fsl_sdhci.c revision 343504
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/sdhci/fsl_sdhci.c 343504 2019-01-27 19:04:28Z marius $");
29
30/*
31 * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/kernel.h>
42#include <sys/libkern.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/module.h>
46#include <sys/mutex.h>
47#include <sys/resource.h>
48#include <sys/rman.h>
49#include <sys/sysctl.h>
50#include <sys/taskqueue.h>
51#include <sys/time.h>
52
53#include <machine/bus.h>
54#include <machine/resource.h>
55#ifdef __arm__
56#include <machine/intr.h>
57
58#include <arm/freescale/imx/imx_ccmvar.h>
59#endif
60
61#include <dev/gpio/gpiobusvar.h>
62
63#include <dev/ofw/ofw_bus.h>
64#include <dev/ofw/ofw_bus_subr.h>
65
66#include <dev/mmc/bridge.h>
67
68#include <dev/sdhci/sdhci.h>
69#include <dev/sdhci/sdhci_fdt_gpio.h>
70
71#include "mmcbr_if.h"
72#include "sdhci_if.h"
73
74struct fsl_sdhci_softc {
75	device_t		dev;
76	struct resource *	mem_res;
77	struct resource *	irq_res;
78	void *			intr_cookie;
79	struct sdhci_slot	slot;
80	struct callout		r1bfix_callout;
81	sbintime_t		r1bfix_timeout_at;
82	struct sdhci_fdt_gpio * gpio;
83	uint32_t		baseclk_hz;
84	uint32_t		cmd_and_mode;
85	uint32_t		r1bfix_intmask;
86	uint16_t		sdclockreg_freq_bits;
87	uint8_t			r1bfix_type;
88	uint8_t			hwtype;
89	bool			slot_init_done;
90};
91
92#define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
93#define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
94#define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
95
96#define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
97#define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
98#define	HWTYPE_USDHC	2	/* fsl6. */
99
100/*
101 * Freescale-specific registers, or in some cases the layout of bits within the
102 * sdhci-defined register is different on Freescale.  These names all begin with
103 * SDHC_ (not SDHCI_).
104 */
105
106#define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
107#define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
108#define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
109#define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
110#define	 SDHC_VEND_IPGEN	(1 << 11)
111#define	 SDHC_VEND_HCKEN	(1 << 12)
112#define	 SDHC_VEND_PEREN	(1 << 13)
113
114#define	SDHC_PRES_STATE		0x24
115#define	  SDHC_PRES_CIHB	  (1 <<  0)
116#define	  SDHC_PRES_CDIHB	  (1 <<  1)
117#define	  SDHC_PRES_DLA		  (1 <<  2)
118#define	  SDHC_PRES_SDSTB	  (1 <<  3)
119#define	  SDHC_PRES_IPGOFF	  (1 <<  4)
120#define	  SDHC_PRES_HCKOFF	  (1 <<  5)
121#define	  SDHC_PRES_PEROFF	  (1 <<  6)
122#define	  SDHC_PRES_SDOFF	  (1 <<  7)
123#define	  SDHC_PRES_WTA		  (1 <<  8)
124#define	  SDHC_PRES_RTA		  (1 <<  9)
125#define	  SDHC_PRES_BWEN	  (1 << 10)
126#define	  SDHC_PRES_BREN	  (1 << 11)
127#define	  SDHC_PRES_RTR		  (1 << 12)
128#define	  SDHC_PRES_CINST	  (1 << 16)
129#define	  SDHC_PRES_CDPL	  (1 << 18)
130#define	  SDHC_PRES_WPSPL	  (1 << 19)
131#define	  SDHC_PRES_CLSL	  (1 << 23)
132#define	  SDHC_PRES_DLSL_SHIFT	  24
133#define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
134
135#define	SDHC_PROT_CTRL		0x28
136#define	 SDHC_PROT_LED		(1 << 0)
137#define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
138#define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
139#define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
140#define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
141#define	 SDHC_PROT_D3CD		(1 << 3)
142#define	 SDHC_PROT_EMODE_BIG	(0 << 4)
143#define	 SDHC_PROT_EMODE_HALF	(1 << 4)
144#define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
145#define	 SDHC_PROT_EMODE_MASK	(3 << 4)
146#define	 SDHC_PROT_SDMA		(0 << 8)
147#define	 SDHC_PROT_ADMA1	(1 << 8)
148#define	 SDHC_PROT_ADMA2	(2 << 8)
149#define	 SDHC_PROT_ADMA264	(3 << 8)
150#define	 SDHC_PROT_DMA_MASK	(3 << 8)
151#define	 SDHC_PROT_CDTL		(1 << 6)
152#define	 SDHC_PROT_CDSS		(1 << 7)
153
154#define	SDHC_SYS_CTRL		0x2c
155
156/*
157 * The clock enable bits exist in different registers for ESDHC vs USDHC, but
158 * they are the same bits in both cases.  The divisor values go into the
159 * standard sdhci clock register, but in different bit positions and meanings
160   than the sdhci spec values.
