netback.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2009-2011 Spectra Logic Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 *    substantially similar to the "NO WARRANTY" disclaimer below
15 *    ("Disclaimer") and any redistribution must be conditioned upon
16 *    including a substantially similar Disclaimer requirement for further
17 *    binary redistribution.
18 *
19 * NO WARRANTY
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGES.
31 *
32 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33 *          Alan Somers         (Spectra Logic Corporation)
34 *          John Suykerbuyk     (Spectra Logic Corporation)
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/dev/xen/netback/netback.c 330897 2018-03-14 03:19:51Z eadler $");
39
40/**
41 * \file netback.c
42 *
43 * \brief Device driver supporting the vending of network access
44 * 	  from this FreeBSD domain to other domains.
45 */
46#include "opt_inet.h"
47#include "opt_inet6.h"
48
49#include "opt_sctp.h"
50
51#include <sys/param.h>
52#include <sys/kernel.h>
53
54#include <sys/bus.h>
55#include <sys/module.h>
56#include <sys/rman.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/sysctl.h>
60
61#include <net/if.h>
62#include <net/if_var.h>
63#include <net/if_arp.h>
64#include <net/ethernet.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68
69#include <netinet/in.h>
70#include <netinet/ip.h>
71#include <netinet/if_ether.h>
72#if __FreeBSD_version >= 700000
73#include <netinet/tcp.h>
74#endif
75#include <netinet/ip_icmp.h>
76#include <netinet/udp.h>
77#include <machine/in_cksum.h>
78
79#include <vm/vm.h>
80#include <vm/pmap.h>
81#include <vm/vm_extern.h>
82#include <vm/vm_kern.h>
83
84#include <machine/_inttypes.h>
85
86#include <xen/xen-os.h>
87#include <xen/hypervisor.h>
88#include <xen/xen_intr.h>
89#include <xen/interface/io/netif.h>
90#include <xen/xenbus/xenbusvar.h>
91
92/*--------------------------- Compile-time Tunables --------------------------*/
93
94/*---------------------------------- Macros ----------------------------------*/
95/**
96 * Custom malloc type for all driver allocations.
97 */
98static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
99
100#define	XNB_SG	1	/* netback driver supports feature-sg */
101#define	XNB_GSO_TCPV4 0	/* netback driver supports feature-gso-tcpv4 */
102#define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
103#define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
104
105#undef XNB_DEBUG
106#define	XNB_DEBUG /* hardcode on during development */
107
108#ifdef XNB_DEBUG
109#define	DPRINTF(fmt, args...) \
110	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
111#else
112#define	DPRINTF(fmt, args...) do {} while (0)
113#endif
114
115/* Default length for stack-allocated grant tables */
116#define	GNTTAB_LEN	(64)
117
118/* Features supported by all backends.  TSO and LRO can be negotiated */
119#define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
120
121#define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
122#define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
123
124/**
125 * Two argument version of the standard macro.  Second argument is a tentative
126 * value of req_cons
127 */
128#define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
129	unsigned int req = (_r)->sring->req_prod - cons;          	\
130	unsigned int rsp = RING_SIZE(_r) -                              \
131	(cons - (_r)->rsp_prod_pvt);                          		\
132	req < rsp ? req : rsp;                                          \
133})
134
135#define	virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
136#define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
137
138/**
139 * Predefined array type of grant table copy descriptors.  Used to pass around
140 * statically allocated memory structures.
141 */
142typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
143
144/*--------------------------- Forward Declarations ---------------------------*/
145struct xnb_softc;
146struct xnb_pkt;
147
148static void	xnb_attach_failed(struct xnb_softc *xnb,
149				  int err, const char *fmt, ...)
150				  __printflike(3,4);
151static int	xnb_shutdown(struct xnb_softc *xnb);
152static int	create_netdev(device_t dev);
153static int	xnb_detach(device_t dev);
154static int	xnb_ifmedia_upd(struct ifnet *ifp);
155static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
156static void 	xnb_intr(void *arg);
157static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
158			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
159static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
160			 struct mbuf **mbufc, struct ifnet *ifnet,
161			 gnttab_copy_table gnttab);
162static int	xnb_ring2pkt(struct xnb_pkt *pkt,
163			     const netif_tx_back_ring_t *tx_ring,
164			     RING_IDX start);
165static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
166			      netif_tx_back_ring_t *ring, int error);
167static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
168static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
169				 struct mbuf *mbufc,
170				 gnttab_copy_table gnttab,
171				 const netif_tx_back_ring_t *txb,
172				 domid_t otherend_id);
173static void	xnb_update_mbufc(struct mbuf *mbufc,
174				 const gnttab_copy_table gnttab, int n_entries);
175static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
176			      struct xnb_pkt *pkt,
177			      RING_IDX start, int space);
178static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
179				 const struct mbuf *mbufc,
180				 gnttab_copy_table gnttab,
181				 const netif_rx_back_ring_t *rxb,
182				 domid_t otherend_id);
183static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
184			      const gnttab_copy_table gnttab, int n_entries,
185			      netif_rx_back_ring_t *ring);
186static void	xnb_stop(struct xnb_softc*);
187static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
188static void	xnb_start_locked(struct ifnet*);
189static void	xnb_start(struct ifnet*);
190static void	xnb_ifinit_locked(struct xnb_softc*);
191static void	xnb_ifinit(void*);
192#ifdef XNB_DEBUG
193static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
194static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
195#endif
196#if defined(INET) || defined(INET6)
197static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
198#endif
199/*------------------------------ Data Structures -----------------------------*/
200
201
202/**
203 * Representation of a xennet packet.  Simplified version of a packet as
204 * stored in the Xen tx ring.  Applicable to both RX and TX packets
205 */
206struct xnb_pkt{
207	/**
208	 * Array index of the first data-bearing (eg, not extra info) entry
209	 * for this packet
210	 */
211	RING_IDX	car;
212
213	/**
214	 * Array index of the second data-bearing entry for this packet.
215	 * Invalid if the packet has only one data-bearing entry.  If the
216	 * packet has more than two data-bearing entries, then the second
217	 * through the last will be sequential modulo the ring size
218	 */
219	RING_IDX	cdr;
220
221	/**
222	 * Optional extra info.  Only valid if flags contains
223	 * NETTXF_extra_info.  Note that extra.type will always be
224	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
225	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
226	 */
227	netif_extra_info_t extra;
228
229	/** Size of entire packet in bytes.       */
230	uint16_t	size;
231
232	/** The size of the first entry's data in bytes */
233	uint16_t	car_size;
234
235	/**
236	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
237	 * not the same for TX and RX packets
238	 */
239	uint16_t	flags;
240
241	/**
242	 * The number of valid data-bearing entries (either netif_tx_request's
243	 * or netif_rx_response's) in the packet.  If this is 0, it means the
244	 * entire packet is invalid.
245	 */
246	uint16_t	list_len;
247
248	/** There was an error processing the packet */
249	uint8_t		error;
250};
251
252/** xnb_pkt method: initialize it */
253static inline void
254xnb_pkt_initialize(struct xnb_pkt *pxnb)
255{
256	bzero(pxnb, sizeof(*pxnb));
257}
258
259/** xnb_pkt method: mark the packet as valid */
260static inline void
261xnb_pkt_validate(struct xnb_pkt *pxnb)
262{
263	pxnb->error = 0;
264};
265
266/** xnb_pkt method: mark the packet as invalid */
267static inline void
268xnb_pkt_invalidate(struct xnb_pkt *pxnb)
269{
270	pxnb->error = 1;
271};
272
273/** xnb_pkt method: Check whether the packet is valid */
274static inline int
275xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
276{
277	return (! pxnb->error);
278}
279
280#ifdef XNB_DEBUG
281/** xnb_pkt method: print the packet's contents in human-readable format*/
282static void __unused
283xnb_dump_pkt(const struct xnb_pkt *pkt) {
284	if (pkt == NULL) {
285	  DPRINTF("Was passed a null pointer.\n");
286	  return;
287	}
288	DPRINTF("pkt address= %p\n", pkt);
289	DPRINTF("pkt->size=%d\n", pkt->size);
290	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
291	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
292	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
293	/* DPRINTF("pkt->extra");	TODO */
294	DPRINTF("pkt->car=%d\n", pkt->car);
295	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
296	DPRINTF("pkt->error=%d\n", pkt->error);
297}
298#endif /* XNB_DEBUG */
299
300static void
301xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
302{
303	if (txreq != NULL) {
304		DPRINTF("netif_tx_request index =%u\n", idx);
305		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
306		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
307		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
308		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
309		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
310	}
311}
312
313
314/**
315 * \brief Configuration data for a shared memory request ring
316 *        used to communicate with the front-end client of this
317 *        this driver.
318 */
319struct xnb_ring_config {
320	/**
321	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
322	 * use different data structures, and that cannot be changed since it
323	 * is part of the interdomain protocol.
324	 */
325	union{
326		netif_rx_back_ring_t	  rx_ring;
327		netif_tx_back_ring_t	  tx_ring;
328	} back_ring;
329
330	/**
331	 * The device bus address returned by the hypervisor when
332	 * mapping the ring and required to unmap it when a connection
333	 * is torn down.
334	 */
335	uint64_t	bus_addr;
336
337	/** The pseudo-physical address where ring memory is mapped.*/
338	uint64_t	gnt_addr;
339
340	/** KVA address where ring memory is mapped. */
341	vm_offset_t	va;
342
343	/**
344	 * Grant table handles, one per-ring page, returned by the
345	 * hyperpervisor upon mapping of the ring and required to
346	 * unmap it when a connection is torn down.
