netfront.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004-2006 Kip Macy
5 * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/dev/xen/netfront/netfront.c 330897 2018-03-14 03:19:51Z eadler $");
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35
36#include <sys/param.h>
37#include <sys/sockio.h>
38#include <sys/limits.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/kernel.h>
43#include <sys/socket.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/if_arp.h>
50#include <net/ethernet.h>
51#include <net/if_media.h>
52#include <net/bpf.h>
53#include <net/if_types.h>
54
55#include <netinet/in.h>
56#include <netinet/ip.h>
57#include <netinet/if_ether.h>
58#include <netinet/tcp.h>
59#include <netinet/tcp_lro.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63
64#include <sys/bus.h>
65
66#include <xen/xen-os.h>
67#include <xen/hypervisor.h>
68#include <xen/xen_intr.h>
69#include <xen/gnttab.h>
70#include <xen/interface/memory.h>
71#include <xen/interface/io/netif.h>
72#include <xen/xenbus/xenbusvar.h>
73
74#include "xenbus_if.h"
75
76/* Features supported by all backends.  TSO and LRO can be negotiated */
77#define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79#define NET_TX_RING_SIZE __CONST_RING_SIZE(netif_tx, PAGE_SIZE)
80#define NET_RX_RING_SIZE __CONST_RING_SIZE(netif_rx, PAGE_SIZE)
81
82#define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1)
83
84/*
85 * Should the driver do LRO on the RX end
86 *  this can be toggled on the fly, but the
87 *  interface must be reset (down/up) for it
88 *  to take effect.
89 */
90static int xn_enable_lro = 1;
91TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
92
93/*
94 * Number of pairs of queues.
95 */
96static unsigned long xn_num_queues = 4;
97TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues);
98
99/**
100 * \brief The maximum allowed data fragments in a single transmit
101 *        request.
102 *
103 * This limit is imposed by the backend driver.  We assume here that
104 * we are dealing with a Linux driver domain and have set our limit
105 * to mirror the Linux MAX_SKB_FRAGS constant.
106 */
107#define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
108
109#define RX_COPY_THRESHOLD 256
110
111#define net_ratelimit() 0
112
113struct netfront_rxq;
114struct netfront_txq;
115struct netfront_info;
116struct netfront_rx_info;
117
118static void xn_txeof(struct netfront_txq *);
119static void xn_rxeof(struct netfront_rxq *);
120static void xn_alloc_rx_buffers(struct netfront_rxq *);
121static void xn_alloc_rx_buffers_callout(void *arg);
122
123static void xn_release_rx_bufs(struct netfront_rxq *);
124static void xn_release_tx_bufs(struct netfront_txq *);
125
126static void xn_rxq_intr(struct netfront_rxq *);
127static void xn_txq_intr(struct netfront_txq *);
128static void xn_intr(void *);
129static inline int xn_count_frags(struct mbuf *m);
130static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *);
131static int xn_ioctl(struct ifnet *, u_long, caddr_t);
132static void xn_ifinit_locked(struct netfront_info *);
133static void xn_ifinit(void *);
134static void xn_stop(struct netfront_info *);
135static void xn_query_features(struct netfront_info *np);
136static int xn_configure_features(struct netfront_info *np);
137static void netif_free(struct netfront_info *info);
138static int netfront_detach(device_t dev);
139
140static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *);
141static int xn_txq_mq_start(struct ifnet *, struct mbuf *);
142
143static int talk_to_backend(device_t dev, struct netfront_info *info);
144static int create_netdev(device_t dev);
145static void netif_disconnect_backend(struct netfront_info *info);
146static int setup_device(device_t dev, struct netfront_info *info,
147    unsigned long);
148static int xn_ifmedia_upd(struct ifnet *ifp);
149static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
150
151static int xn_connect(struct netfront_info *);
152static void xn_kick_rings(struct netfront_info *);
153
154static int xn_get_responses(struct netfront_rxq *,
155    struct netfront_rx_info *, RING_IDX, RING_IDX *,
156    struct mbuf **);
157
158#define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
159
160#define INVALID_P2M_ENTRY (~0UL)
161#define XN_QUEUE_NAME_LEN  8	/* xn{t,r}x_%u, allow for two digits */
162struct netfront_rxq {
163	struct netfront_info 	*info;
164	u_int			id;
165	char			name[XN_QUEUE_NAME_LEN];
166	struct mtx		lock;
167
168	int			ring_ref;
169	netif_rx_front_ring_t 	ring;
170	xen_intr_handle_t	xen_intr_handle;
171
172	grant_ref_t 		gref_head;
173	grant_ref_t 		grant_ref[NET_TX_RING_SIZE + 1];
174
175	struct mbuf		*mbufs[NET_RX_RING_SIZE + 1];
176
177	struct lro_ctrl		lro;
178
179	struct callout		rx_refill;
180};
181
182struct netfront_txq {
183	struct netfront_info 	*info;
184	u_int 			id;
185	char			name[XN_QUEUE_NAME_LEN];
186	struct mtx		lock;
187
188	int			ring_ref;
189	netif_tx_front_ring_t	ring;
190	xen_intr_handle_t 	xen_intr_handle;
191
192	grant_ref_t		gref_head;
193	grant_ref_t		grant_ref[NET_TX_RING_SIZE + 1];
194
195	struct mbuf		*mbufs[NET_TX_RING_SIZE + 1];
196	int			mbufs_cnt;
197	struct buf_ring		*br;
198
199	struct taskqueue 	*tq;
200	struct task       	defrtask;
201
202	bool			full;
203};
204
205struct netfront_info {
206	struct ifnet 		*xn_ifp;
207
208	struct mtx   		sc_lock;
209
210	u_int  num_queues;
211	struct netfront_rxq 	*rxq;
212	struct netfront_txq 	*txq;
213
214	u_int			carrier;
215	u_int			maxfrags;
216
217	device_t		xbdev;
218	uint8_t			mac[ETHER_ADDR_LEN];
219
220	int			xn_if_flags;
221
222	struct ifmedia		sc_media;
223
224	bool			xn_reset;
225};
226
227struct netfront_rx_info {
228	struct netif_rx_response rx;
229	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
230};
231
232#define XN_RX_LOCK(_q)         mtx_lock(&(_q)->lock)
233#define XN_RX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
234
235#define XN_TX_LOCK(_q)         mtx_lock(&(_q)->lock)
236#define XN_TX_TRYLOCK(_q)      mtx_trylock(&(_q)->lock)
237#define XN_TX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
238
239#define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
240#define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
241
242#define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
243#define XN_RX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
244#define XN_TX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
245
246#define netfront_carrier_on(netif)	((netif)->carrier = 1)
247#define netfront_carrier_off(netif)	((netif)->carrier = 0)
248#define netfront_carrier_ok(netif)	((netif)->carrier)
249
250/* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
251
252static inline void
253add_id_to_freelist(struct mbuf **list, uintptr_t id)
254{
255
256	KASSERT(id != 0,
257		("%s: the head item (0) must always be free.", __func__));
258	list[id] = list[0];
259	list[0]  = (struct mbuf *)id;
260}
261
262static inline unsigned short
263get_id_from_freelist(struct mbuf **list)
264{
265	uintptr_t id;
266
267	id = (uintptr_t)list[0];
268	KASSERT(id != 0,
269		("%s: the head item (0) must always remain free.", __func__));
270	list[0] = list[id];
271	return (id);
272}
273
274static inline int
275xn_rxidx(RING_IDX idx)
276{
277
278	return idx & (NET_RX_RING_SIZE - 1);
279}
280
281static inline struct mbuf *
282xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri)
283{
284	int i;
285	struct mbuf *m;
286
287	i = xn_rxidx(ri);
288	m = rxq->mbufs[i];
289	rxq->mbufs[i] = NULL;
290	return (m);
291}
292
293static inline grant_ref_t
294xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri)
295{
296	int i = xn_rxidx(ri);
297	grant_ref_t ref = rxq->grant_ref[i];
298
299	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
300	rxq->grant_ref[i] = GRANT_REF_INVALID;
301	return (ref);
302}
303
304#define IPRINTK(fmt, args...) \
305    printf("[XEN] " fmt, ##args)
306#ifdef INVARIANTS
307#define WPRINTK(fmt, args...) \
308    printf("[XEN] " fmt, ##args)
309#else
310#define WPRINTK(fmt, args...)
311#endif
312#ifdef DEBUG
313#define DPRINTK(fmt, args...) \
314    printf("[XEN] %s: " fmt, __func__, ##args)
315#else
316#define DPRINTK(fmt, args...)
317#endif
318
319/**
320 * Read the 'mac' node at the given device's node in the store, and parse that
321 * as colon-separated octets, placing result the given mac array.  mac must be
322 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
323 * Return 0 on success, or errno on error.
