fsl_sdhci.c revision 314510
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/sdhci/fsl_sdhci.c 314510 2017-03-01 21:02:26Z ian $");
29
30/*
31 * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/endian.h>
42#include <sys/kernel.h>
43#include <sys/libkern.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/resource.h>
49#include <sys/rman.h>
50#include <sys/sysctl.h>
51#include <sys/taskqueue.h>
52#include <sys/time.h>
53
54#include <machine/bus.h>
55#include <machine/resource.h>
56#ifdef __arm__
57#include <machine/intr.h>
58
59#include <arm/freescale/imx/imx_ccmvar.h>
60#endif
61
62#include <dev/ofw/ofw_bus.h>
63#include <dev/ofw/ofw_bus_subr.h>
64
65#include <dev/mmc/bridge.h>
66#include <dev/mmc/mmcreg.h>
67#include <dev/mmc/mmcbrvar.h>
68
69#include <dev/sdhci/sdhci.h>
70#include "sdhci_if.h"
71
72struct fsl_sdhci_softc {
73	device_t		dev;
74	struct resource *	mem_res;
75	struct resource *	irq_res;
76	void *			intr_cookie;
77	struct sdhci_slot	slot;
78	struct callout		r1bfix_callout;
79	sbintime_t		r1bfix_timeout_at;
80	uint32_t		baseclk_hz;
81	uint32_t		cmd_and_mode;
82	uint32_t		r1bfix_intmask;
83	boolean_t		force_card_present;
84	uint16_t		sdclockreg_freq_bits;
85	uint8_t			r1bfix_type;
86	uint8_t			hwtype;
87};
88
89#define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
90#define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
91#define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
92
93#define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
94#define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
95#define	HWTYPE_USDHC	2	/* fsl6. */
96
97/*
98 * Freescale-specific registers, or in some cases the layout of bits within the
99 * sdhci-defined register is different on Freescale.  These names all begin with
100 * SDHC_ (not SDHCI_).
101 */
102
103#define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
104#define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
105#define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
106#define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
107#define	 SDHC_VEND_IPGEN	(1 << 11)
108#define	 SDHC_VEND_HCKEN	(1 << 12)
109#define	 SDHC_VEND_PEREN	(1 << 13)
110
111#define	SDHC_PRES_STATE		0x24
112#define	  SDHC_PRES_CIHB	  (1 <<  0)
113#define	  SDHC_PRES_CDIHB	  (1 <<  1)
114#define	  SDHC_PRES_DLA		  (1 <<  2)
115#define	  SDHC_PRES_SDSTB	  (1 <<  3)
116#define	  SDHC_PRES_IPGOFF	  (1 <<  4)
117#define	  SDHC_PRES_HCKOFF	  (1 <<  5)
118#define	  SDHC_PRES_PEROFF	  (1 <<  6)
119#define	  SDHC_PRES_SDOFF	  (1 <<  7)
120#define	  SDHC_PRES_WTA		  (1 <<  8)
121#define	  SDHC_PRES_RTA		  (1 <<  9)
122#define	  SDHC_PRES_BWEN	  (1 << 10)
123#define	  SDHC_PRES_BREN	  (1 << 11)
124#define	  SDHC_PRES_RTR		  (1 << 12)
125#define	  SDHC_PRES_CINST	  (1 << 16)
126#define	  SDHC_PRES_CDPL	  (1 << 18)
127#define	  SDHC_PRES_WPSPL	  (1 << 19)
128#define	  SDHC_PRES_CLSL	  (1 << 23)
129#define	  SDHC_PRES_DLSL_SHIFT	  24
130#define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
131
132#define	SDHC_PROT_CTRL		0x28
133#define	 SDHC_PROT_LED		(1 << 0)
134#define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
135#define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
136#define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
137#define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
138#define	 SDHC_PROT_D3CD		(1 << 3)
139#define	 SDHC_PROT_EMODE_BIG	(0 << 4)
140#define	 SDHC_PROT_EMODE_HALF	(1 << 4)
141#define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
142#define	 SDHC_PROT_EMODE_MASK	(3 << 4)
143#define	 SDHC_PROT_SDMA		(0 << 8)
144#define	 SDHC_PROT_ADMA1	(1 << 8)
145#define	 SDHC_PROT_ADMA2	(2 << 8)
146#define	 SDHC_PROT_ADMA264	(3 << 8)
147#define	 SDHC_PROT_DMA_MASK	(3 << 8)
148#define	 SDHC_PROT_CDTL		(1 << 6)
149#define	 SDHC_PROT_CDSS		(1 << 7)
150
151#define	SDHC_SYS_CTRL		0x2c
152
153/*
154 * The clock enable bits exist in different registers for ESDHC vs USDHC, but
155 * they are the same bits in both cases.  The divisor values go into the
156 * standard sdhci clock register, but in different bit positions and meanings
157   than the sdhci spec values.