347	 */
348	grant_handle_t	handle;
349
350	/** The number of ring pages mapped for the current connection. */
351	unsigned	ring_pages;
352
353	/**
354	 * The grant references, one per-ring page, supplied by the
355	 * front-end, allowing us to reference the ring pages in the
356	 * front-end's domain and to map these pages into our own domain.
357	 */
358	grant_ref_t	ring_ref;
359};
360
361/**
362 * Per-instance connection state flags.
363 */
364typedef enum
365{
366	/** Communication with the front-end has been established. */
367	XNBF_RING_CONNECTED    = 0x01,
368
369	/**
370	 * Front-end requests exist in the ring and are waiting for
371	 * xnb_xen_req objects to free up.
372	 */
373	XNBF_RESOURCE_SHORTAGE = 0x02,
374
375	/** Connection teardown has started. */
376	XNBF_SHUTDOWN          = 0x04,
377
378	/** A thread is already performing shutdown processing. */
379	XNBF_IN_SHUTDOWN       = 0x08
380} xnb_flag_t;
381
382/**
383 * Types of rings.  Used for array indices and to identify a ring's control
384 * data structure type
385 */
386typedef enum{
387	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
388	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
389	XNB_NUM_RING_TYPES
390} xnb_ring_type_t;
391
392/**
393 * Per-instance configuration data.
394 */
395struct xnb_softc {
396	/** NewBus device corresponding to this instance. */
397	device_t		dev;
398
399	/* Media related fields */
400
401	/** Generic network media state */
402	struct ifmedia		sc_media;
403
404	/** Media carrier info */
405	struct ifnet 		*xnb_ifp;
406
407	/** Our own private carrier state */
408	unsigned carrier;
409
410	/** Device MAC Address */
411	uint8_t			mac[ETHER_ADDR_LEN];
412
413	/* Xen related fields */
414
415	/**
416	 * \brief The netif protocol abi in effect.
417	 *
418	 * There are situations where the back and front ends can
419	 * have a different, native abi (e.g. intel x86_64 and
420	 * 32bit x86 domains on the same machine).  The back-end
421	 * always accommodates the front-end's native abi.  That
422	 * value is pulled from the XenStore and recorded here.
423	 */
424	int			abi;
425
426	/**
427	 * Name of the bridge to which this VIF is connected, if any
428	 * This field is dynamically allocated by xenbus and must be free()ed
429	 * when no longer needed
430	 */
431	char			*bridge;
432
433	/** The interrupt driven even channel used to signal ring events. */
434	evtchn_port_t		evtchn;
435
436	/** Xen device handle.*/
437	long 			handle;
438
439	/** Handle to the communication ring event channel. */
440	xen_intr_handle_t	xen_intr_handle;
441
442	/**
443	 * \brief Cached value of the front-end's domain id.
444	 *
445	 * This value is used at once for each mapped page in
446	 * a transaction.  We cache it to avoid incuring the
447	 * cost of an ivar access every time this is needed.
448	 */
449	domid_t			otherend_id;
450
451	/**
452	 * Undocumented frontend feature.  Has something to do with
453	 * scatter/gather IO
454	 */
455	uint8_t			can_sg;
456	/** Undocumented frontend feature */
457	uint8_t			gso;
458	/** Undocumented frontend feature */
459	uint8_t			gso_prefix;
460	/** Can checksum TCP/UDP over IPv4 */
461	uint8_t			ip_csum;
462
463	/* Implementation related fields */
464	/**
465	 * Preallocated grant table copy descriptor for RX operations.
466	 * Access must be protected by rx_lock
467	 */
468	gnttab_copy_table	rx_gnttab;
469
470	/**
471	 * Preallocated grant table copy descriptor for TX operations.
472	 * Access must be protected by tx_lock
473	 */
474	gnttab_copy_table	tx_gnttab;
475
476	/**
477	 * Resource representing allocated physical address space
478	 * associated with our per-instance kva region.
479	 */
480	struct resource		*pseudo_phys_res;
481
482	/** Resource id for allocated physical address space. */
483	int			pseudo_phys_res_id;
484
485	/** Ring mapping and interrupt configuration data. */
486	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
487
488	/**
489	 * Global pool of kva used for mapping remote domain ring
490	 * and I/O transaction data.
491	 */
492	vm_offset_t		kva;
493
494	/** Psuedo-physical address corresponding to kva. */
495	uint64_t		gnt_base_addr;
496
497	/** Various configuration and state bit flags. */
498	xnb_flag_t		flags;
499
500	/** Mutex protecting per-instance data in the receive path. */
501	struct mtx		rx_lock;
502
503	/** Mutex protecting per-instance data in the softc structure. */
504	struct mtx		sc_lock;
505
506	/** Mutex protecting per-instance data in the transmit path. */
507	struct mtx		tx_lock;
508
509	/** The size of the global kva pool. */
510	int			kva_size;
511
512	/** Name of the interface */
513	char			 if_name[IFNAMSIZ];
514};
515
516/*---------------------------- Debugging functions ---------------------------*/
517#ifdef XNB_DEBUG
518static void __unused
519xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
520{
521	if (entry == NULL) {
522		printf("NULL grant table pointer\n");
523		return;
524	}
525
526	if (entry->flags & GNTCOPY_dest_gref)
527		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
528	else
529		printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
530		       entry->dest.u.gmfn);
531	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
532	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
533	if (entry->flags & GNTCOPY_source_gref)
534		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
535	else
536		printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
537		       entry->source.u.gmfn);
538	printf("gnttab source offset=\t%hu\n", entry->source.offset);
539	printf("gnttab source domid=\t%hu\n", entry->source.domid);
540	printf("gnttab len=\t%hu\n", entry->len);
541	printf("gnttab flags=\t%hu\n", entry->flags);
542	printf("gnttab status=\t%hd\n", entry->status);
543}
544
545static int
546xnb_dump_rings(SYSCTL_HANDLER_ARGS)
547{
548	static char results[720];
549	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
550	netif_rx_back_ring_t const* rxb =
551		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
552	netif_tx_back_ring_t const* txb =
553		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
554
555	/* empty the result strings */
556	results[0] = 0;
557
558	if ( !txb || !txb->sring || !rxb || !rxb->sring )
559		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
560
561	snprintf(results, 720,
562	    "\n\t%35s %18s\n"	/* TX, RX */
563	    "\t%16s %18d %18d\n"	/* req_cons */
564	    "\t%16s %18d %18d\n"	/* nr_ents */
565	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
566	    "\t%16s %18p %18p\n"	/* sring */
567	    "\t%16s %18d %18d\n"	/* req_prod */
568	    "\t%16s %18d %18d\n"	/* req_event */
569	    "\t%16s %18d %18d\n"	/* rsp_prod */
570	    "\t%16s %18d %18d\n",	/* rsp_event */
571	    "TX", "RX",
572	    "req_cons", txb->req_cons, rxb->req_cons,
573	    "nr_ents", txb->nr_ents, rxb->nr_ents,
574	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
575	    "sring", txb->sring, rxb->sring,
576	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
577	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
578	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
579	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
580
581	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
582}
583
584static void __unused
585xnb_dump_mbuf(const struct mbuf *m)
586{
587	int len;
588	uint8_t *d;
589	if (m == NULL)
590		return;
591
592	printf("xnb_dump_mbuf:\n");
593	if (m->m_flags & M_PKTHDR) {
594		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
595		       "tso_segsz=%5hd\n",
596		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
597		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
598		printf("    rcvif=%16p,  len=%19d\n",
599		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
600	}
601	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
602	       m->m_next, m->m_nextpkt, m->m_data);
603	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
604	       m->m_len, m->m_flags, m->m_type);
605
606	len = m->m_len;
607	d = mtod(m, uint8_t*);
608	while (len > 0) {
609		int i;
610		printf("                ");
611		for (i = 0; (i < 16) && (len > 0); i++, len--) {
612			printf("%02hhx ", *(d++));
613		}
614		printf("\n");
615	}
616}
617#endif /* XNB_DEBUG */
618
619/*------------------------ Inter-Domain Communication ------------------------*/
620/**
621 * Free dynamically allocated KVA or pseudo-physical address allocations.
622 *
623 * \param xnb  Per-instance xnb configuration structure.
624 */
625static void
626xnb_free_communication_mem(struct xnb_softc *xnb)
627{
628	if (xnb->kva != 0) {
629		if (xnb->pseudo_phys_res != NULL) {
630			xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
631			    xnb->pseudo_phys_res);
632			xnb->pseudo_phys_res = NULL;
633		}
634	}
635	xnb->kva = 0;
636	xnb->gnt_base_addr = 0;
637}
638
639/**
640 * Cleanup all inter-domain communication mechanisms.
641 *
642 * \param xnb  Per-instance xnb configuration structure.
643 */
644static int
645xnb_disconnect(struct xnb_softc *xnb)
646{
647	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
648	int error;
649	int i;
650
651	if (xnb->xen_intr_handle != NULL)
652		xen_intr_unbind(&xnb->xen_intr_handle);
653
654	/*
655	 * We may still have another thread currently processing requests.  We
656	 * must acquire the rx and tx locks to make sure those threads are done,
657	 * but we can release those locks as soon as we acquire them, because no
658	 * more interrupts will be arriving.
