats.wired_count--;
3105		if (tpte & PG_A)
3106			vm_page_aflag_set(m, PGA_REFERENCED);
3107
3108		/*
3109		 * Update the vm_page_t clean and reference bits.
3110		 */
3111		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3112			vm_page_dirty(m);
3113		pmap_unuse_pt(pmap, pv->pv_va, &free);
3114		pmap_invalidate_page(pmap, pv->pv_va);
3115		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3116		free_pv_entry(pmap, pv);
3117		PMAP_UNLOCK(pmap);
3118	}
3119	vm_page_aflag_clear(m, PGA_WRITEABLE);
3120	sched_unpin();
3121	rw_wunlock(&pvh_global_lock);
3122	pmap_free_zero_pages(&free);
3123}
3124
3125/*
3126 * pmap_protect_pde: do the things to protect a 4mpage in a process
3127 */
3128static boolean_t
3129pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3130{
3131	pd_entry_t newpde, oldpde;
3132	vm_offset_t eva, va;
3133	vm_page_t m;
3134	boolean_t anychanged;
3135
3136	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3137	KASSERT((sva & PDRMASK) == 0,
3138	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3139	anychanged = FALSE;
3140retry:
3141	oldpde = newpde = *pde;
3142	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
3143	    (PG_MANAGED | PG_M | PG_RW)) {
3144		eva = sva + NBPDR;
3145		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3146		    va < eva; va += PAGE_SIZE, m++)
3147			vm_page_dirty(m);
3148	}
3149	if ((prot & VM_PROT_WRITE) == 0)
3150		newpde &= ~(PG_RW | PG_M);
3151#if defined(PAE) || defined(PAE_TABLES)
3152	if ((prot & VM_PROT_EXECUTE) == 0)
3153		newpde |= pg_nx;
3154#endif
3155	if (newpde != oldpde) {
3156		/*
3157		 * As an optimization to future operations on this PDE, clear
3158		 * PG_PROMOTED.  The impending invalidation will remove any
3159		 * lingering 4KB page mappings from the TLB.
3160		 */
3161		if (!pde_cmpset(pde, oldpde, newpde & ~PG_PROMOTED))
3162			goto retry;
3163		if ((oldpde & PG_G) != 0)
3164			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
3165		else
3166			anychanged = TRUE;
3167	}
3168	return (anychanged);
3169}
3170
3171/*
3172 *	Set the physical protection on the
3173 *	specified range of this map as requested.
3174 */
3175void
3176pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3177{
3178	vm_offset_t pdnxt;
3179	pd_entry_t ptpaddr;
3180	pt_entry_t *pte;
3181	boolean_t anychanged, pv_lists_locked;
3182
3183	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3184	if (prot == VM_PROT_NONE) {
3185		pmap_remove(pmap, sva, eva);
3186		return;
3187	}
3188
3189#if defined(PAE) || defined(PAE_TABLES)
3190	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3191	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3192		return;
3193#else
3194	if (prot & VM_PROT_WRITE)
3195		return;
3196#endif
3197
3198	if (pmap_is_current(pmap))
3199		pv_lists_locked = FALSE;
3200	else {
3201		pv_lists_locked = TRUE;
3202resume:
3203		rw_wlock(&pvh_global_lock);
3204		sched_pin();
3205	}
3206	anychanged = FALSE;
3207
3208	PMAP_LOCK(pmap);
3209	for (; sva < eva; sva = pdnxt) {
3210		pt_entry_t obits, pbits;
3211		u_int pdirindex;
3212
3213		pdnxt = (sva + NBPDR) & ~PDRMASK;
3214		if (pdnxt < sva)
3215			pdnxt = eva;
3216
3217		pdirindex = sva >> PDRSHIFT;
3218		ptpaddr = pmap->pm_pdir[pdirindex];
3219
3220		/*
3221		 * Weed out invalid mappings. Note: we assume that the page
3222		 * directory table is always allocated, and in kernel virtual.
3223		 */
3224		if (ptpaddr == 0)
3225			continue;
3226
3227		/*
3228		 * Check for large page.
3229		 */
3230		if ((ptpaddr & PG_PS) != 0) {
3231			/*
3232			 * Are we protecting the entire large page?  If not,
3233			 * demote the mapping and fall through.
3234			 */
3235			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3236				/*
3237				 * The TLB entry for a PG_G mapping is
3238				 * invalidated by pmap_protect_pde().
3239				 */
3240				if (pmap_protect_pde(pmap,
3241				    &pmap->pm_pdir[pdirindex], sva, prot))
3242					anychanged = TRUE;
3243				continue;
3244			} else {
3245				if (!pv_lists_locked) {
3246					pv_lists_locked = TRUE;
3247					if (!rw_try_wlock(&pvh_global_lock)) {
3248						if (anychanged)
3249							pmap_invalidate_all(
3250							    pmap);
3251						PMAP_UNLOCK(pmap);
3252						goto resume;
3253					}
3254					sched_pin();
3255				}
3256				if (!pmap_demote_pde(pmap,
3257				    &pmap->pm_pdir[pdirindex], sva)) {
3258					/*
3259					 * The large page mapping was
3260					 * destroyed.
3261					 */
3262					continue;
3263				}
3264			}
3265		}
3266
3267		if (pdnxt > eva)
3268			pdnxt = eva;
3269
3270		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3271		    sva += PAGE_SIZE) {
3272			vm_page_t m;
3273
3274retry:
3275			/*
3276			 * Regardless of whether a pte is 32 or 64 bits in
3277			 * size, PG_RW, PG_A, and PG_M are among the least
3278			 * significant 32 bits.
3279			 */
3280			obits = pbits = *pte;
3281			if ((pbits & PG_V) == 0)
3282				continue;
3283
3284			if ((prot & VM_PROT_WRITE) == 0) {
3285				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3286				    (PG_MANAGED | PG_M | PG_RW)) {
3287					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3288					vm_page_dirty(m);
3289				}
3290				pbits &= ~(PG_RW | PG_M);
3291			}
3292#if defined(PAE) || defined(PAE_TABLES)
3293			if ((prot & VM_PROT_EXECUTE) == 0)
3294				pbits |= pg_nx;
3295#endif
3296
3297			if (pbits != obits) {
3298#if defined(PAE) || defined(PAE_TABLES)
3299				if (!atomic_cmpset_64(pte, obits, pbits))
3300					goto retry;
3301#else
3302				if (!atomic_cmpset_int((u_int *)pte, obits,
3303				    pbits))
3304					goto retry;
3305#endif
3306				if (obits & PG_G)
3307					pmap_invalidate_page(pmap, sva);
3308				else
3309					anychanged = TRUE;
3310			}
3311		}
3312	}
3313	if (anychanged)
3314		pmap_invalidate_all(pmap);
3315	if (pv_lists_locked) {
3316		sched_unpin();
3317		rw_wunlock(&pvh_global_lock);
3318	}
3319	PMAP_UNLOCK(pmap);
3320}
3321
3322#if VM_NRESERVLEVEL > 0
3323/*
3324 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3325 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3326 * For promotion to occur, two conditions must be met: (1) the 4KB page
3327 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3328 * mappings must have identical characteristics.
3329 *
3330 * Managed (PG_MANAGED) mappings within the kernel address space are not
3331 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3332 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3333 * pmap.
3334 */
3335static void
3336pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3337{
3338	pd_entry_t newpde;
3339	pt_entry_t *firstpte, oldpte, pa, *pte;
3340	vm_offset_t oldpteva;
3341	vm_page_t mpte;
3342
3343	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3344
3345	/*
3346	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3347	 * either invalid, unused, or does not map the first 4KB physical page
3348	 * within a 2- or 4MB page.
3349	 */
3350	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3351setpde:
3352	newpde = *firstpte;
3353	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3354		pmap_pde_p_failures++;
3355		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3356		    " in pmap %p", va, pmap);
3357		return;
3358	}
3359	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3360		pmap_pde_p_failures++;
3361		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3362		    " in pmap %p", va, pmap);
3363		return;
3364	}
3365	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3366		/*
3367		 * When PG_M is already clear, PG_RW can be cleared without
3368		 * a TLB invalidation.
3369		 */
3370		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3371		    ~PG_RW))
3372			goto setpde;
3373		newpde &= ~PG_RW;
3374	}
3375
3376	/*
3377	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3378	 * PTE maps an unexpected 4KB physical page or does not have identical
3379	 * characteristics to the first PTE.
3380	 */
3381	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3382	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3383setpte:
3384		oldpte = *pte;
3385		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3386			pmap_pde_p_failures++;
3387			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3388			    " in pmap %p", va, pmap);
3389			return;
3390		}
3391		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3392			/*
3393			 * When PG_M is already clear, PG_RW can be cleared
3394			 * without a TLB invalidation.
3395			 */
3396			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3397			    oldpte & ~PG_RW))
3398				goto setpte;
3399			oldpte &= ~PG_RW;
3400			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3401			    (va & ~PDRMASK);
3402			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3403			    " in pmap %p", oldpteva, pmap);
3404		}
3405		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3406			pmap_pde_p_failures++;
3407			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3408			    " in pmap %p", va, pmap);
3409			return;
3410		}
3411		pa -= PAGE_SIZE;
3412	}
3413
3414	/*
3415	 * Save the page table page in its current state until the PDE
3416	 * mapping the superpage is demoted by pmap_demote_pde() or
3417	 * destroyed by pmap_remove_pde().
3418	 */
3419	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3420	KASSERT(mpte >= vm_page_array &&
3421	    mpte < &vm_page_array[vm_page_array_size],
3422	    ("pmap_promote_pde: page table page is out of range"));
3423	KASSERT(mpte->pindex == va >> PDRSHIFT,
3424	    ("pmap_promote_pde: page table page's pindex is wrong"));
3425	if (pmap_insert_pt_page(pmap, mpte)) {
3426		pmap_pde_p_failures++;
3427		CTR2(KTR_PMAP,
3428		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3429		    pmap);
3430		return;
3431	}
3432
3433	/*
3434	 * Promote the pv entries.
3435	 */
3436	if ((newpde & PG_MANAGED) != 0)
3437		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3438
3439	/*
3440	 * Propagate the PAT index to its proper position.
3441	 */
3442	if ((newpde & PG_PTE_PAT) != 0)
3443		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3444
3445	/*
3446	 * Map the superpage.