158 */
159#define	SDHC_CLK_IPGEN		(1 << 0)
160#define	SDHC_CLK_HCKEN		(1 << 1)
161#define	SDHC_CLK_PEREN		(1 << 2)
162#define	SDHC_CLK_SDCLKEN	(1 << 3)
163#define	SDHC_CLK_ENABLE_MASK	0x0000000f
164#define	SDHC_CLK_DIVISOR_MASK	0x000000f0
165#define	SDHC_CLK_DIVISOR_SHIFT	4
166#define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
167#define	SDHC_CLK_PRESCALE_SHIFT	8
168
169static struct ofw_compat_data compat_data[] = {
170	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
171	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
172	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
173	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
174	{"fsl,esdhc",		HWTYPE_ESDHC},
175	{NULL,			HWTYPE_NONE},
176};
177
178static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
179static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
180static void fsl_sdhci_r1bfix_func(void *arg);
181
182static inline uint32_t
183RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
184{
185
186	return (bus_read_4(sc->mem_res, off));
187}
188
189static inline void
190WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
191{
192
193	bus_write_4(sc->mem_res, off, val);
194}
195
196static uint8_t
197fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
198{
199	struct fsl_sdhci_softc *sc = device_get_softc(dev);
200	uint32_t val32, wrk32;
201
202	/*
203	 * Most of the things in the standard host control register are in the
204	 * hardware's wider protocol control register, but some of the bits are
205	 * moved around.
206	 */
207	if (off == SDHCI_HOST_CONTROL) {
208		wrk32 = RD4(sc, SDHC_PROT_CTRL);
209		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
210		    SDHCI_CTRL_FORCE_CARD);
211		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
212		case SDHC_PROT_WIDTH_1BIT:
213			/* Value is already 0. */
214			break;
215		case SDHC_PROT_WIDTH_4BIT:
216			val32 |= SDHCI_CTRL_4BITBUS;
217			break;
218		case SDHC_PROT_WIDTH_8BIT:
219			val32 |= SDHCI_CTRL_8BITBUS;
220			break;
221		}
222		switch (wrk32 & SDHC_PROT_DMA_MASK) {
223		case SDHC_PROT_SDMA:
224			/* Value is already 0. */
225			break;
226		case SDHC_PROT_ADMA1:
227			/* This value is deprecated, should never appear. */
228			break;
229		case SDHC_PROT_ADMA2:
230			val32 |= SDHCI_CTRL_ADMA2;
231			break;
232		case SDHC_PROT_ADMA264:
233			val32 |= SDHCI_CTRL_ADMA264;
234			break;
235		}
236		return val32;
237	}
238
239	/*
240	 * XXX can't find the bus power on/off knob.  For now we have to say the
241	 * power is always on and always set to the same voltage.
242	 */
243	if (off == SDHCI_POWER_CONTROL) {
244		return (SDHCI_POWER_ON | SDHCI_POWER_300);
245	}
246
247
248	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
249}
250
251static uint16_t
252fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
253{
254	struct fsl_sdhci_softc *sc = device_get_softc(dev);
255	uint32_t val32;
256
257	if (sc->hwtype == HWTYPE_USDHC) {
258		/*
259		 * The USDHC hardware has nothing in the version register, but
260		 * it's v3 compatible with all our translation code.