659	 */
660	mtx_lock(&xnb->tx_lock);
661	mtx_unlock(&xnb->tx_lock);
662	mtx_lock(&xnb->rx_lock);
663	mtx_unlock(&xnb->rx_lock);
664
665	/* Free malloc'd softc member variables */
666	if (xnb->bridge != NULL) {
667		free(xnb->bridge, M_XENSTORE);
668		xnb->bridge = NULL;
669	}
670
671	/* All request processing has stopped, so unmap the rings */
672	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
673		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
674		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
675		gnts[i].handle = xnb->ring_configs[i].handle;
676	}
677	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
678					  XNB_NUM_RING_TYPES);
679	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
680
681	xnb_free_communication_mem(xnb);
682	/*
683	 * Zero the ring config structs because the pointers, handles, and
684	 * grant refs contained therein are no longer valid.
685	 */
686	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
687	    sizeof(struct xnb_ring_config));
688	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
689	    sizeof(struct xnb_ring_config));
690
691	xnb->flags &= ~XNBF_RING_CONNECTED;
692	return (0);
693}
694
695/**
696 * Map a single shared memory ring into domain local address space and
697 * initialize its control structure
698 *
699 * \param xnb	Per-instance xnb configuration structure
700 * \param ring_type	Array index of this ring in the xnb's array of rings
701 * \return 	An errno
702 */
703static int
704xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
705{
706	struct gnttab_map_grant_ref gnt;
707	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
708	int error;
709
710	/* TX ring type = 0, RX =1 */
711	ring->va = xnb->kva + ring_type * PAGE_SIZE;
712	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
713
714	gnt.host_addr = ring->gnt_addr;
715	gnt.flags     = GNTMAP_host_map;
716	gnt.ref       = ring->ring_ref;
717	gnt.dom       = xnb->otherend_id;
718
719	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
720	if (error != 0)
721		panic("netback: Ring page grant table op failed (%d)", error);
722
723	if (gnt.status != 0) {
724		ring->va = 0;
725		error = EACCES;
726		xenbus_dev_fatal(xnb->dev, error,
727				 "Ring shared page mapping failed. "
728				 "Status %d.", gnt.status);
729	} else {
730		ring->handle = gnt.handle;
731		ring->bus_addr = gnt.dev_bus_addr;
732
733		if (ring_type == XNB_RING_TYPE_TX) {
734			BACK_RING_INIT(&ring->back_ring.tx_ring,
735			    (netif_tx_sring_t*)ring->va,
736			    ring->ring_pages * PAGE_SIZE);
737		} else if (ring_type == XNB_RING_TYPE_RX) {
738			BACK_RING_INIT(&ring->back_ring.rx_ring,
739			    (netif_rx_sring_t*)ring->va,
740			    ring->ring_pages * PAGE_SIZE);
741		} else {
742			xenbus_dev_fatal(xnb->dev, error,
743				 "Unknown ring type %d", ring_type);
744		}
745	}
746
747	return error;
748}
749
750/**
751 * Setup the shared memory rings and bind an interrupt to the event channel
752 * used to notify us of ring changes.
753 *
754 * \param xnb  Per-instance xnb configuration structure.
755 */
756static int
757xnb_connect_comms(struct xnb_softc *xnb)
758{
759	int	error;
760	xnb_ring_type_t i;
761
762	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
763		return (0);
764
765	/*
766	 * Kva for our rings are at the tail of the region of kva allocated
767	 * by xnb_alloc_communication_mem().
768	 */
769	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
770		error = xnb_connect_ring(xnb, i);
771		if (error != 0)
772	  		return error;
773	}
774
775	xnb->flags |= XNBF_RING_CONNECTED;
776
777	error = xen_intr_bind_remote_port(xnb->dev,
778					  xnb->otherend_id,
779					  xnb->evtchn,
780					  /*filter*/NULL,
781					  xnb_intr, /*arg*/xnb,
782					  INTR_TYPE_BIO | INTR_MPSAFE,
783					  &xnb->xen_intr_handle);
784	if (error != 0) {
785		(void)xnb_disconnect(xnb);
786		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
787		return (error);
788	}
789
790	DPRINTF("rings connected!\n");
791
792	return (0);
793}
794
795/**
796 * Size KVA and pseudo-physical address allocations based on negotiated
797 * values for the size and number of I/O requests, and the size of our
798 * communication ring.
799 *
800 * \param xnb  Per-instance xnb configuration structure.
801 *
802 * These address spaces are used to dynamically map pages in the
803 * front-end's domain into our own.
804 */
805static int
806xnb_alloc_communication_mem(struct xnb_softc *xnb)
807{
808	xnb_ring_type_t i;
809
810	xnb->kva_size = 0;
811	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
812		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
813	}
814
815	/*
816	 * Reserve a range of pseudo physical memory that we can map
817	 * into kva.  These pages will only be backed by machine
818	 * pages ("real memory") during the lifetime of front-end requests
819	 * via grant table operations.  We will map the netif tx and rx rings
820	 * into this space.
821	 */
822	xnb->pseudo_phys_res_id = 0;
823	xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
824	    xnb->kva_size);
825	if (xnb->pseudo_phys_res == NULL) {
826		xnb->kva = 0;
827		return (ENOMEM);
828	}
829	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
830	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
831	return (0);
832}
833
834/**
835 * Collect information from the XenStore related to our device and its frontend
836 *
837 * \param xnb  Per-instance xnb configuration structure.
838 */
839static int
840xnb_collect_xenstore_info(struct xnb_softc *xnb)
841{
842	/**
843	 * \todo Linux collects the following info.  We should collect most
844	 * of this, too:
845	 * "feature-rx-notify"
846	 */
847	const char *otherend_path;
848	const char *our_path;
849	int err;
850	unsigned int rx_copy, bridge_len;
851	uint8_t no_csum_offload;
852
853	otherend_path = xenbus_get_otherend_path(xnb->dev);
854	our_path = xenbus_get_node(xnb->dev);
855
856	/* Collect the critical communication parameters */
857	err = xs_gather(XST_NIL, otherend_path,
858	    "tx-ring-ref", "%l" PRIu32,
859	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
860	    "rx-ring-ref", "%l" PRIu32,
861	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
862	    "event-channel", "%" PRIu32, &xnb->evtchn,
863	    NULL);
864	if (err != 0) {
865		xenbus_dev_fatal(xnb->dev, err,
866				 "Unable to retrieve ring information from "
867				 "frontend %s.  Unable to connect.",
868				 otherend_path);
869		return (err);
870	}
871
872	/* Collect the handle from xenstore */
873	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
874	if (err != 0) {
875		xenbus_dev_fatal(xnb->dev, err,
876		    "Error reading handle from frontend %s.  "
877		    "Unable to connect.", otherend_path);
878	}
879
880	/*
881	 * Collect the bridgename, if any.  We do not need bridge_len; we just
882	 * throw it away
883	 */
884	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
885		      (void**)&xnb->bridge);
886	if (err != 0)
887		xnb->bridge = NULL;
888
889	/*
890	 * Does the frontend request that we use rx copy?  If not, return an
891	 * error because this driver only supports rx copy.
892	 */
893	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
894		       "%" PRIu32, &rx_copy);
895	if (err == ENOENT) {
896		err = 0;
897	 	rx_copy = 0;
898	}
899	if (err < 0) {
900		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
901				 otherend_path);
902		return err;
903	}
904	/**
905	 * \todo: figure out the exact meaning of this feature, and when
906	 * the frontend will set it to true.  It should be set to true
907	 * at some point
908	 */
909/*        if (!rx_copy)*/
910/*          return EOPNOTSUPP;*/
911
912	/** \todo Collect the rx notify feature */
913
914	/*  Collect the feature-sg. */
915	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
916		     "%hhu", &xnb->can_sg) < 0)
917		xnb->can_sg = 0;
918
919	/* Collect remaining frontend features */
920	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
921		     "%hhu", &xnb->gso) < 0)
922		xnb->gso = 0;
923
924	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
925		     "%hhu", &xnb->gso_prefix) < 0)
926		xnb->gso_prefix = 0;
927
928	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
929		     "%hhu", &no_csum_offload) < 0)
930		no_csum_offload = 0;
931	xnb->ip_csum = (no_csum_offload == 0);
932
933	return (0);
934}
935
936/**
937 * Supply information about the physical device to the frontend
938 * via XenBus.
939 *
940 * \param xnb  Per-instance xnb configuration structure.
941 */
942static int
943xnb_publish_backend_info(struct xnb_softc *xnb)
944{
945	struct xs_transaction xst;
946	const char *our_path;
947	int error;
948
949	our_path = xenbus_get_node(xnb->dev);
950
951	do {
952		error = xs_transaction_start(&xst);
953		if (error != 0) {
954			xenbus_dev_fatal(xnb->dev, error,
955					 "Error publishing backend info "
956					 "(start transaction)");
957			break;
958		}
959
960		error = xs_printf(xst, our_path, "feature-sg",
961				  "%d", XNB_SG);
962		if (error != 0)
963			break;
964
965		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
966				  "%d", XNB_GSO_TCPV4);
967		if (error != 0)
968			break;
969
970		error = xs_printf(xst, our_path, "feature-rx-copy",
971				  "%d", XNB_RX_COPY);
972		if (error != 0)
973			break;
974
975		error = xs_printf(xst, our_path, "feature-rx-flip",
976				  "%d", XNB_RX_FLIP);
977		if (error != 0)
978			break;
979
980		error = xs_transaction_end(xst, 0);
981		if (error != 0 && error != EAGAIN) {
982			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
983			break;
984		}
985
986	} while (error == EAGAIN);
987
988	return (error);
989}
990
991/**
992 * Connect to our netfront peer now that it has completed publishing
993 * its configuration into the XenStore.