324 */
325static int
326xen_net_read_mac(device_t dev, uint8_t mac[])
327{
328	int error, i;
329	char *s, *e, *macstr;
330	const char *path;
331
332	path = xenbus_get_node(dev);
333	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
334	if (error == ENOENT) {
335		/*
336		 * Deal with missing mac XenStore nodes on devices with
337		 * HVM emulation (the 'ioemu' configuration attribute)
338		 * enabled.
339		 *
340		 * The HVM emulator may execute in a stub device model
341		 * domain which lacks the permission, only given to Dom0,
342		 * to update the guest's XenStore tree.  For this reason,
343		 * the HVM emulator doesn't even attempt to write the
344		 * front-side mac node, even when operating in Dom0.
345		 * However, there should always be a mac listed in the
346		 * backend tree.  Fallback to this version if our query
347		 * of the front side XenStore location doesn't find
348		 * anything.
349		 */
350		path = xenbus_get_otherend_path(dev);
351		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
352	}
353	if (error != 0) {
354		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
355		return (error);
356	}
357
358	s = macstr;
359	for (i = 0; i < ETHER_ADDR_LEN; i++) {
360		mac[i] = strtoul(s, &e, 16);
361		if (s == e || (e[0] != ':' && e[0] != 0)) {
362			free(macstr, M_XENBUS);
363			return (ENOENT);
364		}
365		s = &e[1];
366	}
367	free(macstr, M_XENBUS);
368	return (0);
369}
370
371/**
372 * Entry point to this code when a new device is created.  Allocate the basic
373 * structures and the ring buffers for communication with the backend, and
374 * inform the backend of the appropriate details for those.  Switch to
375 * Connected state.
376 */
377static int
378netfront_probe(device_t dev)
379{
380
381	if (xen_hvm_domain() && xen_disable_pv_nics != 0)
382		return (ENXIO);
383
384	if (!strcmp(xenbus_get_type(dev), "vif")) {
385		device_set_desc(dev, "Virtual Network Interface");
386		return (0);
387	}
388
389	return (ENXIO);
390}
391
392static int
393netfront_attach(device_t dev)
394{
395	int err;
396
397	err = create_netdev(dev);
398	if (err != 0) {
399		xenbus_dev_fatal(dev, err, "creating netdev");
400		return (err);
401	}
402
403	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
404	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
405	    OID_AUTO, "enable_lro", CTLFLAG_RW,
406	    &xn_enable_lro, 0, "Large Receive Offload");
407
408	SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev),
409	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
410	    OID_AUTO, "num_queues", CTLFLAG_RD,
411	    &xn_num_queues, "Number of pairs of queues");
412
413	return (0);
414}
415
416static int
417netfront_suspend(device_t dev)
418{
419	struct netfront_info *np = device_get_softc(dev);
420	u_int i;
421
422	for (i = 0; i < np->num_queues; i++) {
423		XN_RX_LOCK(&np->rxq[i]);
424		XN_TX_LOCK(&np->txq[i]);
425	}
426	netfront_carrier_off(np);
427	for (i = 0; i < np->num_queues; i++) {
428		XN_RX_UNLOCK(&np->rxq[i]);
429		XN_TX_UNLOCK(&np->txq[i]);
430	}
431	return (0);
432}
433
434/**
435 * We are reconnecting to the backend, due to a suspend/resume, or a backend
436 * driver restart.  We tear down our netif structure and recreate it, but
437 * leave the device-layer structures intact so that this is transparent to the
438 * rest of the kernel.
439 */
440static int
441netfront_resume(device_t dev)
442{
443	struct netfront_info *info = device_get_softc(dev);
444	u_int i;
445
446	if (xen_suspend_cancelled) {
447		for (i = 0; i < info->num_queues; i++) {
448			XN_RX_LOCK(&info->rxq[i]);
449			XN_TX_LOCK(&info->txq[i]);
450		}
451		netfront_carrier_on(info);
452		for (i = 0; i < info->num_queues; i++) {
453			XN_RX_UNLOCK(&info->rxq[i]);
454			XN_TX_UNLOCK(&info->txq[i]);
455		}
456		return (0);
457	}
458
459	netif_disconnect_backend(info);
460	return (0);
461}
462
463static int
464write_queue_xenstore_keys(device_t dev,
465    struct netfront_rxq *rxq,
466    struct netfront_txq *txq,
467    struct xs_transaction *xst, bool hierarchy)
468{
469	int err;
470	const char *message;
471	const char *node = xenbus_get_node(dev);
472	char *path;
473	size_t path_size;
474
475	KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids"));
476	/* Split event channel support is not yet there. */
477	KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle,
478	    ("Split event channels are not supported"));
479
480	if (hierarchy) {
481		path_size = strlen(node) + 10;
482		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
483		snprintf(path, path_size, "%s/queue-%u", node, rxq->id);
484	} else {
485		path_size = strlen(node) + 1;
486		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
487		snprintf(path, path_size, "%s", node);
488	}
489
490	err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref);
491	if (err != 0) {
492		message = "writing tx ring-ref";
493		goto error;
494	}
495	err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref);
496	if (err != 0) {
497		message = "writing rx ring-ref";
498		goto error;
499	}
500	err = xs_printf(*xst, path, "event-channel", "%u",
501	    xen_intr_port(rxq->xen_intr_handle));
502	if (err != 0) {
503		message = "writing event-channel";
504		goto error;
505	}
506
507	free(path, M_DEVBUF);
508
509	return (0);
510
511error:
512	free(path, M_DEVBUF);
513	xenbus_dev_fatal(dev, err, "%s", message);
514
515	return (err);
516}
517
518/* Common code used when first setting up, and when resuming. */
519static int
520talk_to_backend(device_t dev, struct netfront_info *info)
521{
522	const char *message;
523	struct xs_transaction xst;
524	const char *node = xenbus_get_node(dev);
525	int err;
526	unsigned long num_queues, max_queues = 0;
527	unsigned int i;
528
529	err = xen_net_read_mac(dev, info->mac);
530	if (err != 0) {
531		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
532		goto out;
533	}
534
535	err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev),
536	    "multi-queue-max-queues", NULL, "%lu", &max_queues);
537	if (err != 0)
538		max_queues = 1;
539	num_queues = xn_num_queues;
540	if (num_queues > max_queues)
541		num_queues = max_queues;
542
543	err = setup_device(dev, info, num_queues);
544	if (err != 0)
545		goto out;
546
547 again:
548	err = xs_transaction_start(&xst);
549	if (err != 0) {
550		xenbus_dev_fatal(dev, err, "starting transaction");
551		goto free;
552	}
553
554	if (info->num_queues == 1) {
555		err = write_queue_xenstore_keys(dev, &info->rxq[0],
556		    &info->txq[0], &xst, false);
557		if (err != 0)
558			goto abort_transaction_no_def_error;
559	} else {
560		err = xs_printf(xst, node, "multi-queue-num-queues",
561		    "%u", info->num_queues);
562		if (err != 0) {
563			message = "writing multi-queue-num-queues";
564			goto abort_transaction;
565		}
566
567		for (i = 0; i < info->num_queues; i++) {
568			err = write_queue_xenstore_keys(dev, &info->rxq[i],
569			    &info->txq[i], &xst, true);
570			if (err != 0)
571				goto abort_transaction_no_def_error;
572		}
573	}
574
575	err = xs_printf(xst, node, "request-rx-copy", "%u", 1);
576	if (err != 0) {
577		message = "writing request-rx-copy";
578		goto abort_transaction;
579	}
580	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
581	if (err != 0) {
582		message = "writing feature-rx-notify";
583		goto abort_transaction;
584	}
585	err = xs_printf(xst, node, "feature-sg", "%d", 1);
586	if (err != 0) {
587		message = "writing feature-sg";
588		goto abort_transaction;
589	}
590	if ((info->xn_ifp->if_capenable & IFCAP_LRO) != 0) {
591		err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
592		if (err != 0) {
593			message = "writing feature-gso-tcpv4";
594			goto abort_transaction;
595		}
596	}
597	if ((info->xn_ifp->if_capenable & IFCAP_RXCSUM) == 0) {
598		err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1);
599		if (err != 0) {
600			message = "writing feature-no-csum-offload";
601			goto abort_transaction;
602		}
603	}
604
605	err = xs_transaction_end(xst, 0);
606	if (err != 0) {
607		if (err == EAGAIN)
608			goto again;
609		xenbus_dev_fatal(dev, err, "completing transaction");
610		goto free;
611	}
612
613	return 0;
614
615 abort_transaction:
616	xenbus_dev_fatal(dev, err, "%s", message);
617 abort_transaction_no_def_error:
618	xs_transaction_end(xst, 1);
619 free:
620	netif_free(info);
621 out:
622	return (err);
623}
624
625static void
626xn_rxq_intr(struct netfront_rxq *rxq)
627{
628
629	XN_RX_LOCK(rxq);
630	xn_rxeof(rxq);
631	XN_RX_UNLOCK(rxq);
632}
633
634static void
635xn_txq_start(struct netfront_txq *txq)
636{
637	struct netfront_info *np = txq->info;
638	struct ifnet *ifp = np->xn_ifp;
639
640	XN_TX_LOCK_ASSERT(txq);
641	if (!drbr_empty(ifp, txq->br))
642		xn_txq_mq_start_locked(txq, NULL);
643}
644
645static void
646xn_txq_intr(struct netfront_txq *txq)
647{
648
649	XN_TX_LOCK(txq);
650	if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring))
651		xn_txeof(txq);
652	xn_txq_start(txq);
653	XN_TX_UNLOCK(txq);
654}
655
656static void
657xn_txq_tq_deferred(void *xtxq, int pending)
658{
659	struct netfront_txq *txq = xtxq;
660
661	XN_TX_LOCK(txq);
662	xn_txq_start(txq);
663	XN_TX_UNLOCK(txq);
664}
665
666static void
667disconnect_rxq(struct netfront_rxq *rxq)
668{
669
670	xn_release_rx_bufs(rxq);
671	gnttab_free_grant_references(rxq->gref_head);
672	gnttab_end_foreign_access(rxq->ring_ref, NULL);
673	/*
674	 * No split event channel support at the moment, handle will
675	 * be unbound in tx. So no need to call xen_intr_unbind here,
676	 * but we do want to reset the handler to 0.