261		 */
262		if (off == SDHCI_HOST_VERSION) {
263			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
264		}
265		/*
266		 * The USDHC hardware moved the transfer mode bits to the mixed
267		 * control register, fetch them from there.
268		 */
269		if (off == SDHCI_TRANSFER_MODE)
270			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
271
272	} else if (sc->hwtype == HWTYPE_ESDHC) {
273
274		/*
275		 * The ESDHC hardware has the typical 32-bit combined "command
276		 * and mode" register that we have to cache so that command
277		 * isn't written until after mode.  On a read, just retrieve the
278		 * cached values last written.
279		 */
280		if (off == SDHCI_TRANSFER_MODE) {
281			return (sc->cmd_and_mode & 0x0000ffff);
282		} else if (off == SDHCI_COMMAND_FLAGS) {
283			return (sc->cmd_and_mode >> 16);
284		}
285	}
286
287	/*
288	 * This hardware only manages one slot.  Synthesize a slot interrupt
289	 * status register... if there are any enabled interrupts active they
290	 * must be coming from our one and only slot.
291	 */
292	if (off == SDHCI_SLOT_INT_STATUS) {
293		val32  = RD4(sc, SDHCI_INT_STATUS);
294		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
295		return (val32 ? 1 : 0);
296	}
297
298	/*
299	 * Clock bits are scattered into various registers which differ by
300	 * hardware type, complex enough to have their own function.
301	 */
302	if (off == SDHCI_CLOCK_CONTROL) {
303		return (fsl_sdhc_get_clock(sc));
304	}
305
306	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
307}
308
309static uint32_t
310fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
311{
312	struct fsl_sdhci_softc *sc = device_get_softc(dev);
313	uint32_t val32, wrk32;
314
315	val32 = RD4(sc, off);
316
317	/*
318	 * The hardware leaves the base clock frequency out of the capabilities
319	 * register, but we filled it in by setting slot->max_clk at attach time
320	 * rather than here, because we can't represent frequencies above 63MHz
321	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
322	 * as the active output sdclock; we indicate that with a quirk setting
323	 * so don't populate the timeout frequency bits.
324	 *
325	 * XXX Turn off (for now) features the hardware can do but this driver
326	 * doesn't yet handle (1.8v, suspend/resume, etc).
327	 */
328	if (off == SDHCI_CAPABILITIES) {
329		val32 &= ~SDHCI_CAN_VDD_180;
330		val32 &= ~SDHCI_CAN_DO_SUSPEND;
331		val32 |= SDHCI_CAN_DO_8BITBUS;
332		return (val32);
333	}
334
335	/*
336	 * The hardware moves bits around in the present state register to make
337	 * room for all 8 data line state bits.  To translate, mask out all the
338	 * bits which are not in the same position in both registers (this also
339	 * masks out some Freescale-specific bits in locations defined as
340	 * reserved by sdhci), then shift the data line and retune request bits
341	 * down to their standard locations.
342	 */
343	if (off == SDHCI_PRESENT_STATE) {
344		wrk32 = val32;
345		val32 &= 0x000F0F07;
346		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
347		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
348		if (sc->force_card_present)
349			val32 |= SDHCI_CARD_PRESENT;
350		return (val32);
351	}
352
353	/*
354	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
355	 * command with an R1B response, mix it into the hardware status.
356	 */
357	if (off == SDHCI_INT_STATUS) {
358		return (val32 | sc->r1bfix_intmask);
359	}
360
361	return val32;
362}
363
364static void
365fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
366    uint32_t *data, bus_size_t count)
367{
368	struct fsl_sdhci_softc *sc = device_get_softc(dev);
369
370	bus_read_multi_4(sc->mem_res, off, data, count);
371}
372
373static void
374fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
375{
376	struct fsl_sdhci_softc *sc = device_get_softc(dev);
377	uint32_t val32;
378
379	/*
380	 * Most of the things in the standard host control register are in the
381	 * hardware's wider protocol control register, but some of the bits are
382	 * moved around.