161 */
162#define	SDHC_CLK_IPGEN		(1 << 0)
163#define	SDHC_CLK_HCKEN		(1 << 1)
164#define	SDHC_CLK_PEREN		(1 << 2)
165#define	SDHC_CLK_SDCLKEN	(1 << 3)
166#define	SDHC_CLK_ENABLE_MASK	0x0000000f
167#define	SDHC_CLK_DIVISOR_MASK	0x000000f0
168#define	SDHC_CLK_DIVISOR_SHIFT	4
169#define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
170#define	SDHC_CLK_PRESCALE_SHIFT	8
171
172static struct ofw_compat_data compat_data[] = {
173	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
174	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
175	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
176	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
177	{"fsl,esdhc",		HWTYPE_ESDHC},
178	{NULL,			HWTYPE_NONE},
179};
180
181static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
182static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
183static void fsl_sdhci_r1bfix_func(void *arg);
184
185static inline uint32_t
186RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
187{
188
189	return (bus_read_4(sc->mem_res, off));
190}
191
192static inline void
193WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
194{
195
196	bus_write_4(sc->mem_res, off, val);
197}
198
199static uint8_t
200fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
201{
202	struct fsl_sdhci_softc *sc = device_get_softc(dev);
203	uint32_t val32, wrk32;
204
205	/*
206	 * Most of the things in the standard host control register are in the
207	 * hardware's wider protocol control register, but some of the bits are
208	 * moved around.
209	 */
210	if (off == SDHCI_HOST_CONTROL) {
211		wrk32 = RD4(sc, SDHC_PROT_CTRL);
212		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
213		    SDHCI_CTRL_FORCE_CARD);
214		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
215		case SDHC_PROT_WIDTH_1BIT:
216			/* Value is already 0. */
217			break;
218		case SDHC_PROT_WIDTH_4BIT:
219			val32 |= SDHCI_CTRL_4BITBUS;
220			break;
221		case SDHC_PROT_WIDTH_8BIT:
222			val32 |= SDHCI_CTRL_8BITBUS;
223			break;
224		}
225		switch (wrk32 & SDHC_PROT_DMA_MASK) {
226		case SDHC_PROT_SDMA:
227			/* Value is already 0. */
228			break;
229		case SDHC_PROT_ADMA1:
230			/* This value is deprecated, should never appear. */
231			break;
232		case SDHC_PROT_ADMA2:
233			val32 |= SDHCI_CTRL_ADMA2;
234			break;
235		case SDHC_PROT_ADMA264:
236			val32 |= SDHCI_CTRL_ADMA264;
237			break;
238		}
239		return val32;
240	}
241
242	/*
243	 * XXX can't find the bus power on/off knob.  For now we have to say the
244	 * power is always on and always set to the same voltage.