677	 */
678	rxq->xen_intr_handle = 0;
679}
680
681static void
682destroy_rxq(struct netfront_rxq *rxq)
683{
684
685	callout_drain(&rxq->rx_refill);
686	free(rxq->ring.sring, M_DEVBUF);
687}
688
689static void
690destroy_rxqs(struct netfront_info *np)
691{
692	int i;
693
694	for (i = 0; i < np->num_queues; i++)
695		destroy_rxq(&np->rxq[i]);
696
697	free(np->rxq, M_DEVBUF);
698	np->rxq = NULL;
699}
700
701static int
702setup_rxqs(device_t dev, struct netfront_info *info,
703	   unsigned long num_queues)
704{
705	int q, i;
706	int error;
707	netif_rx_sring_t *rxs;
708	struct netfront_rxq *rxq;
709
710	info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues,
711	    M_DEVBUF, M_WAITOK|M_ZERO);
712
713	for (q = 0; q < num_queues; q++) {
714		rxq = &info->rxq[q];
715
716		rxq->id = q;
717		rxq->info = info;
718		rxq->ring_ref = GRANT_REF_INVALID;
719		rxq->ring.sring = NULL;
720		snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q);
721		mtx_init(&rxq->lock, rxq->name, "netfront receive lock",
722		    MTX_DEF);
723
724		for (i = 0; i <= NET_RX_RING_SIZE; i++) {
725			rxq->mbufs[i] = NULL;
726			rxq->grant_ref[i] = GRANT_REF_INVALID;
727		}
728
729		/* Start resources allocation */
730
731		if (gnttab_alloc_grant_references(NET_RX_RING_SIZE,
732		    &rxq->gref_head) != 0) {
733			device_printf(dev, "allocating rx gref");
734			error = ENOMEM;
735			goto fail;
736		}
737
738		rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
739		    M_WAITOK|M_ZERO);
740		SHARED_RING_INIT(rxs);
741		FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE);
742
743		error = xenbus_grant_ring(dev, virt_to_mfn(rxs),
744		    &rxq->ring_ref);
745		if (error != 0) {
746			device_printf(dev, "granting rx ring page");
747			goto fail_grant_ring;
748		}
749
750		callout_init(&rxq->rx_refill, 1);
751	}
752
753	return (0);
754
755fail_grant_ring:
756	gnttab_free_grant_references(rxq->gref_head);
757	free(rxq->ring.sring, M_DEVBUF);
758fail:
759	for (; q >= 0; q--) {
760		disconnect_rxq(&info->rxq[q]);
761		destroy_rxq(&info->rxq[q]);
762	}
763
764	free(info->rxq, M_DEVBUF);
765	return (error);
766}
767
768static void
769disconnect_txq(struct netfront_txq *txq)
770{
771
772	xn_release_tx_bufs(txq);
773	gnttab_free_grant_references(txq->gref_head);
774	gnttab_end_foreign_access(txq->ring_ref, NULL);
775	xen_intr_unbind(&txq->xen_intr_handle);
776}
777
778static void
779destroy_txq(struct netfront_txq *txq)
780{
781
782	free(txq->ring.sring, M_DEVBUF);
783	buf_ring_free(txq->br, M_DEVBUF);
784	taskqueue_drain_all(txq->tq);
785	taskqueue_free(txq->tq);
786}
787
788static void
789destroy_txqs(struct netfront_info *np)
790{
791	int i;
792
793	for (i = 0; i < np->num_queues; i++)
794		destroy_txq(&np->txq[i]);
795
796	free(np->txq, M_DEVBUF);
797	np->txq = NULL;
798}
799
800static int
801setup_txqs(device_t dev, struct netfront_info *info,
802	   unsigned long num_queues)
803{
804	int q, i;
805	int error;
806	netif_tx_sring_t *txs;
807	struct netfront_txq *txq;
808
809	info->txq = malloc(sizeof(struct netfront_txq) * num_queues,
810	    M_DEVBUF, M_WAITOK|M_ZERO);
811
812	for (q = 0; q < num_queues; q++) {
813		txq = &info->txq[q];
814
815		txq->id = q;
816		txq->info = info;
817
818		txq->ring_ref = GRANT_REF_INVALID;
819		txq->ring.sring = NULL;
820
821		snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q);
822
823		mtx_init(&txq->lock, txq->name, "netfront transmit lock",
824		    MTX_DEF);
825
826		for (i = 0; i <= NET_TX_RING_SIZE; i++) {
827			txq->mbufs[i] = (void *) ((u_long) i+1);
828			txq->grant_ref[i] = GRANT_REF_INVALID;
829		}
830		txq->mbufs[NET_TX_RING_SIZE] = (void *)0;
831
832		/* Start resources allocation. */
833
834		if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
835		    &txq->gref_head) != 0) {
836			device_printf(dev, "failed to allocate tx grant refs\n");
837			error = ENOMEM;
838			goto fail;
839		}
840
841		txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
842		    M_WAITOK|M_ZERO);
843		SHARED_RING_INIT(txs);
844		FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE);
845
846		error = xenbus_grant_ring(dev, virt_to_mfn(txs),
847		    &txq->ring_ref);
848		if (error != 0) {
849			device_printf(dev, "failed to grant tx ring\n");
850			goto fail_grant_ring;
851		}
852
853		txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF,
854		    M_WAITOK, &txq->lock);
855		TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq);
856
857		txq->tq = taskqueue_create(txq->name, M_WAITOK,
858		    taskqueue_thread_enqueue, &txq->tq);
859
860		error = taskqueue_start_threads(&txq->tq, 1, PI_NET,
861		    "%s txq %d", device_get_nameunit(dev), txq->id);
862		if (error != 0) {
863			device_printf(dev, "failed to start tx taskq %d\n",
864			    txq->id);
865			goto fail_start_thread;
866		}
867
868		error = xen_intr_alloc_and_bind_local_port(dev,
869		    xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr,
870		    &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY,
871		    &txq->xen_intr_handle);
872
873		if (error != 0) {
874			device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n");
875			goto fail_bind_port;
876		}
877	}
878
879	return (0);
880
881fail_bind_port:
882	taskqueue_drain_all(txq->tq);
883fail_start_thread:
884	buf_ring_free(txq->br, M_DEVBUF);
885	taskqueue_free(txq->tq);
886	gnttab_end_foreign_access(txq->ring_ref, NULL);
887fail_grant_ring:
888	gnttab_free_grant_references(txq->gref_head);
889	free(txq->ring.sring, M_DEVBUF);
890fail:
891	for (; q >= 0; q--) {
892		disconnect_txq(&info->txq[q]);
893		destroy_txq(&info->txq[q]);
894	}
895
896	free(info->txq, M_DEVBUF);
897	return (error);
898}
899
900static int
901setup_device(device_t dev, struct netfront_info *info,
902    unsigned long num_queues)
903{
904	int error;
905	int q;
906
907	if (info->txq)
908		destroy_txqs(info);
909
910	if (info->rxq)
911		destroy_rxqs(info);
912
913	info->num_queues = 0;
914
915	error = setup_rxqs(dev, info, num_queues);
916	if (error != 0)
917		goto out;
918	error = setup_txqs(dev, info, num_queues);
919	if (error != 0)
920		goto out;
921
922	info->num_queues = num_queues;
923
924	/* No split event channel at the moment. */
925	for (q = 0; q < num_queues; q++)
926		info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle;
927
928	return (0);
929
930out:
931	KASSERT(error != 0, ("Error path taken without providing an error code"));
932	return (error);
933}
934
935#ifdef INET
936/**
937 * If this interface has an ipv4 address, send an arp for it. This
938 * helps to get the network going again after migrating hosts.
