nfs_clvnops.c revision 312072
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/11/sys/fs/nfsclient/nfs_clvnops.c 312072 2017-01-13 13:37:09Z kib $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/systm.h>
47#include <sys/resourcevar.h>
48#include <sys/proc.h>
49#include <sys/mount.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/jail.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/namei.h>
56#include <sys/socket.h>
57#include <sys/vnode.h>
58#include <sys/dirent.h>
59#include <sys/fcntl.h>
60#include <sys/lockf.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <vm/vm.h>
66#include <vm/vm_extern.h>
67#include <vm/vm_object.h>
68
69#include <fs/nfs/nfsport.h>
70#include <fs/nfsclient/nfsnode.h>
71#include <fs/nfsclient/nfsmount.h>
72#include <fs/nfsclient/nfs.h>
73#include <fs/nfsclient/nfs_kdtrace.h>
74
75#include <net/if.h>
76#include <netinet/in.h>
77#include <netinet/in_var.h>
78
79#include <nfs/nfs_lock.h>
80
81#ifdef KDTRACE_HOOKS
82#include <sys/dtrace_bsd.h>
83
84dtrace_nfsclient_accesscache_flush_probe_func_t
85		dtrace_nfscl_accesscache_flush_done_probe;
86uint32_t	nfscl_accesscache_flush_done_id;
87
88dtrace_nfsclient_accesscache_get_probe_func_t
89		dtrace_nfscl_accesscache_get_hit_probe,
90		dtrace_nfscl_accesscache_get_miss_probe;
91uint32_t	nfscl_accesscache_get_hit_id;
92uint32_t	nfscl_accesscache_get_miss_id;
93
94dtrace_nfsclient_accesscache_load_probe_func_t
95		dtrace_nfscl_accesscache_load_done_probe;
96uint32_t	nfscl_accesscache_load_done_id;
97#endif /* !KDTRACE_HOOKS */
98
99/* Defs */
100#define	TRUE	1
101#define	FALSE	0
102
103extern struct nfsstatsv1 nfsstatsv1;
104extern int nfsrv_useacl;
105extern int nfscl_debuglevel;
106MALLOC_DECLARE(M_NEWNFSREQ);
107
108static vop_read_t	nfsfifo_read;
109static vop_write_t	nfsfifo_write;
110static vop_close_t	nfsfifo_close;
111static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
112		    struct thread *);
113static vop_lookup_t	nfs_lookup;
114static vop_create_t	nfs_create;
115static vop_mknod_t	nfs_mknod;
116static vop_open_t	nfs_open;
117static vop_pathconf_t	nfs_pathconf;
118static vop_close_t	nfs_close;
119static vop_access_t	nfs_access;
120static vop_getattr_t	nfs_getattr;
121static vop_setattr_t	nfs_setattr;
122static vop_read_t	nfs_read;
123static vop_fsync_t	nfs_fsync;
124static vop_remove_t	nfs_remove;
125static vop_link_t	nfs_link;
126static vop_rename_t	nfs_rename;
127static vop_mkdir_t	nfs_mkdir;
128static vop_rmdir_t	nfs_rmdir;
129static vop_symlink_t	nfs_symlink;
130static vop_readdir_t	nfs_readdir;
131static vop_strategy_t	nfs_strategy;
132static	int	nfs_lookitup(struct vnode *, char *, int,
133		    struct ucred *, struct thread *, struct nfsnode **);
134static	int	nfs_sillyrename(struct vnode *, struct vnode *,
135		    struct componentname *);
136static vop_access_t	nfsspec_access;
137static vop_readlink_t	nfs_readlink;
138static vop_print_t	nfs_print;
139static vop_advlock_t	nfs_advlock;
140static vop_advlockasync_t nfs_advlockasync;
141static vop_getacl_t nfs_getacl;
142static vop_setacl_t nfs_setacl;
143
144/*
145 * Global vfs data structures for nfs
146 */
147struct vop_vector newnfs_vnodeops = {
148	.vop_default =		&default_vnodeops,
149	.vop_access =		nfs_access,
150	.vop_advlock =		nfs_advlock,
151	.vop_advlockasync =	nfs_advlockasync,
152	.vop_close =		nfs_close,
153	.vop_create =		nfs_create,
154	.vop_fsync =		nfs_fsync,
155	.vop_getattr =		nfs_getattr,
156	.vop_getpages =		ncl_getpages,
157	.vop_putpages =		ncl_putpages,
158	.vop_inactive =		ncl_inactive,
159	.vop_link =		nfs_link,
160	.vop_lookup =		nfs_lookup,
161	.vop_mkdir =		nfs_mkdir,
162	.vop_mknod =		nfs_mknod,
163	.vop_open =		nfs_open,
164	.vop_pathconf =		nfs_pathconf,
165	.vop_print =		nfs_print,
166	.vop_read =		nfs_read,
167	.vop_readdir =		nfs_readdir,
168	.vop_readlink =		nfs_readlink,
169	.vop_reclaim =		ncl_reclaim,
170	.vop_remove =		nfs_remove,
171	.vop_rename =		nfs_rename,
172	.vop_rmdir =		nfs_rmdir,
173	.vop_setattr =		nfs_setattr,
174	.vop_strategy =		nfs_strategy,
175	.vop_symlink =		nfs_symlink,
176	.vop_write =		ncl_write,
177	.vop_getacl =		nfs_getacl,
178	.vop_setacl =		nfs_setacl,
179};
180
181struct vop_vector newnfs_fifoops = {
182	.vop_default =		&fifo_specops,
183	.vop_access =		nfsspec_access,
184	.vop_close =		nfsfifo_close,
185	.vop_fsync =		nfs_fsync,
186	.vop_getattr =		nfs_getattr,
187	.vop_inactive =		ncl_inactive,
188	.vop_print =		nfs_print,
189	.vop_read =		nfsfifo_read,
190	.vop_reclaim =		ncl_reclaim,
191	.vop_setattr =		nfs_setattr,
192	.vop_write =		nfsfifo_write,
193};
194
195static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
196    struct componentname *cnp, struct vattr *vap);
197static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
198    int namelen, struct ucred *cred, struct thread *td);
199static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
200    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
201    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
202static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
203    struct componentname *scnp, struct sillyrename *sp);
204
205/*
206 * Global variables
207 */
208#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
209
210SYSCTL_DECL(_vfs_nfs);
211
212static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
213SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
214	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
215
216static int	nfs_prime_access_cache = 0;
217SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
218	   &nfs_prime_access_cache, 0,
219	   "Prime NFS ACCESS cache when fetching attributes");
220
221static int	newnfs_commit_on_close = 0;
222SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
223    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
224
225static int	nfs_clean_pages_on_close = 1;
226SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
227	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
228
229int newnfs_directio_enable = 0;
230SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
231	   &newnfs_directio_enable, 0, "Enable NFS directio");
232
233int nfs_keep_dirty_on_error;
234SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
235    &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
236
237/*
238 * This sysctl allows other processes to mmap a file that has been opened
239 * O_DIRECT by a process.  In general, having processes mmap the file while
240 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
241 * this by default to prevent DoS attacks - to prevent a malicious user from
242 * opening up files O_DIRECT preventing other users from mmap'ing these
243 * files.  "Protected" environments where stricter consistency guarantees are
244 * required can disable this knob.  The process that opened the file O_DIRECT
245 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
246 * meaningful.
247 */
248int newnfs_directio_allow_mmap = 1;
249SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
250	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
251
252#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
253			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
254			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
255
256/*
257 * SMP Locking Note :
258 * The list of locks after the description of the lock is the ordering
259 * of other locks acquired with the lock held.
260 * np->n_mtx : Protects the fields in the nfsnode.
261       VM Object Lock
262       VI_MTX (acquired indirectly)
263 * nmp->nm_mtx : Protects the fields in the nfsmount.
264       rep->r_mtx
265 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
266 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
267       nmp->nm_mtx
268       rep->r_mtx
269 * rep->r_mtx : Protects the fields in an nfsreq.
270 */
271
272static int
273nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
274    struct ucred *cred, u_int32_t *retmode)
275{
276	int error = 0, attrflag, i, lrupos;
277	u_int32_t rmode;
278	struct nfsnode *np = VTONFS(vp);
279	struct nfsvattr nfsva;
280
281	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
282	    &rmode, NULL);
283	if (attrflag)
284		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
285	if (!error) {
286		lrupos = 0;
287		mtx_lock(&np->n_mtx);
288		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
289			if (np->n_accesscache[i].uid == cred->cr_uid) {
290				np->n_accesscache[i].mode = rmode;
291				np->n_accesscache[i].stamp = time_second;
292				break;
293			}
294			if (i > 0 && np->n_accesscache[i].stamp <
295			    np->n_accesscache[lrupos].stamp)
296				lrupos = i;
297		}
298		if (i == NFS_ACCESSCACHESIZE) {
299			np->n_accesscache[lrupos].uid = cred->cr_uid;
300			np->n_accesscache[lrupos].mode = rmode;
301			np->n_accesscache[lrupos].stamp = time_second;
302		}
303		mtx_unlock(&np->n_mtx);
304		if (retmode != NULL)
305			*retmode = rmode;
306		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
307	} else if (NFS_ISV4(vp)) {
308		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
309	}
310#ifdef KDTRACE_HOOKS
311	if (error != 0)
312		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
313		    error);
314#endif
315	return (error);
316}
317
318/*
319 * nfs access vnode op.
320 * For nfs version 2, just return ok. File accesses may fail later.
321 * For nfs version 3, use the access rpc to check accessibility. If file modes
322 * are changed on the server, accesses might still fail later.
323 */
324static int
325nfs_access(struct vop_access_args *ap)
326{
327	struct vnode *vp = ap->a_vp;
328	int error = 0, i, gotahit;
329	u_int32_t mode, wmode, rmode;
330	int v34 = NFS_ISV34(vp);
331	struct nfsnode *np = VTONFS(vp);
332
333	/*
334	 * Disallow write attempts on filesystems mounted read-only;
335	 * unless the file is a socket, fifo, or a block or character
336	 * device resident on the filesystem.
337	 */
338	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
339	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
340	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
341		switch (vp->v_type) {
342		case VREG:
343		case VDIR:
344		case VLNK:
345			return (EROFS);
346		default:
347			break;
348		}
349	}
350	/*
351	 * For nfs v3 or v4, check to see if we have done this recently, and if
352	 * so return our cached result instead of making an ACCESS call.
353	 * If not, do an access rpc, otherwise you are stuck emulating
354	 * ufs_access() locally using the vattr. This may not be correct,
355	 * since the server may apply other access criteria such as
356	 * client uid-->server uid mapping that we do not know about.
357	 */
358	if (v34) {
359		if (ap->a_accmode & VREAD)
360			mode = NFSACCESS_READ;
361		else
362			mode = 0;
363		if (vp->v_type != VDIR) {
364			if (ap->a_accmode & VWRITE)
365				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
366			if (ap->a_accmode & VAPPEND)
367				mode |= NFSACCESS_EXTEND;
368			if (ap->a_accmode & VEXEC)
369				mode |= NFSACCESS_EXECUTE;
370			if (ap->a_accmode & VDELETE)
371				mode |= NFSACCESS_DELETE;
372		} else {
373			if (ap->a_accmode & VWRITE)
374				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
375			if (ap->a_accmode & VAPPEND)
376				mode |= NFSACCESS_EXTEND;
377			if (ap->a_accmode & VEXEC)
378				mode |= NFSACCESS_LOOKUP;
379			if (ap->a_accmode & VDELETE)
380				mode |= NFSACCESS_DELETE;
381			if (ap->a_accmode & VDELETE_CHILD)
382				mode |= NFSACCESS_MODIFY;
383		}
384		/* XXX safety belt, only make blanket request if caching */
385		if (nfsaccess_cache_timeout > 0) {
386			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
387				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
388				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
389		} else {
390			wmode = mode;
391		}
392
393		/*
394		 * Does our cached result allow us to give a definite yes to
395		 * this request?
396		 */
397		gotahit = 0;
398		mtx_lock(&np->n_mtx);
399		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
400			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
401			    if (time_second < (np->n_accesscache[i].stamp
402				+ nfsaccess_cache_timeout) &&
403				(np->n_accesscache[i].mode & mode) == mode) {
404				NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
405				gotahit = 1;
406			    }
407			    break;
408			}
409		}
410		mtx_unlock(&np->n_mtx);
411#ifdef KDTRACE_HOOKS
412		if (gotahit != 0)
413			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
414			    ap->a_cred->cr_uid, mode);
415		else
416			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
417			    ap->a_cred->cr_uid, mode);
418#endif
419		if (gotahit == 0) {
420			/*
421			 * Either a no, or a don't know.  Go to the wire.
422			 */
423			NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
424		        error = nfs34_access_otw(vp, wmode, ap->a_td,
425			    ap->a_cred, &rmode);
426			if (!error &&
427			    (rmode & mode) != mode)
428				error = EACCES;
429		}
430		return (error);
431	} else {
432		if ((error = nfsspec_access(ap)) != 0) {
433			return (error);
434		}
435		/*
436		 * Attempt to prevent a mapped root from accessing a file
437		 * which it shouldn't.  We try to read a byte from the file
438		 * if the user is root and the file is not zero length.
439		 * After calling nfsspec_access, we should have the correct
440		 * file size cached.