3447	 */
3448	if (workaround_erratum383)
3449		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3450	else if (pmap == kernel_pmap)
3451		pmap_kenter_pde(va, PG_PROMOTED | PG_PS | newpde);
3452	else
3453		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
3454
3455	pmap_pde_promotions++;
3456	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3457	    " in pmap %p", va, pmap);
3458}
3459#endif /* VM_NRESERVLEVEL > 0 */
3460
3461/*
3462 *	Insert the given physical page (p) at
3463 *	the specified virtual address (v) in the
3464 *	target physical map with the protection requested.
3465 *
3466 *	If specified, the page will be wired down, meaning
3467 *	that the related pte can not be reclaimed.
3468 *
3469 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3470 *	or lose information.  That is, this routine must actually
3471 *	insert this page into the given map NOW.
3472 */
3473int
3474pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3475    u_int flags, int8_t psind)
3476{
3477	pd_entry_t *pde;
3478	pt_entry_t *pte;
3479	pt_entry_t newpte, origpte;
3480	pv_entry_t pv;
3481	vm_paddr_t opa, pa;
3482	vm_page_t mpte, om;
3483	boolean_t invlva, wired;
3484
3485	va = trunc_page(va);
3486	mpte = NULL;
3487	wired = (flags & PMAP_ENTER_WIRED) != 0;
3488
3489	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3490	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3491	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3492	    va));
3493	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3494		VM_OBJECT_ASSERT_LOCKED(m->object);
3495
3496	rw_wlock(&pvh_global_lock);
3497	PMAP_LOCK(pmap);
3498	sched_pin();
3499
3500	pde = pmap_pde(pmap, va);
3501	if (va < VM_MAXUSER_ADDRESS) {
3502		/*
3503		 * va is for UVA.
3504		 * In the case that a page table page is not resident,
3505		 * we are creating it here.  pmap_allocpte() handles
3506		 * demotion.
3507		 */
3508		mpte = pmap_allocpte(pmap, va, flags);
3509		if (mpte == NULL) {
3510			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3511			    ("pmap_allocpte failed with sleep allowed"));
3512			sched_unpin();
3513			rw_wunlock(&pvh_global_lock);
3514			PMAP_UNLOCK(pmap);
3515			return (KERN_RESOURCE_SHORTAGE);
3516		}
3517	} else {
3518		/*
3519		 * va is for KVA, so pmap_demote_pde() will never fail
3520		 * to install a page table page.  PG_V is also
3521		 * asserted by pmap_demote_pde().
3522		 */
3523		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3524		    ("KVA %#x invalid pde pdir %#jx", va,
3525		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3526		if ((*pde & PG_PS) != 0)
3527			pmap_demote_pde(pmap, pde, va);
3528	}
3529	pte = pmap_pte_quick(pmap, va);
3530
3531	/*
3532	 * Page Directory table entry is not valid, which should not
3533	 * happen.  We should have either allocated the page table
3534	 * page or demoted the existing mapping above.
3535	 */
3536	if (pte == NULL) {
3537		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3538		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3539	}
3540
3541	pa = VM_PAGE_TO_PHYS(m);
3542	om = NULL;
3543	origpte = *pte;
3544	opa = origpte & PG_FRAME;
3545
3546	/*
3547	 * Mapping has not changed, must be protection or wiring change.
3548	 */
3549	if (origpte && (opa == pa)) {
3550		/*
3551		 * Wiring change, just update stats. We don't worry about
3552		 * wiring PT pages as they remain resident as long as there
3553		 * are valid mappings in them. Hence, if a user page is wired,
3554		 * the PT page will be also.
3555		 */
3556		if (wired && ((origpte & PG_W) == 0))
3557			pmap->pm_stats.wired_count++;
3558		else if (!wired && (origpte & PG_W))
3559			pmap->pm_stats.wired_count--;
3560
3561		/*
3562		 * Remove extra pte reference
3563		 */
3564		if (mpte)
3565			mpte->wire_count--;
3566
3567		if (origpte & PG_MANAGED) {
3568			om = m;
3569			pa |= PG_MANAGED;
3570		}
3571		goto validate;
3572	}
3573
3574	pv = NULL;
3575
3576	/*
3577	 * Mapping has changed, invalidate old range and fall through to
3578	 * handle validating new mapping.
3579	 */
3580	if (opa) {
3581		if (origpte & PG_W)
3582			pmap->pm_stats.wired_count--;
3583		if (origpte & PG_MANAGED) {
3584			om = PHYS_TO_VM_PAGE(opa);
3585			pv = pmap_pvh_remove(&om->md, pmap, va);
3586		}
3587		if (mpte != NULL) {
3588			mpte->wire_count--;
3589			KASSERT(mpte->wire_count > 0,
3590			    ("pmap_enter: missing reference to page table page,"
3591			     " va: 0x%x", va));
3592		}
3593	} else
3594		pmap->pm_stats.resident_count++;
3595
3596	/*
3597	 * Enter on the PV list if part of our managed memory.
3598	 */
3599	if ((m->oflags & VPO_UNMANAGED) == 0) {
3600		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3601		    ("pmap_enter: managed mapping within the clean submap"));
3602		if (pv == NULL)
3603			pv = get_pv_entry(pmap, FALSE);
3604		pv->pv_va = va;
3605		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3606		pa |= PG_MANAGED;
3607	} else if (pv != NULL)
3608		free_pv_entry(pmap, pv);
3609
3610	/*
3611	 * Increment counters
3612	 */
3613	if (wired)
3614		pmap->pm_stats.wired_count++;
3615
3616validate:
3617	/*
3618	 * Now validate mapping with desired protection/wiring.
3619	 */
3620	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3621	if ((prot & VM_PROT_WRITE) != 0) {
3622		newpte |= PG_RW;
3623		if ((newpte & PG_MANAGED) != 0)
3624			vm_page_aflag_set(m, PGA_WRITEABLE);
3625	}
3626#if defined(PAE) || defined(PAE_TABLES)
3627	if ((prot & VM_PROT_EXECUTE) == 0)
3628		newpte |= pg_nx;
3629#endif
3630	if (wired)
3631		newpte |= PG_W;
3632	if (va < VM_MAXUSER_ADDRESS)
3633		newpte |= PG_U;
3634	if (pmap == kernel_pmap)
3635		newpte |= pgeflag;
3636
3637	/*
3638	 * if the mapping or permission bits are different, we need
3639	 * to update the pte.
3640	 */
3641	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3642		newpte |= PG_A;
3643		if ((flags & VM_PROT_WRITE) != 0)
3644			newpte |= PG_M;
3645		if (origpte & PG_V) {
3646			invlva = FALSE;
3647			origpte = pte_load_store(pte, newpte);
3648			if (origpte & PG_A) {
3649				if (origpte & PG_MANAGED)
3650					vm_page_aflag_set(om, PGA_REFERENCED);
3651				if (opa != VM_PAGE_TO_PHYS(m))
3652					invlva = TRUE;
3653#if defined(PAE) || defined(PAE_TABLES)
3654				if ((origpte & PG_NX) == 0 &&
3655				    (newpte & PG_NX) != 0)
3656					invlva = TRUE;
3657#endif
3658			}
3659			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3660				if ((origpte & PG_MANAGED) != 0)
3661					vm_page_dirty(om);
3662				if ((prot & VM_PROT_WRITE) == 0)
3663					invlva = TRUE;
3664			}
3665			if ((origpte & PG_MANAGED) != 0 &&
3666			    TAILQ_EMPTY(&om->md.pv_list) &&
3667			    ((om->flags & PG_FICTITIOUS) != 0 ||
3668			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3669				vm_page_aflag_clear(om, PGA_WRITEABLE);
3670			if (invlva)
3671				pmap_invalidate_page(pmap, va);
3672		} else
3673			pte_store(pte, newpte);
3674	}
3675
3676#if VM_NRESERVLEVEL > 0
3677	/*
3678	 * If both the page table page and the reservation are fully
3679	 * populated, then attempt promotion.
3680	 */
3681	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3682	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3683	    vm_reserv_level_iffullpop(m) == 0)
3684		pmap_promote_pde(pmap, pde, va);
3685#endif
3686
3687	sched_unpin();
3688	rw_wunlock(&pvh_global_lock);
3689	PMAP_UNLOCK(pmap);
3690	return (KERN_SUCCESS);
3691}
3692
3693/*
3694 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3695 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3696 * blocking, (2) a mapping already exists at the specified virtual address, or
3697 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3698 */
3699static boolean_t
3700pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3701{
3702	pd_entry_t *pde, newpde;
3703
3704	rw_assert(&pvh_global_lock, RA_WLOCKED);
3705	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3706	pde = pmap_pde(pmap, va);
3707	if (*pde != 0) {
3708		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3709		    " in pmap %p", va, pmap);
3710		return (FALSE);
3711	}
3712	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3713	    PG_PS | PG_V;
3714	if ((m->oflags & VPO_UNMANAGED) == 0) {
3715		newpde |= PG_MANAGED;
3716
3717		/*
3718		 * Abort this mapping if its PV entry could not be created.
3719		 */
3720		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3721			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3722			    " in pmap %p", va, pmap);
3723			return (FALSE);
3724		}
3725	}
3726#if defined(PAE) || defined(PAE_TABLES)
3727	if ((prot & VM_PROT_EXECUTE) == 0)
3728		newpde |= pg_nx;
3729#endif
3730	if (va < VM_MAXUSER_ADDRESS)
3731		newpde |= PG_U;
3732
3733	/*
3734	 * Increment counters.
3735	 */
3736	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3737
3738	/*
3739	 * Map the superpage.  (This is not a promoted mapping; there will not
3740	 * be any lingering 4KB page mappings in the TLB.)
3741	 */
3742	pde_store(pde, newpde);
3743
3744	pmap_pde_mappings++;
3745	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3746	    " in pmap %p", va, pmap);
3747	return (TRUE);
3748}
3749
3750/*
3751 * Maps a sequence of resident pages belonging to the same object.
3752 * The sequence begins with the given page m_start.  This page is
3753 * mapped at the given virtual address start.  Each subsequent page is
3754 * mapped at a virtual address that is offset from start by the same
3755 * amount as the page is offset from m_start within the object.  The
3756 * last page in the sequence is the page with the largest offset from
3757 * m_start that can be mapped at a virtual address less than the given
3758 * virtual address end.  Not every virtual page between start and end
3759 * is mapped; only those for which a resident page exists with the
3760 * corresponding offset from m_start are mapped.