939 */
940static void
941netfront_send_fake_arp(device_t dev, struct netfront_info *info)
942{
943	struct ifnet *ifp;
944	struct ifaddr *ifa;
945
946	ifp = info->xn_ifp;
947	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
948		if (ifa->ifa_addr->sa_family == AF_INET) {
949			arp_ifinit(ifp, ifa);
950		}
951	}
952}
953#endif
954
955/**
956 * Callback received when the backend's state changes.
957 */
958static void
959netfront_backend_changed(device_t dev, XenbusState newstate)
960{
961	struct netfront_info *sc = device_get_softc(dev);
962
963	DPRINTK("newstate=%d\n", newstate);
964
965	switch (newstate) {
966	case XenbusStateInitialising:
967	case XenbusStateInitialised:
968	case XenbusStateUnknown:
969	case XenbusStateReconfigured:
970	case XenbusStateReconfiguring:
971		break;
972	case XenbusStateInitWait:
973		if (xenbus_get_state(dev) != XenbusStateInitialising)
974			break;
975		if (xn_connect(sc) != 0)
976			break;
977		/* Switch to connected state before kicking the rings. */
978		xenbus_set_state(sc->xbdev, XenbusStateConnected);
979		xn_kick_rings(sc);
980		break;
981	case XenbusStateClosing:
982		xenbus_set_state(dev, XenbusStateClosed);
983		break;
984	case XenbusStateClosed:
985		if (sc->xn_reset) {
986			netif_disconnect_backend(sc);
987			xenbus_set_state(dev, XenbusStateInitialising);
988			sc->xn_reset = false;
989		}
990		break;
991	case XenbusStateConnected:
992#ifdef INET
993		netfront_send_fake_arp(dev, sc);
994#endif
995		break;
996	}
997}
998
999/**
1000 * \brief Verify that there is sufficient space in the Tx ring
1001 *        buffer for a maximally sized request to be enqueued.
1002 *
1003 * A transmit request requires a transmit descriptor for each packet
1004 * fragment, plus up to 2 entries for "options" (e.g. TSO).
1005 */
1006static inline int
1007xn_tx_slot_available(struct netfront_txq *txq)
1008{
1009
1010	return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2));
1011}
1012
1013static void
1014xn_release_tx_bufs(struct netfront_txq *txq)
1015{
1016	int i;
1017
1018	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
1019		struct mbuf *m;
1020
1021		m = txq->mbufs[i];
1022
1023		/*
1024		 * We assume that no kernel addresses are
1025		 * less than NET_TX_RING_SIZE.  Any entry
1026		 * in the table that is below this number
1027		 * must be an index from free-list tracking.
1028		 */
1029		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
1030			continue;
1031		gnttab_end_foreign_access_ref(txq->grant_ref[i]);
1032		gnttab_release_grant_reference(&txq->gref_head,
1033		    txq->grant_ref[i]);
1034		txq->grant_ref[i] = GRANT_REF_INVALID;
1035		add_id_to_freelist(txq->mbufs, i);
1036		txq->mbufs_cnt--;
1037		if (txq->mbufs_cnt < 0) {
1038			panic("%s: tx_chain_cnt must be >= 0", __func__);
1039		}
1040		m_free(m);
1041	}
1042}
1043
1044static struct mbuf *
1045xn_alloc_one_rx_buffer(struct netfront_rxq *rxq)
1046{
1047	struct mbuf *m;
1048
1049	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1050	if (m == NULL)
1051		return NULL;
1052	m->m_len = m->m_pkthdr.len = MJUMPAGESIZE;
1053
1054	return (m);
1055}
1056
1057static void
1058xn_alloc_rx_buffers(struct netfront_rxq *rxq)
1059{
1060	RING_IDX req_prod;
1061	int notify;
1062
1063	XN_RX_LOCK_ASSERT(rxq);
1064
1065	if (__predict_false(rxq->info->carrier == 0))
1066		return;
1067
1068	for (req_prod = rxq->ring.req_prod_pvt;
1069	     req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE;
1070	     req_prod++) {
1071		struct mbuf *m;
1072		unsigned short id;
1073		grant_ref_t ref;
1074		struct netif_rx_request *req;
1075		unsigned long pfn;
1076
1077		m = xn_alloc_one_rx_buffer(rxq);
1078		if (m == NULL)
1079			break;
1080
1081		id = xn_rxidx(req_prod);
1082
1083		KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain"));
1084		rxq->mbufs[id] = m;
1085
1086		ref = gnttab_claim_grant_reference(&rxq->gref_head);
1087		KASSERT(ref != GNTTAB_LIST_END,
1088		    ("reserved grant references exhuasted"));
1089		rxq->grant_ref[id] = ref;
1090
1091		pfn = atop(vtophys(mtod(m, vm_offset_t)));
1092		req = RING_GET_REQUEST(&rxq->ring, req_prod);
1093
1094		gnttab_grant_foreign_access_ref(ref,
1095		    xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0);
1096		req->id = id;
1097		req->gref = ref;
1098	}
1099
1100	rxq->ring.req_prod_pvt = req_prod;
1101
1102	/* Not enough requests? Try again later. */
1103	if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) {
1104		callout_reset_curcpu(&rxq->rx_refill, hz/10,
1105		    xn_alloc_rx_buffers_callout, rxq);
1106		return;
1107	}
1108
1109	wmb();		/* barrier so backend seens requests */
1110
1111	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify);
1112	if (notify)
1113		xen_intr_signal(rxq->xen_intr_handle);
1114}
1115
1116static void xn_alloc_rx_buffers_callout(void *arg)
1117{
1118	struct netfront_rxq *rxq;
1119
1120	rxq = (struct netfront_rxq *)arg;
1121	XN_RX_LOCK(rxq);
1122	xn_alloc_rx_buffers(rxq);
1123	XN_RX_UNLOCK(rxq);
1124}
1125
1126static void
1127xn_release_rx_bufs(struct netfront_rxq *rxq)
1128{
1129	int i,  ref;
1130	struct mbuf *m;
1131
1132	for (i = 0; i < NET_RX_RING_SIZE; i++) {
1133		m = rxq->mbufs[i];
1134
1135		if (m == NULL)
1136			continue;
1137
1138		ref = rxq->grant_ref[i];
1139		if (ref == GRANT_REF_INVALID)
1140			continue;
1141
1142		gnttab_end_foreign_access_ref(ref);
1143		gnttab_release_grant_reference(&rxq->gref_head, ref);
1144		rxq->mbufs[i] = NULL;
1145		rxq->grant_ref[i] = GRANT_REF_INVALID;
1146		m_freem(m);
1147	}
1148}
1149
1150static void
1151xn_rxeof(struct netfront_rxq *rxq)
1152{
1153	struct ifnet *ifp;
1154	struct netfront_info *np = rxq->info;
1155#if (defined(INET) || defined(INET6))
1156	struct lro_ctrl *lro = &rxq->lro;
1157#endif
1158	struct netfront_rx_info rinfo;
1159	struct netif_rx_response *rx = &rinfo.rx;
1160	struct netif_extra_info *extras = rinfo.extras;
1161	RING_IDX i, rp;
1162	struct mbuf *m;
1163	struct mbufq mbufq_rxq, mbufq_errq;
1164	int err, work_to_do;
1165
1166	XN_RX_LOCK_ASSERT(rxq);
1167
1168	if (!netfront_carrier_ok(np))
1169		return;
1170
1171	/* XXX: there should be some sane limit. */
1172	mbufq_init(&mbufq_errq, INT_MAX);
1173	mbufq_init(&mbufq_rxq, INT_MAX);
1174
1175	ifp = np->xn_ifp;
1176
1177	do {
1178		rp = rxq->ring.sring->rsp_prod;
1179		rmb();	/* Ensure we see queued responses up to 'rp'. */
1180
1181		i = rxq->ring.rsp_cons;
1182		while ((i != rp)) {
1183			memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx));
1184			memset(extras, 0, sizeof(rinfo.extras));
1185
1186			m = NULL;
1187			err = xn_get_responses(rxq, &rinfo, rp, &i, &m);
1188
1189			if (__predict_false(err)) {
1190				if (m)
1191					(void )mbufq_enqueue(&mbufq_errq, m);
1192				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1193				continue;
1194			}
1195
1196			m->m_pkthdr.rcvif = ifp;
1197			if (rx->flags & NETRXF_data_validated) {
1198				/*
1199				 * According to mbuf(9) the correct way to tell
1200				 * the stack that the checksum of an inbound
1201				 * packet is correct, without it actually being
1202				 * present (because the underlying interface
1203				 * doesn't provide it), is to set the
1204				 * CSUM_DATA_VALID and CSUM_PSEUDO_HDR flags,
1205				 * and the csum_data field to 0xffff.