383	 */
384	if (off == SDHCI_HOST_CONTROL) {
385		val32 = RD4(sc, SDHC_PROT_CTRL);
386		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
387		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
388		val32 |= (val & SDHCI_CTRL_LED);
389		if (val & SDHCI_CTRL_8BITBUS)
390			val32 |= SDHC_PROT_WIDTH_8BIT;
391		else
392			val32 |= (val & SDHCI_CTRL_4BITBUS);
393		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
394		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
395		WR4(sc, SDHC_PROT_CTRL, val32);
396		return;
397	}
398
399	/* XXX I can't find the bus power on/off knob; do nothing. */
400	if (off == SDHCI_POWER_CONTROL) {
401		return;
402	}
403#ifdef __powerpc__
404	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
405	if (off == SDHCI_SOFTWARE_RESET)
406		return;
407#endif
408
409	val32 = RD4(sc, off & ~3);
410	val32 &= ~(0xff << (off & 3) * 8);
411	val32 |= (val << (off & 3) * 8);
412
413	WR4(sc, off & ~3, val32);
414}
415
416static void
417fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
418{
419	struct fsl_sdhci_softc *sc = device_get_softc(dev);
420	uint32_t val32;
421
422	/*
423	 * The clock control stuff is complex enough to have its own function
424	 * that can handle the ESDHC versus USDHC differences.
425	 */
426	if (off == SDHCI_CLOCK_CONTROL) {
427		fsl_sdhc_set_clock(sc, val);
428		return;
429	}
430
431	/*
432	 * Figure out whether we need to check the DAT0 line for busy status at
433	 * interrupt time.  The controller should be doing this, but for some
434	 * reason it doesn't.  There are two cases:
435	 *  - R1B response with no data transfer should generate a DATA_END (aka
436	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
437	 *    there's no data transfer there's no DATA_END interrupt.  This is
438	 *    documented; they seem to think it's a feature.
439	 *  - R1B response after Auto-CMD12 appears to not work, even though
440	 *    there's a control bit for it (bit 3) in the vendor register.
441	 * When we're starting a command that needs a manual DAT0 line check at
442	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
443	 * can do the extra work in fsl_sdhci_intr().
444	 */
445	if (off == SDHCI_COMMAND_FLAGS) {
446		if (val & SDHCI_CMD_DATA) {
447			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
448			val32 = RD4(sc, USDHC_MIX_CONTROL);
449			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
450				sc->r1bfix_type = R1BFIX_AC12;
451		} else {
452			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
453				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
454				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
455				sc->r1bfix_type = R1BFIX_NODATA;
456			}
457		}
458	}
459
460	/*
461	 * The USDHC hardware moved the transfer mode bits to mixed control; we
462	 * just write them there and we're done.  The ESDHC hardware has the
463	 * typical combined cmd-and-mode register that allows only 32-bit
464	 * access, so when writing the mode bits just save them, then later when
465	 * writing the command bits, add in the saved mode bits.