245	 */
246	if (off == SDHCI_POWER_CONTROL) {
247		return (SDHCI_POWER_ON | SDHCI_POWER_300);
248	}
249
250
251	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
252}
253
254static uint16_t
255fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
256{
257	struct fsl_sdhci_softc *sc = device_get_softc(dev);
258	uint32_t val32;
259
260	if (sc->hwtype == HWTYPE_USDHC) {
261		/*
262		 * The USDHC hardware has nothing in the version register, but
263		 * it's v3 compatible with all our translation code.
264		 */
265		if (off == SDHCI_HOST_VERSION) {
266			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
267		}
268		/*
269		 * The USDHC hardware moved the transfer mode bits to the mixed
270		 * control register, fetch them from there.
271		 */
272		if (off == SDHCI_TRANSFER_MODE)
273			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
274
275	} else if (sc->hwtype == HWTYPE_ESDHC) {
276
277		/*
278		 * The ESDHC hardware has the typical 32-bit combined "command
279		 * and mode" register that we have to cache so that command
280		 * isn't written until after mode.  On a read, just retrieve the
281		 * cached values last written.
282		 */
283		if (off == SDHCI_TRANSFER_MODE) {
284			return (sc->cmd_and_mode & 0x0000ffff);
285		} else if (off == SDHCI_COMMAND_FLAGS) {
286			return (sc->cmd_and_mode >> 16);
287		}
288	}
289
290	/*
291	 * This hardware only manages one slot.  Synthesize a slot interrupt
292	 * status register... if there are any enabled interrupts active they
293	 * must be coming from our one and only slot.
294	 */
295	if (off == SDHCI_SLOT_INT_STATUS) {
296		val32  = RD4(sc, SDHCI_INT_STATUS);
297		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
298		return (val32 ? 1 : 0);
299	}
300
301	/*
302	 * Clock bits are scattered into various registers which differ by
303	 * hardware type, complex enough to have their own function.
304	 */
305	if (off == SDHCI_CLOCK_CONTROL) {
306		return (fsl_sdhc_get_clock(sc));
307	}
308
309	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
310}
311
312static uint32_t
313fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
314{
315	struct fsl_sdhci_softc *sc = device_get_softc(dev);
316	uint32_t val32, wrk32;
317
318	val32 = RD4(sc, off);
319
320	/*
321	 * The hardware leaves the base clock frequency out of the capabilities
322	 * register, but we filled it in by setting slot->max_clk at attach time
323	 * rather than here, because we can't represent frequencies above 63MHz
324	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
325	 * as the active output sdclock; we indicate that with a quirk setting
326	 * so don't populate the timeout frequency bits.
327	 *
328	 * XXX Turn off (for now) features the hardware can do but this driver
329	 * doesn't yet handle (1.8v, suspend/resume, etc).
330	 */
331	if (off == SDHCI_CAPABILITIES) {
332		val32 &= ~SDHCI_CAN_VDD_180;
333		val32 &= ~SDHCI_CAN_DO_SUSPEND;
334		val32 |= SDHCI_CAN_DO_8BITBUS;
335		return (val32);
336	}
337
338	/*
339	 * The hardware moves bits around in the present state register to make
340	 * room for all 8 data line state bits.  To translate, mask out all the
341	 * bits which are not in the same position in both registers (this also
342	 * masks out some Freescale-specific bits in locations defined as
343	 * reserved by sdhci), then shift the data line and retune request bits
344	 * down to their standard locations.
345	 */
346	if (off == SDHCI_PRESENT_STATE) {
347		wrk32 = val32;
348		val32 &= 0x000F0F07;
349		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
350		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
351		return (val32);
352	}
353
354	/*
355	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
356	 * command with an R1B response, mix it into the hardware status.