3761 */
3762void
3763pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3764    vm_page_t m_start, vm_prot_t prot)
3765{
3766	vm_offset_t va;
3767	vm_page_t m, mpte;
3768	vm_pindex_t diff, psize;
3769
3770	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3771
3772	psize = atop(end - start);
3773	mpte = NULL;
3774	m = m_start;
3775	rw_wlock(&pvh_global_lock);
3776	PMAP_LOCK(pmap);
3777	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3778		va = start + ptoa(diff);
3779		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3780		    m->psind == 1 && pg_ps_enabled &&
3781		    pmap_enter_pde(pmap, va, m, prot))
3782			m = &m[NBPDR / PAGE_SIZE - 1];
3783		else
3784			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3785			    mpte);
3786		m = TAILQ_NEXT(m, listq);
3787	}
3788	rw_wunlock(&pvh_global_lock);
3789	PMAP_UNLOCK(pmap);
3790}
3791
3792/*
3793 * this code makes some *MAJOR* assumptions:
3794 * 1. Current pmap & pmap exists.
3795 * 2. Not wired.
3796 * 3. Read access.
3797 * 4. No page table pages.
3798 * but is *MUCH* faster than pmap_enter...
3799 */
3800
3801void
3802pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3803{
3804
3805	rw_wlock(&pvh_global_lock);
3806	PMAP_LOCK(pmap);
3807	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3808	rw_wunlock(&pvh_global_lock);
3809	PMAP_UNLOCK(pmap);
3810}
3811
3812static vm_page_t
3813pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3814    vm_prot_t prot, vm_page_t mpte)
3815{
3816	pt_entry_t *pte;
3817	vm_paddr_t pa;
3818	struct spglist free;
3819
3820	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3821	    (m->oflags & VPO_UNMANAGED) != 0,
3822	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3823	rw_assert(&pvh_global_lock, RA_WLOCKED);
3824	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3825
3826	/*
3827	 * In the case that a page table page is not
3828	 * resident, we are creating it here.
3829	 */
3830	if (va < VM_MAXUSER_ADDRESS) {
3831		u_int ptepindex;
3832		pd_entry_t ptepa;
3833
3834		/*
3835		 * Calculate pagetable page index
3836		 */
3837		ptepindex = va >> PDRSHIFT;
3838		if (mpte && (mpte->pindex == ptepindex)) {
3839			mpte->wire_count++;
3840		} else {
3841			/*
3842			 * Get the page directory entry
3843			 */
3844			ptepa = pmap->pm_pdir[ptepindex];
3845
3846			/*
3847			 * If the page table page is mapped, we just increment
3848			 * the hold count, and activate it.
3849			 */
3850			if (ptepa) {
3851				if (ptepa & PG_PS)
3852					return (NULL);
3853				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3854				mpte->wire_count++;
3855			} else {
3856				mpte = _pmap_allocpte(pmap, ptepindex,
3857				    PMAP_ENTER_NOSLEEP);
3858				if (mpte == NULL)
3859					return (mpte);
3860			}
3861		}
3862	} else {
3863		mpte = NULL;
3864	}
3865
3866	/*
3867	 * This call to vtopte makes the assumption that we are
3868	 * entering the page into the current pmap.  In order to support
3869	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3870	 * But that isn't as quick as vtopte.
3871	 */
3872	pte = vtopte(va);
3873	if (*pte) {
3874		if (mpte != NULL) {
3875			mpte->wire_count--;
3876			mpte = NULL;
3877		}
3878		return (mpte);
3879	}
3880
3881	/*
3882	 * Enter on the PV list if part of our managed memory.
3883	 */
3884	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3885	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3886		if (mpte != NULL) {
3887			SLIST_INIT(&free);
3888			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3889				pmap_invalidate_page(pmap, va);
3890				pmap_free_zero_pages(&free);
3891			}
3892
3893			mpte = NULL;
3894		}
3895		return (mpte);
3896	}
3897
3898	/*
3899	 * Increment counters
3900	 */
3901	pmap->pm_stats.resident_count++;
3902
3903	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3904#if defined(PAE) || defined(PAE_TABLES)
3905	if ((prot & VM_PROT_EXECUTE) == 0)
3906		pa |= pg_nx;
3907#endif
3908
3909	/*
3910	 * Now validate mapping with RO protection
3911	 */
3912	if ((m->oflags & VPO_UNMANAGED) != 0)
3913		pte_store(pte, pa | PG_V | PG_U);
3914	else
3915		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3916	return (mpte);
3917}
3918
3919/*
3920 * Make a temporary mapping for a physical address.  This is only intended
3921 * to be used for panic dumps.
3922 */
3923void *
3924pmap_kenter_temporary(vm_paddr_t pa, int i)
3925{
3926	vm_offset_t va;
3927
3928	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3929	pmap_kenter(va, pa);
3930	invlpg(va);
3931	return ((void *)crashdumpmap);
3932}
3933
3934/*
3935 * This code maps large physical mmap regions into the
3936 * processor address space.  Note that some shortcuts
3937 * are taken, but the code works.
3938 */
3939void
3940pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3941    vm_pindex_t pindex, vm_size_t size)
3942{
3943	pd_entry_t *pde;
3944	vm_paddr_t pa, ptepa;
3945	vm_page_t p;
3946	int pat_mode;
3947
3948	VM_OBJECT_ASSERT_WLOCKED(object);
3949	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3950	    ("pmap_object_init_pt: non-device object"));
3951	if (pseflag &&
3952	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3953		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3954			return;
3955		p = vm_page_lookup(object, pindex);
3956		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3957		    ("pmap_object_init_pt: invalid page %p", p));
3958		pat_mode = p->md.pat_mode;
3959
3960		/*
3961		 * Abort the mapping if the first page is not physically
3962		 * aligned to a 2/4MB page boundary.
3963		 */
3964		ptepa = VM_PAGE_TO_PHYS(p);
3965		if (ptepa & (NBPDR - 1))
3966			return;
3967
3968		/*
3969		 * Skip the first page.  Abort the mapping if the rest of
3970		 * the pages are not physically contiguous or have differing
3971		 * memory attributes.
3972		 */
3973		p = TAILQ_NEXT(p, listq);
3974		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3975		    pa += PAGE_SIZE) {
3976			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3977			    ("pmap_object_init_pt: invalid page %p", p));
3978			if (pa != VM_PAGE_TO_PHYS(p) ||
3979			    pat_mode != p->md.pat_mode)
3980				return;
3981			p = TAILQ_NEXT(p, listq);
3982		}
3983
3984		/*
3985		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3986		 * "size" is a multiple of 2/4M, adding the PAT setting to
3987		 * "pa" will not affect the termination of this loop.
3988		 */
3989		PMAP_LOCK(pmap);
3990		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3991		    size; pa += NBPDR) {
3992			pde = pmap_pde(pmap, addr);
3993			if (*pde == 0) {
3994				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3995				    PG_U | PG_RW | PG_V);
3996				pmap->pm_stats.resident_count += NBPDR /
3997				    PAGE_SIZE;
3998				pmap_pde_mappings++;
3999			}
4000			/* Else continue on if the PDE is already valid. */
4001			addr += NBPDR;
4002		}
4003		PMAP_UNLOCK(pmap);
4004	}
4005}
4006
4007/*
4008 *	Clear the wired attribute from the mappings for the specified range of
4009 *	addresses in the given pmap.  Every valid mapping within that range
4010 *	must have the wired attribute set.  In contrast, invalid mappings
4011 *	cannot have the wired attribute set, so they are ignored.
4012 *
4013 *	The wired attribute of the page table entry is not a hardware feature,
4014 *	so there is no need to invalidate any TLB entries.
4015 */
4016void
4017pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4018{
4019	vm_offset_t pdnxt;
4020	pd_entry_t *pde;
4021	pt_entry_t *pte;
4022	boolean_t pv_lists_locked;
4023
4024	if (pmap_is_current(pmap))
4025		pv_lists_locked = FALSE;
4026	else {
4027		pv_lists_locked = TRUE;
4028resume:
4029		rw_wlock(&pvh_global_lock);
4030		sched_pin();
4031	}
4032	PMAP_LOCK(pmap);
4033	for (; sva < eva; sva = pdnxt) {
4034		pdnxt = (sva + NBPDR) & ~PDRMASK;
4035		if (pdnxt < sva)
4036			pdnxt = eva;
4037		pde = pmap_pde(pmap, sva);
4038		if ((*pde & PG_V) == 0)
4039			continue;
4040		if ((*pde & PG_PS) != 0) {
4041			if ((*pde & PG_W) == 0)
4042				panic("pmap_unwire: pde %#jx is missing PG_W",
4043				    (uintmax_t)*pde);
4044
4045			/*
4046			 * Are we unwiring the entire large page?  If not,
4047			 * demote the mapping and fall through.
4048			 */
4049			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4050				/*
4051				 * Regardless of whether a pde (or pte) is 32
4052				 * or 64 bits in size, PG_W is among the least
4053				 * significant 32 bits.
4054				 */
4055				atomic_clear_int((u_int *)pde, PG_W);
4056				pmap->pm_stats.wired_count -= NBPDR /
4057				    PAGE_SIZE;
4058				continue;
4059			} else {
4060				if (!pv_lists_locked) {
4061					pv_lists_locked = TRUE;
4062					if (!rw_try_wlock(&pvh_global_lock)) {
4063						PMAP_UNLOCK(pmap);
4064						/* Repeat sva. */
4065						goto resume;
4066					}
4067					sched_pin();
4068				}
4069				if (!pmap_demote_pde(pmap, pde, sva))
4070					panic("pmap_unwire: demotion failed");
4071			}
4072		}
4073		if (pdnxt > eva)
4074			pdnxt = eva;
4075		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4076		    sva += PAGE_SIZE) {
4077			if ((*pte & PG_V) == 0)
4078				continue;
4079			if ((*pte & PG_W) == 0)
4080				panic("pmap_unwire: pte %#jx is missing PG_W",
4081				    (uintmax_t)*pte);
4082
4083			/*
4084			 * PG_W must be cleared atomically.  Although the pmap
4085			 * lock synchronizes access to PG_W, another processor
4086			 * could be setting PG_M and/or PG_A concurrently.
4087			 *
4088			 * PG_W is among the least significant 32 bits.