441		 */
442		mtx_lock(&np->n_mtx);
443		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
444		    && VTONFS(vp)->n_size > 0) {
445			struct iovec aiov;
446			struct uio auio;
447			char buf[1];
448
449			mtx_unlock(&np->n_mtx);
450			aiov.iov_base = buf;
451			aiov.iov_len = 1;
452			auio.uio_iov = &aiov;
453			auio.uio_iovcnt = 1;
454			auio.uio_offset = 0;
455			auio.uio_resid = 1;
456			auio.uio_segflg = UIO_SYSSPACE;
457			auio.uio_rw = UIO_READ;
458			auio.uio_td = ap->a_td;
459
460			if (vp->v_type == VREG)
461				error = ncl_readrpc(vp, &auio, ap->a_cred);
462			else if (vp->v_type == VDIR) {
463				char* bp;
464				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
465				aiov.iov_base = bp;
466				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
467				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
468				    ap->a_td);
469				free(bp, M_TEMP);
470			} else if (vp->v_type == VLNK)
471				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
472			else
473				error = EACCES;
474		} else
475			mtx_unlock(&np->n_mtx);
476		return (error);
477	}
478}
479
480
481/*
482 * nfs open vnode op
483 * Check to see if the type is ok
484 * and that deletion is not in progress.
485 * For paged in text files, you will need to flush the page cache
486 * if consistency is lost.
487 */
488/* ARGSUSED */
489static int
490nfs_open(struct vop_open_args *ap)
491{
492	struct vnode *vp = ap->a_vp;
493	struct nfsnode *np = VTONFS(vp);
494	struct vattr vattr;
495	int error;
496	int fmode = ap->a_mode;
497	struct ucred *cred;
498
499	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
500		return (EOPNOTSUPP);
501
502	/*
503	 * For NFSv4, we need to do the Open Op before cache validation,
504	 * so that we conform to RFC3530 Sec. 9.3.1.
505	 */
506	if (NFS_ISV4(vp)) {
507		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
508		if (error) {
509			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
510			    (gid_t)0);
511			return (error);
512		}
513	}
514
515	/*
516	 * Now, if this Open will be doing reading, re-validate/flush the
517	 * cache, so that Close/Open coherency is maintained.
518	 */
519	mtx_lock(&np->n_mtx);
520	if (np->n_flag & NMODIFIED) {
521		mtx_unlock(&np->n_mtx);
522		error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
523		if (error == EINTR || error == EIO) {
524			if (NFS_ISV4(vp))
525				(void) nfsrpc_close(vp, 0, ap->a_td);
526			return (error);
527		}
528		mtx_lock(&np->n_mtx);
529		np->n_attrstamp = 0;
530		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
531		if (vp->v_type == VDIR)
532			np->n_direofoffset = 0;
533		mtx_unlock(&np->n_mtx);
534		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
535		if (error) {
536			if (NFS_ISV4(vp))
537				(void) nfsrpc_close(vp, 0, ap->a_td);
538			return (error);
539		}
540		mtx_lock(&np->n_mtx);
541		np->n_mtime = vattr.va_mtime;
542		if (NFS_ISV4(vp))
543			np->n_change = vattr.va_filerev;
544	} else {
545		mtx_unlock(&np->n_mtx);
546		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
547		if (error) {
548			if (NFS_ISV4(vp))
549				(void) nfsrpc_close(vp, 0, ap->a_td);
550			return (error);
551		}
552		mtx_lock(&np->n_mtx);
553		if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
554		    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
555			if (vp->v_type == VDIR)
556				np->n_direofoffset = 0;
557			mtx_unlock(&np->n_mtx);
558			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
559			if (error == EINTR || error == EIO) {
560				if (NFS_ISV4(vp))
561					(void) nfsrpc_close(vp, 0, ap->a_td);
562				return (error);
563			}
564			mtx_lock(&np->n_mtx);
565			np->n_mtime = vattr.va_mtime;
566			if (NFS_ISV4(vp))
567				np->n_change = vattr.va_filerev;
568		}
569	}
570
571	/*
572	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
573	 */
574	if (newnfs_directio_enable && (fmode & O_DIRECT) &&
575	    (vp->v_type == VREG)) {
576		if (np->n_directio_opens == 0) {
577			mtx_unlock(&np->n_mtx);
578			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
579			if (error) {
580				if (NFS_ISV4(vp))
581					(void) nfsrpc_close(vp, 0, ap->a_td);
582				return (error);
583			}
584			mtx_lock(&np->n_mtx);
585			np->n_flag |= NNONCACHE;
586		}
587		np->n_directio_opens++;
588	}
589
590	/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
591	if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
592		np->n_flag |= NWRITEOPENED;
593
594	/*
595	 * If this is an open for writing, capture a reference to the
596	 * credentials, so they can be used by ncl_putpages(). Using
597	 * these write credentials is preferable to the credentials of
598	 * whatever thread happens to be doing the VOP_PUTPAGES() since
599	 * the write RPCs are less likely to fail with EACCES.
600	 */
601	if ((fmode & FWRITE) != 0) {
602		cred = np->n_writecred;
603		np->n_writecred = crhold(ap->a_cred);
604	} else
605		cred = NULL;
606	mtx_unlock(&np->n_mtx);
607
608	if (cred != NULL)
609		crfree(cred);
610	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
611	return (0);
612}
613
614/*
615 * nfs close vnode op
616 * What an NFS client should do upon close after writing is a debatable issue.
617 * Most NFS clients push delayed writes to the server upon close, basically for
618 * two reasons:
619 * 1 - So that any write errors may be reported back to the client process
620 *     doing the close system call. By far the two most likely errors are
621 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
622 * 2 - To put a worst case upper bound on cache inconsistency between
623 *     multiple clients for the file.
624 * There is also a consistency problem for Version 2 of the protocol w.r.t.
625 * not being able to tell if other clients are writing a file concurrently,
626 * since there is no way of knowing if the changed modify time in the reply
627 * is only due to the write for this client.
628 * (NFS Version 3 provides weak cache consistency data in the reply that
629 *  should be sufficient to detect and handle this case.)
630 *
631 * The current code does the following:
632 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
633 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
634 *                     or commit them (this satisfies 1 and 2 except for the
635 *                     case where the server crashes after this close but
636 *                     before the commit RPC, which is felt to be "good
637 *                     enough". Changing the last argument to ncl_flush() to
638 *                     a 1 would force a commit operation, if it is felt a
639 *                     commit is necessary now.
640 * for NFS Version 4 - flush the dirty buffers and commit them, if
641 *		       nfscl_mustflush() says this is necessary.
642 *                     It is necessary if there is no write delegation held,
643 *                     in order to satisfy open/close coherency.
644 *                     If the file isn't cached on local stable storage,
645 *                     it may be necessary in order to detect "out of space"
646 *                     errors from the server, if the write delegation
647 *                     issued by the server doesn't allow the file to grow.
648 */
649/* ARGSUSED */
650static int
651nfs_close(struct vop_close_args *ap)
652{
653	struct vnode *vp = ap->a_vp;
654	struct nfsnode *np = VTONFS(vp);
655	struct nfsvattr nfsva;
656	struct ucred *cred;
657	int error = 0, ret, localcred = 0;
658	int fmode = ap->a_fflag;
659
660	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
661		return (0);
662	/*
663	 * During shutdown, a_cred isn't valid, so just use root.
664	 */
665	if (ap->a_cred == NOCRED) {
666		cred = newnfs_getcred();
667		localcred = 1;
668	} else {
669		cred = ap->a_cred;
670	}
671	if (vp->v_type == VREG) {
672	    /*
673	     * Examine and clean dirty pages, regardless of NMODIFIED.
674	     * This closes a major hole in close-to-open consistency.
675	     * We want to push out all dirty pages (and buffers) on
676	     * close, regardless of whether they were dirtied by
677	     * mmap'ed writes or via write().
678	     */
679	    if (nfs_clean_pages_on_close && vp->v_object) {
680		VM_OBJECT_WLOCK(vp->v_object);
681		vm_object_page_clean(vp->v_object, 0, 0, 0);
682		VM_OBJECT_WUNLOCK(vp->v_object);
683	    }
684	    mtx_lock(&np->n_mtx);
685	    if (np->n_flag & NMODIFIED) {
686		mtx_unlock(&np->n_mtx);
687		if (NFS_ISV3(vp)) {
688		    /*
689		     * Under NFSv3 we have dirty buffers to dispose of.  We
690		     * must flush them to the NFS server.  We have the option
691		     * of waiting all the way through the commit rpc or just
692		     * waiting for the initial write.  The default is to only
693		     * wait through the initial write so the data is in the
694		     * server's cache, which is roughly similar to the state
695		     * a standard disk subsystem leaves the file in on close().
696		     *
697		     * We cannot clear the NMODIFIED bit in np->n_flag due to
698		     * potential races with other processes, and certainly
699		     * cannot clear it if we don't commit.
700		     * These races occur when there is no longer the old
701		     * traditional vnode locking implemented for Vnode Ops.
702		     */
703		    int cm = newnfs_commit_on_close ? 1 : 0;
704		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
705		    /* np->n_flag &= ~NMODIFIED; */
706		} else if (NFS_ISV4(vp)) {
707			if (nfscl_mustflush(vp) != 0) {
708				int cm = newnfs_commit_on_close ? 1 : 0;
709				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
710				    cm, 0);
711				/*
712				 * as above w.r.t races when clearing
713				 * NMODIFIED.
714				 * np->n_flag &= ~NMODIFIED;
715				 */
716			}
717		} else
718		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
719		mtx_lock(&np->n_mtx);
720	    }
721 	    /*
722 	     * Invalidate the attribute cache in all cases.
723 	     * An open is going to fetch fresh attrs any way, other procs
724 	     * on this node that have file open will be forced to do an
725 	     * otw attr fetch, but this is safe.
726	     * --> A user found that their RPC count dropped by 20% when
727	     *     this was commented out and I can't see any requirement
728	     *     for it, so I've disabled it when negative lookups are
729	     *     enabled. (What does this have to do with negative lookup
730	     *     caching? Well nothing, except it was reported by the
731	     *     same user that needed negative lookup caching and I wanted
732	     *     there to be a way to disable it to see if it
733	     *     is the cause of some caching/coherency issue that might
734	     *     crop up.)
735 	     */
736	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
737		    np->n_attrstamp = 0;
738		    KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
739	    }
740	    if (np->n_flag & NWRITEERR) {
741		np->n_flag &= ~NWRITEERR;
742		error = np->n_error;
743	    }
744	    mtx_unlock(&np->n_mtx);
745	}
746
747	if (NFS_ISV4(vp)) {
748		/*
749		 * Get attributes so "change" is up to date.
750		 */
751		if (error == 0 && nfscl_mustflush(vp) != 0 &&
752		    vp->v_type == VREG &&
753		    (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
754			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
755			    NULL);
756			if (!ret) {
757				np->n_change = nfsva.na_filerev;
758				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
759				    NULL, 0, 0);
760			}
761		}
762
763		/*
764		 * and do the close.
765		 */
766		ret = nfsrpc_close(vp, 0, ap->a_td);
767		if (!error && ret)
768			error = ret;
769		if (error)
770			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
771			    (gid_t)0);
772	}
773	if (newnfs_directio_enable)
774		KASSERT((np->n_directio_asyncwr == 0),
775			("nfs_close: dirty unflushed (%d) directio buffers\n",
776			 np->n_directio_asyncwr));
777	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
778		mtx_lock(&np->n_mtx);
779		KASSERT((np->n_directio_opens > 0),
780			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
781		np->n_directio_opens--;
782		if (np->n_directio_opens == 0)
783			np->n_flag &= ~NNONCACHE;
784		mtx_unlock(&np->n_mtx);
785	}
786	if (localcred)
787		NFSFREECRED(cred);
788	return (error);
789}
790
791/*
792 * nfs getattr call from vfs.
793 */
794static int
795nfs_getattr(struct vop_getattr_args *ap)
796{
797	struct vnode *vp = ap->a_vp;
798	struct thread *td = curthread;	/* XXX */
799	struct nfsnode *np = VTONFS(vp);
800	int error = 0;
801	struct nfsvattr nfsva;
802	struct vattr *vap = ap->a_vap;
803	struct vattr vattr;
804
805	/*
806	 * Update local times for special files.
807	 */
808	mtx_lock(&np->n_mtx);
809	if (np->n_flag & (NACC | NUPD))
810		np->n_flag |= NCHG;
811	mtx_unlock(&np->n_mtx);
812	/*
813	 * First look in the cache.
814	 */
815	if (ncl_getattrcache(vp, &vattr) == 0) {
816		vap->va_type = vattr.va_type;
817		vap->va_mode = vattr.va_mode;
818		vap->va_nlink = vattr.va_nlink;
819		vap->va_uid = vattr.va_uid;
820		vap->va_gid = vattr.va_gid;
821		vap->va_fsid = vattr.va_fsid;
822		vap->va_fileid = vattr.va_fileid;
823		vap->va_size = vattr.va_size;
824		vap->va_blocksize = vattr.va_blocksize;
825		vap->va_atime = vattr.va_atime;
826		vap->va_mtime = vattr.va_mtime;
827		vap->va_ctime = vattr.va_ctime;
828		vap->va_gen = vattr.va_gen;
829		vap->va_flags = vattr.va_flags;
830		vap->va_rdev = vattr.va_rdev;
831		vap->va_bytes = vattr.va_bytes;
832		vap->va_filerev = vattr.va_filerev;
833		/*
834		 * Get the local modify time for the case of a write
835		 * delegation.
836		 */
837		nfscl_deleggetmodtime(vp, &vap->va_mtime);
838		return (0);
839	}
840
841	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
842	    nfsaccess_cache_timeout > 0) {
843		NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
844		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
845		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
846			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
847			return (0);
848		}
849	}
850	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
851	if (!error)
852		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
853	if (!error) {
854		/*
855		 * Get the local modify time for the case of a write
856		 * delegation.