1206				 */
1207				m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
1208				    | CSUM_PSEUDO_HDR);
1209				m->m_pkthdr.csum_data = 0xffff;
1210			}
1211			if ((rx->flags & NETRXF_extra_info) != 0 &&
1212			    (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type ==
1213			    XEN_NETIF_EXTRA_TYPE_GSO)) {
1214				m->m_pkthdr.tso_segsz =
1215				extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size;
1216				m->m_pkthdr.csum_flags |= CSUM_TSO;
1217			}
1218
1219			(void )mbufq_enqueue(&mbufq_rxq, m);
1220		}
1221
1222		rxq->ring.rsp_cons = i;
1223
1224		xn_alloc_rx_buffers(rxq);
1225
1226		RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do);
1227	} while (work_to_do);
1228
1229	mbufq_drain(&mbufq_errq);
1230	/*
1231	 * Process all the mbufs after the remapping is complete.
1232	 * Break the mbuf chain first though.
1233	 */
1234	while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) {
1235		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1236#if (defined(INET) || defined(INET6))
1237		/* Use LRO if possible */
1238		if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1239		    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1240			/*
1241			 * If LRO fails, pass up to the stack
1242			 * directly.
1243			 */
1244			(*ifp->if_input)(ifp, m);
1245		}
1246#else
1247		(*ifp->if_input)(ifp, m);
1248#endif
1249	}
1250
1251#if (defined(INET) || defined(INET6))
1252	/*
1253	 * Flush any outstanding LRO work
1254	 */
1255	tcp_lro_flush_all(lro);
1256#endif
1257}
1258
1259static void
1260xn_txeof(struct netfront_txq *txq)
1261{
1262	RING_IDX i, prod;
1263	unsigned short id;
1264	struct ifnet *ifp;
1265	netif_tx_response_t *txr;
1266	struct mbuf *m;
1267	struct netfront_info *np = txq->info;
1268
1269	XN_TX_LOCK_ASSERT(txq);
1270
1271	if (!netfront_carrier_ok(np))
1272		return;
1273
1274	ifp = np->xn_ifp;
1275
1276	do {
1277		prod = txq->ring.sring->rsp_prod;
1278		rmb(); /* Ensure we see responses up to 'rp'. */
1279
1280		for (i = txq->ring.rsp_cons; i != prod; i++) {
1281			txr = RING_GET_RESPONSE(&txq->ring, i);
1282			if (txr->status == NETIF_RSP_NULL)
1283				continue;
1284
1285			if (txr->status != NETIF_RSP_OKAY) {
1286				printf("%s: WARNING: response is %d!\n",
1287				       __func__, txr->status);
1288			}
1289			id = txr->id;
1290			m = txq->mbufs[id];
1291			KASSERT(m != NULL, ("mbuf not found in chain"));
1292			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1293				("mbuf already on the free list, but we're "
1294				"trying to free it again!"));
1295			M_ASSERTVALID(m);
1296
1297			if (__predict_false(gnttab_query_foreign_access(
1298			    txq->grant_ref[id]) != 0)) {
1299				panic("%s: grant id %u still in use by the "
1300				    "backend", __func__, id);
1301			}
1302			gnttab_end_foreign_access_ref(txq->grant_ref[id]);
1303			gnttab_release_grant_reference(
1304				&txq->gref_head, txq->grant_ref[id]);
1305			txq->grant_ref[id] = GRANT_REF_INVALID;
1306
1307			txq->mbufs[id] = NULL;
1308			add_id_to_freelist(txq->mbufs, id);
1309			txq->mbufs_cnt--;
1310			m_free(m);
1311			/* Only mark the txq active if we've freed up at least one slot to try */
1312			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1313		}
1314		txq->ring.rsp_cons = prod;
1315
1316		/*
1317		 * Set a new event, then check for race with update of
1318		 * tx_cons. Note that it is essential to schedule a
1319		 * callback, no matter how few buffers are pending. Even if
1320		 * there is space in the transmit ring, higher layers may
1321		 * be blocked because too much data is outstanding: in such
1322		 * cases notification from Xen is likely to be the only kick
1323		 * that we'll get.
1324		 */
1325		txq->ring.sring->rsp_event =
1326		    prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1;
1327
1328		mb();
1329	} while (prod != txq->ring.sring->rsp_prod);
1330
1331	if (txq->full &&
1332	    ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1333		txq->full = false;
1334		xn_txq_start(txq);
1335	}
1336}
1337
1338static void
1339xn_intr(void *xsc)
1340{
1341	struct netfront_txq *txq = xsc;
1342	struct netfront_info *np = txq->info;
1343	struct netfront_rxq *rxq = &np->rxq[txq->id];
1344
1345	/* kick both tx and rx */
1346	xn_rxq_intr(rxq);
1347	xn_txq_intr(txq);
1348}
1349
1350static void
1351xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m,
1352    grant_ref_t ref)
1353{
1354	int new = xn_rxidx(rxq->ring.req_prod_pvt);
1355
1356	KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL"));
1357	rxq->mbufs[new] = m;
1358	rxq->grant_ref[new] = ref;
1359	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new;
1360	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref;
1361	rxq->ring.req_prod_pvt++;
1362}
1363
1364static int
1365xn_get_extras(struct netfront_rxq *rxq,
1366    struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1367{
1368	struct netif_extra_info *extra;
1369
1370	int err = 0;
1371
1372	do {
1373		struct mbuf *m;
1374		grant_ref_t ref;
1375
1376		if (__predict_false(*cons + 1 == rp)) {
1377			err = EINVAL;
1378			break;
1379		}
1380
1381		extra = (struct netif_extra_info *)
1382		RING_GET_RESPONSE(&rxq->ring, ++(*cons));
1383
1384		if (__predict_false(!extra->type ||
1385			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1386			err = EINVAL;
1387		} else {
1388			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1389		}
1390
1391		m = xn_get_rx_mbuf(rxq, *cons);
1392		ref = xn_get_rx_ref(rxq,  *cons);
1393		xn_move_rx_slot(rxq, m, ref);
1394	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1395
1396	return err;
1397}
1398
1399static int
1400xn_get_responses(struct netfront_rxq *rxq,
1401    struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1402    struct mbuf  **list)
1403{
1404	struct netif_rx_response *rx = &rinfo->rx;
1405	struct netif_extra_info *extras = rinfo->extras;
1406	struct mbuf *m, *m0, *m_prev;
1407	grant_ref_t ref = xn_get_rx_ref(rxq, *cons);
1408	RING_IDX ref_cons = *cons;
1409	int frags = 1;
1410	int err = 0;
1411	u_long ret;
1412
1413	m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons);
1414
1415	if (rx->flags & NETRXF_extra_info) {
1416		err = xn_get_extras(rxq, extras, rp, cons);
1417	}
1418
1419	if (m0 != NULL) {
1420		m0->m_pkthdr.len = 0;
1421		m0->m_next = NULL;
1422	}
1423
1424	for (;;) {
1425#if 0
1426		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1427			rx->status, rx->offset, frags);
1428#endif
1429		if (__predict_false(rx->status < 0 ||
1430			rx->offset + rx->status > PAGE_SIZE)) {
1431
1432			xn_move_rx_slot(rxq, m, ref);
1433			if (m0 == m)
1434				m0 = NULL;
1435			m = NULL;
1436			err = EINVAL;
1437			goto next_skip_queue;
1438		}
1439
1440		/*
1441		 * This definitely indicates a bug, either in this driver or in
1442		 * the backend driver. In future this should flag the bad
1443		 * situation to the system controller to reboot the backed.
1444		 */
1445		if (ref == GRANT_REF_INVALID) {
1446			printf("%s: Bad rx response id %d.\n", __func__, rx->id);
1447			err = EINVAL;
1448			goto next;
1449		}
1450
1451		ret = gnttab_end_foreign_access_ref(ref);
1452		KASSERT(ret, ("Unable to end access to grant references"));
1453
1454		gnttab_release_grant_reference(&rxq->gref_head, ref);
1455
1456next:
1457		if (m == NULL)
1458			break;
1459
1460		m->m_len = rx->status;
1461		m->m_data += rx->offset;
1462		m0->m_pkthdr.len += rx->status;
1463
1464next_skip_queue:
1465		if (!(rx->flags & NETRXF_more_data))
1466			break;
1467
1468		if (*cons + frags == rp) {
1469			if (net_ratelimit())
1470				WPRINTK("Need more frags\n");
1471			err = ENOENT;
1472			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1473			       __func__, *cons, frags, rp);
1474			break;
1475		}
1476		/*
1477		 * Note that m can be NULL, if rx->status < 0 or if
1478		 * rx->offset + rx->status > PAGE_SIZE above.