4089			 */
4090			atomic_clear_int((u_int *)pte, PG_W);
4091			pmap->pm_stats.wired_count--;
4092		}
4093	}
4094	if (pv_lists_locked) {
4095		sched_unpin();
4096		rw_wunlock(&pvh_global_lock);
4097	}
4098	PMAP_UNLOCK(pmap);
4099}
4100
4101
4102/*
4103 *	Copy the range specified by src_addr/len
4104 *	from the source map to the range dst_addr/len
4105 *	in the destination map.
4106 *
4107 *	This routine is only advisory and need not do anything.
4108 */
4109
4110void
4111pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4112    vm_offset_t src_addr)
4113{
4114	struct spglist free;
4115	vm_offset_t addr;
4116	vm_offset_t end_addr = src_addr + len;
4117	vm_offset_t pdnxt;
4118
4119	if (dst_addr != src_addr)
4120		return;
4121
4122	if (!pmap_is_current(src_pmap))
4123		return;
4124
4125	rw_wlock(&pvh_global_lock);
4126	if (dst_pmap < src_pmap) {
4127		PMAP_LOCK(dst_pmap);
4128		PMAP_LOCK(src_pmap);
4129	} else {
4130		PMAP_LOCK(src_pmap);
4131		PMAP_LOCK(dst_pmap);
4132	}
4133	sched_pin();
4134	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4135		pt_entry_t *src_pte, *dst_pte;
4136		vm_page_t dstmpte, srcmpte;
4137		pd_entry_t srcptepaddr;
4138		u_int ptepindex;
4139
4140		KASSERT(addr < UPT_MIN_ADDRESS,
4141		    ("pmap_copy: invalid to pmap_copy page tables"));
4142
4143		pdnxt = (addr + NBPDR) & ~PDRMASK;
4144		if (pdnxt < addr)
4145			pdnxt = end_addr;
4146		ptepindex = addr >> PDRSHIFT;
4147
4148		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4149		if (srcptepaddr == 0)
4150			continue;
4151
4152		if (srcptepaddr & PG_PS) {
4153			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4154				continue;
4155			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4156			    ((srcptepaddr & PG_MANAGED) == 0 ||
4157			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4158			    PG_PS_FRAME))) {
4159				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4160				    ~PG_W;
4161				dst_pmap->pm_stats.resident_count +=
4162				    NBPDR / PAGE_SIZE;
4163				pmap_pde_mappings++;
4164			}
4165			continue;
4166		}
4167
4168		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4169		KASSERT(srcmpte->wire_count > 0,
4170		    ("pmap_copy: source page table page is unused"));
4171
4172		if (pdnxt > end_addr)
4173			pdnxt = end_addr;
4174
4175		src_pte = vtopte(addr);
4176		while (addr < pdnxt) {
4177			pt_entry_t ptetemp;
4178			ptetemp = *src_pte;
4179			/*
4180			 * we only virtual copy managed pages
4181			 */
4182			if ((ptetemp & PG_MANAGED) != 0) {
4183				dstmpte = pmap_allocpte(dst_pmap, addr,
4184				    PMAP_ENTER_NOSLEEP);
4185				if (dstmpte == NULL)
4186					goto out;
4187				dst_pte = pmap_pte_quick(dst_pmap, addr);
4188				if (*dst_pte == 0 &&
4189				    pmap_try_insert_pv_entry(dst_pmap, addr,
4190				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4191					/*
4192					 * Clear the wired, modified, and
4193					 * accessed (referenced) bits
4194					 * during the copy.
4195					 */
4196					*dst_pte = ptetemp & ~(PG_W | PG_M |
4197					    PG_A);
4198					dst_pmap->pm_stats.resident_count++;
4199	 			} else {
4200					SLIST_INIT(&free);
4201					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4202					    &free)) {
4203						pmap_invalidate_page(dst_pmap,
4204						    addr);
4205						pmap_free_zero_pages(&free);
4206					}
4207					goto out;
4208				}
4209				if (dstmpte->wire_count >= srcmpte->wire_count)
4210					break;
4211			}
4212			addr += PAGE_SIZE;
4213			src_pte++;
4214		}
4215	}
4216out:
4217	sched_unpin();
4218	rw_wunlock(&pvh_global_lock);
4219	PMAP_UNLOCK(src_pmap);
4220	PMAP_UNLOCK(dst_pmap);
4221}
4222
4223static __inline void
4224pagezero(void *page)
4225{
4226#if defined(I686_CPU)
4227	if (cpu_class == CPUCLASS_686) {
4228		if (cpu_feature & CPUID_SSE2)
4229			sse2_pagezero(page);
4230		else
4231			i686_pagezero(page);
4232	} else
4233#endif
4234		bzero(page, PAGE_SIZE);
4235}
4236
4237/*
4238 *	pmap_zero_page zeros the specified hardware page by mapping
4239 *	the page into KVM and using bzero to clear its contents.
4240 */
4241void
4242pmap_zero_page(vm_page_t m)
4243{
4244	pt_entry_t *cmap_pte2;
4245	struct pcpu *pc;
4246
4247	sched_pin();
4248	pc = get_pcpu();
4249	cmap_pte2 = pc->pc_cmap_pte2;
4250	mtx_lock(&pc->pc_cmap_lock);
4251	if (*cmap_pte2)
4252		panic("pmap_zero_page: CMAP2 busy");
4253	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4254	    pmap_cache_bits(m->md.pat_mode, 0);
4255	invlcaddr(pc->pc_cmap_addr2);
4256	pagezero(pc->pc_cmap_addr2);
4257	*cmap_pte2 = 0;
4258
4259	/*
4260	 * Unpin the thread before releasing the lock.  Otherwise the thread
4261	 * could be rescheduled while still bound to the current CPU, only
4262	 * to unpin itself immediately upon resuming execution.
4263	 */
4264	sched_unpin();
4265	mtx_unlock(&pc->pc_cmap_lock);
4266}
4267
4268/*
4269 *	pmap_zero_page_area zeros the specified hardware page by mapping
4270 *	the page into KVM and using bzero to clear its contents.
4271 *
4272 *	off and size may not cover an area beyond a single hardware page.
4273 */
4274void
4275pmap_zero_page_area(vm_page_t m, int off, int size)
4276{
4277	pt_entry_t *cmap_pte2;
4278	struct pcpu *pc;
4279
4280	sched_pin();
4281	pc = get_pcpu();
4282	cmap_pte2 = pc->pc_cmap_pte2;
4283	mtx_lock(&pc->pc_cmap_lock);
4284	if (*cmap_pte2)
4285		panic("pmap_zero_page_area: CMAP2 busy");
4286	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4287	    pmap_cache_bits(m->md.pat_mode, 0);
4288	invlcaddr(pc->pc_cmap_addr2);
4289	if (off == 0 && size == PAGE_SIZE)
4290		pagezero(pc->pc_cmap_addr2);
4291	else
4292		bzero(pc->pc_cmap_addr2 + off, size);
4293	*cmap_pte2 = 0;
4294	sched_unpin();
4295	mtx_unlock(&pc->pc_cmap_lock);
4296}
4297
4298/*
4299 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4300 *	the page into KVM and using bzero to clear its contents.  This
4301 *	is intended to be called from the vm_pagezero process only and
4302 *	outside of Giant.
4303 */
4304void
4305pmap_zero_page_idle(vm_page_t m)
4306{
4307
4308	if (*CMAP3)
4309		panic("pmap_zero_page_idle: CMAP3 busy");
4310	sched_pin();
4311	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4312	    pmap_cache_bits(m->md.pat_mode, 0);
4313	invlcaddr(CADDR3);
4314	pagezero(CADDR3);
4315	*CMAP3 = 0;
4316	sched_unpin();
4317}
4318
4319/*
4320 *	pmap_copy_page copies the specified (machine independent)
4321 *	page by mapping the page into virtual memory and using
4322 *	bcopy to copy the page, one machine dependent page at a
4323 *	time.
4324 */
4325void
4326pmap_copy_page(vm_page_t src, vm_page_t dst)
4327{
4328	pt_entry_t *cmap_pte1, *cmap_pte2;
4329	struct pcpu *pc;
4330
4331	sched_pin();
4332	pc = get_pcpu();
4333	cmap_pte1 = pc->pc_cmap_pte1;
4334	cmap_pte2 = pc->pc_cmap_pte2;
4335	mtx_lock(&pc->pc_cmap_lock);
4336	if (*cmap_pte1)
4337		panic("pmap_copy_page: CMAP1 busy");
4338	if (*cmap_pte2)
4339		panic("pmap_copy_page: CMAP2 busy");
4340	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4341	    pmap_cache_bits(src->md.pat_mode, 0);
4342	invlcaddr(pc->pc_cmap_addr1);
4343	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4344	    pmap_cache_bits(dst->md.pat_mode, 0);
4345	invlcaddr(pc->pc_cmap_addr2);
4346	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4347	*cmap_pte1 = 0;
4348	*cmap_pte2 = 0;
4349	sched_unpin();
4350	mtx_unlock(&pc->pc_cmap_lock);
4351}
4352
4353int unmapped_buf_allowed = 1;
4354
4355void
4356pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4357    vm_offset_t b_offset, int xfersize)
4358{
4359	vm_page_t a_pg, b_pg;
4360	char *a_cp, *b_cp;
4361	vm_offset_t a_pg_offset, b_pg_offset;
4362	pt_entry_t *cmap_pte1, *cmap_pte2;
4363	struct pcpu *pc;
4364	int cnt;
4365
4366	sched_pin();
4367	pc = get_pcpu();
4368	cmap_pte1 = pc->pc_cmap_pte1;
4369	cmap_pte2 = pc->pc_cmap_pte2;
4370	mtx_lock(&pc->pc_cmap_lock);
4371	if (*cmap_pte1 != 0)
4372		panic("pmap_copy_pages: CMAP1 busy");
4373	if (*cmap_pte2 != 0)
4374		panic("pmap_copy_pages: CMAP2 busy");
4375	while (xfersize > 0) {
4376		a_pg = ma[a_offset >> PAGE_SHIFT];
4377		a_pg_offset = a_offset & PAGE_MASK;
4378		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4379		b_pg = mb[b_offset >> PAGE_SHIFT];
4380		b_pg_offset = b_offset & PAGE_MASK;
4381		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4382		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4383		    pmap_cache_bits(a_pg->md.pat_mode, 0);
4384		invlcaddr(pc->pc_cmap_addr1);
4385		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4386		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4387		invlcaddr(pc->pc_cmap_addr2);
4388		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4389		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4390		bcopy(a_cp, b_cp, cnt);
4391		a_offset += cnt;
4392		b_offset += cnt;
4393		xfersize -= cnt;
4394	}
4395	*cmap_pte1 = 0;
4396	*cmap_pte2 = 0;
4397	sched_unpin();
4398	mtx_unlock(&pc->pc_cmap_lock);
4399}
4400
4401/*
4402 * Returns true if the pmap's pv is one of the first
4403 * 16 pvs linked to from this page.  This count may
4404 * be changed upwards or downwards in the future; it
4405 * is only necessary that true be returned for a small
4406 * subset of pmaps for proper page aging.