357	 */
358	if (off == SDHCI_INT_STATUS) {
359		return (val32 | sc->r1bfix_intmask);
360	}
361
362	return val32;
363}
364
365static void
366fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
367    uint32_t *data, bus_size_t count)
368{
369	struct fsl_sdhci_softc *sc = device_get_softc(dev);
370
371	bus_read_multi_4(sc->mem_res, off, data, count);
372}
373
374static void
375fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
376{
377	struct fsl_sdhci_softc *sc = device_get_softc(dev);
378	uint32_t val32;
379
380	/*
381	 * Most of the things in the standard host control register are in the
382	 * hardware's wider protocol control register, but some of the bits are
383	 * moved around.
384	 */
385	if (off == SDHCI_HOST_CONTROL) {
386		val32 = RD4(sc, SDHC_PROT_CTRL);
387		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
388		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
389		val32 |= (val & SDHCI_CTRL_LED);
390		if (val & SDHCI_CTRL_8BITBUS)
391			val32 |= SDHC_PROT_WIDTH_8BIT;
392		else
393			val32 |= (val & SDHCI_CTRL_4BITBUS);
394		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
395		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
396		WR4(sc, SDHC_PROT_CTRL, val32);
397		return;
398	}
399
400	/* XXX I can't find the bus power on/off knob; do nothing. */
401	if (off == SDHCI_POWER_CONTROL) {
402		return;
403	}
404#ifdef __powerpc__
405	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
406	if (off == SDHCI_SOFTWARE_RESET)
407		return;
408#endif
409
410	val32 = RD4(sc, off & ~3);
411	val32 &= ~(0xff << (off & 3) * 8);
412	val32 |= (val << (off & 3) * 8);
413
414	WR4(sc, off & ~3, val32);
415}
416
417static void
418fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
419{
420	struct fsl_sdhci_softc *sc = device_get_softc(dev);
421	uint32_t val32;
422
423	/*
424	 * The clock control stuff is complex enough to have its own function
425	 * that can handle the ESDHC versus USDHC differences.
426	 */
427	if (off == SDHCI_CLOCK_CONTROL) {
428		fsl_sdhc_set_clock(sc, val);
429		return;
430	}
431
432	/*
433	 * Figure out whether we need to check the DAT0 line for busy status at
434	 * interrupt time.  The controller should be doing this, but for some
435	 * reason it doesn't.  There are two cases:
436	 *  - R1B response with no data transfer should generate a DATA_END (aka
437	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
438	 *    there's no data transfer there's no DATA_END interrupt.  This is
439	 *    documented; they seem to think it's a feature.
440	 *  - R1B response after Auto-CMD12 appears to not work, even though
441	 *    there's a control bit for it (bit 3) in the vendor register.
442	 * When we're starting a command that needs a manual DAT0 line check at
443	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
444	 * can do the extra work in fsl_sdhci_intr().
445	 */
446	if (off == SDHCI_COMMAND_FLAGS) {
447		if (val & SDHCI_CMD_DATA) {
448			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
449			val32 = RD4(sc, USDHC_MIX_CONTROL);
450			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
451				sc->r1bfix_type = R1BFIX_AC12;
452		} else {
453			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
454				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
455				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
456				sc->r1bfix_type = R1BFIX_NODATA;
457			}
458		}
459	}
460
461	/*
462	 * The USDHC hardware moved the transfer mode bits to mixed control; we
463	 * just write them there and we're done.  The ESDHC hardware has the
464	 * typical combined cmd-and-mode register that allows only 32-bit
465	 * access, so when writing the mode bits just save them, then later when
466	 * writing the command bits, add in the saved mode bits.