857		 */
858		nfscl_deleggetmodtime(vp, &vap->va_mtime);
859	} else if (NFS_ISV4(vp)) {
860		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
861	}
862	return (error);
863}
864
865/*
866 * nfs setattr call.
867 */
868static int
869nfs_setattr(struct vop_setattr_args *ap)
870{
871	struct vnode *vp = ap->a_vp;
872	struct nfsnode *np = VTONFS(vp);
873	struct thread *td = curthread;	/* XXX */
874	struct vattr *vap = ap->a_vap;
875	int error = 0;
876	u_quad_t tsize;
877
878#ifndef nolint
879	tsize = (u_quad_t)0;
880#endif
881
882	/*
883	 * Setting of flags and marking of atimes are not supported.
884	 */
885	if (vap->va_flags != VNOVAL)
886		return (EOPNOTSUPP);
887
888	/*
889	 * Disallow write attempts if the filesystem is mounted read-only.
890	 */
891  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
892	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
893	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
894	    (vp->v_mount->mnt_flag & MNT_RDONLY))
895		return (EROFS);
896	if (vap->va_size != VNOVAL) {
897 		switch (vp->v_type) {
898 		case VDIR:
899 			return (EISDIR);
900 		case VCHR:
901 		case VBLK:
902 		case VSOCK:
903 		case VFIFO:
904			if (vap->va_mtime.tv_sec == VNOVAL &&
905			    vap->va_atime.tv_sec == VNOVAL &&
906			    vap->va_mode == (mode_t)VNOVAL &&
907			    vap->va_uid == (uid_t)VNOVAL &&
908			    vap->va_gid == (gid_t)VNOVAL)
909				return (0);
910 			vap->va_size = VNOVAL;
911 			break;
912 		default:
913			/*
914			 * Disallow write attempts if the filesystem is
915			 * mounted read-only.
916			 */
917			if (vp->v_mount->mnt_flag & MNT_RDONLY)
918				return (EROFS);
919			/*
920			 *  We run vnode_pager_setsize() early (why?),
921			 * we must set np->n_size now to avoid vinvalbuf
922			 * V_SAVE races that might setsize a lower
923			 * value.
924			 */
925			mtx_lock(&np->n_mtx);
926			tsize = np->n_size;
927			mtx_unlock(&np->n_mtx);
928			error = ncl_meta_setsize(vp, ap->a_cred, td,
929			    vap->va_size);
930			mtx_lock(&np->n_mtx);
931 			if (np->n_flag & NMODIFIED) {
932			    tsize = np->n_size;
933			    mtx_unlock(&np->n_mtx);
934 			    if (vap->va_size == 0)
935 				error = ncl_vinvalbuf(vp, 0, td, 1);
936 			    else
937 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
938 			    if (error) {
939				vnode_pager_setsize(vp, tsize);
940				return (error);
941			    }
942			    /*
943			     * Call nfscl_delegmodtime() to set the modify time
944			     * locally, as required.
945			     */
946			    nfscl_delegmodtime(vp);
947 			} else
948			    mtx_unlock(&np->n_mtx);
949			/*
950			 * np->n_size has already been set to vap->va_size
951			 * in ncl_meta_setsize(). We must set it again since
952			 * nfs_loadattrcache() could be called through
953			 * ncl_meta_setsize() and could modify np->n_size.
954			 */
955			mtx_lock(&np->n_mtx);
956 			np->n_vattr.na_size = np->n_size = vap->va_size;
957			mtx_unlock(&np->n_mtx);
958  		}
959  	} else {
960		mtx_lock(&np->n_mtx);
961		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
962		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
963			mtx_unlock(&np->n_mtx);
964			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
965			    (error == EINTR || error == EIO))
966				return (error);
967		} else
968			mtx_unlock(&np->n_mtx);
969	}
970	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
971	if (error && vap->va_size != VNOVAL) {
972		mtx_lock(&np->n_mtx);
973		np->n_size = np->n_vattr.na_size = tsize;
974		vnode_pager_setsize(vp, tsize);
975		mtx_unlock(&np->n_mtx);
976	}
977	return (error);
978}
979
980/*
981 * Do an nfs setattr rpc.
982 */
983static int
984nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
985    struct thread *td)
986{
987	struct nfsnode *np = VTONFS(vp);
988	int error, ret, attrflag, i;
989	struct nfsvattr nfsva;
990
991	if (NFS_ISV34(vp)) {
992		mtx_lock(&np->n_mtx);
993		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
994			np->n_accesscache[i].stamp = 0;
995		np->n_flag |= NDELEGMOD;
996		mtx_unlock(&np->n_mtx);
997		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
998	}
999	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1000	    NULL);
1001	if (attrflag) {
1002		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1003		if (ret && !error)
1004			error = ret;
1005	}
1006	if (error && NFS_ISV4(vp))
1007		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1008	return (error);
1009}
1010
1011/*
1012 * nfs lookup call, one step at a time...
1013 * First look in cache
1014 * If not found, unlock the directory nfsnode and do the rpc
1015 */
1016static int
1017nfs_lookup(struct vop_lookup_args *ap)
1018{
1019	struct componentname *cnp = ap->a_cnp;
1020	struct vnode *dvp = ap->a_dvp;
1021	struct vnode **vpp = ap->a_vpp;
1022	struct mount *mp = dvp->v_mount;
1023	int flags = cnp->cn_flags;
1024	struct vnode *newvp;
1025	struct nfsmount *nmp;
1026	struct nfsnode *np, *newnp;
1027	int error = 0, attrflag, dattrflag, ltype, ncticks;
1028	struct thread *td = cnp->cn_thread;
1029	struct nfsfh *nfhp;
1030	struct nfsvattr dnfsva, nfsva;
1031	struct vattr vattr;
1032	struct timespec nctime;
1033
1034	*vpp = NULLVP;
1035	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1036	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1037		return (EROFS);
1038	if (dvp->v_type != VDIR)
1039		return (ENOTDIR);
1040	nmp = VFSTONFS(mp);
1041	np = VTONFS(dvp);
1042
1043	/* For NFSv4, wait until any remove is done. */
1044	mtx_lock(&np->n_mtx);
1045	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1046		np->n_flag |= NREMOVEWANT;
1047		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1048	}
1049	mtx_unlock(&np->n_mtx);
1050
1051	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1052		return (error);
1053	error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1054	if (error > 0 && error != ENOENT)
1055		return (error);
1056	if (error == -1) {
1057		/*
1058		 * Lookups of "." are special and always return the
1059		 * current directory.  cache_lookup() already handles
1060		 * associated locking bookkeeping, etc.
1061		 */
1062		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1063			/* XXX: Is this really correct? */
1064			if (cnp->cn_nameiop != LOOKUP &&
1065			    (flags & ISLASTCN))
1066				cnp->cn_flags |= SAVENAME;
1067			return (0);
1068		}
1069
1070		/*
1071		 * We only accept a positive hit in the cache if the
1072		 * change time of the file matches our cached copy.
1073		 * Otherwise, we discard the cache entry and fallback
1074		 * to doing a lookup RPC.  We also only trust cache
1075		 * entries for less than nm_nametimeo seconds.
1076		 *
1077		 * To better handle stale file handles and attributes,
1078		 * clear the attribute cache of this node if it is a
1079		 * leaf component, part of an open() call, and not
1080		 * locally modified before fetching the attributes.
1081		 * This should allow stale file handles to be detected
1082		 * here where we can fall back to a LOOKUP RPC to
1083		 * recover rather than having nfs_open() detect the
1084		 * stale file handle and failing open(2) with ESTALE.
1085		 */
1086		newvp = *vpp;
1087		newnp = VTONFS(newvp);
1088		if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1089		    (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1090		    !(newnp->n_flag & NMODIFIED)) {
1091			mtx_lock(&newnp->n_mtx);
1092			newnp->n_attrstamp = 0;
1093			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1094			mtx_unlock(&newnp->n_mtx);
1095		}
1096		if (nfscl_nodeleg(newvp, 0) == 0 ||
1097		    ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1098		    VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1099		    timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1100			NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1101			if (cnp->cn_nameiop != LOOKUP &&
1102			    (flags & ISLASTCN))
1103				cnp->cn_flags |= SAVENAME;
1104			return (0);
1105		}
1106		cache_purge(newvp);
1107		if (dvp != newvp)
1108			vput(newvp);
1109		else
1110			vrele(newvp);
1111		*vpp = NULLVP;
1112	} else if (error == ENOENT) {
1113		if (dvp->v_iflag & VI_DOOMED)
1114			return (ENOENT);
1115		/*
1116		 * We only accept a negative hit in the cache if the
1117		 * modification time of the parent directory matches
1118		 * the cached copy in the name cache entry.
1119		 * Otherwise, we discard all of the negative cache
1120		 * entries for this directory.  We also only trust
1121		 * negative cache entries for up to nm_negnametimeo
1122		 * seconds.
1123		 */
1124		if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1125		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1126		    timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1127			NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1128			return (ENOENT);
1129		}
1130		cache_purge_negative(dvp);
1131	}
1132
1133	error = 0;
1134	newvp = NULLVP;
1135	NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
1136	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1137	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1138	    NULL);
1139	if (dattrflag)
1140		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1141	if (error) {
1142		if (newvp != NULLVP) {
1143			vput(newvp);
1144			*vpp = NULLVP;
1145		}
1146
1147		if (error != ENOENT) {
1148			if (NFS_ISV4(dvp))
1149				error = nfscl_maperr(td, error, (uid_t)0,
1150				    (gid_t)0);
1151			return (error);
1152		}
1153
1154		/* The requested file was not found. */
1155		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1156		    (flags & ISLASTCN)) {
1157			/*
1158			 * XXX: UFS does a full VOP_ACCESS(dvp,
1159			 * VWRITE) here instead of just checking
1160			 * MNT_RDONLY.
1161			 */
1162			if (mp->mnt_flag & MNT_RDONLY)
1163				return (EROFS);
1164			cnp->cn_flags |= SAVENAME;
1165			return (EJUSTRETURN);
1166		}
1167
1168		if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1169			/*
1170			 * Cache the modification time of the parent
1171			 * directory from the post-op attributes in
1172			 * the name cache entry.  The negative cache
1173			 * entry will be ignored once the directory
1174			 * has changed.  Don't bother adding the entry
1175			 * if the directory has already changed.
1176			 */
1177			mtx_lock(&np->n_mtx);
1178			if (timespeccmp(&np->n_vattr.na_mtime,
1179			    &dnfsva.na_mtime, ==)) {
1180				mtx_unlock(&np->n_mtx);
1181				cache_enter_time(dvp, NULL, cnp,
1182				    &dnfsva.na_mtime, NULL);
1183			} else
1184				mtx_unlock(&np->n_mtx);
1185		}
1186		return (ENOENT);
1187	}
1188
1189	/*
1190	 * Handle RENAME case...
1191	 */
1192	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1193		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1194			FREE((caddr_t)nfhp, M_NFSFH);
1195			return (EISDIR);
1196		}
1197		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1198		    LK_EXCLUSIVE);
1199		if (error)
1200			return (error);
1201		newvp = NFSTOV(np);
1202		if (attrflag)
1203			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1204			    0, 1);
1205		*vpp = newvp;
1206		cnp->cn_flags |= SAVENAME;
1207		return (0);
1208	}
1209
1210	if (flags & ISDOTDOT) {
1211		ltype = NFSVOPISLOCKED(dvp);
1212		error = vfs_busy(mp, MBF_NOWAIT);
1213		if (error != 0) {
1214			vfs_ref(mp);
1215			NFSVOPUNLOCK(dvp, 0);
1216			error = vfs_busy(mp, 0);
1217			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1218			vfs_rel(mp);
1219			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1220				vfs_unbusy(mp);
1221				error = ENOENT;
1222			}
1223			if (error != 0)
1224				return (error);
1225		}
1226		NFSVOPUNLOCK(dvp, 0);
1227		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1228		    cnp->cn_lkflags);
1229		if (error == 0)
1230			newvp = NFSTOV(np);
1231		vfs_unbusy(mp);
1232		if (newvp != dvp)
1233			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1234		if (dvp->v_iflag & VI_DOOMED) {
1235			if (error == 0) {
1236				if (newvp == dvp)
1237					vrele(newvp);
1238				else
1239					vput(newvp);
1240			}
1241			error = ENOENT;
1242		}
1243		if (error != 0)
1244			return (error);
1245		if (attrflag)
1246			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1247			    0, 1);
1248	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1249		FREE((caddr_t)nfhp, M_NFSFH);
1250		VREF(dvp);
1251		newvp = dvp;
1252		if (attrflag)
1253			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1254			    0, 1);
1255	} else {
1256		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1257		    cnp->cn_lkflags);
1258		if (error)
1259			return (error);
1260		newvp = NFSTOV(np);
1261		if (attrflag)
1262			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1263			    0, 1);
1264		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1265		    !(np->n_flag & NMODIFIED)) {
1266			/*
1267			 * Flush the attribute cache when opening a
1268			 * leaf node to ensure that fresh attributes
1269			 * are fetched in nfs_open() since we did not
1270			 * fetch attributes from the LOOKUP reply.
1271			 */
1272			mtx_lock(&np->n_mtx);
1273			np->n_attrstamp = 0;
1274			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1275			mtx_unlock(&np->n_mtx);
1276		}
1277	}
1278	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1279		cnp->cn_flags |= SAVENAME;
1280	if ((cnp->cn_flags & MAKEENTRY) &&
1281	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1282	    attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1283		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1284		    newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1285	*vpp = newvp;
1286	return (0);
1287}
1288
1289/*
1290 * nfs read call.