466	 */
467	if (sc->hwtype == HWTYPE_USDHC) {
468		if (off == SDHCI_TRANSFER_MODE) {
469			val32 = RD4(sc, USDHC_MIX_CONTROL);
470			val32 &= ~0x3f;
471			val32 |= val & 0x37;
472			// XXX acmd23 not supported here (or by sdhci driver)
473			WR4(sc, USDHC_MIX_CONTROL, val32);
474			return;
475		}
476	} else if (sc->hwtype == HWTYPE_ESDHC) {
477		if (off == SDHCI_TRANSFER_MODE) {
478			sc->cmd_and_mode =
479			    (sc->cmd_and_mode & 0xffff0000) | val;
480			return;
481		} else if (off == SDHCI_COMMAND_FLAGS) {
482			sc->cmd_and_mode =
483			    (sc->cmd_and_mode & 0xffff) | (val << 16);
484			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
485			return;
486		}
487	}
488
489	val32 = RD4(sc, off & ~3);
490	val32 &= ~(0xffff << (off & 3) * 8);
491	val32 |= ((val & 0xffff) << (off & 3) * 8);
492	WR4(sc, off & ~3, val32);
493}
494
495static void
496fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
497{
498	struct fsl_sdhci_softc *sc = device_get_softc(dev);
499
500	/* Clear synthesized interrupts, then pass the value to the hardware. */
501	if (off == SDHCI_INT_STATUS) {
502		sc->r1bfix_intmask &= ~val;
503	}
504
505	WR4(sc, off, val);
506}
507
508static void
509fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
510    uint32_t *data, bus_size_t count)
511{
512	struct fsl_sdhci_softc *sc = device_get_softc(dev);
513
514	bus_write_multi_4(sc->mem_res, off, data, count);
515}
516
517static uint16_t
518fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
519{
520	uint16_t val;
521
522	/*
523	 * Whenever the sdhci driver writes the clock register we save a
524	 * snapshot of just the frequency bits, so that we can play them back
525	 * here on a register read without recalculating the frequency from the
526	 * prescalar and divisor bits in the real register.  We'll start with
527	 * those bits, and mix in the clock status and enable bits that come
528	 * from different places depending on which hardware we've got.
529	 */
530	val = sc->sdclockreg_freq_bits;
531
532	/*
533	 * The internal clock is always enabled (actually, the hardware manages
534	 * it).  Whether the internal clock is stable yet after a frequency
535	 * change comes from the present-state register on both hardware types.
536	 */
537	val |= SDHCI_CLOCK_INT_EN;
538	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
539	    val |= SDHCI_CLOCK_INT_STABLE;
540
541	/*
542	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
543	 * sdhci register but it's a different bit, so transcribe it (note the
544	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
545	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
546	 * no force-off for the card bus clock (the hardware runs the clock when
547	 * transfers are active no matter what), so we always say the clock is
548	 * on.
549	 * XXX Maybe we should say it's in whatever state the sdhci driver last
550	 * set it to.
551	 */
552	if (sc->hwtype == HWTYPE_ESDHC) {
553#ifdef __arm__
554		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
555#endif
556			val |= SDHCI_CLOCK_CARD_EN;
557	} else {
558		val |= SDHCI_CLOCK_CARD_EN;
559	}
560
561	return (val);
562}
563
564static void
565fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
566{
567	uint32_t divisor, freq, prescale, val32;
568
569	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
570
571	/*
572	 * Save the frequency-setting bits in SDHCI format so that we can play
573	 * them back in get_clock without complex decoding of hardware regs,
574	 * then deal with the freqency part of the value based on hardware type.
575	 */
576	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
577	if (sc->hwtype == HWTYPE_ESDHC) {
578		/*
579		 * The i.MX5 ESDHC hardware requires the driver to manually
580		 * start and stop the sd bus clock.  If the enable bit is not
581		 * set, turn off the clock in hardware and we're done, otherwise
582		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
583		 * the sdhci driver will use the original 8-bit divisor field
584		 * and the "base / 2^N" divisor scheme.
585		 */
586		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
587#ifdef __arm__
588			/* On QorIQ, this is a reserved bit. */
589			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
590#endif
591			return;
592
593		}
594		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
595		freq = sc->baseclk_hz >> ffs(divisor);
596	} else {
597		/*
598		 * The USDHC hardware provides only "force always on" control
599		 * over the sd bus clock, but no way to turn it off.  (If a cmd
600		 * or data transfer is in progress the clock is on, otherwise it
601		 * is off.)  If the clock is being disabled, we can just return
602		 * now, otherwise we decode the requested frequency.  USDHC
603		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
604		 * divisor using the "base / 2*N" divisor scheme.