467	 */
468	if (sc->hwtype == HWTYPE_USDHC) {
469		if (off == SDHCI_TRANSFER_MODE) {
470			val32 = RD4(sc, USDHC_MIX_CONTROL);
471			val32 &= ~0x3f;
472			val32 |= val & 0x37;
473			// XXX acmd23 not supported here (or by sdhci driver)
474			WR4(sc, USDHC_MIX_CONTROL, val32);
475			return;
476		}
477	} else if (sc->hwtype == HWTYPE_ESDHC) {
478		if (off == SDHCI_TRANSFER_MODE) {
479			sc->cmd_and_mode =
480			    (sc->cmd_and_mode & 0xffff0000) | val;
481			return;
482		} else if (off == SDHCI_COMMAND_FLAGS) {
483			sc->cmd_and_mode =
484			    (sc->cmd_and_mode & 0xffff) | (val << 16);
485			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
486			return;
487		}
488	}
489
490	val32 = RD4(sc, off & ~3);
491	val32 &= ~(0xffff << (off & 3) * 8);
492	val32 |= ((val & 0xffff) << (off & 3) * 8);
493	WR4(sc, off & ~3, val32);
494}
495
496static void
497fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
498{
499	struct fsl_sdhci_softc *sc = device_get_softc(dev);
500
501	/* Clear synthesized interrupts, then pass the value to the hardware. */
502	if (off == SDHCI_INT_STATUS) {
503		sc->r1bfix_intmask &= ~val;
504	}
505
506	WR4(sc, off, val);
507}
508
509static void
510fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
511    uint32_t *data, bus_size_t count)
512{
513	struct fsl_sdhci_softc *sc = device_get_softc(dev);
514
515	bus_write_multi_4(sc->mem_res, off, data, count);
516}
517
518static uint16_t
519fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
520{
521	uint16_t val;
522
523	/*
524	 * Whenever the sdhci driver writes the clock register we save a
525	 * snapshot of just the frequency bits, so that we can play them back
526	 * here on a register read without recalculating the frequency from the
527	 * prescalar and divisor bits in the real register.  We'll start with
528	 * those bits, and mix in the clock status and enable bits that come
529	 * from different places depending on which hardware we've got.
530	 */
531	val = sc->sdclockreg_freq_bits;
532
533	/*
534	 * The internal clock is always enabled (actually, the hardware manages
535	 * it).  Whether the internal clock is stable yet after a frequency
536	 * change comes from the present-state register on both hardware types.
537	 */
538	val |= SDHCI_CLOCK_INT_EN;
539	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
540	    val |= SDHCI_CLOCK_INT_STABLE;
541
542	/*
543	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
544	 * sdhci register but it's a different bit, so transcribe it (note the
545	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
546	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
547	 * no force-off for the card bus clock (the hardware runs the clock when
548	 * transfers are active no matter what), so we always say the clock is
549	 * on.
550	 * XXX Maybe we should say it's in whatever state the sdhci driver last
551	 * set it to.
552	 */
553	if (sc->hwtype == HWTYPE_ESDHC) {
554#ifdef __arm__
555		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
556#endif
557			val |= SDHCI_CLOCK_CARD_EN;
558	} else {
559		val |= SDHCI_CLOCK_CARD_EN;
560	}
561
562	return (val);
563}
564
565static void
566fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
567{
568	uint32_t divisor, freq, prescale, val32;
569
570	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
571
572	/*
573	 * Save the frequency-setting bits in SDHCI format so that we can play
574	 * them back in get_clock without complex decoding of hardware regs,
575	 * then deal with the freqency part of the value based on hardware type.
576	 */
577	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
578	if (sc->hwtype == HWTYPE_ESDHC) {
579		/*
580		 * The i.MX5 ESDHC hardware requires the driver to manually
581		 * start and stop the sd bus clock.  If the enable bit is not
582		 * set, turn off the clock in hardware and we're done, otherwise
583		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
584		 * the sdhci driver will use the original 8-bit divisor field
585		 * and the "base / 2^N" divisor scheme.
586		 */
587		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
588#ifdef __arm__
589			/* On QorIQ, this is a reserved bit. */
590			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
591#endif
592			return;
593
594		}
595		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
596		freq = sc->baseclk_hz >> ffs(divisor);
597	} else {
598		/*
599		 * The USDHC hardware provides only "force always on" control
600		 * over the sd bus clock, but no way to turn it off.  (If a cmd
601		 * or data transfer is in progress the clock is on, otherwise it
602		 * is off.)  If the clock is being disabled, we can just return
603		 * now, otherwise we decode the requested frequency.  USDHC
604		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
605		 * divisor using the "base / 2*N" divisor scheme.