994 *
995 * \param xnb  Per-instance xnb configuration structure.
996 */
997static void
998xnb_connect(struct xnb_softc *xnb)
999{
1000	int	error;
1001
1002	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1003		return;
1004
1005	if (xnb_collect_xenstore_info(xnb) != 0)
1006		return;
1007
1008	xnb->flags &= ~XNBF_SHUTDOWN;
1009
1010	/* Read front end configuration. */
1011
1012	/* Allocate resources whose size depends on front-end configuration. */
1013	error = xnb_alloc_communication_mem(xnb);
1014	if (error != 0) {
1015		xenbus_dev_fatal(xnb->dev, error,
1016				 "Unable to allocate communication memory");
1017		return;
1018	}
1019
1020	/*
1021	 * Connect communication channel.
1022	 */
1023	error = xnb_connect_comms(xnb);
1024	if (error != 0) {
1025		/* Specific errors are reported by xnb_connect_comms(). */
1026		return;
1027	}
1028	xnb->carrier = 1;
1029
1030	/* Ready for I/O. */
1031	xenbus_set_state(xnb->dev, XenbusStateConnected);
1032}
1033
1034/*-------------------------- Device Teardown Support -------------------------*/
1035/**
1036 * Perform device shutdown functions.
1037 *
1038 * \param xnb  Per-instance xnb configuration structure.
1039 *
1040 * Mark this instance as shutting down, wait for any active requests
1041 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1042 * a thread invoking our detach method) that detach can now proceed.
1043 */
1044static int
1045xnb_shutdown(struct xnb_softc *xnb)
1046{
1047	/*
1048	 * Due to the need to drop our mutex during some
1049	 * xenbus operations, it is possible for two threads
1050	 * to attempt to close out shutdown processing at
1051	 * the same time.  Tell the caller that hits this
1052	 * race to try back later.
1053	 */
1054	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1055		return (EAGAIN);
1056
1057	xnb->flags |= XNBF_SHUTDOWN;
1058
1059	xnb->flags |= XNBF_IN_SHUTDOWN;
1060
1061	mtx_unlock(&xnb->sc_lock);
1062	/* Free the network interface */
1063	xnb->carrier = 0;
1064	if (xnb->xnb_ifp != NULL) {
1065		ether_ifdetach(xnb->xnb_ifp);
1066		if_free(xnb->xnb_ifp);
1067		xnb->xnb_ifp = NULL;
1068	}
1069	mtx_lock(&xnb->sc_lock);
1070
1071	xnb_disconnect(xnb);
1072
1073	mtx_unlock(&xnb->sc_lock);
1074	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1075		xenbus_set_state(xnb->dev, XenbusStateClosing);
1076	mtx_lock(&xnb->sc_lock);
1077
1078	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1079
1080
1081	/* Indicate to xnb_detach() that is it safe to proceed. */
1082	wakeup(xnb);
1083
1084	return (0);
1085}
1086
1087/**
1088 * Report an attach time error to the console and Xen, and cleanup
1089 * this instance by forcing immediate detach processing.
1090 *
1091 * \param xnb  Per-instance xnb configuration structure.
1092 * \param err  Errno describing the error.
1093 * \param fmt  Printf style format and arguments
1094 */
1095static void
1096xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1097{
1098	va_list ap;
1099	va_list ap_hotplug;
1100
1101	va_start(ap, fmt);
1102	va_copy(ap_hotplug, ap);
1103	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1104		  "hotplug-error", fmt, ap_hotplug);
1105	va_end(ap_hotplug);
1106	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1107		  "hotplug-status", "error");
1108
1109	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1110	va_end(ap);
1111
1112	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1113	xnb_detach(xnb->dev);
1114}
1115
1116/*---------------------------- NewBus Entrypoints ----------------------------*/
1117/**
1118 * Inspect a XenBus device and claim it if is of the appropriate type.
1119 *
1120 * \param dev  NewBus device object representing a candidate XenBus device.
1121 *
1122 * \return  0 for success, errno codes for failure.
1123 */
1124static int
1125xnb_probe(device_t dev)
1126{
1127	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1128		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1129		    devclass_get_name(device_get_devclass(dev)));
1130		device_set_desc(dev, "Backend Virtual Network Device");
1131		device_quiet(dev);
1132		return (0);
1133	}
1134	return (ENXIO);
1135}
1136
1137/**
1138 * Setup sysctl variables to control various Network Back parameters.
1139 *
1140 * \param xnb  Xen Net Back softc.
1141 *
1142 */
1143static void
1144xnb_setup_sysctl(struct xnb_softc *xnb)
1145{
1146	struct sysctl_ctx_list *sysctl_ctx = NULL;
1147	struct sysctl_oid      *sysctl_tree = NULL;
1148
1149	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1150	if (sysctl_ctx == NULL)
1151		return;
1152
1153	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1154	if (sysctl_tree == NULL)
1155		return;
1156
1157#ifdef XNB_DEBUG
1158	SYSCTL_ADD_PROC(sysctl_ctx,
1159			SYSCTL_CHILDREN(sysctl_tree),
1160			OID_AUTO,
1161			"unit_test_results",
1162			CTLTYPE_STRING | CTLFLAG_RD,
1163			xnb,
1164			0,
1165			xnb_unit_test_main,
1166			"A",
1167			"Results of builtin unit tests");
1168
1169	SYSCTL_ADD_PROC(sysctl_ctx,
1170			SYSCTL_CHILDREN(sysctl_tree),
1171			OID_AUTO,
1172			"dump_rings",
1173			CTLTYPE_STRING | CTLFLAG_RD,
1174			xnb,
1175			0,
1176			xnb_dump_rings,
1177			"A",
1178			"Xennet Back Rings");
1179#endif /* XNB_DEBUG */
1180}
1181
1182/**
1183 * Create a network device.
1184 * @param handle device handle
1185 */
1186int
1187create_netdev(device_t dev)
1188{
1189	struct ifnet *ifp;
1190	struct xnb_softc *xnb;
1191	int err = 0;
1192	uint32_t handle;
1193
1194	xnb = device_get_softc(dev);
1195	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1196	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1197	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1198
1199	xnb->dev = dev;
1200
1201	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1202	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1203	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1204
1205	/*
1206	 * Set the MAC address to a dummy value (00:00:00:00:00),
1207	 * if the MAC address of the host-facing interface is set
1208	 * to the same as the guest-facing one (the value found in
1209	 * xenstore), the bridge would stop delivering packets to
1210	 * us because it would see that the destination address of
1211	 * the packet is the same as the interface, and so the bridge
1212	 * would expect the packet has already been delivered locally
1213	 * (and just drop it).
1214	 */
1215	bzero(&xnb->mac[0], sizeof(xnb->mac));
1216
1217	/* The interface will be named using the following nomenclature:
1218	 *
1219	 * xnb<domid>.<handle>
1220	 *
1221	 * Where handle is the oder of the interface referred to the guest.
1222	 */
1223	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1224		       "%" PRIu32, &handle);
1225	if (err != 0)
1226		return (err);
1227	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1228	    xenbus_get_otherend_id(dev), handle);
1229
1230	if (err == 0) {
1231		/* Set up ifnet structure */
1232		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1233		ifp->if_softc = xnb;
1234		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1235		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1236		ifp->if_ioctl = xnb_ioctl;
1237		ifp->if_start = xnb_start;
1238		ifp->if_init = xnb_ifinit;
1239		ifp->if_mtu = ETHERMTU;
1240		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1241
1242		ifp->if_hwassist = XNB_CSUM_FEATURES;
1243		ifp->if_capabilities = IFCAP_HWCSUM;
1244		ifp->if_capenable = IFCAP_HWCSUM;
1245
1246		ether_ifattach(ifp, xnb->mac);
1247		xnb->carrier = 0;
1248	}
1249
1250	return err;
1251}
1252
1253/**
1254 * Attach to a XenBus device that has been claimed by our probe routine.
1255 *
1256 * \param dev  NewBus device object representing this Xen Net Back instance.
1257 *
1258 * \return  0 for success, errno codes for failure.
1259 */
1260static int
1261xnb_attach(device_t dev)
1262{
1263	struct xnb_softc *xnb;
1264	int	error;
1265	xnb_ring_type_t	i;
1266
1267	error = create_netdev(dev);
1268	if (error != 0) {
1269		xenbus_dev_fatal(dev, error, "creating netdev");
1270		return (error);
1271	}
1272
1273	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1274
1275	/*
1276	 * Basic initialization.
1277	 * After this block it is safe to call xnb_detach()
1278	 * to clean up any allocated data for this instance.
1279	 */
1280	xnb = device_get_softc(dev);
1281	xnb->otherend_id = xenbus_get_otherend_id(dev);
1282	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1283		xnb->ring_configs[i].ring_pages = 1;
1284	}
1285
1286	/*
1287	 * Setup sysctl variables.