605		 */
606		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
607			return;
608		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
609		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
610		    SDHCI_DIVIDER_MASK_LEN;
611		if (divisor == 0)
612			freq = sc->baseclk_hz;
613		else
614			freq = sc->baseclk_hz / (2 * divisor);
615	}
616
617	/*
618	 * Get a prescaler and final divisor to achieve the desired frequency.
619	 */
620	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
621		prescale <<= 1;
622
623	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
624		++divisor;
625
626#ifdef DEBUG
627	device_printf(sc->dev,
628	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
629	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
630	    prescale, divisor);
631#endif
632
633	/*
634	 * Adjust to zero-based values, and store them to the hardware.
635	 */
636	prescale >>= 1;
637	divisor -= 1;
638
639	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
640	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
641	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
642	val32 |= SDHC_CLK_IPGEN;
643	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
644}
645
646static boolean_t
647fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
648{
649	uint32_t inhibit;
650
651	mtx_assert(&sc->slot.mtx, MA_OWNED);
652
653	/*
654	 * Check the DAT0 line status using both the DLA (data line active) and
655	 * CDIHB (data inhibit) bits in the present state register.  In theory
656	 * just DLA should do the trick,  but in practice it takes both.  If the
657	 * DAT0 line is still being held and we're not yet beyond the timeout
658	 * point, just schedule another callout to check again later.
659	 */
660	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
661
662	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
663		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
664		    fsl_sdhci_r1bfix_func, sc, 0);
665		return (false);
666	}
667
668	/*
669	 * If we reach this point with the inhibit bits still set, we've got a
670	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
671	 * line has been released, and we synthesize a DATA_END, and if the type
672	 * of fix needed was on a command-without-data we also now add in the
673	 * original INT_RESPONSE that we suppressed earlier.
674	 */
675	if (inhibit)
676		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
677	else {
678		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
679		if (sc->r1bfix_type == R1BFIX_NODATA)
680			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
681	}
682
683	sc->r1bfix_type = R1BFIX_NONE;
684	return (true);
685}
686
687static void
688fsl_sdhci_r1bfix_func(void * arg)
689{
690	struct fsl_sdhci_softc *sc = arg;
691	boolean_t r1bwait_done;
692
693	mtx_lock(&sc->slot.mtx);
694	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
695	mtx_unlock(&sc->slot.mtx);
696	if (r1bwait_done)
697		sdhci_generic_intr(&sc->slot);
698}
699
700static void
701fsl_sdhci_intr(void *arg)
702{
703	struct fsl_sdhci_softc *sc = arg;
704	uint32_t intmask;
705
706	mtx_lock(&sc->slot.mtx);
707
708	/*
709	 * Manually check the DAT0 line for R1B response types that the
710	 * controller fails to handle properly.  The controller asserts the done
711	 * interrupt while the card is still asserting busy with the DAT0 line.
712	 *
713	 * We check DAT0 immediately because most of the time, especially on a
714	 * read, the card will actually be done by time we get here.  If it's
715	 * not, then the wait_done routine will schedule a callout to re-check
716	 * periodically until it is done.  In that case we clear the interrupt
717	 * out of the hardware now so that we can present it later when the DAT0
718	 * line is released.
719	 *
720	 * If we need to wait for the DAT0 line to be released, we set up a
721	 * timeout point 250ms in the future.  This number comes from the SD
722	 * spec, which allows a command to take that long.  In the real world,
723	 * cards tend to take 10-20ms for a long-running command such as a write
724	 * or erase that spans two pages.