4407 */
4408boolean_t
4409pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4410{
4411	struct md_page *pvh;
4412	pv_entry_t pv;
4413	int loops = 0;
4414	boolean_t rv;
4415
4416	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4417	    ("pmap_page_exists_quick: page %p is not managed", m));
4418	rv = FALSE;
4419	rw_wlock(&pvh_global_lock);
4420	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4421		if (PV_PMAP(pv) == pmap) {
4422			rv = TRUE;
4423			break;
4424		}
4425		loops++;
4426		if (loops >= 16)
4427			break;
4428	}
4429	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4430		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4431		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4432			if (PV_PMAP(pv) == pmap) {
4433				rv = TRUE;
4434				break;
4435			}
4436			loops++;
4437			if (loops >= 16)
4438				break;
4439		}
4440	}
4441	rw_wunlock(&pvh_global_lock);
4442	return (rv);
4443}
4444
4445/*
4446 *	pmap_page_wired_mappings:
4447 *
4448 *	Return the number of managed mappings to the given physical page
4449 *	that are wired.
4450 */
4451int
4452pmap_page_wired_mappings(vm_page_t m)
4453{
4454	int count;
4455
4456	count = 0;
4457	if ((m->oflags & VPO_UNMANAGED) != 0)
4458		return (count);
4459	rw_wlock(&pvh_global_lock);
4460	count = pmap_pvh_wired_mappings(&m->md, count);
4461	if ((m->flags & PG_FICTITIOUS) == 0) {
4462	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4463	        count);
4464	}
4465	rw_wunlock(&pvh_global_lock);
4466	return (count);
4467}
4468
4469/*
4470 *	pmap_pvh_wired_mappings:
4471 *
4472 *	Return the updated number "count" of managed mappings that are wired.
4473 */
4474static int
4475pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4476{
4477	pmap_t pmap;
4478	pt_entry_t *pte;
4479	pv_entry_t pv;
4480
4481	rw_assert(&pvh_global_lock, RA_WLOCKED);
4482	sched_pin();
4483	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4484		pmap = PV_PMAP(pv);
4485		PMAP_LOCK(pmap);
4486		pte = pmap_pte_quick(pmap, pv->pv_va);
4487		if ((*pte & PG_W) != 0)
4488			count++;
4489		PMAP_UNLOCK(pmap);
4490	}
4491	sched_unpin();
4492	return (count);
4493}
4494
4495/*
4496 * Returns TRUE if the given page is mapped individually or as part of
4497 * a 4mpage.  Otherwise, returns FALSE.
4498 */
4499boolean_t
4500pmap_page_is_mapped(vm_page_t m)
4501{
4502	boolean_t rv;
4503
4504	if ((m->oflags & VPO_UNMANAGED) != 0)
4505		return (FALSE);
4506	rw_wlock(&pvh_global_lock);
4507	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4508	    ((m->flags & PG_FICTITIOUS) == 0 &&
4509	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4510	rw_wunlock(&pvh_global_lock);
4511	return (rv);
4512}
4513
4514/*
4515 * Remove all pages from specified address space
4516 * this aids process exit speeds.  Also, this code
4517 * is special cased for current process only, but
4518 * can have the more generic (and slightly slower)
4519 * mode enabled.  This is much faster than pmap_remove
4520 * in the case of running down an entire address space.
4521 */
4522void
4523pmap_remove_pages(pmap_t pmap)
4524{
4525	pt_entry_t *pte, tpte;
4526	vm_page_t m, mpte, mt;
4527	pv_entry_t pv;
4528	struct md_page *pvh;
4529	struct pv_chunk *pc, *npc;
4530	struct spglist free;
4531	int field, idx;
4532	int32_t bit;
4533	uint32_t inuse, bitmask;
4534	int allfree;
4535
4536	if (pmap != PCPU_GET(curpmap)) {
4537		printf("warning: pmap_remove_pages called with non-current pmap\n");
4538		return;
4539	}
4540	SLIST_INIT(&free);
4541	rw_wlock(&pvh_global_lock);
4542	PMAP_LOCK(pmap);
4543	sched_pin();
4544	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4545		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4546		    pc->pc_pmap));
4547		allfree = 1;
4548		for (field = 0; field < _NPCM; field++) {
4549			inuse = ~pc->pc_map[field] & pc_freemask[field];
4550			while (inuse != 0) {
4551				bit = bsfl(inuse);
4552				bitmask = 1UL << bit;
4553				idx = field * 32 + bit;
4554				pv = &pc->pc_pventry[idx];
4555				inuse &= ~bitmask;
4556
4557				pte = pmap_pde(pmap, pv->pv_va);
4558				tpte = *pte;
4559				if ((tpte & PG_PS) == 0) {
4560					pte = vtopte(pv->pv_va);
4561					tpte = *pte & ~PG_PTE_PAT;
4562				}
4563
4564				if (tpte == 0) {
4565					printf(
4566					    "TPTE at %p  IS ZERO @ VA %08x\n",
4567					    pte, pv->pv_va);
4568					panic("bad pte");
4569				}
4570
4571/*
4572 * We cannot remove wired pages from a process' mapping at this time
4573 */
4574				if (tpte & PG_W) {
4575					allfree = 0;
4576					continue;
4577				}
4578
4579				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4580				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4581				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4582				    m, (uintmax_t)m->phys_addr,
4583				    (uintmax_t)tpte));
4584
4585				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4586				    m < &vm_page_array[vm_page_array_size],
4587				    ("pmap_remove_pages: bad tpte %#jx",
4588				    (uintmax_t)tpte));
4589
4590				pte_clear(pte);
4591
4592				/*
4593				 * Update the vm_page_t clean/reference bits.
4594				 */
4595				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4596					if ((tpte & PG_PS) != 0) {
4597						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4598							vm_page_dirty(mt);
4599					} else
4600						vm_page_dirty(m);
4601				}
4602
4603				/* Mark free */
4604				PV_STAT(pv_entry_frees++);
4605				PV_STAT(pv_entry_spare++);
4606				pv_entry_count--;
4607				pc->pc_map[field] |= bitmask;
4608				if ((tpte & PG_PS) != 0) {
4609					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4610					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4611					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4612					if (TAILQ_EMPTY(&pvh->pv_list)) {
4613						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4614							if (TAILQ_EMPTY(&mt->md.pv_list))
4615								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4616					}
4617					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
4618					if (mpte != NULL) {
4619						pmap->pm_stats.resident_count--;
4620						KASSERT(mpte->wire_count == NPTEPG,
4621						    ("pmap_remove_pages: pte page wire count error"));
4622						mpte->wire_count = 0;
4623						pmap_add_delayed_free_list(mpte, &free, FALSE);
4624					}
4625				} else {
4626					pmap->pm_stats.resident_count--;
4627					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4628					if (TAILQ_EMPTY(&m->md.pv_list) &&
4629					    (m->flags & PG_FICTITIOUS) == 0) {
4630						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4631						if (TAILQ_EMPTY(&pvh->pv_list))
4632							vm_page_aflag_clear(m, PGA_WRITEABLE);
4633					}
4634					pmap_unuse_pt(pmap, pv->pv_va, &free);
4635				}
4636			}
4637		}
4638		if (allfree) {
4639			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4640			free_pv_chunk(pc);
4641		}
4642	}
4643	sched_unpin();
4644	pmap_invalidate_all(pmap);
4645	rw_wunlock(&pvh_global_lock);
4646	PMAP_UNLOCK(pmap);
4647	pmap_free_zero_pages(&free);
4648}
4649
4650/*
4651 *	pmap_is_modified:
4652 *
4653 *	Return whether or not the specified physical page was modified
4654 *	in any physical maps.
4655 */
4656boolean_t
4657pmap_is_modified(vm_page_t m)
4658{
4659	boolean_t rv;
4660
4661	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4662	    ("pmap_is_modified: page %p is not managed", m));
4663
4664	/*
4665	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4666	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4667	 * is clear, no PTEs can have PG_M set.
4668	 */
4669	VM_OBJECT_ASSERT_WLOCKED(m->object);
4670	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4671		return (FALSE);
4672	rw_wlock(&pvh_global_lock);
4673	rv = pmap_is_modified_pvh(&m->md) ||
4674	    ((m->flags & PG_FICTITIOUS) == 0 &&
4675	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4676	rw_wunlock(&pvh_global_lock);
4677	return (rv);
4678}
4679
4680/*
4681 * Returns TRUE if any of the given mappings were used to modify
4682 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4683 * mappings are supported.
4684 */
4685static boolean_t
4686pmap_is_modified_pvh(struct md_page *pvh)
4687{
4688	pv_entry_t pv;
4689	pt_entry_t *pte;
4690	pmap_t pmap;
4691	boolean_t rv;
4692
4693	rw_assert(&pvh_global_lock, RA_WLOCKED);
4694	rv = FALSE;
4695	sched_pin();
4696	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4697		pmap = PV_PMAP(pv);
4698		PMAP_LOCK(pmap);
4699		pte = pmap_pte_quick(pmap, pv->pv_va);
4700		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4701		PMAP_UNLOCK(pmap);
4702		if (rv)
4703			break;
4704	}
4705	sched_unpin();
4706	return (rv);
4707}
4708
4709/*
4710 *	pmap_is_prefaultable:
4711 *
4712 *	Return whether or not the specified virtual address is elgible
4713 *	for prefault.
4714 */
4715boolean_t
4716pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4717{
4718	pd_entry_t *pde;
4719	pt_entry_t *pte;
4720	boolean_t rv;
4721
4722	rv = FALSE;
4723	PMAP_LOCK(pmap);
4724	pde = pmap_pde(pmap, addr);
4725	if (*pde != 0 && (*pde & PG_PS) == 0) {
4726		pte = vtopte(addr);
4727		rv = *pte == 0;
4728	}
4729	PMAP_UNLOCK(pmap);
4730	return (rv);
4731}
4732
4733/*
4734 *	pmap_is_referenced:
4735 *
4736 *	Return whether or not the specified physical page was referenced
4737 *	in any physical maps.