1288	 */
1289	xnb_setup_sysctl(xnb);
1290
1291	/* Update hot-plug status to satisfy xend. */
1292	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1293			  "hotplug-status", "connected");
1294	if (error != 0) {
1295		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1296				  xenbus_get_node(xnb->dev));
1297		return (error);
1298	}
1299
1300	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1301		/*
1302		 * If we can't publish our data, we cannot participate
1303		 * in this connection, and waiting for a front-end state
1304		 * change will not help the situation.
1305		 */
1306		xnb_attach_failed(xnb, error,
1307		    "Publishing backend status for %s",
1308				  xenbus_get_node(xnb->dev));
1309		return error;
1310	}
1311
1312	/* Tell the front end that we are ready to connect. */
1313	xenbus_set_state(dev, XenbusStateInitWait);
1314
1315	return (0);
1316}
1317
1318/**
1319 * Detach from a net back device instance.
1320 *
1321 * \param dev  NewBus device object representing this Xen Net Back instance.
1322 *
1323 * \return  0 for success, errno codes for failure.
1324 *
1325 * \note A net back device may be detached at any time in its life-cycle,
1326 *       including part way through the attach process.  For this reason,
1327 *       initialization order and the initialization state checks in this
1328 *       routine must be carefully coupled so that attach time failures
1329 *       are gracefully handled.
1330 */
1331static int
1332xnb_detach(device_t dev)
1333{
1334	struct xnb_softc *xnb;
1335
1336	DPRINTF("\n");
1337
1338	xnb = device_get_softc(dev);
1339	mtx_lock(&xnb->sc_lock);
1340	while (xnb_shutdown(xnb) == EAGAIN) {
1341		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1342		       "xnb_shutdown", 0);
1343	}
1344	mtx_unlock(&xnb->sc_lock);
1345	DPRINTF("\n");
1346
1347	mtx_destroy(&xnb->tx_lock);
1348	mtx_destroy(&xnb->rx_lock);
1349	mtx_destroy(&xnb->sc_lock);
1350	return (0);
1351}
1352
1353/**
1354 * Prepare this net back device for suspension of this VM.
1355 *
1356 * \param dev  NewBus device object representing this Xen net Back instance.
1357 *
1358 * \return  0 for success, errno codes for failure.
1359 */
1360static int
1361xnb_suspend(device_t dev)
1362{
1363	return (0);
1364}
1365
1366/**
1367 * Perform any processing required to recover from a suspended state.
1368 *
1369 * \param dev  NewBus device object representing this Xen Net Back instance.
1370 *
1371 * \return  0 for success, errno codes for failure.
1372 */
1373static int
1374xnb_resume(device_t dev)
1375{
1376	return (0);
1377}
1378
1379/**
1380 * Handle state changes expressed via the XenStore by our front-end peer.
1381 *
1382 * \param dev             NewBus device object representing this Xen
1383 *                        Net Back instance.
1384 * \param frontend_state  The new state of the front-end.
1385 *
1386 * \return  0 for success, errno codes for failure.
1387 */
1388static void
1389xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1390{
1391	struct xnb_softc *xnb;
1392
1393	xnb = device_get_softc(dev);
1394
1395	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1396	        xenbus_strstate(frontend_state),
1397		xenbus_strstate(xenbus_get_state(xnb->dev)));
1398
1399	switch (frontend_state) {
1400	case XenbusStateInitialising:
1401		break;
1402	case XenbusStateInitialised:
1403	case XenbusStateConnected:
1404		xnb_connect(xnb);
1405		break;
1406	case XenbusStateClosing:
1407	case XenbusStateClosed:
1408		mtx_lock(&xnb->sc_lock);
1409		xnb_shutdown(xnb);
1410		mtx_unlock(&xnb->sc_lock);
1411		if (frontend_state == XenbusStateClosed)
1412			xenbus_set_state(xnb->dev, XenbusStateClosed);
1413		break;
1414	default:
1415		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1416				 frontend_state);
1417		break;
1418	}
1419}
1420
1421
1422/*---------------------------- Request Processing ----------------------------*/
1423/**
1424 * Interrupt handler bound to the shared ring's event channel.
1425 * Entry point for the xennet transmit path in netback
1426 * Transfers packets from the Xen ring to the host's generic networking stack
1427 *
1428 * \param arg  Callback argument registerd during event channel
1429 *             binding - the xnb_softc for this instance.
1430 */
1431static void
1432xnb_intr(void *arg)
1433{
1434	struct xnb_softc *xnb;
1435	struct ifnet *ifp;
1436	netif_tx_back_ring_t *txb;
1437	RING_IDX req_prod_local;
1438
1439	xnb = (struct xnb_softc *)arg;
1440	ifp = xnb->xnb_ifp;
1441	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1442
1443	mtx_lock(&xnb->tx_lock);
1444	do {
1445		int notify;
1446		req_prod_local = txb->sring->req_prod;
1447		xen_rmb();
1448
1449		for (;;) {
1450			struct mbuf *mbufc;
1451			int err;
1452
1453			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1454			    	       xnb->tx_gnttab);
1455			if (err || (mbufc == NULL))
1456				break;
1457
1458			/* Send the packet to the generic network stack */
1459			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1460		}
1461
1462		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1463		if (notify != 0)
1464			xen_intr_signal(xnb->xen_intr_handle);
1465
1466		txb->sring->req_event = txb->req_cons + 1;
1467		xen_mb();
1468	} while (txb->sring->req_prod != req_prod_local) ;
1469	mtx_unlock(&xnb->tx_lock);
1470
1471	xnb_start(ifp);
1472}
1473
1474
1475/**
1476 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1477 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1478 * \param[out]	pkt	The returned packet.  If there is an error building
1479 * 			the packet, pkt.list_len will be set to 0.
1480 * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1481 * \param[in]	start	The ring index of the first potential request
1482 * \return		The number of requests consumed to build this packet
1483 */
1484static int
1485xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1486	     RING_IDX start)
1487{
1488	/*
1489	 * Outline:
1490	 * 1) Initialize pkt
1491	 * 2) Read the first request of the packet
1492	 * 3) Read the extras
1493	 * 4) Set cdr
1494	 * 5) Loop on the remainder of the packet
1495	 * 6) Finalize pkt (stuff like car_size and list_len)
1496	 */
1497	int idx = start;
1498	int discard = 0;	/* whether to discard the packet */
1499	int more_data = 0;	/* there are more request past the last one */
1500	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1501
1502	xnb_pkt_initialize(pkt);
1503
1504	/* Read the first request */
1505	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1506		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1507		pkt->size = tx->size;
1508		pkt->flags = tx->flags & ~NETTXF_more_data;
1509		more_data = tx->flags & NETTXF_more_data;
1510		pkt->list_len++;
1511		pkt->car = idx;
1512		idx++;
1513	}
1514
1515	/* Read the extra info */
1516	if ((pkt->flags & NETTXF_extra_info) &&
1517	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1518		netif_extra_info_t *ext =
1519		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1520		pkt->extra.type = ext->type;
1521		switch (pkt->extra.type) {
1522			case XEN_NETIF_EXTRA_TYPE_GSO:
1523				pkt->extra.u.gso = ext->u.gso;
1524				break;
1525			default:
1526				/*
1527				 * The reference Linux netfront driver will
1528				 * never set any other extra.type.  So we don't
1529				 * know what to do with it.  Let's print an
1530				 * error, then consume and discard the packet
1531				 */
1532				printf("xnb(%s:%d): Unknown extra info type %d."
1533				       "  Discarding packet\n",
1534				       __func__, __LINE__, pkt->extra.type);
1535				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1536				    start));
1537				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1538				    idx));
1539				discard = 1;
1540				break;
1541		}
1542
1543		pkt->extra.flags = ext->flags;
1544		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1545			/*
1546			 * The reference linux netfront driver never sets this
1547			 * flag (nor does any other known netfront).  So we
1548			 * will discard the packet.
1549			 */
1550			printf("xnb(%s:%d): Request sets "
1551			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1552			    "that\n", __func__, __LINE__);
1553			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1554			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1555			discard = 1;
1556		}
1557
1558		idx++;
1559	}
1560
1561	/* Set cdr.  If there is not more data, cdr is invalid */
1562	pkt->cdr = idx;
1563
1564	/* Loop on remainder of packet */
1565	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1566		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1567		pkt->list_len++;
1568		cdr_size += tx->size;
1569		if (tx->flags & ~NETTXF_more_data) {
1570			/* There should be no other flags set at this point */
1571			printf("xnb(%s:%d): Request sets unknown flags %d "
1572			    "after the 1st request in the packet.\n",
1573			    __func__, __LINE__, tx->flags);
1574			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1575			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1576		}
1577
1578		more_data = tx->flags & NETTXF_more_data;
1579		idx++;
1580	}
1581
1582	/* Finalize packet */
1583	if (more_data != 0) {
1584		/* The ring ran out of requests before finishing the packet */
1585		xnb_pkt_invalidate(pkt);
1586		idx = start;	/* tell caller that we consumed no requests */
1587	} else {
1588		/* Calculate car_size */
1589		pkt->car_size = pkt->size - cdr_size;
1590	}
1591	if (discard != 0) {
1592		xnb_pkt_invalidate(pkt);
1593	}
1594
1595	return idx - start;
1596}
1597
1598
1599/**
1600 * Respond to all the requests that constituted pkt.  Builds the responses and
1601 * writes them to the ring, but doesn't push them to the shared ring.