1479		 */
1480		m_prev = m;
1481
1482		rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags);
1483		m = xn_get_rx_mbuf(rxq, *cons + frags);
1484
1485		/*
1486		 * m_prev == NULL can happen if rx->status < 0 or if
1487		 * rx->offset + * rx->status > PAGE_SIZE above.
1488		 */
1489		if (m_prev != NULL)
1490			m_prev->m_next = m;
1491
1492		/*
1493		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1494		 * rx->status > PAGE_SIZE above.
1495		 */
1496		if (m0 == NULL)
1497			m0 = m;
1498		m->m_next = NULL;
1499		ref = xn_get_rx_ref(rxq, *cons + frags);
1500		ref_cons = *cons + frags;
1501		frags++;
1502	}
1503	*list = m0;
1504	*cons += frags;
1505
1506	return (err);
1507}
1508
1509/**
1510 * \brief Count the number of fragments in an mbuf chain.
1511 *
1512 * Surprisingly, there isn't an M* macro for this.
1513 */
1514static inline int
1515xn_count_frags(struct mbuf *m)
1516{
1517	int nfrags;
1518
1519	for (nfrags = 0; m != NULL; m = m->m_next)
1520		nfrags++;
1521
1522	return (nfrags);
1523}
1524
1525/**
1526 * Given an mbuf chain, make sure we have enough room and then push
1527 * it onto the transmit ring.
1528 */
1529static int
1530xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head)
1531{
1532	struct mbuf *m;
1533	struct netfront_info *np = txq->info;
1534	struct ifnet *ifp = np->xn_ifp;
1535	u_int nfrags;
1536	int otherend_id;
1537
1538	/**
1539	 * Defragment the mbuf if necessary.
1540	 */
1541	nfrags = xn_count_frags(m_head);
1542
1543	/*
1544	 * Check to see whether this request is longer than netback
1545	 * can handle, and try to defrag it.
1546	 */
1547	/**
1548	 * It is a bit lame, but the netback driver in Linux can't
1549	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1550	 * the Linux network stack.
1551	 */
1552	if (nfrags > np->maxfrags) {
1553		m = m_defrag(m_head, M_NOWAIT);
1554		if (!m) {
1555			/*
1556			 * Defrag failed, so free the mbuf and
1557			 * therefore drop the packet.
1558			 */
1559			m_freem(m_head);
1560			return (EMSGSIZE);
1561		}
1562		m_head = m;
1563	}
1564
1565	/* Determine how many fragments now exist */
1566	nfrags = xn_count_frags(m_head);
1567
1568	/*
1569	 * Check to see whether the defragmented packet has too many
1570	 * segments for the Linux netback driver.
1571	 */
1572	/**
1573	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1574	 * of mbufs longer than Linux can handle.  Make sure we don't
1575	 * pass a too-long chain over to the other side by dropping the
1576	 * packet.  It doesn't look like there is currently a way to
1577	 * tell the TCP stack to generate a shorter chain of packets.
1578	 */
1579	if (nfrags > MAX_TX_REQ_FRAGS) {
1580#ifdef DEBUG
1581		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1582		       "won't be able to handle it, dropping\n",
1583		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1584#endif
1585		m_freem(m_head);
1586		return (EMSGSIZE);
1587	}
1588
1589	/*
1590	 * This check should be redundant.  We've already verified that we
1591	 * have enough slots in the ring to handle a packet of maximum
1592	 * size, and that our packet is less than the maximum size.  Keep
1593	 * it in here as an assert for now just to make certain that
1594	 * chain_cnt is accurate.
1595	 */
1596	KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE,
1597		("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1598		 "(%d)!", __func__, (int) txq->mbufs_cnt,
1599                    (int) nfrags, (int) NET_TX_RING_SIZE));
1600
1601	/*
1602	 * Start packing the mbufs in this chain into
1603	 * the fragment pointers. Stop when we run out
1604	 * of fragments or hit the end of the mbuf chain.
1605	 */
1606	m = m_head;
1607	otherend_id = xenbus_get_otherend_id(np->xbdev);
1608	for (m = m_head; m; m = m->m_next) {
1609		netif_tx_request_t *tx;
1610		uintptr_t id;
1611		grant_ref_t ref;
1612		u_long mfn; /* XXX Wrong type? */
1613
1614		tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt);
1615		id = get_id_from_freelist(txq->mbufs);
1616		if (id == 0)
1617			panic("%s: was allocated the freelist head!\n",
1618			    __func__);
1619		txq->mbufs_cnt++;
1620		if (txq->mbufs_cnt > NET_TX_RING_SIZE)
1621			panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
1622			    __func__);
1623		txq->mbufs[id] = m;
1624		tx->id = id;
1625		ref = gnttab_claim_grant_reference(&txq->gref_head);
1626		KASSERT((short)ref >= 0, ("Negative ref"));
1627		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1628		gnttab_grant_foreign_access_ref(ref, otherend_id,
1629		    mfn, GNTMAP_readonly);
1630		tx->gref = txq->grant_ref[id] = ref;
1631		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1632		tx->flags = 0;
1633		if (m == m_head) {
1634			/*
1635			 * The first fragment has the entire packet
1636			 * size, subsequent fragments have just the
1637			 * fragment size. The backend works out the
1638			 * true size of the first fragment by
1639			 * subtracting the sizes of the other
1640			 * fragments.
1641			 */
1642			tx->size = m->m_pkthdr.len;
1643
1644			/*
1645			 * The first fragment contains the checksum flags
1646			 * and is optionally followed by extra data for
1647			 * TSO etc.
1648			 */
1649			/**
1650			 * CSUM_TSO requires checksum offloading.
1651			 * Some versions of FreeBSD fail to
1652			 * set CSUM_TCP in the CSUM_TSO case,
1653			 * so we have to test for CSUM_TSO
1654			 * explicitly.
1655			 */
1656			if (m->m_pkthdr.csum_flags
1657			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1658				tx->flags |= (NETTXF_csum_blank
1659				    | NETTXF_data_validated);
1660			}
1661			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1662				struct netif_extra_info *gso =
1663					(struct netif_extra_info *)
1664					RING_GET_REQUEST(&txq->ring,
1665							 ++txq->ring.req_prod_pvt);
1666
1667				tx->flags |= NETTXF_extra_info;
1668
1669				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1670				gso->u.gso.type =
1671					XEN_NETIF_GSO_TYPE_TCPV4;
1672				gso->u.gso.pad = 0;
1673				gso->u.gso.features = 0;
1674
1675				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1676				gso->flags = 0;
1677			}
1678		} else {
1679			tx->size = m->m_len;
1680		}
1681		if (m->m_next)
1682			tx->flags |= NETTXF_more_data;
1683
1684		txq->ring.req_prod_pvt++;
1685	}
1686	BPF_MTAP(ifp, m_head);
1687
1688	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1689	if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len);
1690	if (m_head->m_flags & M_MCAST)
1691		if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
1692
1693	xn_txeof(txq);
1694
1695	return (0);
1696}
1697
1698/* equivalent of network_open() in Linux */
1699static void
1700xn_ifinit_locked(struct netfront_info *np)
1701{
1702	struct ifnet *ifp;
1703	int i;
1704	struct netfront_rxq *rxq;
1705
1706	XN_LOCK_ASSERT(np);
1707
1708	ifp = np->xn_ifp;
1709
1710	if (ifp->if_drv_flags & IFF_DRV_RUNNING || !netfront_carrier_ok(np))
1711		return;
1712
1713	xn_stop(np);
1714
1715	for (i = 0; i < np->num_queues; i++) {
1716		rxq = &np->rxq[i];
1717		XN_RX_LOCK(rxq);
1718		xn_alloc_rx_buffers(rxq);
1719		rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1;
1720		if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring))
1721			xn_rxeof(rxq);
1722		XN_RX_UNLOCK(rxq);
1723	}
1724
1725	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1726	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1727	if_link_state_change(ifp, LINK_STATE_UP);
1728}
1729
1730static void
1731xn_ifinit(void *xsc)
1732{
1733	struct netfront_info *sc = xsc;
1734
1735	XN_LOCK(sc);
1736	xn_ifinit_locked(sc);
1737	XN_UNLOCK(sc);
1738}
1739
1740static int
1741xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1742{
1743	struct netfront_info *sc = ifp->if_softc;
1744	struct ifreq *ifr = (struct ifreq *) data;
1745	device_t dev;
1746#ifdef INET
1747	struct ifaddr *ifa = (struct ifaddr *)data;
1748#endif
1749	int mask, error = 0, reinit;
1750
1751	dev = sc->xbdev;
1752
1753	switch(cmd) {
1754	case SIOCSIFADDR:
1755#ifdef INET
1756		XN_LOCK(sc);
1757		if (ifa->ifa_addr->sa_family == AF_INET) {
1758			ifp->if_flags |= IFF_UP;
1759			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1760				xn_ifinit_locked(sc);
1761			arp_ifinit(ifp, ifa);
1762			XN_UNLOCK(sc);
1763		} else {
1764			XN_UNLOCK(sc);
1765#endif
1766			error = ether_ioctl(ifp, cmd, data);
1767#ifdef INET
1768		}
1769#endif
1770		break;
1771	case SIOCSIFMTU:
1772		if (ifp->if_mtu == ifr->ifr_mtu)
1773			break;
1774
1775		ifp->if_mtu = ifr->ifr_mtu;
1776		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1777		xn_ifinit(sc);
1778		break;
1779	case SIOCSIFFLAGS:
1780		XN_LOCK(sc);
1781		if (ifp->if_flags & IFF_UP) {
1782			/*
1783			 * If only the state of the PROMISC flag changed,
1784			 * then just use the 'set promisc mode' command
1785			 * instead of reinitializing the entire NIC. Doing
1786			 * a full re-init means reloading the firmware and
1787			 * waiting for it to start up, which may take a
1788			 * second or two.