4738 */
4739boolean_t
4740pmap_is_referenced(vm_page_t m)
4741{
4742	boolean_t rv;
4743
4744	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4745	    ("pmap_is_referenced: page %p is not managed", m));
4746	rw_wlock(&pvh_global_lock);
4747	rv = pmap_is_referenced_pvh(&m->md) ||
4748	    ((m->flags & PG_FICTITIOUS) == 0 &&
4749	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4750	rw_wunlock(&pvh_global_lock);
4751	return (rv);
4752}
4753
4754/*
4755 * Returns TRUE if any of the given mappings were referenced and FALSE
4756 * otherwise.  Both page and 4mpage mappings are supported.
4757 */
4758static boolean_t
4759pmap_is_referenced_pvh(struct md_page *pvh)
4760{
4761	pv_entry_t pv;
4762	pt_entry_t *pte;
4763	pmap_t pmap;
4764	boolean_t rv;
4765
4766	rw_assert(&pvh_global_lock, RA_WLOCKED);
4767	rv = FALSE;
4768	sched_pin();
4769	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4770		pmap = PV_PMAP(pv);
4771		PMAP_LOCK(pmap);
4772		pte = pmap_pte_quick(pmap, pv->pv_va);
4773		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4774		PMAP_UNLOCK(pmap);
4775		if (rv)
4776			break;
4777	}
4778	sched_unpin();
4779	return (rv);
4780}
4781
4782/*
4783 * Clear the write and modified bits in each of the given page's mappings.
4784 */
4785void
4786pmap_remove_write(vm_page_t m)
4787{
4788	struct md_page *pvh;
4789	pv_entry_t next_pv, pv;
4790	pmap_t pmap;
4791	pd_entry_t *pde;
4792	pt_entry_t oldpte, *pte;
4793	vm_offset_t va;
4794
4795	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4796	    ("pmap_remove_write: page %p is not managed", m));
4797
4798	/*
4799	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4800	 * set by another thread while the object is locked.  Thus,
4801	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4802	 */
4803	VM_OBJECT_ASSERT_WLOCKED(m->object);
4804	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4805		return;
4806	rw_wlock(&pvh_global_lock);
4807	sched_pin();
4808	if ((m->flags & PG_FICTITIOUS) != 0)
4809		goto small_mappings;
4810	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4811	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4812		va = pv->pv_va;
4813		pmap = PV_PMAP(pv);
4814		PMAP_LOCK(pmap);
4815		pde = pmap_pde(pmap, va);
4816		if ((*pde & PG_RW) != 0)
4817			(void)pmap_demote_pde(pmap, pde, va);
4818		PMAP_UNLOCK(pmap);
4819	}
4820small_mappings:
4821	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4822		pmap = PV_PMAP(pv);
4823		PMAP_LOCK(pmap);
4824		pde = pmap_pde(pmap, pv->pv_va);
4825		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4826		    " a 4mpage in page %p's pv list", m));
4827		pte = pmap_pte_quick(pmap, pv->pv_va);
4828retry:
4829		oldpte = *pte;
4830		if ((oldpte & PG_RW) != 0) {
4831			/*
4832			 * Regardless of whether a pte is 32 or 64 bits
4833			 * in size, PG_RW and PG_M are among the least
4834			 * significant 32 bits.
4835			 */
4836			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4837			    oldpte & ~(PG_RW | PG_M)))
4838				goto retry;
4839			if ((oldpte & PG_M) != 0)
4840				vm_page_dirty(m);
4841			pmap_invalidate_page(pmap, pv->pv_va);
4842		}
4843		PMAP_UNLOCK(pmap);
4844	}
4845	vm_page_aflag_clear(m, PGA_WRITEABLE);
4846	sched_unpin();
4847	rw_wunlock(&pvh_global_lock);
4848}
4849
4850/*
4851 *	pmap_ts_referenced:
4852 *
4853 *	Return a count of reference bits for a page, clearing those bits.
4854 *	It is not necessary for every reference bit to be cleared, but it
4855 *	is necessary that 0 only be returned when there are truly no
4856 *	reference bits set.
4857 *
4858 *	As an optimization, update the page's dirty field if a modified bit is
4859 *	found while counting reference bits.  This opportunistic update can be
4860 *	performed at low cost and can eliminate the need for some future calls
4861 *	to pmap_is_modified().  However, since this function stops after
4862 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4863 *	dirty pages.  Those dirty pages will only be detected by a future call
4864 *	to pmap_is_modified().
4865 */
4866int
4867pmap_ts_referenced(vm_page_t m)
4868{
4869	struct md_page *pvh;
4870	pv_entry_t pv, pvf;
4871	pmap_t pmap;
4872	pd_entry_t *pde;
4873	pt_entry_t *pte;
4874	vm_paddr_t pa;
4875	int rtval = 0;
4876
4877	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4878	    ("pmap_ts_referenced: page %p is not managed", m));
4879	pa = VM_PAGE_TO_PHYS(m);
4880	pvh = pa_to_pvh(pa);
4881	rw_wlock(&pvh_global_lock);
4882	sched_pin();
4883	if ((m->flags & PG_FICTITIOUS) != 0 ||
4884	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4885		goto small_mappings;
4886	pv = pvf;
4887	do {
4888		pmap = PV_PMAP(pv);
4889		PMAP_LOCK(pmap);
4890		pde = pmap_pde(pmap, pv->pv_va);
4891		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4892			/*
4893			 * Although "*pde" is mapping a 2/4MB page, because
4894			 * this function is called at a 4KB page granularity,
4895			 * we only update the 4KB page under test.
4896			 */
4897			vm_page_dirty(m);
4898		}
4899		if ((*pde & PG_A) != 0) {
4900			/*
4901			 * Since this reference bit is shared by either 1024
4902			 * or 512 4KB pages, it should not be cleared every
4903			 * time it is tested.  Apply a simple "hash" function
4904			 * on the physical page number, the virtual superpage
4905			 * number, and the pmap address to select one 4KB page
4906			 * out of the 1024 or 512 on which testing the
4907			 * reference bit will result in clearing that bit.
4908			 * This function is designed to avoid the selection of
4909			 * the same 4KB page for every 2- or 4MB page mapping.
4910			 *
4911			 * On demotion, a mapping that hasn't been referenced
4912			 * is simply destroyed.  To avoid the possibility of a
4913			 * subsequent page fault on a demoted wired mapping,
4914			 * always leave its reference bit set.  Moreover,
4915			 * since the superpage is wired, the current state of
4916			 * its reference bit won't affect page replacement.
4917			 */
4918			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4919			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4920			    (*pde & PG_W) == 0) {
4921				atomic_clear_int((u_int *)pde, PG_A);
4922				pmap_invalidate_page(pmap, pv->pv_va);
4923			}
4924			rtval++;
4925		}
4926		PMAP_UNLOCK(pmap);
4927		/* Rotate the PV list if it has more than one entry. */
4928		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4929			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4930			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4931		}
4932		if (rtval >= PMAP_TS_REFERENCED_MAX)
4933			goto out;
4934	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4935small_mappings:
4936	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4937		goto out;
4938	pv = pvf;
4939	do {
4940		pmap = PV_PMAP(pv);
4941		PMAP_LOCK(pmap);
4942		pde = pmap_pde(pmap, pv->pv_va);
4943		KASSERT((*pde & PG_PS) == 0,
4944		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4945		    m));
4946		pte = pmap_pte_quick(pmap, pv->pv_va);
4947		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4948			vm_page_dirty(m);
4949		if ((*pte & PG_A) != 0) {
4950			atomic_clear_int((u_int *)pte, PG_A);
4951			pmap_invalidate_page(pmap, pv->pv_va);
4952			rtval++;
4953		}
4954		PMAP_UNLOCK(pmap);
4955		/* Rotate the PV list if it has more than one entry. */
4956		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4957			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4958			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4959		}
4960	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4961	    PMAP_TS_REFERENCED_MAX);
4962out:
4963	sched_unpin();
4964	rw_wunlock(&pvh_global_lock);
4965	return (rtval);
4966}
4967
4968/*
4969 *	Apply the given advice to the specified range of addresses within the
4970 *	given pmap.  Depending on the advice, clear the referenced and/or
4971 *	modified flags in each mapping and set the mapped page's dirty field.
4972 */
4973void
4974pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4975{
4976	pd_entry_t oldpde, *pde;
4977	pt_entry_t *pte;
4978	vm_offset_t va, pdnxt;
4979	vm_page_t m;
4980	boolean_t anychanged, pv_lists_locked;
4981
4982	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4983		return;
4984	if (pmap_is_current(pmap))
4985		pv_lists_locked = FALSE;
4986	else {
4987		pv_lists_locked = TRUE;
4988resume:
4989		rw_wlock(&pvh_global_lock);
4990		sched_pin();
4991	}
4992	anychanged = FALSE;
4993	PMAP_LOCK(pmap);
4994	for (; sva < eva; sva = pdnxt) {
4995		pdnxt = (sva + NBPDR) & ~PDRMASK;
4996		if (pdnxt < sva)
4997			pdnxt = eva;
4998		pde = pmap_pde(pmap, sva);
4999		oldpde = *pde;
5000		if ((oldpde & PG_V) == 0)
5001			continue;
5002		else if ((oldpde & PG_PS) != 0) {
5003			if ((oldpde & PG_MANAGED) == 0)
5004				continue;
5005			if (!pv_lists_locked) {
5006				pv_lists_locked = TRUE;
5007				if (!rw_try_wlock(&pvh_global_lock)) {
5008					if (anychanged)
5009						pmap_invalidate_all(pmap);
5010					PMAP_UNLOCK(pmap);
5011					goto resume;
5012				}
5013				sched_pin();
5014			}
5015			if (!pmap_demote_pde(pmap, pde, sva)) {
5016				/*
5017				 * The large page mapping was destroyed.
5018				 */
5019				continue;
5020			}
5021
5022			/*
5023			 * Unless the page mappings are wired, remove the
5024			 * mapping to a single page so that a subsequent
5025			 * access may repromote.  Since the underlying page
5026			 * table page is fully populated, this removal never
5027			 * frees a page table page.