1291 * Just call ncl_bioread() to do the work.
1292 */
1293static int
1294nfs_read(struct vop_read_args *ap)
1295{
1296	struct vnode *vp = ap->a_vp;
1297
1298	switch (vp->v_type) {
1299	case VREG:
1300		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1301	case VDIR:
1302		return (EISDIR);
1303	default:
1304		return (EOPNOTSUPP);
1305	}
1306}
1307
1308/*
1309 * nfs readlink call
1310 */
1311static int
1312nfs_readlink(struct vop_readlink_args *ap)
1313{
1314	struct vnode *vp = ap->a_vp;
1315
1316	if (vp->v_type != VLNK)
1317		return (EINVAL);
1318	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1319}
1320
1321/*
1322 * Do a readlink rpc.
1323 * Called by ncl_doio() from below the buffer cache.
1324 */
1325int
1326ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1327{
1328	int error, ret, attrflag;
1329	struct nfsvattr nfsva;
1330
1331	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1332	    &attrflag, NULL);
1333	if (attrflag) {
1334		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1335		if (ret && !error)
1336			error = ret;
1337	}
1338	if (error && NFS_ISV4(vp))
1339		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1340	return (error);
1341}
1342
1343/*
1344 * nfs read rpc call
1345 * Ditto above
1346 */
1347int
1348ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1349{
1350	int error, ret, attrflag;
1351	struct nfsvattr nfsva;
1352	struct nfsmount *nmp;
1353
1354	nmp = VFSTONFS(vnode_mount(vp));
1355	error = EIO;
1356	attrflag = 0;
1357	if (NFSHASPNFS(nmp))
1358		error = nfscl_doiods(vp, uiop, NULL, NULL,
1359		    NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td);
1360	NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1361	if (error != 0)
1362		error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1363		    &attrflag, NULL);
1364	if (attrflag) {
1365		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1366		if (ret && !error)
1367			error = ret;
1368	}
1369	if (error && NFS_ISV4(vp))
1370		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1371	return (error);
1372}
1373
1374/*
1375 * nfs write call
1376 */
1377int
1378ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1379    int *iomode, int *must_commit, int called_from_strategy)
1380{
1381	struct nfsvattr nfsva;
1382	int error, attrflag, ret;
1383	struct nfsmount *nmp;
1384
1385	nmp = VFSTONFS(vnode_mount(vp));
1386	error = EIO;
1387	attrflag = 0;
1388	if (NFSHASPNFS(nmp))
1389		error = nfscl_doiods(vp, uiop, iomode, must_commit,
1390		    NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td);
1391	NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1392	if (error != 0)
1393		error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1394		    uiop->uio_td, &nfsva, &attrflag, NULL,
1395		    called_from_strategy);
1396	if (attrflag) {
1397		if (VTONFS(vp)->n_flag & ND_NFSV4)
1398			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1399			    1);
1400		else
1401			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1402			    1);
1403		if (ret && !error)
1404			error = ret;
1405	}
1406	if (DOINGASYNC(vp))
1407		*iomode = NFSWRITE_FILESYNC;
1408	if (error && NFS_ISV4(vp))
1409		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1410	return (error);
1411}
1412
1413/*
1414 * nfs mknod rpc
1415 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1416 * mode set to specify the file type and the size field for rdev.
1417 */
1418static int
1419nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1420    struct vattr *vap)
1421{
1422	struct nfsvattr nfsva, dnfsva;
1423	struct vnode *newvp = NULL;
1424	struct nfsnode *np = NULL, *dnp;
1425	struct nfsfh *nfhp;
1426	struct vattr vattr;
1427	int error = 0, attrflag, dattrflag;
1428	u_int32_t rdev;
1429
1430	if (vap->va_type == VCHR || vap->va_type == VBLK)
1431		rdev = vap->va_rdev;
1432	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1433		rdev = 0xffffffff;
1434	else
1435		return (EOPNOTSUPP);
1436	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1437		return (error);
1438	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1439	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1440	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1441	if (!error) {
1442		if (!nfhp)
1443			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1444			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1445			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1446			    NULL);
1447		if (nfhp)
1448			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1449			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1450	}
1451	if (dattrflag)
1452		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1453	if (!error) {
1454		newvp = NFSTOV(np);
1455		if (attrflag != 0) {
1456			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1457			    0, 1);
1458			if (error != 0)
1459				vput(newvp);
1460		}
1461	}
1462	if (!error) {
1463		*vpp = newvp;
1464	} else if (NFS_ISV4(dvp)) {
1465		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1466		    vap->va_gid);
1467	}
1468	dnp = VTONFS(dvp);
1469	mtx_lock(&dnp->n_mtx);
1470	dnp->n_flag |= NMODIFIED;
1471	if (!dattrflag) {
1472		dnp->n_attrstamp = 0;
1473		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1474	}
1475	mtx_unlock(&dnp->n_mtx);
1476	return (error);
1477}
1478
1479/*
1480 * nfs mknod vop
1481 * just call nfs_mknodrpc() to do the work.
1482 */
1483/* ARGSUSED */
1484static int
1485nfs_mknod(struct vop_mknod_args *ap)
1486{
1487	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1488}
1489
1490static struct mtx nfs_cverf_mtx;
1491MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1492    MTX_DEF);
1493
1494static nfsquad_t
1495nfs_get_cverf(void)
1496{
1497	static nfsquad_t cverf;
1498	nfsquad_t ret;
1499	static int cverf_initialized = 0;
1500
1501	mtx_lock(&nfs_cverf_mtx);
1502	if (cverf_initialized == 0) {
1503		cverf.lval[0] = arc4random();
1504		cverf.lval[1] = arc4random();
1505		cverf_initialized = 1;
1506	} else
1507		cverf.qval++;
1508	ret = cverf;
1509	mtx_unlock(&nfs_cverf_mtx);
1510
1511	return (ret);
1512}
1513
1514/*
1515 * nfs file create call
1516 */
1517static int
1518nfs_create(struct vop_create_args *ap)
1519{
1520	struct vnode *dvp = ap->a_dvp;
1521	struct vattr *vap = ap->a_vap;
1522	struct componentname *cnp = ap->a_cnp;
1523	struct nfsnode *np = NULL, *dnp;
1524	struct vnode *newvp = NULL;
1525	struct nfsmount *nmp;
1526	struct nfsvattr dnfsva, nfsva;
1527	struct nfsfh *nfhp;
1528	nfsquad_t cverf;
1529	int error = 0, attrflag, dattrflag, fmode = 0;
1530	struct vattr vattr;
1531
1532	/*
1533	 * Oops, not for me..
1534	 */
1535	if (vap->va_type == VSOCK)
1536		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1537
1538	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1539		return (error);
1540	if (vap->va_vaflags & VA_EXCLUSIVE)
1541		fmode |= O_EXCL;
1542	dnp = VTONFS(dvp);
1543	nmp = VFSTONFS(vnode_mount(dvp));
1544again:
1545	/* For NFSv4, wait until any remove is done. */
1546	mtx_lock(&dnp->n_mtx);
1547	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1548		dnp->n_flag |= NREMOVEWANT;
1549		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1550	}
1551	mtx_unlock(&dnp->n_mtx);
1552
1553	cverf = nfs_get_cverf();
1554	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1555	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1556	    &nfhp, &attrflag, &dattrflag, NULL);
1557	if (!error) {
1558		if (nfhp == NULL)
1559			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1560			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1561			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1562			    NULL);
1563		if (nfhp != NULL)
1564			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1565			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1566	}
1567	if (dattrflag)
1568		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1569	if (!error) {
1570		newvp = NFSTOV(np);
1571		if (attrflag == 0)
1572			error = nfsrpc_getattr(newvp, cnp->cn_cred,
1573			    cnp->cn_thread, &nfsva, NULL);
1574		if (error == 0)
1575			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1576			    0, 1);
1577	}
1578	if (error) {
1579		if (newvp != NULL) {
1580			vput(newvp);
1581			newvp = NULL;
1582		}
1583		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1584		    error == NFSERR_NOTSUPP) {
1585			fmode &= ~O_EXCL;
1586			goto again;
1587		}
1588	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1589		if (nfscl_checksattr(vap, &nfsva)) {
1590			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1591			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1592			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1593			    vap->va_gid != (gid_t)VNOVAL)) {
1594				/* try again without setting uid/gid */
1595				vap->va_uid = (uid_t)VNOVAL;
1596				vap->va_gid = (uid_t)VNOVAL;
1597				error = nfsrpc_setattr(newvp, vap, NULL,
1598				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1599				    &attrflag, NULL);
1600			}
1601			if (attrflag)
1602				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1603				    NULL, 0, 1);
1604			if (error != 0)
1605				vput(newvp);
1606		}
1607	}
1608	if (!error) {
1609		if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1610			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1611			    NULL);
1612		*ap->a_vpp = newvp;
1613	} else if (NFS_ISV4(dvp)) {
1614		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1615		    vap->va_gid);
1616	}
1617	mtx_lock(&dnp->n_mtx);
1618	dnp->n_flag |= NMODIFIED;
1619	if (!dattrflag) {
1620		dnp->n_attrstamp = 0;
1621		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1622	}
1623	mtx_unlock(&dnp->n_mtx);
1624	return (error);
1625}
1626
1627/*
1628 * nfs file remove call
1629 * To try and make nfs semantics closer to ufs semantics, a file that has
1630 * other processes using the vnode is renamed instead of removed and then
1631 * removed later on the last close.
1632 * - If v_usecount > 1
1633 *	  If a rename is not already in the works
1634 *	     call nfs_sillyrename() to set it up
1635 *     else
1636 *	  do the remove rpc
1637 */
1638static int
1639nfs_remove(struct vop_remove_args *ap)
1640{
1641	struct vnode *vp = ap->a_vp;
1642	struct vnode *dvp = ap->a_dvp;
1643	struct componentname *cnp = ap->a_cnp;
1644	struct nfsnode *np = VTONFS(vp);
1645	int error = 0;
1646	struct vattr vattr;
1647
1648	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1649	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1650	if (vp->v_type == VDIR)
1651		error = EPERM;
1652	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1653	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1654	    vattr.va_nlink > 1)) {
1655		/*
1656		 * Purge the name cache so that the chance of a lookup for
1657		 * the name succeeding while the remove is in progress is
1658		 * minimized. Without node locking it can still happen, such
1659		 * that an I/O op returns ESTALE, but since you get this if
1660		 * another host removes the file..
1661		 */
1662		cache_purge(vp);
1663		/*
1664		 * throw away biocache buffers, mainly to avoid
1665		 * unnecessary delayed writes later.
1666		 */
1667		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1668		/* Do the rpc */
1669		if (error != EINTR && error != EIO)
1670			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1671			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1672		/*
1673		 * Kludge City: If the first reply to the remove rpc is lost..
1674		 *   the reply to the retransmitted request will be ENOENT
1675		 *   since the file was in fact removed
1676		 *   Therefore, we cheat and return success.
1677		 */
1678		if (error == ENOENT)
1679			error = 0;
1680	} else if (!np->n_sillyrename)
1681		error = nfs_sillyrename(dvp, vp, cnp);
1682	mtx_lock(&np->n_mtx);
1683	np->n_attrstamp = 0;
1684	mtx_unlock(&np->n_mtx);
1685	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1686	return (error);
1687}
1688
1689/*
1690 * nfs file remove rpc called from nfs_inactive
1691 */
1692int
1693ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1694{
1695	/*
1696	 * Make sure that the directory vnode is still valid.
1697	 * XXX we should lock sp->s_dvp here.
1698	 */
1699	if (sp->s_dvp->v_type == VBAD)
1700		return (0);
1701	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1702	    sp->s_cred, NULL));
1703}
1704
1705/*
1706 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1707 */
1708static int
1709nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1710    int namelen, struct ucred *cred, struct thread *td)
1711{
1712	struct nfsvattr dnfsva;
1713	struct nfsnode *dnp = VTONFS(dvp);
1714	int error = 0, dattrflag;
1715
1716	mtx_lock(&dnp->n_mtx);
1717	dnp->n_flag |= NREMOVEINPROG;
1718	mtx_unlock(&dnp->n_mtx);
1719	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1720	    &dattrflag, NULL);
1721	mtx_lock(&dnp->n_mtx);
1722	if ((dnp->n_flag & NREMOVEWANT)) {
1723		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1724		mtx_unlock(&dnp->n_mtx);
1725		wakeup((caddr_t)dnp);
1726	} else {
1727		dnp->n_flag &= ~NREMOVEINPROG;
1728		mtx_unlock(&dnp->n_mtx);
1729	}
1730	if (dattrflag)
1731		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1732	mtx_lock(&dnp->n_mtx);
1733	dnp->n_flag |= NMODIFIED;
1734	if (!dattrflag) {
1735		dnp->n_attrstamp = 0;
1736		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1737	}
1738	mtx_unlock(&dnp->n_mtx);
1739	if (error && NFS_ISV4(dvp))
1740		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1741	return (error);
1742}
1743
1744/*
1745 * nfs file rename call
1746 */
1747static int
1748nfs_rename(struct vop_rename_args *ap)
1749{
1750	struct vnode *fvp = ap->a_fvp;
1751	struct vnode *tvp = ap->a_tvp;
1752	struct vnode *fdvp = ap->a_fdvp;
1753	struct vnode *tdvp = ap->a_tdvp;
1754	struct componentname *tcnp = ap->a_tcnp;
1755	struct componentname *fcnp = ap->a_fcnp;
1756	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1757	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1758	struct nfsv4node *newv4 = NULL;
1759	int error;
1760
1761	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1762	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1763	/* Check for cross-device rename */
1764	if ((fvp->v_mount != tdvp->v_mount) ||
1765	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1766		error = EXDEV;
1767		goto out;
1768	}
1769
1770	if (fvp == tvp) {
1771		printf("nfs_rename: fvp == tvp (can't happen)\n");
1772		error = 0;
1773		goto out;
1774	}
1775	if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1776		goto out;
1777
1778	/*
1779	 * We have to flush B_DELWRI data prior to renaming
1780	 * the file.  If we don't, the delayed-write buffers
1781	 * can be flushed out later after the file has gone stale
1782	 * under NFSV3.  NFSV2 does not have this problem because
1783	 * ( as far as I can tell ) it flushes dirty buffers more
1784	 * often.