606		 */
607		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
608			return;
609		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
610		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
611		    SDHCI_DIVIDER_MASK_LEN;
612		if (divisor == 0)
613			freq = sc->baseclk_hz;
614		else
615			freq = sc->baseclk_hz / (2 * divisor);
616	}
617
618	/*
619	 * Get a prescaler and final divisor to achieve the desired frequency.
620	 */
621	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
622		prescale <<= 1;
623
624	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
625		++divisor;
626
627#ifdef DEBUG
628	device_printf(sc->dev,
629	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
630	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
631	    prescale, divisor);
632#endif
633
634	/*
635	 * Adjust to zero-based values, and store them to the hardware.
636	 */
637	prescale >>= 1;
638	divisor -= 1;
639
640	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
641	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
642	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
643	val32 |= SDHC_CLK_IPGEN;
644	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
645}
646
647static boolean_t
648fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
649{
650	uint32_t inhibit;
651
652	mtx_assert(&sc->slot.mtx, MA_OWNED);
653
654	/*
655	 * Check the DAT0 line status using both the DLA (data line active) and
656	 * CDIHB (data inhibit) bits in the present state register.  In theory
657	 * just DLA should do the trick,  but in practice it takes both.  If the
658	 * DAT0 line is still being held and we're not yet beyond the timeout
659	 * point, just schedule another callout to check again later.
660	 */
661	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
662
663	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
664		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
665		    fsl_sdhci_r1bfix_func, sc, 0);
666		return (false);
667	}
668
669	/*
670	 * If we reach this point with the inhibit bits still set, we've got a
671	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
672	 * line has been released, and we synthesize a DATA_END, and if the type
673	 * of fix needed was on a command-without-data we also now add in the
674	 * original INT_RESPONSE that we suppressed earlier.
675	 */
676	if (inhibit)
677		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
678	else {
679		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
680		if (sc->r1bfix_type == R1BFIX_NODATA)
681			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
682	}
683
684	sc->r1bfix_type = R1BFIX_NONE;
685	return (true);
686}
687
688static void
689fsl_sdhci_r1bfix_func(void * arg)
690{
691	struct fsl_sdhci_softc *sc = arg;
692	boolean_t r1bwait_done;
693
694	mtx_lock(&sc->slot.mtx);
695	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
696	mtx_unlock(&sc->slot.mtx);
697	if (r1bwait_done)
698		sdhci_generic_intr(&sc->slot);
699}
700
701static void
702fsl_sdhci_intr(void *arg)
703{
704	struct fsl_sdhci_softc *sc = arg;
705	uint32_t intmask;
706
707	mtx_lock(&sc->slot.mtx);
708
709	/*
710	 * Manually check the DAT0 line for R1B response types that the
711	 * controller fails to handle properly.  The controller asserts the done
712	 * interrupt while the card is still asserting busy with the DAT0 line.
713	 *
714	 * We check DAT0 immediately because most of the time, especially on a
715	 * read, the card will actually be done by time we get here.  If it's
716	 * not, then the wait_done routine will schedule a callout to re-check
717	 * periodically until it is done.  In that case we clear the interrupt
718	 * out of the hardware now so that we can present it later when the DAT0
719	 * line is released.
720	 *
721	 * If we need to wait for the DAT0 line to be released, we set up a
722	 * timeout point 250ms in the future.  This number comes from the SD
723	 * spec, which allows a command to take that long.  In the real world,
724	 * cards tend to take 10-20ms for a long-running command such as a write
725	 * or erase that spans two pages.