1602 * \param[in] pkt	the packet that needs a response
1603 * \param[in] error	true if there was an error handling the packet, such
1604 * 			as in the hypervisor copy op or mbuf allocation
1605 * \param[out] ring	Responses go here
1606 */
1607static void
1608xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1609	      int error)
1610{
1611	/*
1612	 * Outline:
1613	 * 1) Respond to the first request
1614	 * 2) Respond to the extra info reques
1615	 * Loop through every remaining request in the packet, generating
1616	 * responses that copy those requests' ids and sets the status
1617	 * appropriately.
1618	 */
1619	netif_tx_request_t *tx;
1620	netif_tx_response_t *rsp;
1621	int i;
1622	uint16_t status;
1623
1624	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1625		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1626	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1627	    ("Cannot respond to ring requests out of order"));
1628
1629	if (pkt->list_len >= 1) {
1630		uint16_t id;
1631		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1632		id = tx->id;
1633		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1634		rsp->id = id;
1635		rsp->status = status;
1636		ring->rsp_prod_pvt++;
1637
1638		if (pkt->flags & NETRXF_extra_info) {
1639			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1640			rsp->status = NETIF_RSP_NULL;
1641			ring->rsp_prod_pvt++;
1642		}
1643	}
1644
1645	for (i=0; i < pkt->list_len - 1; i++) {
1646		uint16_t id;
1647		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1648		id = tx->id;
1649		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1650		rsp->id = id;
1651		rsp->status = status;
1652		ring->rsp_prod_pvt++;
1653	}
1654}
1655
1656/**
1657 * Create an mbuf chain to represent a packet.  Initializes all of the headers
1658 * in the mbuf chain, but does not copy the data.  The returned chain must be
1659 * free()'d when no longer needed
1660 * \param[in]	pkt	A packet to model the mbuf chain after
1661 * \return	A newly allocated mbuf chain, possibly with clusters attached.
1662 * 		NULL on failure
1663 */
1664static struct mbuf*
1665xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1666{
1667	/**
1668	 * \todo consider using a memory pool for mbufs instead of
1669	 * reallocating them for every packet
1670	 */
1671	/** \todo handle extra data */
1672	struct mbuf *m;
1673
1674	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1675
1676	if (m != NULL) {
1677		m->m_pkthdr.rcvif = ifp;
1678		if (pkt->flags & NETTXF_data_validated) {
1679			/*
1680			 * We lie to the host OS and always tell it that the
1681			 * checksums are ok, because the packet is unlikely to
1682			 * get corrupted going across domains.
1683			 */
1684			m->m_pkthdr.csum_flags = (
1685				CSUM_IP_CHECKED |
1686				CSUM_IP_VALID   |
1687				CSUM_DATA_VALID |
1688				CSUM_PSEUDO_HDR
1689				);
1690			m->m_pkthdr.csum_data = 0xffff;
1691		}
1692	}
1693	return m;
1694}
1695
1696/**
1697 * Build a gnttab_copy table that can be used to copy data from a pkt
1698 * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1699 * the packet side.
1700 * \param[in]	pkt	pkt's associated requests form the src for
1701 * 			the copy operation
1702 * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1703 * \param[out]  gnttab	Storage for the returned grant table
1704 * \param[in]	txb	Pointer to the backend ring structure
1705 * \param[in]	otherend_id	The domain ID of the other end of the copy
1706 * \return 		The number of gnttab entries filled
1707 */
1708static int
1709xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1710		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1711		 domid_t otherend_id)
1712{
1713
1714	struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1715	int gnt_idx = 0;		/* index into grant table */
1716	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1717	int r_ofs = 0;	/* offset of next data within tx request's data area */
1718	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1719	/* size in bytes that still needs to be represented in the table */
1720	uint16_t size_remaining = pkt->size;
1721
1722	while (size_remaining > 0) {
1723		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1724		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1725		const size_t req_size =
1726			r_idx == pkt->car ? pkt->car_size : txq->size;
1727		const size_t pkt_space = req_size - r_ofs;
1728		/*
1729		 * space is the largest amount of data that can be copied in the
1730		 * grant table's next entry
1731		 */
1732		const size_t space = MIN(pkt_space, mbuf_space);
1733
1734		/* TODO: handle this error condition without panicking */
1735		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1736
1737		gnttab[gnt_idx].source.u.ref = txq->gref;
1738		gnttab[gnt_idx].source.domid = otherend_id;
1739		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1740		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1741		    mtod(mbuf, vm_offset_t) + m_ofs);
1742		gnttab[gnt_idx].dest.offset = virt_to_offset(
1743		    mtod(mbuf, vm_offset_t) + m_ofs);
1744		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1745		gnttab[gnt_idx].len = space;
1746		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1747
1748		gnt_idx++;
1749		r_ofs += space;
1750		m_ofs += space;
1751		size_remaining -= space;
1752		if (req_size - r_ofs <= 0) {
1753			/* Must move to the next tx request */
1754			r_ofs = 0;
1755			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1756		}
1757		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1758			/* Must move to the next mbuf */
1759			m_ofs = 0;
1760			mbuf = mbuf->m_next;
1761		}
1762	}
1763
1764	return gnt_idx;
1765}
1766
1767/**
1768 * Check the status of the grant copy operations, and update mbufs various
1769 * non-data fields to reflect the data present.
1770 * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1771 * 			the correct length, and data should already be present
1772 * \param[in] gnttab	A grant table for a just completed copy op
1773 * \param[in] n_entries The number of valid entries in the grant table
1774 */
1775static void
1776xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1777    		 int n_entries)
1778{
1779	struct mbuf *mbuf = mbufc;
1780	int i;
1781	size_t total_size = 0;
1782
1783	for (i = 0; i < n_entries; i++) {
1784		KASSERT(gnttab[i].status == GNTST_okay,
1785		    ("Some gnttab_copy entry had error status %hd\n",
1786		    gnttab[i].status));
1787
1788		mbuf->m_len += gnttab[i].len;
1789		total_size += gnttab[i].len;
1790		if (M_TRAILINGSPACE(mbuf) <= 0) {
1791			mbuf = mbuf->m_next;
1792		}
1793	}
1794	mbufc->m_pkthdr.len = total_size;
1795
1796#if defined(INET) || defined(INET6)
1797	xnb_add_mbuf_cksum(mbufc);
1798#endif
1799}
1800
1801/**
1802 * Dequeue at most one packet from the shared ring
1803 * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1804 * 			its private indices will be updated.  But the indices
1805 * 			will not be pushed to the shared ring.
1806 * \param[in] ifnet	Interface to which the packet will be sent
1807 * \param[in] otherend	Domain ID of the other end of the ring
1808 * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1809 * 			networking stack
1810 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1811 * 			this a function parameter so that we will take less
1812 * 			stack space.
1813 * \return		An error code
1814 */
1815static int
1816xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1817	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1818{
1819	struct xnb_pkt pkt;
1820	/* number of tx requests consumed to build the last packet */
1821	int num_consumed;
1822	int nr_ents;
1823
1824	*mbufc = NULL;
1825	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1826	if (num_consumed == 0)
1827		return 0;	/* Nothing to receive */
1828
1829	/* update statistics independent of errors */
1830	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1831
1832	/*
1833	 * if we got here, then 1 or more requests was consumed, but the packet
1834	 * is not necessarily valid.
1835	 */
1836	if (xnb_pkt_is_valid(&pkt) == 0) {
1837		/* got a garbage packet, respond and drop it */
1838		xnb_txpkt2rsp(&pkt, txb, 1);
1839		txb->req_cons += num_consumed;
1840		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1841				num_consumed);
1842		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1843		return EINVAL;
1844	}
1845
1846	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1847
1848	if (*mbufc == NULL) {
1849		/*
1850		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1851		 * not consume the requests
1852		 */
1853		xnb_txpkt2rsp(&pkt, txb, 1);
1854		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1855		    num_consumed);
1856		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1857		return ENOMEM;
1858	}
1859
1860	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1861
1862	if (nr_ents > 0) {
1863		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1864		    gnttab, nr_ents);
1865		KASSERT(hv_ret == 0,
1866		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1867		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1868	}
1869
1870	xnb_txpkt2rsp(&pkt, txb, 0);
1871	txb->req_cons += num_consumed;
1872	return 0;
1873}
1874
1875/**
1876 * Create an xnb_pkt based on the contents of an mbuf chain.
1877 * \param[in] mbufc	mbuf chain to transform into a packet
1878 * \param[out] pkt	Storage for the newly generated xnb_pkt
1879 * \param[in] start	The ring index of the first available slot in the rx
1880 * 			ring
1881 * \param[in] space	The number of free slots in the rx ring
1882 * \retval 0		Success
1883 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1884 * \retval EAGAIN	There was not enough space in the ring to queue the
1885 * 			packet
1886 */
1887static int
1888xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1889	      RING_IDX start, int space)
1890{
1891
1892	int retval = 0;
1893
1894	if ((mbufc == NULL) ||
1895	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1896	     (mbufc->m_pkthdr.len == 0)) {
1897		xnb_pkt_invalidate(pkt);
1898		retval = EINVAL;
1899	} else {
1900		int slots_required;
1901
1902		xnb_pkt_validate(pkt);
1903		pkt->flags = 0;
1904		pkt->size = mbufc->m_pkthdr.len;
1905		pkt->car = start;
1906		pkt->car_size = mbufc->m_len;
1907
1908		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1909			pkt->flags |= NETRXF_extra_info;
1910			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1911			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1912			pkt->extra.u.gso.pad = 0;
1913			pkt->extra.u.gso.features = 0;
1914			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1915			pkt->extra.flags = 0;
1916			pkt->cdr = start + 2;
1917		} else {
1918			pkt->cdr = start + 1;
1919		}
1920		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1921			pkt->flags |=
1922			    (NETRXF_csum_blank | NETRXF_data_validated);
1923		}
1924
1925		/*
1926		 * Each ring response can have up to PAGE_SIZE of data.