5028			 */
5029			if ((oldpde & PG_W) == 0) {
5030				pte = pmap_pte_quick(pmap, sva);
5031				KASSERT((*pte & PG_V) != 0,
5032				    ("pmap_advise: invalid PTE"));
5033				pmap_remove_pte(pmap, pte, sva, NULL);
5034				anychanged = TRUE;
5035			}
5036		}
5037		if (pdnxt > eva)
5038			pdnxt = eva;
5039		va = pdnxt;
5040		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5041		    sva += PAGE_SIZE) {
5042			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5043				goto maybe_invlrng;
5044			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5045				if (advice == MADV_DONTNEED) {
5046					/*
5047					 * Future calls to pmap_is_modified()
5048					 * can be avoided by making the page
5049					 * dirty now.
5050					 */
5051					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5052					vm_page_dirty(m);
5053				}
5054				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5055			} else if ((*pte & PG_A) != 0)
5056				atomic_clear_int((u_int *)pte, PG_A);
5057			else
5058				goto maybe_invlrng;
5059			if ((*pte & PG_G) != 0) {
5060				if (va == pdnxt)
5061					va = sva;
5062			} else
5063				anychanged = TRUE;
5064			continue;
5065maybe_invlrng:
5066			if (va != pdnxt) {
5067				pmap_invalidate_range(pmap, va, sva);
5068				va = pdnxt;
5069			}
5070		}
5071		if (va != pdnxt)
5072			pmap_invalidate_range(pmap, va, sva);
5073	}
5074	if (anychanged)
5075		pmap_invalidate_all(pmap);
5076	if (pv_lists_locked) {
5077		sched_unpin();
5078		rw_wunlock(&pvh_global_lock);
5079	}
5080	PMAP_UNLOCK(pmap);
5081}
5082
5083/*
5084 *	Clear the modify bits on the specified physical page.
5085 */
5086void
5087pmap_clear_modify(vm_page_t m)
5088{
5089	struct md_page *pvh;
5090	pv_entry_t next_pv, pv;
5091	pmap_t pmap;
5092	pd_entry_t oldpde, *pde;
5093	pt_entry_t oldpte, *pte;
5094	vm_offset_t va;
5095
5096	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5097	    ("pmap_clear_modify: page %p is not managed", m));
5098	VM_OBJECT_ASSERT_WLOCKED(m->object);
5099	KASSERT(!vm_page_xbusied(m),
5100	    ("pmap_clear_modify: page %p is exclusive busied", m));
5101
5102	/*
5103	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
5104	 * If the object containing the page is locked and the page is not
5105	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
5106	 */
5107	if ((m->aflags & PGA_WRITEABLE) == 0)
5108		return;
5109	rw_wlock(&pvh_global_lock);
5110	sched_pin();
5111	if ((m->flags & PG_FICTITIOUS) != 0)
5112		goto small_mappings;
5113	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5114	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5115		va = pv->pv_va;
5116		pmap = PV_PMAP(pv);
5117		PMAP_LOCK(pmap);
5118		pde = pmap_pde(pmap, va);
5119		oldpde = *pde;
5120		if ((oldpde & PG_RW) != 0) {
5121			if (pmap_demote_pde(pmap, pde, va)) {
5122				if ((oldpde & PG_W) == 0) {
5123					/*
5124					 * Write protect the mapping to a
5125					 * single page so that a subsequent
5126					 * write access may repromote.
5127					 */
5128					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5129					    PG_PS_FRAME);
5130					pte = pmap_pte_quick(pmap, va);
5131					oldpte = *pte;
5132					if ((oldpte & PG_V) != 0) {
5133						/*
5134						 * Regardless of whether a pte is 32 or 64 bits
5135						 * in size, PG_RW and PG_M are among the least
5136						 * significant 32 bits.
5137						 */
5138						while (!atomic_cmpset_int((u_int *)pte,
5139						    oldpte,
5140						    oldpte & ~(PG_M | PG_RW)))
5141							oldpte = *pte;
5142						vm_page_dirty(m);
5143						pmap_invalidate_page(pmap, va);
5144					}
5145				}
5146			}
5147		}
5148		PMAP_UNLOCK(pmap);
5149	}
5150small_mappings:
5151	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5152		pmap = PV_PMAP(pv);
5153		PMAP_LOCK(pmap);
5154		pde = pmap_pde(pmap, pv->pv_va);
5155		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5156		    " a 4mpage in page %p's pv list", m));
5157		pte = pmap_pte_quick(pmap, pv->pv_va);
5158		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5159			/*
5160			 * Regardless of whether a pte is 32 or 64 bits
5161			 * in size, PG_M is among the least significant
5162			 * 32 bits.
5163			 */
5164			atomic_clear_int((u_int *)pte, PG_M);
5165			pmap_invalidate_page(pmap, pv->pv_va);
5166		}
5167		PMAP_UNLOCK(pmap);
5168	}
5169	sched_unpin();
5170	rw_wunlock(&pvh_global_lock);
5171}
5172
5173/*
5174 * Miscellaneous support routines follow
5175 */
5176
5177/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5178static __inline void
5179pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5180{
5181	u_int opte, npte;
5182
5183	/*
5184	 * The cache mode bits are all in the low 32-bits of the
5185	 * PTE, so we can just spin on updating the low 32-bits.
5186	 */
5187	do {
5188		opte = *(u_int *)pte;
5189		npte = opte & ~PG_PTE_CACHE;
5190		npte |= cache_bits;
5191	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5192}
5193
5194/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5195static __inline void
5196pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5197{
5198	u_int opde, npde;
5199
5200	/*
5201	 * The cache mode bits are all in the low 32-bits of the
5202	 * PDE, so we can just spin on updating the low 32-bits.
5203	 */
5204	do {
5205		opde = *(u_int *)pde;
5206		npde = opde & ~PG_PDE_CACHE;
5207		npde |= cache_bits;
5208	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5209}
5210
5211/*
5212 * Map a set of physical memory pages into the kernel virtual
5213 * address space. Return a pointer to where it is mapped. This
5214 * routine is intended to be used for mapping device memory,
5215 * NOT real memory.
5216 */
5217void *
5218pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5219{
5220	struct pmap_preinit_mapping *ppim;
5221	vm_offset_t va, offset;
5222	vm_size_t tmpsize;
5223	int i;
5224
5225	offset = pa & PAGE_MASK;
5226	size = round_page(offset + size);
5227	pa = pa & PG_FRAME;
5228
5229	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5230		va = KERNBASE + pa;
5231	else if (!pmap_initialized) {
5232		va = 0;
5233		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5234			ppim = pmap_preinit_mapping + i;
5235			if (ppim->va == 0) {
5236				ppim->pa = pa;
5237				ppim->sz = size;
5238				ppim->mode = mode;
5239				ppim->va = virtual_avail;
5240				virtual_avail += size;
5241				va = ppim->va;
5242				break;
5243			}
5244		}
5245		if (va == 0)
5246			panic("%s: too many preinit mappings", __func__);
5247	} else {
5248		/*
5249		 * If we have a preinit mapping, re-use it.
5250		 */
5251		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5252			ppim = pmap_preinit_mapping + i;
5253			if (ppim->pa == pa && ppim->sz == size &&
5254			    ppim->mode == mode)
5255				return ((void *)(ppim->va + offset));
5256		}
5257		va = kva_alloc(size);
5258		if (va == 0)
5259			panic("%s: Couldn't allocate KVA", __func__);
5260	}
5261	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5262		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5263	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5264	pmap_invalidate_cache_range(va, va + size, FALSE);
5265	return ((void *)(va + offset));
5266}
5267
5268void *
5269pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5270{
5271
5272	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5273}
5274
5275void *
5276pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5277{
5278
5279	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5280}
5281
5282void
5283pmap_unmapdev(vm_offset_t va, vm_size_t size)
5284{
5285	struct pmap_preinit_mapping *ppim;
5286	vm_offset_t offset;
5287	int i;
5288
5289	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5290		return;
5291	offset = va & PAGE_MASK;
5292	size = round_page(offset + size);
5293	va = trunc_page(va);
5294	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5295		ppim = pmap_preinit_mapping + i;
5296		if (ppim->va == va && ppim->sz == size) {
5297			if (pmap_initialized)
5298				return;
5299			ppim->pa = 0;
5300			ppim->va = 0;
5301			ppim->sz = 0;
5302			ppim->mode = 0;
5303			if (va + size == virtual_avail)
5304				virtual_avail = va;
5305			return;
5306		}
5307	}
5308	if (pmap_initialized)
5309		kva_free(va, size);
5310}
5311
5312/*
5313 * Sets the memory attribute for the specified page.
5314 */
5315void
5316pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5317{
5318
5319	m->md.pat_mode = ma;
5320	if ((m->flags & PG_FICTITIOUS) != 0)
5321		return;
5322
5323	/*
5324	 * If "m" is a normal page, flush it from the cache.
5325	 * See pmap_invalidate_cache_range().
5326	 *
5327	 * First, try to find an existing mapping of the page by sf
5328	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5329	 * flushes the cache.
5330	 */
5331	if (sf_buf_invalidate_cache(m))
5332		return;
5333
5334	/*
5335	 * If page is not mapped by sf buffer, but CPU does not
5336	 * support self snoop, map the page transient and do
5337	 * invalidation. In the worst case, whole cache is flushed by
5338	 * pmap_invalidate_cache_range().
5339	 */
5340	if ((cpu_feature & CPUID_SS) == 0)
5341		pmap_flush_page(m);
5342}
5343
5344static void
5345pmap_flush_page(vm_page_t m)
5346{
5347	pt_entry_t *cmap_pte2;
5348	struct pcpu *pc;
5349	vm_offset_t sva, eva;
5350	bool useclflushopt;
5351
5352	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5353	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5354		sched_pin();
5355		pc = get_pcpu();
5356		cmap_pte2 = pc->pc_cmap_pte2;
5357		mtx_lock(&pc->pc_cmap_lock);
5358		if (*cmap_pte2)
5359			panic("pmap_flush_page: CMAP2 busy");
5360		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5361		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5362		invlcaddr(pc->pc_cmap_addr2);
5363		sva = (vm_offset_t)pc->pc_cmap_addr2;
5364		eva = sva + PAGE_SIZE;
5365
5366		/*
5367		 * Use mfence or sfence despite the ordering implied by
5368		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5369		 * and clflushopt are not guaranteed to be ordered by
5370		 * any other instruction.