1789			 */
1790			xn_ifinit_locked(sc);
1791		} else {
1792			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1793				xn_stop(sc);
1794			}
1795		}
1796		sc->xn_if_flags = ifp->if_flags;
1797		XN_UNLOCK(sc);
1798		break;
1799	case SIOCSIFCAP:
1800		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1801		reinit = 0;
1802
1803		if (mask & IFCAP_TXCSUM) {
1804			ifp->if_capenable ^= IFCAP_TXCSUM;
1805			ifp->if_hwassist ^= XN_CSUM_FEATURES;
1806		}
1807		if (mask & IFCAP_TSO4) {
1808			ifp->if_capenable ^= IFCAP_TSO4;
1809			ifp->if_hwassist ^= CSUM_TSO;
1810		}
1811
1812		if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) {
1813			/* These Rx features require us to renegotiate. */
1814			reinit = 1;
1815
1816			if (mask & IFCAP_RXCSUM)
1817				ifp->if_capenable ^= IFCAP_RXCSUM;
1818			if (mask & IFCAP_LRO)
1819				ifp->if_capenable ^= IFCAP_LRO;
1820		}
1821
1822		if (reinit == 0)
1823			break;
1824
1825		/*
1826		 * We must reset the interface so the backend picks up the
1827		 * new features.
1828		 */
1829		device_printf(sc->xbdev,
1830		    "performing interface reset due to feature change\n");
1831		XN_LOCK(sc);
1832		netfront_carrier_off(sc);
1833		sc->xn_reset = true;
1834		/*
1835		 * NB: the pending packet queue is not flushed, since
1836		 * the interface should still support the old options.
1837		 */
1838		XN_UNLOCK(sc);
1839		/*
1840		 * Delete the xenstore nodes that export features.
1841		 *
1842		 * NB: There's a xenbus state called
1843		 * "XenbusStateReconfiguring", which is what we should set
1844		 * here. Sadly none of the backends know how to handle it,
1845		 * and simply disconnect from the frontend, so we will just
1846		 * switch back to XenbusStateInitialising in order to force
1847		 * a reconnection.
1848		 */
1849		xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4");
1850		xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload");
1851		xenbus_set_state(dev, XenbusStateClosing);
1852
1853		/*
1854		 * Wait for the frontend to reconnect before returning
1855		 * from the ioctl. 30s should be more than enough for any
1856		 * sane backend to reconnect.
1857		 */
1858		error = tsleep(sc, 0, "xn_rst", 30*hz);
1859		break;
1860	case SIOCADDMULTI:
1861	case SIOCDELMULTI:
1862		break;
1863	case SIOCSIFMEDIA:
1864	case SIOCGIFMEDIA:
1865		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1866		break;
1867	default:
1868		error = ether_ioctl(ifp, cmd, data);
1869	}
1870
1871	return (error);
1872}
1873
1874static void
1875xn_stop(struct netfront_info *sc)
1876{
1877	struct ifnet *ifp;
1878
1879	XN_LOCK_ASSERT(sc);
1880
1881	ifp = sc->xn_ifp;
1882
1883	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1884	if_link_state_change(ifp, LINK_STATE_DOWN);
1885}
1886
1887static void
1888xn_rebuild_rx_bufs(struct netfront_rxq *rxq)
1889{
1890	int requeue_idx, i;
1891	grant_ref_t ref;
1892	netif_rx_request_t *req;
1893
1894	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1895		struct mbuf *m;
1896		u_long pfn;
1897
1898		if (rxq->mbufs[i] == NULL)
1899			continue;
1900
1901		m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i);
1902		ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i);
1903
1904		req = RING_GET_REQUEST(&rxq->ring, requeue_idx);
1905		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1906
1907		gnttab_grant_foreign_access_ref(ref,
1908		    xenbus_get_otherend_id(rxq->info->xbdev),
1909		    pfn, 0);
1910
1911		req->gref = ref;
1912		req->id   = requeue_idx;
1913
1914		requeue_idx++;
1915	}
1916
1917	rxq->ring.req_prod_pvt = requeue_idx;
1918}
1919
1920/* START of Xenolinux helper functions adapted to FreeBSD */
1921static int
1922xn_connect(struct netfront_info *np)
1923{
1924	int i, error;
1925	u_int feature_rx_copy;
1926	struct netfront_rxq *rxq;
1927	struct netfront_txq *txq;
1928
1929	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1930	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1931	if (error != 0)
1932		feature_rx_copy = 0;
1933
1934	/* We only support rx copy. */
1935	if (!feature_rx_copy)
1936		return (EPROTONOSUPPORT);
1937
1938	/* Recovery procedure: */
1939	error = talk_to_backend(np->xbdev, np);
1940	if (error != 0)
1941		return (error);
1942
1943	/* Step 1: Reinitialise variables. */
1944	xn_query_features(np);
1945	xn_configure_features(np);
1946
1947	/* Step 2: Release TX buffer */
1948	for (i = 0; i < np->num_queues; i++) {
1949		txq = &np->txq[i];
1950		xn_release_tx_bufs(txq);
1951	}
1952
1953	/* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */
1954	for (i = 0; i < np->num_queues; i++) {
1955		rxq = &np->rxq[i];
1956		xn_rebuild_rx_bufs(rxq);
1957	}
1958
1959	/* Step 4: All public and private state should now be sane.  Get
1960	 * ready to start sending and receiving packets and give the driver
1961	 * domain a kick because we've probably just requeued some
1962	 * packets.
1963	 */
1964	netfront_carrier_on(np);
1965	wakeup(np);
1966
1967	return (0);
1968}
1969
1970static void
1971xn_kick_rings(struct netfront_info *np)
1972{
1973	struct netfront_rxq *rxq;
1974	struct netfront_txq *txq;
1975	int i;
1976
1977	for (i = 0; i < np->num_queues; i++) {
1978		txq = &np->txq[i];
1979		rxq = &np->rxq[i];
1980		xen_intr_signal(txq->xen_intr_handle);
1981		XN_TX_LOCK(txq);
1982		xn_txeof(txq);
1983		XN_TX_UNLOCK(txq);
1984		XN_RX_LOCK(rxq);
1985		xn_alloc_rx_buffers(rxq);
1986		XN_RX_UNLOCK(rxq);
1987	}
1988}
1989
1990static void
1991xn_query_features(struct netfront_info *np)
1992{
1993	int val;
1994
1995	device_printf(np->xbdev, "backend features:");
1996
1997	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1998		"feature-sg", NULL, "%d", &val) != 0)
1999		val = 0;
2000
2001	np->maxfrags = 1;
2002	if (val) {
2003		np->maxfrags = MAX_TX_REQ_FRAGS;
2004		printf(" feature-sg");
2005	}
2006
2007	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2008		"feature-gso-tcpv4", NULL, "%d", &val) != 0)
2009		val = 0;
2010
2011	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2012	if (val) {
2013		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2014		printf(" feature-gso-tcp4");
2015	}
2016
2017	/*
2018	 * HW CSUM offload is assumed to be available unless
2019	 * feature-no-csum-offload is set in xenstore.