1927		 * Assume that we can defragment the mbuf chain efficiently
1928		 * into responses so that each response but the last uses all
1929		 * PAGE_SIZE bytes.
1930		 */
1931		pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1932
1933		if (pkt->list_len > 1) {
1934			pkt->flags |= NETRXF_more_data;
1935		}
1936
1937		slots_required = pkt->list_len +
1938			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1939		if (slots_required > space) {
1940			xnb_pkt_invalidate(pkt);
1941			retval = EAGAIN;
1942		}
1943	}
1944
1945	return retval;
1946}
1947
1948/**
1949 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1950 * to the frontend's shared buffers.  Does not actually perform the copy.
1951 * Always uses gref's on the other end's side.
1952 * \param[in]	pkt	pkt's associated responses form the dest for the copy
1953 * 			operatoin
1954 * \param[in]	mbufc	The source for the copy operation
1955 * \param[out]	gnttab	Storage for the returned grant table
1956 * \param[in]	rxb	Pointer to the backend ring structure
1957 * \param[in]	otherend_id	The domain ID of the other end of the copy
1958 * \return 		The number of gnttab entries filled
1959 */
1960static int
1961xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1962		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1963		 domid_t otherend_id)
1964{
1965
1966	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1967	int gnt_idx = 0;		/* index into grant table */
1968	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1969	int r_ofs = 0;	/* offset of next data within rx request's data area */
1970	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1971	/* size in bytes that still needs to be represented in the table */
1972	uint16_t size_remaining;
1973
1974	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1975
1976	while (size_remaining > 0) {
1977		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1978		const size_t mbuf_space = mbuf->m_len - m_ofs;
1979		/* Xen shared pages have an implied size of PAGE_SIZE */
1980		const size_t req_size = PAGE_SIZE;
1981		const size_t pkt_space = req_size - r_ofs;
1982		/*
1983		 * space is the largest amount of data that can be copied in the
1984		 * grant table's next entry
1985		 */
1986		const size_t space = MIN(pkt_space, mbuf_space);
1987
1988		/* TODO: handle this error condition without panicing */
1989		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1990
1991		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1992		gnttab[gnt_idx].dest.domid = otherend_id;
1993		gnttab[gnt_idx].dest.offset = r_ofs;
1994		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1995		    mtod(mbuf, vm_offset_t) + m_ofs);
1996		gnttab[gnt_idx].source.offset = virt_to_offset(
1997		    mtod(mbuf, vm_offset_t) + m_ofs);
1998		gnttab[gnt_idx].source.domid = DOMID_SELF;
1999		gnttab[gnt_idx].len = space;
2000		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
2001
2002		gnt_idx++;
2003
2004		r_ofs += space;
2005		m_ofs += space;
2006		size_remaining -= space;
2007		if (req_size - r_ofs <= 0) {
2008			/* Must move to the next rx request */
2009			r_ofs = 0;
2010			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2011		}
2012		if (mbuf->m_len - m_ofs <= 0) {
2013			/* Must move to the next mbuf */
2014			m_ofs = 0;
2015			mbuf = mbuf->m_next;
2016		}
2017	}
2018
2019	return gnt_idx;
2020}
2021
2022/**
2023 * Generates responses for all the requests that constituted pkt.  Builds
2024 * responses and writes them to the ring, but doesn't push the shared ring
2025 * indices.
2026 * \param[in] pkt	the packet that needs a response
2027 * \param[in] gnttab	The grant copy table corresponding to this packet.
2028 * 			Used to determine how many rsp->netif_rx_response_t's to
2029 * 			generate.
2030 * \param[in] n_entries	Number of relevant entries in the grant table
2031 * \param[out] ring	Responses go here
2032 * \return		The number of RX requests that were consumed to generate
2033 * 			the responses
2034 */
2035static int
2036xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2037    	      int n_entries, netif_rx_back_ring_t *ring)
2038{
2039	/*
2040	 * This code makes the following assumptions:
2041	 *	* All entries in gnttab set GNTCOPY_dest_gref
2042	 *	* The entries in gnttab are grouped by their grefs: any two
2043	 *	   entries with the same gref must be adjacent
2044	 */
2045	int error = 0;
2046	int gnt_idx, i;
2047	int n_responses = 0;
2048	grant_ref_t last_gref = GRANT_REF_INVALID;
2049	RING_IDX r_idx;
2050
2051	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2052
2053	/*
2054	 * In the event of an error, we only need to send one response to the
2055	 * netfront.  In that case, we musn't write any data to the responses
2056	 * after the one we send.  So we must loop all the way through gnttab
2057	 * looking for errors before we generate any responses
2058	 *
2059	 * Since we're looping through the grant table anyway, we'll count the
2060	 * number of different gref's in it, which will tell us how many
2061	 * responses to generate
2062	 */
2063	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2064		int16_t status = gnttab[gnt_idx].status;
2065		if (status != GNTST_okay) {
2066			DPRINTF(
2067			    "Got error %d for hypervisor gnttab_copy status\n",
2068			    status);
2069			error = 1;
2070			break;
2071		}
2072		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2073			n_responses++;
2074			last_gref = gnttab[gnt_idx].dest.u.ref;
2075		}
2076	}
2077
2078	if (error != 0) {
2079		uint16_t id;
2080		netif_rx_response_t *rsp;
2081
2082		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2083		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2084		rsp->id = id;
2085		rsp->status = NETIF_RSP_ERROR;
2086		n_responses = 1;
2087	} else {
2088		gnt_idx = 0;
2089		const int has_extra = pkt->flags & NETRXF_extra_info;
2090		if (has_extra != 0)
2091			n_responses++;
2092
2093		for (i = 0; i < n_responses; i++) {
2094			netif_rx_request_t rxq;
2095			netif_rx_response_t *rsp;
2096
2097			r_idx = ring->rsp_prod_pvt + i;
2098			/*
2099			 * We copy the structure of rxq instead of making a
2100			 * pointer because it shares the same memory as rsp.
2101			 */
2102			rxq = *(RING_GET_REQUEST(ring, r_idx));
2103			rsp = RING_GET_RESPONSE(ring, r_idx);
2104			if (has_extra && (i == 1)) {
2105				netif_extra_info_t *ext =
2106					(netif_extra_info_t*)rsp;
2107				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2108				ext->flags = 0;
2109				ext->u.gso.size = pkt->extra.u.gso.size;
2110				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2111				ext->u.gso.pad = 0;
2112				ext->u.gso.features = 0;
2113			} else {
2114				rsp->id = rxq.id;
2115				rsp->status = GNTST_okay;
2116				rsp->offset = 0;
2117				rsp->flags = 0;
2118				if (i < pkt->list_len - 1)
2119					rsp->flags |= NETRXF_more_data;
2120				if ((i == 0) && has_extra)
2121					rsp->flags |= NETRXF_extra_info;
2122				if ((i == 0) &&
2123					(pkt->flags & NETRXF_data_validated)) {
2124					rsp->flags |= NETRXF_data_validated;
2125					rsp->flags |= NETRXF_csum_blank;
2126				}
2127				rsp->status = 0;
2128				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2129				    gnt_idx++) {
2130					rsp->status += gnttab[gnt_idx].len;
2131				}
2132			}
2133		}
2134	}
2135
2136	ring->req_cons += n_responses;
2137	ring->rsp_prod_pvt += n_responses;
2138	return n_responses;
2139}
2140
2141#if defined(INET) || defined(INET6)
2142/**
2143 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2144 * in the chain must start with a struct ether_header.
2145 *
2146 * XXX This function will perform incorrectly on UDP packets that are split up
2147 * into multiple ethernet frames.