1785	 *
1786	 * Skip the rename operation if the fsync fails, this can happen
1787	 * due to the server's volume being full, when we pushed out data
1788	 * that was written back to our cache earlier. Not checking for
1789	 * this condition can result in potential (silent) data loss.
1790	 */
1791	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1792	NFSVOPUNLOCK(fvp, 0);
1793	if (!error && tvp)
1794		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1795	if (error)
1796		goto out;
1797
1798	/*
1799	 * If the tvp exists and is in use, sillyrename it before doing the
1800	 * rename of the new file over it.
1801	 * XXX Can't sillyrename a directory.
1802	 */
1803	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1804		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1805		vput(tvp);
1806		tvp = NULL;
1807	}
1808
1809	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1810	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1811	    tcnp->cn_thread);
1812
1813	if (error == 0 && NFS_ISV4(tdvp)) {
1814		/*
1815		 * For NFSv4, check to see if it is the same name and
1816		 * replace the name, if it is different.
1817		 */
1818		MALLOC(newv4, struct nfsv4node *,
1819		    sizeof (struct nfsv4node) +
1820		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1821		    M_NFSV4NODE, M_WAITOK);
1822		mtx_lock(&tdnp->n_mtx);
1823		mtx_lock(&fnp->n_mtx);
1824		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1825		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1826		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1827		      tcnp->cn_namelen) ||
1828		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1829		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1830			tdnp->n_fhp->nfh_len))) {
1831#ifdef notdef
1832{ char nnn[100]; int nnnl;
1833nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1834bcopy(tcnp->cn_nameptr, nnn, nnnl);
1835nnn[nnnl] = '\0';
1836printf("ren replace=%s\n",nnn);
1837}
1838#endif
1839			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1840			fnp->n_v4 = newv4;
1841			newv4 = NULL;
1842			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1843			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1844			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1845			    tdnp->n_fhp->nfh_len);
1846			NFSBCOPY(tcnp->cn_nameptr,
1847			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1848		}
1849		mtx_unlock(&tdnp->n_mtx);
1850		mtx_unlock(&fnp->n_mtx);
1851		if (newv4 != NULL)
1852			FREE((caddr_t)newv4, M_NFSV4NODE);
1853	}
1854
1855	if (fvp->v_type == VDIR) {
1856		if (tvp != NULL && tvp->v_type == VDIR)
1857			cache_purge(tdvp);
1858		cache_purge(fdvp);
1859	}
1860
1861out:
1862	if (tdvp == tvp)
1863		vrele(tdvp);
1864	else
1865		vput(tdvp);
1866	if (tvp)
1867		vput(tvp);
1868	vrele(fdvp);
1869	vrele(fvp);
1870	/*
1871	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1872	 */
1873	if (error == ENOENT)
1874		error = 0;
1875	return (error);
1876}
1877
1878/*
1879 * nfs file rename rpc called from nfs_remove() above
1880 */
1881static int
1882nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1883    struct sillyrename *sp)
1884{
1885
1886	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1887	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1888	    scnp->cn_thread));
1889}
1890
1891/*
1892 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1893 */
1894static int
1895nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1896    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1897    int tnamelen, struct ucred *cred, struct thread *td)
1898{
1899	struct nfsvattr fnfsva, tnfsva;
1900	struct nfsnode *fdnp = VTONFS(fdvp);
1901	struct nfsnode *tdnp = VTONFS(tdvp);
1902	int error = 0, fattrflag, tattrflag;
1903
1904	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1905	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1906	    &tattrflag, NULL, NULL);
1907	mtx_lock(&fdnp->n_mtx);
1908	fdnp->n_flag |= NMODIFIED;
1909	if (fattrflag != 0) {
1910		mtx_unlock(&fdnp->n_mtx);
1911		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1912	} else {
1913		fdnp->n_attrstamp = 0;
1914		mtx_unlock(&fdnp->n_mtx);
1915		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1916	}
1917	mtx_lock(&tdnp->n_mtx);
1918	tdnp->n_flag |= NMODIFIED;
1919	if (tattrflag != 0) {
1920		mtx_unlock(&tdnp->n_mtx);
1921		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1922	} else {
1923		tdnp->n_attrstamp = 0;
1924		mtx_unlock(&tdnp->n_mtx);
1925		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1926	}
1927	if (error && NFS_ISV4(fdvp))
1928		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1929	return (error);
1930}
1931
1932/*
1933 * nfs hard link create call
1934 */
1935static int
1936nfs_link(struct vop_link_args *ap)
1937{
1938	struct vnode *vp = ap->a_vp;
1939	struct vnode *tdvp = ap->a_tdvp;
1940	struct componentname *cnp = ap->a_cnp;
1941	struct nfsnode *np, *tdnp;
1942	struct nfsvattr nfsva, dnfsva;
1943	int error = 0, attrflag, dattrflag;
1944
1945	/*
1946	 * Push all writes to the server, so that the attribute cache
1947	 * doesn't get "out of sync" with the server.
1948	 * XXX There should be a better way!
1949	 */
1950	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1951
1952	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1953	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1954	    &dattrflag, NULL);
1955	tdnp = VTONFS(tdvp);
1956	mtx_lock(&tdnp->n_mtx);
1957	tdnp->n_flag |= NMODIFIED;
1958	if (dattrflag != 0) {
1959		mtx_unlock(&tdnp->n_mtx);
1960		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1961	} else {
1962		tdnp->n_attrstamp = 0;
1963		mtx_unlock(&tdnp->n_mtx);
1964		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1965	}
1966	if (attrflag)
1967		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1968	else {
1969		np = VTONFS(vp);
1970		mtx_lock(&np->n_mtx);
1971		np->n_attrstamp = 0;
1972		mtx_unlock(&np->n_mtx);
1973		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1974	}
1975	/*
1976	 * If negative lookup caching is enabled, I might as well
1977	 * add an entry for this node. Not necessary for correctness,
1978	 * but if negative caching is enabled, then the system
1979	 * must care about lookup caching hit rate, so...
1980	 */
1981	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1982	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
1983		cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
1984	}
1985	if (error && NFS_ISV4(vp))
1986		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1987		    (gid_t)0);
1988	return (error);
1989}
1990
1991/*
1992 * nfs symbolic link create call
1993 */
1994static int
1995nfs_symlink(struct vop_symlink_args *ap)
1996{
1997	struct vnode *dvp = ap->a_dvp;
1998	struct vattr *vap = ap->a_vap;
1999	struct componentname *cnp = ap->a_cnp;
2000	struct nfsvattr nfsva, dnfsva;
2001	struct nfsfh *nfhp;
2002	struct nfsnode *np = NULL, *dnp;
2003	struct vnode *newvp = NULL;
2004	int error = 0, attrflag, dattrflag, ret;
2005
2006	vap->va_type = VLNK;
2007	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2008	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2009	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2010	if (nfhp) {
2011		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2012		    &np, NULL, LK_EXCLUSIVE);
2013		if (!ret)
2014			newvp = NFSTOV(np);
2015		else if (!error)
2016			error = ret;
2017	}
2018	if (newvp != NULL) {
2019		if (attrflag)
2020			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2021			    0, 1);
2022	} else if (!error) {
2023		/*
2024		 * If we do not have an error and we could not extract the
2025		 * newvp from the response due to the request being NFSv2, we
2026		 * have to do a lookup in order to obtain a newvp to return.
2027		 */
2028		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2029		    cnp->cn_cred, cnp->cn_thread, &np);
2030		if (!error)
2031			newvp = NFSTOV(np);
2032	}
2033	if (error) {
2034		if (newvp)
2035			vput(newvp);
2036		if (NFS_ISV4(dvp))
2037			error = nfscl_maperr(cnp->cn_thread, error,
2038			    vap->va_uid, vap->va_gid);
2039	} else {
2040		*ap->a_vpp = newvp;
2041	}
2042
2043	dnp = VTONFS(dvp);
2044	mtx_lock(&dnp->n_mtx);
2045	dnp->n_flag |= NMODIFIED;
2046	if (dattrflag != 0) {
2047		mtx_unlock(&dnp->n_mtx);
2048		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2049	} else {
2050		dnp->n_attrstamp = 0;
2051		mtx_unlock(&dnp->n_mtx);
2052		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2053	}
2054	/*
2055	 * If negative lookup caching is enabled, I might as well
2056	 * add an entry for this node. Not necessary for correctness,
2057	 * but if negative caching is enabled, then the system
2058	 * must care about lookup caching hit rate, so...
2059	 */
2060	if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2061	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2062		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2063	}
2064	return (error);
2065}
2066
2067/*
2068 * nfs make dir call
2069 */
2070static int
2071nfs_mkdir(struct vop_mkdir_args *ap)
2072{
2073	struct vnode *dvp = ap->a_dvp;
2074	struct vattr *vap = ap->a_vap;
2075	struct componentname *cnp = ap->a_cnp;
2076	struct nfsnode *np = NULL, *dnp;
2077	struct vnode *newvp = NULL;
2078	struct vattr vattr;
2079	struct nfsfh *nfhp;
2080	struct nfsvattr nfsva, dnfsva;
2081	int error = 0, attrflag, dattrflag, ret;
2082
2083	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2084		return (error);
2085	vap->va_type = VDIR;
2086	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2087	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2088	    &attrflag, &dattrflag, NULL);
2089	dnp = VTONFS(dvp);
2090	mtx_lock(&dnp->n_mtx);
2091	dnp->n_flag |= NMODIFIED;
2092	if (dattrflag != 0) {
2093		mtx_unlock(&dnp->n_mtx);
2094		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2095	} else {
2096		dnp->n_attrstamp = 0;
2097		mtx_unlock(&dnp->n_mtx);
2098		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2099	}
2100	if (nfhp) {
2101		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2102		    &np, NULL, LK_EXCLUSIVE);
2103		if (!ret) {
2104			newvp = NFSTOV(np);
2105			if (attrflag)
2106			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2107				NULL, 0, 1);
2108		} else if (!error)
2109			error = ret;
2110	}
2111	if (!error && newvp == NULL) {
2112		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2113		    cnp->cn_cred, cnp->cn_thread, &np);
2114		if (!error) {
2115			newvp = NFSTOV(np);
2116			if (newvp->v_type != VDIR)
2117				error = EEXIST;
2118		}
2119	}
2120	if (error) {
2121		if (newvp)
2122			vput(newvp);
2123		if (NFS_ISV4(dvp))
2124			error = nfscl_maperr(cnp->cn_thread, error,
2125			    vap->va_uid, vap->va_gid);
2126	} else {
2127		/*
2128		 * If negative lookup caching is enabled, I might as well
2129		 * add an entry for this node. Not necessary for correctness,
2130		 * but if negative caching is enabled, then the system
2131		 * must care about lookup caching hit rate, so...
2132		 */
2133		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2134		    (cnp->cn_flags & MAKEENTRY) &&
2135		    attrflag != 0 && dattrflag != 0)
2136			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2137			    &dnfsva.na_ctime);
2138		*ap->a_vpp = newvp;
2139	}
2140	return (error);
2141}
2142
2143/*
2144 * nfs remove directory call
2145 */
2146static int
2147nfs_rmdir(struct vop_rmdir_args *ap)
2148{
2149	struct vnode *vp = ap->a_vp;
2150	struct vnode *dvp = ap->a_dvp;
2151	struct componentname *cnp = ap->a_cnp;
2152	struct nfsnode *dnp;
2153	struct nfsvattr dnfsva;
2154	int error, dattrflag;
2155
2156	if (dvp == vp)
2157		return (EINVAL);
2158	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2159	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2160	dnp = VTONFS(dvp);
2161	mtx_lock(&dnp->n_mtx);
2162	dnp->n_flag |= NMODIFIED;
2163	if (dattrflag != 0) {
2164		mtx_unlock(&dnp->n_mtx);
2165		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2166	} else {
2167		dnp->n_attrstamp = 0;
2168		mtx_unlock(&dnp->n_mtx);
2169		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2170	}
2171
2172	cache_purge(dvp);
2173	cache_purge(vp);
2174	if (error && NFS_ISV4(dvp))
2175		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2176		    (gid_t)0);
2177	/*
2178	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2179	 */
2180	if (error == ENOENT)
2181		error = 0;
2182	return (error);
2183}
2184
2185/*
2186 * nfs readdir call
2187 */
2188static int
2189nfs_readdir(struct vop_readdir_args *ap)
2190{
2191	struct vnode *vp = ap->a_vp;
2192	struct nfsnode *np = VTONFS(vp);
2193	struct uio *uio = ap->a_uio;
2194	ssize_t tresid, left;
2195	int error = 0;
2196	struct vattr vattr;
2197
2198	if (ap->a_eofflag != NULL)
2199		*ap->a_eofflag = 0;
2200	if (vp->v_type != VDIR)
2201		return(EPERM);
2202
2203	/*
2204	 * First, check for hit on the EOF offset cache
2205	 */
2206	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2207	    (np->n_flag & NMODIFIED) == 0) {
2208		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2209			mtx_lock(&np->n_mtx);
2210			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2211			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2212				mtx_unlock(&np->n_mtx);
2213				NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
2214				if (ap->a_eofflag != NULL)
2215					*ap->a_eofflag = 1;
2216				return (0);
2217			} else
2218				mtx_unlock(&np->n_mtx);
2219		}
2220	}
2221
2222	/*
2223	 * NFS always guarantees that directory entries don't straddle
2224	 * DIRBLKSIZ boundaries.  As such, we need to limit the size
2225	 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2226	 * directory entry.