726	 */
727	switch (sc->r1bfix_type) {
728	case R1BFIX_NODATA:
729		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
730		break;
731	case R1BFIX_AC12:
732		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
733		break;
734	default:
735		intmask = 0;
736		break;
737	}
738	if (intmask) {
739		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
740		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
741			WR4(sc, SDHCI_INT_STATUS, intmask);
742			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
743			    BUS_SPACE_BARRIER_WRITE);
744		}
745	}
746
747	mtx_unlock(&sc->slot.mtx);
748	sdhci_generic_intr(&sc->slot);
749}
750
751static int
752fsl_sdhci_get_ro(device_t bus, device_t child)
753{
754	struct fsl_sdhci_softc *sc = device_get_softc(bus);
755
756	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
757}
758
759static bool
760fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
761{
762	struct fsl_sdhci_softc *sc = device_get_softc(dev);
763
764	return (sdhci_fdt_gpio_get_present(sc->gpio));
765}
766
767#ifdef __powerpc__
768static uint32_t
769fsl_sdhci_get_platform_clock(device_t dev)
770{
771	device_t parent;
772	phandle_t node;
773	uint32_t clock;
774
775	node = ofw_bus_get_node(dev);
776
777	/* Get sdhci node properties */
778	if((OF_getprop(node, "clock-frequency", (void *)&clock,
779	    sizeof(clock)) <= 0) || (clock == 0)) {
780
781		/*
782		 * Trying to get clock from parent device (soc) if correct
783		 * clock cannot be acquired from sdhci node.
784		 */
785		parent = device_get_parent(dev);
786		node = ofw_bus_get_node(parent);
787
788		/* Get soc properties */
789		if ((OF_getprop(node, "bus-frequency", (void *)&clock,
790		    sizeof(clock)) <= 0) || (clock == 0)) {
791			device_printf(dev,"Cannot acquire correct sdhci "
792			    "frequency from DTS.\n");
793
794			return (0);
795		}
796		/* eSDHC clock is 1/2 platform clock. */
797		clock /= 2;
798	}
799
800	if (bootverbose)
801		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
802
803	return (clock);
804}
805#endif
806
807
808static int
809fsl_sdhci_detach(device_t dev)
810{
811	struct fsl_sdhci_softc *sc = device_get_softc(dev);
812
813	if (sc->gpio != NULL)
814		sdhci_fdt_gpio_teardown(sc->gpio);
815
816	callout_drain(&sc->r1bfix_callout);
817
818	if (sc->slot_init_done)
819		sdhci_cleanup_slot(&sc->slot);
820
821	if (sc->intr_cookie != NULL)
822		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
823	if (sc->irq_res != NULL)
824		bus_release_resource(dev, SYS_RES_IRQ,
825		    rman_get_rid(sc->irq_res), sc->irq_res);
826
827	if (sc->mem_res != NULL) {
828		bus_release_resource(dev, SYS_RES_MEMORY,
829		    rman_get_rid(sc->mem_res), sc->mem_res);
830	}
831
832	return (0);
833}
834
835static int
836fsl_sdhci_attach(device_t dev)
837{
838	struct fsl_sdhci_softc *sc = device_get_softc(dev);
839	int rid, err;
840#ifdef __powerpc__
841	phandle_t node;
842	uint32_t protctl;
843#endif
844
845	sc->dev = dev;
846
847	callout_init(&sc->r1bfix_callout, 1);
848
849	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
850	if (sc->hwtype == HWTYPE_NONE)
851		panic("Impossible: not compatible in fsl_sdhci_attach()");
852
853	rid = 0;
854	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
855	    RF_ACTIVE);
856	if (!sc->mem_res) {
857		device_printf(dev, "cannot allocate memory window\n");
858		err = ENXIO;
859		goto fail;
860	}
861
862	rid = 0;
863	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
864	    RF_ACTIVE);
865	if (!sc->irq_res) {
866		device_printf(dev, "cannot allocate interrupt\n");
867		err = ENXIO;
868		goto fail;
869	}
870
871	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
872	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
873		device_printf(dev, "cannot setup interrupt handler\n");
874		err = ENXIO;
875		goto fail;
876	}
877
878	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
879
880	/*
881	 * DMA is not really broken, I just haven't implemented it yet.