5371		 */
5372		if (useclflushopt)
5373			sfence();
5374		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5375			mfence();
5376		for (; sva < eva; sva += cpu_clflush_line_size) {
5377			if (useclflushopt)
5378				clflushopt(sva);
5379			else
5380				clflush(sva);
5381		}
5382		if (useclflushopt)
5383			sfence();
5384		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5385			mfence();
5386		*cmap_pte2 = 0;
5387		sched_unpin();
5388		mtx_unlock(&pc->pc_cmap_lock);
5389	} else
5390		pmap_invalidate_cache();
5391}
5392
5393/*
5394 * Changes the specified virtual address range's memory type to that given by
5395 * the parameter "mode".  The specified virtual address range must be
5396 * completely contained within either the kernel map.
5397 *
5398 * Returns zero if the change completed successfully, and either EINVAL or
5399 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5400 * of the virtual address range was not mapped, and ENOMEM is returned if
5401 * there was insufficient memory available to complete the change.
5402 */
5403int
5404pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5405{
5406	vm_offset_t base, offset, tmpva;
5407	pd_entry_t *pde;
5408	pt_entry_t *pte;
5409	int cache_bits_pte, cache_bits_pde;
5410	boolean_t changed;
5411
5412	base = trunc_page(va);
5413	offset = va & PAGE_MASK;
5414	size = round_page(offset + size);
5415
5416	/*
5417	 * Only supported on kernel virtual addresses above the recursive map.
5418	 */
5419	if (base < VM_MIN_KERNEL_ADDRESS)
5420		return (EINVAL);
5421
5422	cache_bits_pde = pmap_cache_bits(mode, 1);
5423	cache_bits_pte = pmap_cache_bits(mode, 0);
5424	changed = FALSE;
5425
5426	/*
5427	 * Pages that aren't mapped aren't supported.  Also break down
5428	 * 2/4MB pages into 4KB pages if required.
5429	 */
5430	PMAP_LOCK(kernel_pmap);
5431	for (tmpva = base; tmpva < base + size; ) {
5432		pde = pmap_pde(kernel_pmap, tmpva);
5433		if (*pde == 0) {
5434			PMAP_UNLOCK(kernel_pmap);
5435			return (EINVAL);
5436		}
5437		if (*pde & PG_PS) {
5438			/*
5439			 * If the current 2/4MB page already has
5440			 * the required memory type, then we need not
5441			 * demote this page.  Just increment tmpva to
5442			 * the next 2/4MB page frame.
5443			 */
5444			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5445				tmpva = trunc_4mpage(tmpva) + NBPDR;
5446				continue;
5447			}
5448
5449			/*
5450			 * If the current offset aligns with a 2/4MB
5451			 * page frame and there is at least 2/4MB left
5452			 * within the range, then we need not break
5453			 * down this page into 4KB pages.
5454			 */
5455			if ((tmpva & PDRMASK) == 0 &&
5456			    tmpva + PDRMASK < base + size) {
5457				tmpva += NBPDR;
5458				continue;
5459			}
5460			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5461				PMAP_UNLOCK(kernel_pmap);
5462				return (ENOMEM);
5463			}
5464		}
5465		pte = vtopte(tmpva);
5466		if (*pte == 0) {
5467			PMAP_UNLOCK(kernel_pmap);
5468			return (EINVAL);
5469		}
5470		tmpva += PAGE_SIZE;
5471	}
5472	PMAP_UNLOCK(kernel_pmap);
5473
5474	/*
5475	 * Ok, all the pages exist, so run through them updating their
5476	 * cache mode if required.
5477	 */
5478	for (tmpva = base; tmpva < base + size; ) {
5479		pde = pmap_pde(kernel_pmap, tmpva);
5480		if (*pde & PG_PS) {
5481			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5482				pmap_pde_attr(pde, cache_bits_pde);
5483				changed = TRUE;
5484			}
5485			tmpva = trunc_4mpage(tmpva) + NBPDR;
5486		} else {
5487			pte = vtopte(tmpva);
5488			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5489				pmap_pte_attr(pte, cache_bits_pte);
5490				changed = TRUE;
5491			}
5492			tmpva += PAGE_SIZE;
5493		}
5494	}
5495
5496	/*
5497	 * Flush CPU caches to make sure any data isn't cached that
5498	 * shouldn't be, etc.
5499	 */
5500	if (changed) {
5501		pmap_invalidate_range(kernel_pmap, base, tmpva);
5502		pmap_invalidate_cache_range(base, tmpva, FALSE);
5503	}
5504	return (0);
5505}
5506
5507/*
5508 * perform the pmap work for mincore
5509 */
5510int
5511pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5512{
5513	pd_entry_t *pdep;
5514	pt_entry_t *ptep, pte;
5515	vm_paddr_t pa;
5516	int val;
5517
5518	PMAP_LOCK(pmap);
5519retry:
5520	pdep = pmap_pde(pmap, addr);
5521	if (*pdep != 0) {
5522		if (*pdep & PG_PS) {
5523			pte = *pdep;
5524			/* Compute the physical address of the 4KB page. */
5525			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5526			    PG_FRAME;
5527			val = MINCORE_SUPER;
5528		} else {
5529			ptep = pmap_pte(pmap, addr);
5530			pte = *ptep;
5531			pmap_pte_release(ptep);
5532			pa = pte & PG_FRAME;
5533			val = 0;
5534		}
5535	} else {
5536		pte = 0;
5537		pa = 0;
5538		val = 0;
5539	}
5540	if ((pte & PG_V) != 0) {
5541		val |= MINCORE_INCORE;
5542		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5543			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5544		if ((pte & PG_A) != 0)
5545			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5546	}
5547	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5548	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5549	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5550		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5551		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5552			goto retry;
5553	} else
5554		PA_UNLOCK_COND(*locked_pa);
5555	PMAP_UNLOCK(pmap);
5556	return (val);
5557}
5558
5559void
5560pmap_activate(struct thread *td)
5561{
5562	pmap_t	pmap, oldpmap;
5563	u_int	cpuid;
5564	u_int32_t  cr3;
5565
5566	critical_enter();
5567	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5568	oldpmap = PCPU_GET(curpmap);
5569	cpuid = PCPU_GET(cpuid);
5570#if defined(SMP)
5571	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5572	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5573#else
5574	CPU_CLR(cpuid, &oldpmap->pm_active);
5575	CPU_SET(cpuid, &pmap->pm_active);
5576#endif
5577#if defined(PAE) || defined(PAE_TABLES)
5578	cr3 = vtophys(pmap->pm_pdpt);
5579#else
5580	cr3 = vtophys(pmap->pm_pdir);
5581#endif
5582	/*
5583	 * pmap_activate is for the current thread on the current cpu
5584	 */
5585	td->td_pcb->pcb_cr3 = cr3;
5586	load_cr3(cr3);
5587	PCPU_SET(curpmap, pmap);
5588	critical_exit();
5589}
5590
5591void
5592pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5593{
5594}
5595
5596/*
5597 *	Increase the starting virtual address of the given mapping if a
5598 *	different alignment might result in more superpage mappings.
5599 */
5600void
5601pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5602    vm_offset_t *addr, vm_size_t size)
5603{
5604	vm_offset_t superpage_offset;
5605
5606	if (size < NBPDR)
5607		return;
5608	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5609		offset += ptoa(object->pg_color);
5610	superpage_offset = offset & PDRMASK;
5611	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5612	    (*addr & PDRMASK) == superpage_offset)
5613		return;
5614	if ((*addr & PDRMASK) < superpage_offset)
5615		*addr = (*addr & ~PDRMASK) + superpage_offset;
5616	else
5617		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5618}
5619
5620vm_offset_t
5621pmap_quick_enter_page(vm_page_t m)
5622{
5623	vm_offset_t qaddr;
5624	pt_entry_t *pte;
5625
5626	critical_enter();
5627	qaddr = PCPU_GET(qmap_addr);
5628	pte = vtopte(qaddr);
5629
5630	KASSERT(*pte == 0, ("pmap_quick_enter_page: PTE busy"));
5631	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5632	    pmap_cache_bits(pmap_page_get_memattr(m), 0);
5633	invlpg(qaddr);
5634
5635	return (qaddr);
5636}
5637
5638void
5639pmap_quick_remove_page(vm_offset_t addr)
5640{
5641	vm_offset_t qaddr;
5642	pt_entry_t *pte;
5643
5644	qaddr = PCPU_GET(qmap_addr);
5645	pte = vtopte(qaddr);
5646
5647	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5648	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5649
5650	*pte = 0;
5651	critical_exit();
5652}
5653
5654#if defined(PMAP_DEBUG)
5655pmap_pid_dump(int pid)
5656{
5657	pmap_t pmap;
5658	struct proc *p;
5659	int npte = 0;
5660	int index;
5661
5662	sx_slock(&allproc_lock);
5663	FOREACH_PROC_IN_SYSTEM(p) {
5664		if (p->p_pid != pid)
5665			continue;
5666
5667		if (p->p_vmspace) {
5668			int i,j;
5669			index = 0;
5670			pmap = vmspace_pmap(p->p_vmspace);
5671			for (i = 0; i < NPDEPTD; i++) {
5672				pd_entry_t *pde;
5673				pt_entry_t *pte;
5674				vm_offset_t base = i << PDRSHIFT;
5675
5676				pde = &pmap->pm_pdir[i];
5677				if (pde && pmap_pde_v(pde)) {
5678					for (j = 0; j < NPTEPG; j++) {
5679						vm_offset_t va = base + (j << PAGE_SHIFT);
5680						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5681							if (index) {
5682								index = 0;
5683								printf("\n");
5684							}
5685							sx_sunlock(&allproc_lock);
5686							return (npte);
5687						}
5688						pte = pmap_pte(pmap, va);
5689						if (pte && pmap_pte_v(pte)) {
5690							pt_entry_t pa;
5691							vm_page_t m;
5692							pa = *pte;
5693							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5694							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5695								va, pa, m->hold_count, m->wire_count, m->flags);
5696							npte++;
5697							index++;
5698							if (index >= 2) {
5699								index = 0;
5700								printf("\n");
5701							} else {
5702								printf(" ");
5703							}
5704						}
5705					}
5706				}
5707			}
5708		}
5709	}
5710	sx_sunlock(&allproc_lock);
5711	return (npte);
5712}
5713#endif
5714