2227	 */
2228	left = uio->uio_resid % DIRBLKSIZ;
2229	if (left == uio->uio_resid)
2230		return (EINVAL);
2231	uio->uio_resid -= left;
2232
2233	/*
2234	 * Call ncl_bioread() to do the real work.
2235	 */
2236	tresid = uio->uio_resid;
2237	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2238
2239	if (!error && uio->uio_resid == tresid) {
2240		NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
2241		if (ap->a_eofflag != NULL)
2242			*ap->a_eofflag = 1;
2243	}
2244
2245	/* Add the partial DIRBLKSIZ (left) back in. */
2246	uio->uio_resid += left;
2247	return (error);
2248}
2249
2250/*
2251 * Readdir rpc call.
2252 * Called from below the buffer cache by ncl_doio().
2253 */
2254int
2255ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2256    struct thread *td)
2257{
2258	struct nfsvattr nfsva;
2259	nfsuint64 *cookiep, cookie;
2260	struct nfsnode *dnp = VTONFS(vp);
2261	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2262	int error = 0, eof, attrflag;
2263
2264	KASSERT(uiop->uio_iovcnt == 1 &&
2265	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2266	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2267	    ("nfs readdirrpc bad uio"));
2268
2269	/*
2270	 * If there is no cookie, assume directory was stale.
2271	 */
2272	ncl_dircookie_lock(dnp);
2273	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2274	if (cookiep) {
2275		cookie = *cookiep;
2276		ncl_dircookie_unlock(dnp);
2277	} else {
2278		ncl_dircookie_unlock(dnp);
2279		return (NFSERR_BAD_COOKIE);
2280	}
2281
2282	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2283		(void)ncl_fsinfo(nmp, vp, cred, td);
2284
2285	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2286	    &attrflag, &eof, NULL);
2287	if (attrflag)
2288		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2289
2290	if (!error) {
2291		/*
2292		 * We are now either at the end of the directory or have filled
2293		 * the block.
2294		 */
2295		if (eof)
2296			dnp->n_direofoffset = uiop->uio_offset;
2297		else {
2298			if (uiop->uio_resid > 0)
2299				printf("EEK! readdirrpc resid > 0\n");
2300			ncl_dircookie_lock(dnp);
2301			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2302			*cookiep = cookie;
2303			ncl_dircookie_unlock(dnp);
2304		}
2305	} else if (NFS_ISV4(vp)) {
2306		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2307	}
2308	return (error);
2309}
2310
2311/*
2312 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2313 */
2314int
2315ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2316    struct thread *td)
2317{
2318	struct nfsvattr nfsva;
2319	nfsuint64 *cookiep, cookie;
2320	struct nfsnode *dnp = VTONFS(vp);
2321	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2322	int error = 0, attrflag, eof;
2323
2324	KASSERT(uiop->uio_iovcnt == 1 &&
2325	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2326	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2327	    ("nfs readdirplusrpc bad uio"));
2328
2329	/*
2330	 * If there is no cookie, assume directory was stale.
2331	 */
2332	ncl_dircookie_lock(dnp);
2333	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2334	if (cookiep) {
2335		cookie = *cookiep;
2336		ncl_dircookie_unlock(dnp);
2337	} else {
2338		ncl_dircookie_unlock(dnp);
2339		return (NFSERR_BAD_COOKIE);
2340	}
2341
2342	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2343		(void)ncl_fsinfo(nmp, vp, cred, td);
2344	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2345	    &attrflag, &eof, NULL);
2346	if (attrflag)
2347		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2348
2349	if (!error) {
2350		/*
2351		 * We are now either at end of the directory or have filled the
2352		 * the block.
2353		 */
2354		if (eof)
2355			dnp->n_direofoffset = uiop->uio_offset;
2356		else {
2357			if (uiop->uio_resid > 0)
2358				printf("EEK! readdirplusrpc resid > 0\n");
2359			ncl_dircookie_lock(dnp);
2360			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2361			*cookiep = cookie;
2362			ncl_dircookie_unlock(dnp);
2363		}
2364	} else if (NFS_ISV4(vp)) {
2365		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2366	}
2367	return (error);
2368}
2369
2370/*
2371 * Silly rename. To make the NFS filesystem that is stateless look a little
2372 * more like the "ufs" a remove of an active vnode is translated to a rename
2373 * to a funny looking filename that is removed by nfs_inactive on the
2374 * nfsnode. There is the potential for another process on a different client
2375 * to create the same funny name between the nfs_lookitup() fails and the
2376 * nfs_rename() completes, but...
2377 */
2378static int
2379nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2380{
2381	struct sillyrename *sp;
2382	struct nfsnode *np;
2383	int error;
2384	short pid;
2385	unsigned int lticks;
2386
2387	cache_purge(dvp);
2388	np = VTONFS(vp);
2389	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2390	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2391	    M_NEWNFSREQ, M_WAITOK);
2392	sp->s_cred = crhold(cnp->cn_cred);
2393	sp->s_dvp = dvp;
2394	VREF(dvp);
2395
2396	/*
2397	 * Fudge together a funny name.
2398	 * Changing the format of the funny name to accommodate more
2399	 * sillynames per directory.
2400	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2401	 * CPU ticks since boot.
2402	 */
2403	pid = cnp->cn_thread->td_proc->p_pid;
2404	lticks = (unsigned int)ticks;
2405	for ( ; ; ) {
2406		sp->s_namlen = sprintf(sp->s_name,
2407				       ".nfs.%08x.%04x4.4", lticks,
2408				       pid);
2409		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2410				 cnp->cn_thread, NULL))
2411			break;
2412		lticks++;
2413	}
2414	error = nfs_renameit(dvp, vp, cnp, sp);
2415	if (error)
2416		goto bad;
2417	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2418		cnp->cn_thread, &np);
2419	np->n_sillyrename = sp;
2420	return (0);
2421bad:
2422	vrele(sp->s_dvp);
2423	crfree(sp->s_cred);
2424	free((caddr_t)sp, M_NEWNFSREQ);
2425	return (error);
2426}
2427
2428/*
2429 * Look up a file name and optionally either update the file handle or
2430 * allocate an nfsnode, depending on the value of npp.
2431 * npp == NULL	--> just do the lookup
2432 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2433 *			handled too
2434 * *npp != NULL --> update the file handle in the vnode
2435 */
2436static int
2437nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2438    struct thread *td, struct nfsnode **npp)
2439{
2440	struct vnode *newvp = NULL, *vp;
2441	struct nfsnode *np, *dnp = VTONFS(dvp);
2442	struct nfsfh *nfhp, *onfhp;
2443	struct nfsvattr nfsva, dnfsva;
2444	struct componentname cn;
2445	int error = 0, attrflag, dattrflag;
2446	u_int hash;
2447
2448	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2449	    &nfhp, &attrflag, &dattrflag, NULL);
2450	if (dattrflag)
2451		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2452	if (npp && !error) {
2453		if (*npp != NULL) {
2454		    np = *npp;
2455		    vp = NFSTOV(np);
2456		    /*
2457		     * For NFSv4, check to see if it is the same name and
2458		     * replace the name, if it is different.
2459		     */
2460		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2461			(np->n_v4->n4_namelen != len ||
2462			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2463			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2464			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2465			 dnp->n_fhp->nfh_len))) {
2466#ifdef notdef
2467{ char nnn[100]; int nnnl;
2468nnnl = (len < 100) ? len : 99;
2469bcopy(name, nnn, nnnl);
2470nnn[nnnl] = '\0';
2471printf("replace=%s\n",nnn);
2472}
2473#endif
2474			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2475			    MALLOC(np->n_v4, struct nfsv4node *,
2476				sizeof (struct nfsv4node) +
2477				dnp->n_fhp->nfh_len + len - 1,
2478				M_NFSV4NODE, M_WAITOK);
2479			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2480			    np->n_v4->n4_namelen = len;
2481			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2482				dnp->n_fhp->nfh_len);
2483			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2484		    }
2485		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2486			FNV1_32_INIT);
2487		    onfhp = np->n_fhp;
2488		    /*
2489		     * Rehash node for new file handle.
2490		     */
2491		    vfs_hash_rehash(vp, hash);
2492		    np->n_fhp = nfhp;
2493		    if (onfhp != NULL)
2494			FREE((caddr_t)onfhp, M_NFSFH);
2495		    newvp = NFSTOV(np);
2496		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2497		    FREE((caddr_t)nfhp, M_NFSFH);
2498		    VREF(dvp);
2499		    newvp = dvp;
2500		} else {
2501		    cn.cn_nameptr = name;
2502		    cn.cn_namelen = len;
2503		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2504			&np, NULL, LK_EXCLUSIVE);
2505		    if (error)
2506			return (error);
2507		    newvp = NFSTOV(np);
2508		}
2509		if (!attrflag && *npp == NULL) {
2510			if (newvp == dvp)
2511				vrele(newvp);
2512			else
2513				vput(newvp);
2514			return (ENOENT);
2515		}
2516		if (attrflag)
2517			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2518			    0, 1);
2519	}
2520	if (npp && *npp == NULL) {
2521		if (error) {
2522			if (newvp) {
2523				if (newvp == dvp)
2524					vrele(newvp);
2525				else
2526					vput(newvp);
2527			}
2528		} else
2529			*npp = np;
2530	}
2531	if (error && NFS_ISV4(dvp))
2532		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2533	return (error);
2534}
2535
2536/*
2537 * Nfs Version 3 and 4 commit rpc
2538 */
2539int
2540ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2541   struct thread *td)
2542{
2543	struct nfsvattr nfsva;
2544	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2545	int error, attrflag;
2546
2547	mtx_lock(&nmp->nm_mtx);
2548	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2549		mtx_unlock(&nmp->nm_mtx);
2550		return (0);
2551	}
2552	mtx_unlock(&nmp->nm_mtx);
2553	error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2554	    &attrflag, NULL);
2555	if (attrflag != 0)
2556		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2557		    0, 1);
2558	if (error != 0 && NFS_ISV4(vp))
2559		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2560	return (error);
2561}
2562
2563/*
2564 * Strategy routine.
2565 * For async requests when nfsiod(s) are running, queue the request by
2566 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2567 * request.
2568 */
2569static int
2570nfs_strategy(struct vop_strategy_args *ap)
2571{
2572	struct buf *bp;
2573	struct vnode *vp;
2574	struct ucred *cr;
2575
2576	bp = ap->a_bp;
2577	vp = ap->a_vp;
2578	KASSERT(bp->b_vp == vp, ("missing b_getvp"));
2579	KASSERT(!(bp->b_flags & B_DONE),
2580	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2581	BUF_ASSERT_HELD(bp);
2582
2583	if (vp->v_type == VREG && bp->b_blkno == bp->b_lblkno)
2584		bp->b_blkno = bp->b_lblkno * (vp->v_bufobj.bo_bsize /
2585		    DEV_BSIZE);
2586	if (bp->b_iocmd == BIO_READ)
2587		cr = bp->b_rcred;
2588	else
2589		cr = bp->b_wcred;
2590
2591	/*
2592	 * If the op is asynchronous and an i/o daemon is waiting
2593	 * queue the request, wake it up and wait for completion
2594	 * otherwise just do it ourselves.
2595	 */
2596	if ((bp->b_flags & B_ASYNC) == 0 ||
2597	    ncl_asyncio(VFSTONFS(vp->v_mount), bp, NOCRED, curthread))
2598		(void) ncl_doio(vp, bp, cr, curthread, 1);
2599	return (0);
2600}
2601
2602/*
2603 * fsync vnode op. Just call ncl_flush() with commit == 1.
2604 */
2605/* ARGSUSED */
2606static int
2607nfs_fsync(struct vop_fsync_args *ap)
2608{
2609
2610	if (ap->a_vp->v_type != VREG) {
2611		/*
2612		 * For NFS, metadata is changed synchronously on the server,
2613		 * so there is nothing to flush. Also, ncl_flush() clears
2614		 * the NMODIFIED flag and that shouldn't be done here for
2615		 * directories.
2616		 */
2617		return (0);
2618	}
2619	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2620}
2621
2622/*
2623 * Flush all the blocks associated with a vnode.
2624 * 	Walk through the buffer pool and push any dirty pages
2625 *	associated with the vnode.
2626 * If the called_from_renewthread argument is TRUE, it has been called
2627 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2628 * waiting for a buffer write to complete.