2020	 */
2021	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2022		"feature-no-csum-offload", NULL, "%d", &val) != 0)
2023		val = 0;
2024
2025	np->xn_ifp->if_capabilities |= IFCAP_HWCSUM;
2026	if (val) {
2027		np->xn_ifp->if_capabilities &= ~(IFCAP_HWCSUM);
2028		printf(" feature-no-csum-offload");
2029	}
2030
2031	printf("\n");
2032}
2033
2034static int
2035xn_configure_features(struct netfront_info *np)
2036{
2037	int err, cap_enabled;
2038#if (defined(INET) || defined(INET6))
2039	int i;
2040#endif
2041	struct ifnet *ifp;
2042
2043	ifp = np->xn_ifp;
2044	err = 0;
2045
2046	if ((ifp->if_capenable & ifp->if_capabilities) == ifp->if_capenable) {
2047		/* Current options are available, no need to do anything. */
2048		return (0);
2049	}
2050
2051	/* Try to preserve as many options as possible. */
2052	cap_enabled = ifp->if_capenable;
2053	ifp->if_capenable = ifp->if_hwassist = 0;
2054
2055#if (defined(INET) || defined(INET6))
2056	if ((cap_enabled & IFCAP_LRO) != 0)
2057		for (i = 0; i < np->num_queues; i++)
2058			tcp_lro_free(&np->rxq[i].lro);
2059	if (xn_enable_lro &&
2060	    (ifp->if_capabilities & cap_enabled & IFCAP_LRO) != 0) {
2061	    	ifp->if_capenable |= IFCAP_LRO;
2062		for (i = 0; i < np->num_queues; i++) {
2063			err = tcp_lro_init(&np->rxq[i].lro);
2064			if (err != 0) {
2065				device_printf(np->xbdev,
2066				    "LRO initialization failed\n");
2067				ifp->if_capenable &= ~IFCAP_LRO;
2068				break;
2069			}
2070			np->rxq[i].lro.ifp = ifp;
2071		}
2072	}
2073	if ((ifp->if_capabilities & cap_enabled & IFCAP_TSO4) != 0) {
2074		ifp->if_capenable |= IFCAP_TSO4;
2075		ifp->if_hwassist |= CSUM_TSO;
2076	}
2077#endif
2078	if ((ifp->if_capabilities & cap_enabled & IFCAP_TXCSUM) != 0) {
2079		ifp->if_capenable |= IFCAP_TXCSUM;
2080		ifp->if_hwassist |= XN_CSUM_FEATURES;
2081	}
2082	if ((ifp->if_capabilities & cap_enabled & IFCAP_RXCSUM) != 0)
2083		ifp->if_capenable |= IFCAP_RXCSUM;
2084
2085	return (err);
2086}
2087
2088static int
2089xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m)
2090{
2091	struct netfront_info *np;
2092	struct ifnet *ifp;
2093	struct buf_ring *br;
2094	int error, notify;
2095
2096	np = txq->info;
2097	br = txq->br;
2098	ifp = np->xn_ifp;
2099	error = 0;
2100
2101	XN_TX_LOCK_ASSERT(txq);
2102
2103	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2104	    !netfront_carrier_ok(np)) {
2105		if (m != NULL)
2106			error = drbr_enqueue(ifp, br, m);
2107		return (error);
2108	}
2109
2110	if (m != NULL) {
2111		error = drbr_enqueue(ifp, br, m);
2112		if (error != 0)
2113			return (error);
2114	}
2115
2116	while ((m = drbr_peek(ifp, br)) != NULL) {
2117		if (!xn_tx_slot_available(txq)) {
2118			drbr_putback(ifp, br, m);
2119			break;
2120		}
2121
2122		error = xn_assemble_tx_request(txq, m);
2123		/* xn_assemble_tx_request always consumes the mbuf*/
2124		if (error != 0) {
2125			drbr_advance(ifp, br);
2126			break;
2127		}
2128
2129		RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify);
2130		if (notify)
2131			xen_intr_signal(txq->xen_intr_handle);
2132
2133		drbr_advance(ifp, br);
2134	}
2135
2136	if (RING_FULL(&txq->ring))
2137		txq->full = true;
2138
2139	return (0);
2140}
2141
2142static int
2143xn_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
2144{
2145	struct netfront_info *np;
2146	struct netfront_txq *txq;
2147	int i, npairs, error;
2148
2149	np = ifp->if_softc;
2150	npairs = np->num_queues;
2151
2152	if (!netfront_carrier_ok(np))
2153		return (ENOBUFS);
2154
2155	KASSERT(npairs != 0, ("called with 0 available queues"));
2156
2157	/* check if flowid is set */
2158	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2159		i = m->m_pkthdr.flowid % npairs;
2160	else
2161		i = curcpu % npairs;
2162
2163	txq = &np->txq[i];
2164
2165	if (XN_TX_TRYLOCK(txq) != 0) {
2166		error = xn_txq_mq_start_locked(txq, m);
2167		XN_TX_UNLOCK(txq);
2168	} else {
2169		error = drbr_enqueue(ifp, txq->br, m);
2170		taskqueue_enqueue(txq->tq, &txq->defrtask);
2171	}
2172
2173	return (error);
2174}
2175
2176static void
2177xn_qflush(struct ifnet *ifp)
2178{
2179	struct netfront_info *np;
2180	struct netfront_txq *txq;
2181	struct mbuf *m;
2182	int i;
2183
2184	np = ifp->if_softc;
2185
2186	for (i = 0; i < np->num_queues; i++) {
2187		txq = &np->txq[i];
2188
2189		XN_TX_LOCK(txq);
2190		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
2191			m_freem(m);
2192		XN_TX_UNLOCK(txq);
2193	}
2194
2195	if_qflush(ifp);
2196}
2197
2198/**
2199 * Create a network device.
2200 * @param dev  Newbus device representing this virtual NIC.
2201 */
2202int
2203create_netdev(device_t dev)
2204{
2205	struct netfront_info *np;
2206	int err;
2207	struct ifnet *ifp;
2208
2209	np = device_get_softc(dev);
2210
2211	np->xbdev         = dev;
2212
2213	mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF);
2214
2215	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2216	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2217	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2218
2219	err = xen_net_read_mac(dev, np->mac);
2220	if (err != 0)
2221		goto error;
2222
2223	/* Set up ifnet structure */
2224	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2225    	ifp->if_softc = np;
2226    	if_initname(ifp, "xn",  device_get_unit(dev));
2227    	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2228    	ifp->if_ioctl = xn_ioctl;
2229
2230	ifp->if_transmit = xn_txq_mq_start;
2231	ifp->if_qflush = xn_qflush;
2232
2233    	ifp->if_init = xn_ifinit;
2234
2235    	ifp->if_hwassist = XN_CSUM_FEATURES;
2236	/* Enable all supported features at device creation. */
2237	ifp->if_capenable = ifp->if_capabilities =
2238	    IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO;
2239	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2240	ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS;
2241	ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
2242
2243    	ether_ifattach(ifp, np->mac);
2244	netfront_carrier_off(np);
2245
2246	return (0);
2247
2248error:
2249	KASSERT(err != 0, ("Error path with no error code specified"));
2250	return (err);
2251}
2252
2253static int
2254netfront_detach(device_t dev)
2255{
2256	struct netfront_info *info = device_get_softc(dev);
2257
2258	DPRINTK("%s\n", xenbus_get_node(dev));
2259
2260	netif_free(info);
2261
2262	return 0;
2263}
2264
2265static void
2266netif_free(struct netfront_info *np)
2267{
2268
2269	XN_LOCK(np);
2270	xn_stop(np);
2271	XN_UNLOCK(np);
2272	netif_disconnect_backend(np);
2273	ether_ifdetach(np->xn_ifp);
2274	free(np->rxq, M_DEVBUF);
2275	free(np->txq, M_DEVBUF);
2276	if_free(np->xn_ifp);
2277	np->xn_ifp = NULL;
2278	ifmedia_removeall(&np->sc_media);
2279}
2280
2281static void
2282netif_disconnect_backend(struct netfront_info *np)
2283{
2284	u_int i;
2285
2286	for (i = 0; i < np->num_queues; i++) {
2287		XN_RX_LOCK(&np->rxq[i]);
2288		XN_TX_LOCK(&np->txq[i]);
2289	}
2290	netfront_carrier_off(np);
2291	for (i = 0; i < np->num_queues; i++) {
2292		XN_RX_UNLOCK(&np->rxq[i]);
2293		XN_TX_UNLOCK(&np->txq[i]);
2294	}
2295
2296	for (i = 0; i < np->num_queues; i++) {
2297		disconnect_rxq(&np->rxq[i]);
2298		disconnect_txq(&np->txq[i]);
2299	}
2300}
2301
2302static int
2303xn_ifmedia_upd(struct ifnet *ifp)
2304{
2305
2306	return (0);
2307}
2308
2309static void
2310xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2311{
2312
2313	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2314	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2315}
2316
2317/* ** Driver registration ** */
2318static device_method_t netfront_methods[] = {
2319	/* Device interface */
2320	DEVMETHOD(device_probe,         netfront_probe),
2321	DEVMETHOD(device_attach,        netfront_attach),
2322	DEVMETHOD(device_detach,        netfront_detach),
2323	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2324	DEVMETHOD(device_suspend,       netfront_suspend),
2325	DEVMETHOD(device_resume,        netfront_resume),
2326
2327	/* Xenbus interface */
2328	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2329
2330	DEVMETHOD_END
2331};
2332
2333static driver_t netfront_driver = {
2334	"xn",
2335	netfront_methods,
2336	sizeof(struct netfront_info),
2337};
2338devclass_t netfront_devclass;
2339
2340DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL,
2341    NULL);
2342