2148 */
2149static void
2150xnb_add_mbuf_cksum(struct mbuf *mbufc)
2151{
2152	struct ether_header *eh;
2153	struct ip *iph;
2154	uint16_t ether_type;
2155
2156	eh = mtod(mbufc, struct ether_header*);
2157	ether_type = ntohs(eh->ether_type);
2158	if (ether_type != ETHERTYPE_IP) {
2159		/* Nothing to calculate */
2160		return;
2161	}
2162
2163	iph = (struct ip*)(eh + 1);
2164	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2165		iph->ip_sum = 0;
2166		iph->ip_sum = in_cksum_hdr(iph);
2167	}
2168
2169	switch (iph->ip_p) {
2170	case IPPROTO_TCP:
2171		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2172			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2173			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2174			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2175			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2176			th->th_sum = in_cksum_skip(mbufc,
2177			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2178			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2179		}
2180		break;
2181	case IPPROTO_UDP:
2182		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2183			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2184			struct udphdr *uh = (struct udphdr*)(iph + 1);
2185			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2186			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2187			uh->uh_sum = in_cksum_skip(mbufc,
2188			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2189			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2190		}
2191		break;
2192	default:
2193		break;
2194	}
2195}
2196#endif /* INET || INET6 */
2197
2198static void
2199xnb_stop(struct xnb_softc *xnb)
2200{
2201	struct ifnet *ifp;
2202
2203	mtx_assert(&xnb->sc_lock, MA_OWNED);
2204	ifp = xnb->xnb_ifp;
2205	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2206	if_link_state_change(ifp, LINK_STATE_DOWN);
2207}
2208
2209static int
2210xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2211{
2212	struct xnb_softc *xnb = ifp->if_softc;
2213	struct ifreq *ifr = (struct ifreq*) data;
2214#ifdef INET
2215	struct ifaddr *ifa = (struct ifaddr*)data;
2216#endif
2217	int error = 0;
2218
2219	switch (cmd) {
2220		case SIOCSIFFLAGS:
2221			mtx_lock(&xnb->sc_lock);
2222			if (ifp->if_flags & IFF_UP) {
2223				xnb_ifinit_locked(xnb);
2224			} else {
2225				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2226					xnb_stop(xnb);
2227				}
2228			}
2229			/*
2230			 * Note: netfront sets a variable named xn_if_flags
2231			 * here, but that variable is never read
2232			 */
2233			mtx_unlock(&xnb->sc_lock);
2234			break;
2235		case SIOCSIFADDR:
2236#ifdef INET
2237			mtx_lock(&xnb->sc_lock);
2238			if (ifa->ifa_addr->sa_family == AF_INET) {
2239				ifp->if_flags |= IFF_UP;
2240				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2241					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2242							IFF_DRV_OACTIVE);
2243					if_link_state_change(ifp,
2244							LINK_STATE_DOWN);
2245					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2246					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2247					if_link_state_change(ifp,
2248					    LINK_STATE_UP);
2249				}
2250				arp_ifinit(ifp, ifa);
2251				mtx_unlock(&xnb->sc_lock);
2252			} else {
2253				mtx_unlock(&xnb->sc_lock);
2254#endif
2255				error = ether_ioctl(ifp, cmd, data);
2256#ifdef INET
2257			}
2258#endif
2259			break;
2260		case SIOCSIFCAP:
2261			mtx_lock(&xnb->sc_lock);
2262			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2263				ifp->if_capenable |= IFCAP_TXCSUM;
2264				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2265			} else {
2266				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2267				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2268			}
2269			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2270				ifp->if_capenable |= IFCAP_RXCSUM;
2271			} else {
2272				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2273			}
2274			/*
2275			 * TODO enable TSO4 and LRO once we no longer need
2276			 * to calculate checksums in software
2277			 */
2278#if 0
2279			if (ifr->if_reqcap |= IFCAP_TSO4) {
2280				if (IFCAP_TXCSUM & ifp->if_capenable) {
2281					printf("xnb: Xen netif requires that "
2282						"TXCSUM be enabled in order "
2283						"to use TSO4\n");
2284					error = EINVAL;
2285				} else {
2286					ifp->if_capenable |= IFCAP_TSO4;
2287					ifp->if_hwassist |= CSUM_TSO;
2288				}
2289			} else {
2290				ifp->if_capenable &= ~(IFCAP_TSO4);
2291				ifp->if_hwassist &= ~(CSUM_TSO);
2292			}
2293			if (ifr->ifreqcap |= IFCAP_LRO) {
2294				ifp->if_capenable |= IFCAP_LRO;
2295			} else {
2296				ifp->if_capenable &= ~(IFCAP_LRO);
2297			}
2298#endif
2299			mtx_unlock(&xnb->sc_lock);
2300			break;
2301		case SIOCSIFMTU:
2302			ifp->if_mtu = ifr->ifr_mtu;
2303			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2304			xnb_ifinit(xnb);
2305			break;
2306		case SIOCADDMULTI:
2307		case SIOCDELMULTI:
2308		case SIOCSIFMEDIA:
2309		case SIOCGIFMEDIA:
2310			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2311			break;
2312		default:
2313			error = ether_ioctl(ifp, cmd, data);
2314			break;
2315	}
2316	return (error);
2317}
2318
2319static void
2320xnb_start_locked(struct ifnet *ifp)
2321{
2322	netif_rx_back_ring_t *rxb;
2323	struct xnb_softc *xnb;
2324	struct mbuf *mbufc;
2325	RING_IDX req_prod_local;
2326
2327	xnb = ifp->if_softc;
2328	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2329
2330	if (!xnb->carrier)
2331		return;
2332
2333	do {
2334		int out_of_space = 0;
2335		int notify;
2336		req_prod_local = rxb->sring->req_prod;
2337		xen_rmb();
2338		for (;;) {
2339			int error;
2340
2341			IF_DEQUEUE(&ifp->if_snd, mbufc);
2342			if (mbufc == NULL)
2343				break;
2344			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2345			    		 xnb->rx_gnttab);
2346			switch (error) {
2347				case EAGAIN:
2348					/*
2349					 * Insufficient space in the ring.
2350					 * Requeue pkt and send when space is
2351					 * available.
2352					 */
2353					IF_PREPEND(&ifp->if_snd, mbufc);
2354					/*
2355					 * Perhaps the frontend missed an IRQ
2356					 * and went to sleep.  Notify it to wake
2357					 * it up.
2358					 */
2359					out_of_space = 1;
2360					break;
2361
2362				case EINVAL:
2363					/* OS gave a corrupt packet.  Drop it.*/
2364					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2365					/* FALLTHROUGH */
2366				default:
2367					/* Send succeeded, or packet had error.
2368					 * Free the packet */
2369					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2370					if (mbufc)
2371						m_freem(mbufc);
2372					break;
2373			}
2374			if (out_of_space != 0)
2375				break;
2376		}
2377
2378		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2379		if ((notify != 0) || (out_of_space != 0))
2380			xen_intr_signal(xnb->xen_intr_handle);
2381		rxb->sring->req_event = req_prod_local + 1;
2382		xen_mb();
2383	} while (rxb->sring->req_prod != req_prod_local) ;
2384}
2385
2386/**
2387 * Sends one packet to the ring.  Blocks until the packet is on the ring
2388 * \param[in]	mbufc	Contains one packet to send.  Caller must free
2389 * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2390 * 			otherend will not be notified.
2391 * \param[in]	otherend The domain ID of the other end of the connection
2392 * \retval	EAGAIN	The ring did not have enough space for the packet.
2393 * 			The ring has not been modified
2394 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2395 * 			this a function parameter so that we will take less
2396 * 			stack space.
2397 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2398 */
2399static int
2400xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2401	 gnttab_copy_table gnttab)
2402{
2403	struct xnb_pkt pkt;
2404	int error, n_entries, n_reqs;
2405	RING_IDX space;
2406
2407	space = ring->sring->req_prod - ring->req_cons;
2408	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2409	if (error != 0)
2410		return error;
2411	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2412	if (n_entries != 0) {
2413		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2414		    gnttab, n_entries);
2415		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2416		    hv_ret));
2417	}
2418
2419	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2420
2421	return 0;
2422}
2423
2424static void
2425xnb_start(struct ifnet *ifp)
2426{
2427	struct xnb_softc *xnb;
2428
2429	xnb = ifp->if_softc;
2430	mtx_lock(&xnb->rx_lock);
2431	xnb_start_locked(ifp);
2432	mtx_unlock(&xnb->rx_lock);
2433}
2434
2435/* equivalent of network_open() in Linux */
2436static void
2437xnb_ifinit_locked(struct xnb_softc *xnb)
2438{
2439	struct ifnet *ifp;
2440
2441	ifp = xnb->xnb_ifp;
2442
2443	mtx_assert(&xnb->sc_lock, MA_OWNED);
2444
2445	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2446		return;
2447
2448	xnb_stop(xnb);
2449
2450	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2451	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2452	if_link_state_change(ifp, LINK_STATE_UP);
2453}
2454
2455
2456static void
2457xnb_ifinit(void *xsc)
2458{
2459	struct xnb_softc *xnb = xsc;
2460
2461	mtx_lock(&xnb->sc_lock);
2462	xnb_ifinit_locked(xnb);
2463	mtx_unlock(&xnb->sc_lock);
2464}
2465
2466/**
2467 * Callback used by the generic networking code to tell us when our carrier
2468 * state has changed.  Since we don't have a physical carrier, we don't care
2469 */
2470static int
2471xnb_ifmedia_upd(struct ifnet *ifp)
2472{
2473	return (0);
2474}
2475
2476/**
2477 * Callback used by the generic networking code to ask us what our carrier
2478 * state is.  Since we don't have a physical carrier, this is very simple
2479 */
2480static void
2481xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2482{
2483	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2484	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2485}
2486
2487
2488/*---------------------------- NewBus Registration ---------------------------*/
2489static device_method_t xnb_methods[] = {
2490	/* Device interface */
2491	DEVMETHOD(device_probe,		xnb_probe),
2492	DEVMETHOD(device_attach,	xnb_attach),
2493	DEVMETHOD(device_detach,	xnb_detach),
2494	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2495	DEVMETHOD(device_suspend,	xnb_suspend),
2496	DEVMETHOD(device_resume,	xnb_resume),
2497
2498	/* Xenbus interface */
2499	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2500
2501	{ 0, 0 }
2502};
2503
2504static driver_t xnb_driver = {
2505	"xnb",
2506	xnb_methods,
2507	sizeof(struct xnb_softc),
2508};
2509devclass_t xnb_devclass;
2510
2511DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2512
2513
2514/*-------------------------- Unit Tests -------------------------------------*/
2515#ifdef XNB_DEBUG
2516#include "netback_unit_tests.c"
2517#endif
2518