2629 */
2630int
2631ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2632    int commit, int called_from_renewthread)
2633{
2634	struct nfsnode *np = VTONFS(vp);
2635	struct buf *bp;
2636	int i;
2637	struct buf *nbp;
2638	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2639	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2640	int passone = 1, trycnt = 0;
2641	u_quad_t off, endoff, toff;
2642	struct ucred* wcred = NULL;
2643	struct buf **bvec = NULL;
2644	struct bufobj *bo;
2645#ifndef NFS_COMMITBVECSIZ
2646#define	NFS_COMMITBVECSIZ	20
2647#endif
2648	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2649	int bvecsize = 0, bveccount;
2650
2651	if (called_from_renewthread != 0)
2652		slptimeo = hz;
2653	if (nmp->nm_flag & NFSMNT_INT)
2654		slpflag = PCATCH;
2655	if (!commit)
2656		passone = 0;
2657	bo = &vp->v_bufobj;
2658	/*
2659	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2660	 * server, but has not been committed to stable storage on the server
2661	 * yet. On the first pass, the byte range is worked out and the commit
2662	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2663	 * job.
2664	 */
2665again:
2666	off = (u_quad_t)-1;
2667	endoff = 0;
2668	bvecpos = 0;
2669	if (NFS_ISV34(vp) && commit) {
2670		if (bvec != NULL && bvec != bvec_on_stack)
2671			free(bvec, M_TEMP);
2672		/*
2673		 * Count up how many buffers waiting for a commit.
2674		 */
2675		bveccount = 0;
2676		BO_LOCK(bo);
2677		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2678			if (!BUF_ISLOCKED(bp) &&
2679			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2680				== (B_DELWRI | B_NEEDCOMMIT))
2681				bveccount++;
2682		}
2683		/*
2684		 * Allocate space to remember the list of bufs to commit.  It is
2685		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2686		 * If we can't get memory (for whatever reason), we will end up
2687		 * committing the buffers one-by-one in the loop below.
2688		 */
2689		if (bveccount > NFS_COMMITBVECSIZ) {
2690			/*
2691			 * Release the vnode interlock to avoid a lock
2692			 * order reversal.
2693			 */
2694			BO_UNLOCK(bo);
2695			bvec = (struct buf **)
2696				malloc(bveccount * sizeof(struct buf *),
2697				       M_TEMP, M_NOWAIT);
2698			BO_LOCK(bo);
2699			if (bvec == NULL) {
2700				bvec = bvec_on_stack;
2701				bvecsize = NFS_COMMITBVECSIZ;
2702			} else
2703				bvecsize = bveccount;
2704		} else {
2705			bvec = bvec_on_stack;
2706			bvecsize = NFS_COMMITBVECSIZ;
2707		}
2708		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2709			if (bvecpos >= bvecsize)
2710				break;
2711			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2712				nbp = TAILQ_NEXT(bp, b_bobufs);
2713				continue;
2714			}
2715			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2716			    (B_DELWRI | B_NEEDCOMMIT)) {
2717				BUF_UNLOCK(bp);
2718				nbp = TAILQ_NEXT(bp, b_bobufs);
2719				continue;
2720			}
2721			BO_UNLOCK(bo);
2722			bremfree(bp);
2723			/*
2724			 * Work out if all buffers are using the same cred
2725			 * so we can deal with them all with one commit.
2726			 *
2727			 * NOTE: we are not clearing B_DONE here, so we have
2728			 * to do it later on in this routine if we intend to
2729			 * initiate I/O on the bp.
2730			 *
2731			 * Note: to avoid loopback deadlocks, we do not
2732			 * assign b_runningbufspace.
2733			 */
2734			if (wcred == NULL)
2735				wcred = bp->b_wcred;
2736			else if (wcred != bp->b_wcred)
2737				wcred = NOCRED;
2738			vfs_busy_pages(bp, 1);
2739
2740			BO_LOCK(bo);
2741			/*
2742			 * bp is protected by being locked, but nbp is not
2743			 * and vfs_busy_pages() may sleep.  We have to
2744			 * recalculate nbp.
2745			 */
2746			nbp = TAILQ_NEXT(bp, b_bobufs);
2747
2748			/*
2749			 * A list of these buffers is kept so that the
2750			 * second loop knows which buffers have actually
2751			 * been committed. This is necessary, since there
2752			 * may be a race between the commit rpc and new
2753			 * uncommitted writes on the file.
2754			 */
2755			bvec[bvecpos++] = bp;
2756			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2757				bp->b_dirtyoff;
2758			if (toff < off)
2759				off = toff;
2760			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2761			if (toff > endoff)
2762				endoff = toff;
2763		}
2764		BO_UNLOCK(bo);
2765	}
2766	if (bvecpos > 0) {
2767		/*
2768		 * Commit data on the server, as required.
2769		 * If all bufs are using the same wcred, then use that with
2770		 * one call for all of them, otherwise commit each one
2771		 * separately.
2772		 */
2773		if (wcred != NOCRED)
2774			retv = ncl_commit(vp, off, (int)(endoff - off),
2775					  wcred, td);
2776		else {
2777			retv = 0;
2778			for (i = 0; i < bvecpos; i++) {
2779				off_t off, size;
2780				bp = bvec[i];
2781				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2782					bp->b_dirtyoff;
2783				size = (u_quad_t)(bp->b_dirtyend
2784						  - bp->b_dirtyoff);
2785				retv = ncl_commit(vp, off, (int)size,
2786						  bp->b_wcred, td);
2787				if (retv) break;
2788			}
2789		}
2790
2791		if (retv == NFSERR_STALEWRITEVERF)
2792			ncl_clearcommit(vp->v_mount);
2793
2794		/*
2795		 * Now, either mark the blocks I/O done or mark the
2796		 * blocks dirty, depending on whether the commit
2797		 * succeeded.
2798		 */
2799		for (i = 0; i < bvecpos; i++) {
2800			bp = bvec[i];
2801			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2802			if (retv) {
2803				/*
2804				 * Error, leave B_DELWRI intact
2805				 */
2806				vfs_unbusy_pages(bp);
2807				brelse(bp);
2808			} else {
2809				/*
2810				 * Success, remove B_DELWRI ( bundirty() ).
2811				 *
2812				 * b_dirtyoff/b_dirtyend seem to be NFS
2813				 * specific.  We should probably move that
2814				 * into bundirty(). XXX
2815				 */
2816				bufobj_wref(bo);
2817				bp->b_flags |= B_ASYNC;
2818				bundirty(bp);
2819				bp->b_flags &= ~B_DONE;
2820				bp->b_ioflags &= ~BIO_ERROR;
2821				bp->b_dirtyoff = bp->b_dirtyend = 0;
2822				bufdone(bp);
2823			}
2824		}
2825	}
2826
2827	/*
2828	 * Start/do any write(s) that are required.
2829	 */
2830loop:
2831	BO_LOCK(bo);
2832	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2833		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2834			if (waitfor != MNT_WAIT || passone)
2835				continue;
2836
2837			error = BUF_TIMELOCK(bp,
2838			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2839			    BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2840			if (error == 0) {
2841				BUF_UNLOCK(bp);
2842				goto loop;
2843			}
2844			if (error == ENOLCK) {
2845				error = 0;
2846				goto loop;
2847			}
2848			if (called_from_renewthread != 0) {
2849				/*
2850				 * Return EIO so the flush will be retried
2851				 * later.
2852				 */
2853				error = EIO;
2854				goto done;
2855			}
2856			if (newnfs_sigintr(nmp, td)) {
2857				error = EINTR;
2858				goto done;
2859			}
2860			if (slpflag == PCATCH) {
2861				slpflag = 0;
2862				slptimeo = 2 * hz;
2863			}
2864			goto loop;
2865		}
2866		if ((bp->b_flags & B_DELWRI) == 0)
2867			panic("nfs_fsync: not dirty");
2868		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2869			BUF_UNLOCK(bp);
2870			continue;
2871		}
2872		BO_UNLOCK(bo);
2873		bremfree(bp);
2874		if (passone || !commit)
2875		    bp->b_flags |= B_ASYNC;
2876		else
2877		    bp->b_flags |= B_ASYNC;
2878		bwrite(bp);
2879		if (newnfs_sigintr(nmp, td)) {
2880			error = EINTR;
2881			goto done;
2882		}
2883		goto loop;
2884	}
2885	if (passone) {
2886		passone = 0;
2887		BO_UNLOCK(bo);
2888		goto again;
2889	}
2890	if (waitfor == MNT_WAIT) {
2891		while (bo->bo_numoutput) {
2892			error = bufobj_wwait(bo, slpflag, slptimeo);
2893			if (error) {
2894			    BO_UNLOCK(bo);
2895			    if (called_from_renewthread != 0) {
2896				/*
2897				 * Return EIO so that the flush will be
2898				 * retried later.
2899				 */
2900				error = EIO;
2901				goto done;
2902			    }
2903			    error = newnfs_sigintr(nmp, td);
2904			    if (error)
2905				goto done;
2906			    if (slpflag == PCATCH) {
2907				slpflag = 0;
2908				slptimeo = 2 * hz;
2909			    }
2910			    BO_LOCK(bo);
2911			}
2912		}
2913		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2914			BO_UNLOCK(bo);
2915			goto loop;
2916		}
2917		/*
2918		 * Wait for all the async IO requests to drain
2919		 */
2920		BO_UNLOCK(bo);
2921		mtx_lock(&np->n_mtx);
2922		while (np->n_directio_asyncwr > 0) {
2923			np->n_flag |= NFSYNCWAIT;
2924			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2925			    &np->n_mtx, slpflag | (PRIBIO + 1),
2926			    "nfsfsync", 0);
2927			if (error) {
2928				if (newnfs_sigintr(nmp, td)) {
2929					mtx_unlock(&np->n_mtx);
2930					error = EINTR;
2931					goto done;
2932				}
2933			}
2934		}
2935		mtx_unlock(&np->n_mtx);
2936	} else
2937		BO_UNLOCK(bo);
2938	if (NFSHASPNFS(nmp)) {
2939		nfscl_layoutcommit(vp, td);
2940		/*
2941		 * Invalidate the attribute cache, since writes to a DS
2942		 * won't update the size attribute.
2943		 */
2944		mtx_lock(&np->n_mtx);
2945		np->n_attrstamp = 0;
2946	} else
2947		mtx_lock(&np->n_mtx);
2948	if (np->n_flag & NWRITEERR) {
2949		error = np->n_error;
2950		np->n_flag &= ~NWRITEERR;
2951	}
2952  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2953	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2954  		np->n_flag &= ~NMODIFIED;
2955	mtx_unlock(&np->n_mtx);
2956done:
2957	if (bvec != NULL && bvec != bvec_on_stack)
2958		free(bvec, M_TEMP);
2959	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2960	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2961	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2962		/* try, try again... */
2963		passone = 1;
2964		wcred = NULL;
2965		bvec = NULL;
2966		bvecsize = 0;
2967printf("try%d\n", trycnt);
2968		goto again;
2969	}
2970	return (error);
2971}
2972
2973/*
2974 * NFS advisory byte-level locks.
2975 */
2976static int
2977nfs_advlock(struct vop_advlock_args *ap)
2978{
2979	struct vnode *vp = ap->a_vp;
2980	struct ucred *cred;
2981	struct nfsnode *np = VTONFS(ap->a_vp);
2982	struct proc *p = (struct proc *)ap->a_id;
2983	struct thread *td = curthread;	/* XXX */
2984	struct vattr va;
2985	int ret, error = EOPNOTSUPP;
2986	u_quad_t size;
2987
2988	if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
2989		if (vp->v_type != VREG)
2990			return (EINVAL);
2991		if ((ap->a_flags & F_POSIX) != 0)
2992			cred = p->p_ucred;
2993		else
2994			cred = td->td_ucred;
2995		NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
2996		if (vp->v_iflag & VI_DOOMED) {
2997			NFSVOPUNLOCK(vp, 0);
2998			return (EBADF);
2999		}
3000
3001		/*
3002		 * If this is unlocking a write locked region, flush and
3003		 * commit them before unlocking. This is required by
3004		 * RFC3530 Sec. 9.3.2.
3005		 */
3006		if (ap->a_op == F_UNLCK &&
3007		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3008		    ap->a_flags))
3009			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
3010
3011		/*
3012		 * Loop around doing the lock op, while a blocking lock
3013		 * must wait for the lock op to succeed.
3014		 */
3015		do {
3016			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3017			    ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3018			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3019			    ap->a_op == F_SETLK) {
3020				NFSVOPUNLOCK(vp, 0);
3021				error = nfs_catnap(PZERO | PCATCH, ret,
3022				    "ncladvl");
3023				if (error)
3024					return (EINTR);
3025				NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3026				if (vp->v_iflag & VI_DOOMED) {
3027					NFSVOPUNLOCK(vp, 0);
3028					return (EBADF);
3029				}
3030			}
3031		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3032		     ap->a_op == F_SETLK);
3033		if (ret == NFSERR_DENIED) {
3034			NFSVOPUNLOCK(vp, 0);
3035			return (EAGAIN);
3036		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3037			NFSVOPUNLOCK(vp, 0);
3038			return (ret);
3039		} else if (ret != 0) {
3040			NFSVOPUNLOCK(vp, 0);
3041			return (EACCES);
3042		}
3043
3044		/*
3045		 * Now, if we just got a lock, invalidate data in the buffer
3046		 * cache, as required, so that the coherency conforms with
3047		 * RFC3530 Sec. 9.3.2.