882	 */
883	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
884
885	/*
886	 * Set the buffer watermark level to 128 words (512 bytes) for both read
887	 * and write.  The hardware has a restriction that when the read or
888	 * write ready status is asserted, that means you can read exactly the
889	 * number of words set in the watermark register before you have to
890	 * re-check the status and potentially wait for more data.  The main
891	 * sdhci driver provides no hook for doing status checking on less than
892	 * a full block boundary, so we set the watermark level to be a full
893	 * block.  Reads and writes where the block size is less than the
894	 * watermark size will work correctly too, no need to change the
895	 * watermark for different size blocks.  However, 128 is the maximum
896	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
897	 * (which works fine for SD cards, may be a problem for SDIO some day).
898	 *
899	 * XXX need named constants for this stuff.
900	 */
901	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
902	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
903		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
904	else
905		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
906
907	/*
908	 * We read in native byte order in the main driver, but the register
909	 * defaults to little endian.
910	 */
911#ifdef __powerpc__
912	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
913#else
914	sc->baseclk_hz = imx_ccm_sdhci_hz();
915#endif
916	sc->slot.max_clk = sc->baseclk_hz;
917
918	/*
919	 * Set up any gpio pin handling described in the FDT data. This cannot
920	 * fail; see comments in sdhci_fdt_gpio.h for details.
921	 */
922	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
923
924#ifdef __powerpc__
925	node = ofw_bus_get_node(dev);
926	/* Default to big-endian on powerpc */
927	protctl = RD4(sc, SDHC_PROT_CTRL);
928	protctl &= ~SDHC_PROT_EMODE_MASK;
929	if (OF_hasprop(node, "little-endian"))
930		protctl |= SDHC_PROT_EMODE_LITTLE;
931	else
932		protctl |= SDHC_PROT_EMODE_BIG;
933	WR4(sc, SDHC_PROT_CTRL, protctl);
934#endif
935
936	sdhci_init_slot(dev, &sc->slot, 0);
937	sc->slot_init_done = true;
938
939	bus_generic_probe(dev);
940	bus_generic_attach(dev);
941
942	sdhci_start_slot(&sc->slot);
943
944	return (0);
945
946fail:
947	fsl_sdhci_detach(dev);
948	return (err);
949}
950
951static int
952fsl_sdhci_probe(device_t dev)
953{
954
955	if (!ofw_bus_status_okay(dev))
956		return (ENXIO);
957
958	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
959	case HWTYPE_ESDHC:
960		device_set_desc(dev, "Freescale eSDHC controller");
961		return (BUS_PROBE_DEFAULT);
962	case HWTYPE_USDHC:
963		device_set_desc(dev, "Freescale uSDHC controller");
964		return (BUS_PROBE_DEFAULT);
965	default:
966		break;
967	}
968	return (ENXIO);
969}
970
971static device_method_t fsl_sdhci_methods[] = {
972	/* Device interface */
973	DEVMETHOD(device_probe,		fsl_sdhci_probe),
974	DEVMETHOD(device_attach,	fsl_sdhci_attach),
975	DEVMETHOD(device_detach,	fsl_sdhci_detach),
976
977	/* Bus interface */
978	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
979	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
980
981	/* MMC bridge interface */
982	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
983	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
984	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
985	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
986	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
987
988	/* SDHCI accessors */
989	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
990	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
991	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
992	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
993	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
994	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
995	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
996	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
997	DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
998
999	DEVMETHOD_END
1000};
1001
1002static devclass_t fsl_sdhci_devclass;
1003
1004static driver_t fsl_sdhci_driver = {
1005	"sdhci_fsl",
1006	fsl_sdhci_methods,
1007	sizeof(struct fsl_sdhci_softc),
1008};
1009
1010DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
1011    NULL, NULL);
1012SDHCI_DEPEND(sdhci_fsl);
1013MMC_DECLARE_BRIDGE(sdhci_fsl);
1014