3048		 */
3049		if (ap->a_op == F_SETLK) {
3050			if ((np->n_flag & NMODIFIED) == 0) {
3051				np->n_attrstamp = 0;
3052				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3053				ret = VOP_GETATTR(vp, &va, cred);
3054			}
3055			if ((np->n_flag & NMODIFIED) || ret ||
3056			    np->n_change != va.va_filerev) {
3057				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3058				np->n_attrstamp = 0;
3059				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3060				ret = VOP_GETATTR(vp, &va, cred);
3061				if (!ret) {
3062					np->n_mtime = va.va_mtime;
3063					np->n_change = va.va_filerev;
3064				}
3065			}
3066			/* Mark that a file lock has been acquired. */
3067			mtx_lock(&np->n_mtx);
3068			np->n_flag |= NHASBEENLOCKED;
3069			mtx_unlock(&np->n_mtx);
3070		}
3071		NFSVOPUNLOCK(vp, 0);
3072		return (0);
3073	} else if (!NFS_ISV4(vp)) {
3074		error = NFSVOPLOCK(vp, LK_SHARED);
3075		if (error)
3076			return (error);
3077		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3078			size = VTONFS(vp)->n_size;
3079			NFSVOPUNLOCK(vp, 0);
3080			error = lf_advlock(ap, &(vp->v_lockf), size);
3081		} else {
3082			if (nfs_advlock_p != NULL)
3083				error = nfs_advlock_p(ap);
3084			else {
3085				NFSVOPUNLOCK(vp, 0);
3086				error = ENOLCK;
3087			}
3088		}
3089		if (error == 0 && ap->a_op == F_SETLK) {
3090			error = NFSVOPLOCK(vp, LK_SHARED);
3091			if (error == 0) {
3092				/* Mark that a file lock has been acquired. */
3093				mtx_lock(&np->n_mtx);
3094				np->n_flag |= NHASBEENLOCKED;
3095				mtx_unlock(&np->n_mtx);
3096				NFSVOPUNLOCK(vp, 0);
3097			}
3098		}
3099	}
3100	return (error);
3101}
3102
3103/*
3104 * NFS advisory byte-level locks.
3105 */
3106static int
3107nfs_advlockasync(struct vop_advlockasync_args *ap)
3108{
3109	struct vnode *vp = ap->a_vp;
3110	u_quad_t size;
3111	int error;
3112
3113	if (NFS_ISV4(vp))
3114		return (EOPNOTSUPP);
3115	error = NFSVOPLOCK(vp, LK_SHARED);
3116	if (error)
3117		return (error);
3118	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3119		size = VTONFS(vp)->n_size;
3120		NFSVOPUNLOCK(vp, 0);
3121		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3122	} else {
3123		NFSVOPUNLOCK(vp, 0);
3124		error = EOPNOTSUPP;
3125	}
3126	return (error);
3127}
3128
3129/*
3130 * Print out the contents of an nfsnode.
3131 */
3132static int
3133nfs_print(struct vop_print_args *ap)
3134{
3135	struct vnode *vp = ap->a_vp;
3136	struct nfsnode *np = VTONFS(vp);
3137
3138	printf("\tfileid %jd fsid 0x%jx", (uintmax_t)np->n_vattr.na_fileid,
3139	    (uintmax_t)np->n_vattr.na_fsid);
3140	if (vp->v_type == VFIFO)
3141		fifo_printinfo(vp);
3142	printf("\n");
3143	return (0);
3144}
3145
3146/*
3147 * This is the "real" nfs::bwrite(struct buf*).
3148 * We set B_CACHE if this is a VMIO buffer.
3149 */
3150int
3151ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3152{
3153	int s;
3154	int oldflags = bp->b_flags;
3155#if 0
3156	int retv = 1;
3157	off_t off;
3158#endif
3159
3160	BUF_ASSERT_HELD(bp);
3161
3162	if (bp->b_flags & B_INVAL) {
3163		brelse(bp);
3164		return(0);
3165	}
3166
3167	bp->b_flags |= B_CACHE;
3168
3169	/*
3170	 * Undirty the bp.  We will redirty it later if the I/O fails.
3171	 */
3172
3173	s = splbio();
3174	bundirty(bp);
3175	bp->b_flags &= ~B_DONE;
3176	bp->b_ioflags &= ~BIO_ERROR;
3177	bp->b_iocmd = BIO_WRITE;
3178
3179	bufobj_wref(bp->b_bufobj);
3180	curthread->td_ru.ru_oublock++;
3181	splx(s);
3182
3183	/*
3184	 * Note: to avoid loopback deadlocks, we do not
3185	 * assign b_runningbufspace.
3186	 */
3187	vfs_busy_pages(bp, 1);
3188
3189	BUF_KERNPROC(bp);
3190	bp->b_iooffset = dbtob(bp->b_blkno);
3191	bstrategy(bp);
3192
3193	if( (oldflags & B_ASYNC) == 0) {
3194		int rtval = bufwait(bp);
3195
3196		if (oldflags & B_DELWRI) {
3197			s = splbio();
3198			reassignbuf(bp);
3199			splx(s);
3200		}
3201		brelse(bp);
3202		return (rtval);
3203	}
3204
3205	return (0);
3206}
3207
3208/*
3209 * nfs special file access vnode op.
3210 * Essentially just get vattr and then imitate iaccess() since the device is
3211 * local to the client.
3212 */
3213static int
3214nfsspec_access(struct vop_access_args *ap)
3215{
3216	struct vattr *vap;
3217	struct ucred *cred = ap->a_cred;
3218	struct vnode *vp = ap->a_vp;
3219	accmode_t accmode = ap->a_accmode;
3220	struct vattr vattr;
3221	int error;
3222
3223	/*
3224	 * Disallow write attempts on filesystems mounted read-only;
3225	 * unless the file is a socket, fifo, or a block or character
3226	 * device resident on the filesystem.
3227	 */
3228	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3229		switch (vp->v_type) {
3230		case VREG:
3231		case VDIR:
3232		case VLNK:
3233			return (EROFS);
3234		default:
3235			break;
3236		}
3237	}
3238	vap = &vattr;
3239	error = VOP_GETATTR(vp, vap, cred);
3240	if (error)
3241		goto out;
3242	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3243	    accmode, cred, NULL);
3244out:
3245	return error;
3246}
3247
3248/*
3249 * Read wrapper for fifos.
3250 */
3251static int
3252nfsfifo_read(struct vop_read_args *ap)
3253{
3254	struct nfsnode *np = VTONFS(ap->a_vp);
3255	int error;
3256
3257	/*
3258	 * Set access flag.
3259	 */
3260	mtx_lock(&np->n_mtx);
3261	np->n_flag |= NACC;
3262	vfs_timestamp(&np->n_atim);
3263	mtx_unlock(&np->n_mtx);
3264	error = fifo_specops.vop_read(ap);
3265	return error;
3266}
3267
3268/*
3269 * Write wrapper for fifos.
3270 */
3271static int
3272nfsfifo_write(struct vop_write_args *ap)
3273{
3274	struct nfsnode *np = VTONFS(ap->a_vp);
3275
3276	/*
3277	 * Set update flag.
3278	 */
3279	mtx_lock(&np->n_mtx);
3280	np->n_flag |= NUPD;
3281	vfs_timestamp(&np->n_mtim);
3282	mtx_unlock(&np->n_mtx);
3283	return(fifo_specops.vop_write(ap));
3284}
3285
3286/*
3287 * Close wrapper for fifos.
3288 *
3289 * Update the times on the nfsnode then do fifo close.
3290 */
3291static int
3292nfsfifo_close(struct vop_close_args *ap)
3293{
3294	struct vnode *vp = ap->a_vp;
3295	struct nfsnode *np = VTONFS(vp);
3296	struct vattr vattr;
3297	struct timespec ts;
3298
3299	mtx_lock(&np->n_mtx);
3300	if (np->n_flag & (NACC | NUPD)) {
3301		vfs_timestamp(&ts);
3302		if (np->n_flag & NACC)
3303			np->n_atim = ts;
3304		if (np->n_flag & NUPD)
3305			np->n_mtim = ts;
3306		np->n_flag |= NCHG;
3307		if (vrefcnt(vp) == 1 &&
3308		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3309			VATTR_NULL(&vattr);
3310			if (np->n_flag & NACC)
3311				vattr.va_atime = np->n_atim;
3312			if (np->n_flag & NUPD)
3313				vattr.va_mtime = np->n_mtim;
3314			mtx_unlock(&np->n_mtx);
3315			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3316			goto out;
3317		}
3318	}
3319	mtx_unlock(&np->n_mtx);
3320out:
3321	return (fifo_specops.vop_close(ap));
3322}
3323
3324/*
3325 * Just call ncl_writebp() with the force argument set to 1.
3326 *
3327 * NOTE: B_DONE may or may not be set in a_bp on call.
3328 */
3329static int
3330nfs_bwrite(struct buf *bp)
3331{
3332
3333	return (ncl_writebp(bp, 1, curthread));
3334}
3335
3336struct buf_ops buf_ops_newnfs = {
3337	.bop_name	=	"buf_ops_nfs",
3338	.bop_write	=	nfs_bwrite,
3339	.bop_strategy	=	bufstrategy,
3340	.bop_sync	=	bufsync,
3341	.bop_bdflush	=	bufbdflush,
3342};
3343
3344static int
3345nfs_getacl(struct vop_getacl_args *ap)
3346{
3347	int error;
3348
3349	if (ap->a_type != ACL_TYPE_NFS4)
3350		return (EOPNOTSUPP);
3351	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3352	    NULL);
3353	if (error > NFSERR_STALE) {
3354		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3355		error = EPERM;
3356	}
3357	return (error);
3358}
3359
3360static int
3361nfs_setacl(struct vop_setacl_args *ap)
3362{
3363	int error;
3364
3365	if (ap->a_type != ACL_TYPE_NFS4)
3366		return (EOPNOTSUPP);
3367	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3368	    NULL);
3369	if (error > NFSERR_STALE) {
3370		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3371		error = EPERM;
3372	}
3373	return (error);
3374}
3375
3376/*
3377 * Return POSIX pathconf information applicable to nfs filesystems.
3378 */
3379static int
3380nfs_pathconf(struct vop_pathconf_args *ap)
3381{
3382	struct nfsv3_pathconf pc;
3383	struct nfsvattr nfsva;
3384	struct vnode *vp = ap->a_vp;
3385	struct thread *td = curthread;
3386	int attrflag, error;
3387
3388	if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3389	    ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3390	    ap->a_name == _PC_NO_TRUNC)) ||
3391	    (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3392		/*
3393		 * Since only the above 4 a_names are returned by the NFSv3
3394		 * Pathconf RPC, there is no point in doing it for others.
3395		 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3396		 * be used for _PC_NFS4_ACL as well.
3397		 */
3398		error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3399		    &attrflag, NULL);
3400		if (attrflag != 0)
3401			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3402			    1);
3403		if (error != 0)
3404			return (error);
3405	} else {
3406		/*
3407		 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3408		 * just fake them.
3409		 */
3410		pc.pc_linkmax = LINK_MAX;
3411		pc.pc_namemax = NFS_MAXNAMLEN;
3412		pc.pc_notrunc = 1;
3413		pc.pc_chownrestricted = 1;
3414		pc.pc_caseinsensitive = 0;
3415		pc.pc_casepreserving = 1;
3416		error = 0;
3417	}
3418	switch (ap->a_name) {
3419	case _PC_LINK_MAX:
3420		*ap->a_retval = pc.pc_linkmax;
3421		break;
3422	case _PC_NAME_MAX:
3423		*ap->a_retval = pc.pc_namemax;
3424		break;
3425	case _PC_PATH_MAX:
3426		*ap->a_retval = PATH_MAX;
3427		break;
3428	case _PC_PIPE_BUF:
3429		*ap->a_retval = PIPE_BUF;
3430		break;
3431	case _PC_CHOWN_RESTRICTED:
3432		*ap->a_retval = pc.pc_chownrestricted;
3433		break;
3434	case _PC_NO_TRUNC:
3435		*ap->a_retval = pc.pc_notrunc;
3436		break;
3437	case _PC_ACL_EXTENDED:
3438		*ap->a_retval = 0;
3439		break;
3440	case _PC_ACL_NFS4:
3441		if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3442		    NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3443			*ap->a_retval = 1;
3444		else
3445			*ap->a_retval = 0;
3446		break;
3447	case _PC_ACL_PATH_MAX:
3448		if (NFS_ISV4(vp))
3449			*ap->a_retval = ACL_MAX_ENTRIES;
3450		else
3451			*ap->a_retval = 3;
3452		break;
3453	case _PC_MAC_PRESENT:
3454		*ap->a_retval = 0;
3455		break;
3456	case _PC_ASYNC_IO:
3457		/* _PC_ASYNC_IO should have been handled by upper layers. */
3458		KASSERT(0, ("_PC_ASYNC_IO should not get here"));
3459		error = EINVAL;
3460		break;
3461	case _PC_PRIO_IO:
3462		*ap->a_retval = 0;
3463		break;
3464	case _PC_SYNC_IO:
3465		*ap->a_retval = 0;
3466		break;
3467	case _PC_ALLOC_SIZE_MIN:
3468		*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3469		break;
3470	case _PC_FILESIZEBITS:
3471		if (NFS_ISV34(vp))
3472			*ap->a_retval = 64;
3473		else
3474			*ap->a_retval = 32;
3475		break;
3476	case _PC_REC_INCR_XFER_SIZE:
3477		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3478		break;
3479	case _PC_REC_MAX_XFER_SIZE:
3480		*ap->a_retval = -1; /* means ``unlimited'' */
3481		break;
3482	case _PC_REC_MIN_XFER_SIZE:
3483		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3484		break;
3485	case _PC_REC_XFER_ALIGN:
3486		*ap->a_retval = PAGE_SIZE;
3487		break;
3488	case _PC_SYMLINK_MAX:
3489		*ap->a_retval = NFS_MAXPATHLEN;
3490		break;
3491
3492	default:
3493		error = EINVAL;
3494		break;
3495	}
3496	return (error);
3497}
3498
3499