725	 */
726	switch (sc->r1bfix_type) {
727	case R1BFIX_NODATA:
728		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
729		break;
730	case R1BFIX_AC12:
731		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
732		break;
733	default:
734		intmask = 0;
735		break;
736	}
737	if (intmask) {
738		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
739		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
740			WR4(sc, SDHCI_INT_STATUS, intmask);
741			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
742			    BUS_SPACE_BARRIER_WRITE);
743		}
744	}
745
746	mtx_unlock(&sc->slot.mtx);
747	sdhci_generic_intr(&sc->slot);
748}
749
750static int
751fsl_sdhci_get_ro(device_t bus, device_t child)
752{
753	struct fsl_sdhci_softc *sc = device_get_softc(bus);
754
755	if (RD4(sc, SDHCI_PRESENT_STATE) & SDHC_PRES_WPSPL)
756		return (false);
757	return (true);
758}
759
760#ifdef __powerpc__
761static uint32_t
762fsl_sdhci_get_platform_clock(device_t dev)
763{
764	device_t parent;
765	phandle_t node;
766	uint32_t clock;
767
768	node = ofw_bus_get_node(dev);
769
770	/* Get sdhci node properties */
771	if((OF_getprop(node, "clock-frequency", (void *)&clock,
772	    sizeof(clock)) <= 0) || (clock == 0)) {
773
774		/*
775		 * Trying to get clock from parent device (soc) if correct
776		 * clock cannot be acquired from sdhci node.
777		 */
778		parent = device_get_parent(dev);
779		node = ofw_bus_get_node(parent);
780
781		/* Get soc properties */
782		if ((OF_getprop(node, "bus-frequency", (void *)&clock,
783		    sizeof(clock)) <= 0) || (clock == 0)) {
784			device_printf(dev,"Cannot acquire correct sdhci "
785			    "frequency from DTS.\n");
786
787			return (0);
788		}
789		/* eSDHC clock is 1/2 platform clock. */
790		clock /= 2;
791	}
792
793	if (bootverbose)
794		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
795
796	return (clock);
797}
798#endif
799
800
801static int
802fsl_sdhci_detach(device_t dev)
803{
804
805	return (EBUSY);
806}
807
808static int
809fsl_sdhci_attach(device_t dev)
810{
811	struct fsl_sdhci_softc *sc = device_get_softc(dev);
812	int rid, err;
813	phandle_t node;
814#ifdef __powerpc__
815	uint32_t protctl;
816#endif
817
818	sc->dev = dev;
819
820	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
821	if (sc->hwtype == HWTYPE_NONE)
822		panic("Impossible: not compatible in fsl_sdhci_attach()");
823
824	rid = 0;
825	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
826	    RF_ACTIVE);
827	if (!sc->mem_res) {
828		device_printf(dev, "cannot allocate memory window\n");
829		err = ENXIO;
830		goto fail;
831	}
832
833	rid = 0;
834	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
835	    RF_ACTIVE);
836	if (!sc->irq_res) {
837		device_printf(dev, "cannot allocate interrupt\n");
838		err = ENXIO;
839		goto fail;
840	}
841
842	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
843	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
844		device_printf(dev, "cannot setup interrupt handler\n");
845		err = ENXIO;
846		goto fail;
847	}
848
849	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
850
851	/*
852	 * DMA is not really broken, I just haven't implemented it yet.
853	 */
854	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
855
856	/*
857	 * Set the buffer watermark level to 128 words (512 bytes) for both read
858	 * and write.  The hardware has a restriction that when the read or
859	 * write ready status is asserted, that means you can read exactly the
860	 * number of words set in the watermark register before you have to
861	 * re-check the status and potentially wait for more data.  The main
862	 * sdhci driver provides no hook for doing status checking on less than
863	 * a full block boundary, so we set the watermark level to be a full
864	 * block.  Reads and writes where the block size is less than the
865	 * watermark size will work correctly too, no need to change the
866	 * watermark for different size blocks.  However, 128 is the maximum
867	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
868	 * (which works fine for SD cards, may be a problem for SDIO some day).
869	 *
870	 * XXX need named constants for this stuff.
871	 */
872	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
873	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
874		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
875	else
876		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
877
878	/*
879	 * We read in native byte order in the main driver, but the register
880	 * defaults to little endian.
881	 */
882#ifdef __powerpc__
883	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
884#else
885	sc->baseclk_hz = imx_ccm_sdhci_hz();
886#endif
887	sc->slot.max_clk = sc->baseclk_hz;
888
889	/*
890	 * If the slot is flagged with the non-removable property, set our flag
891	 * to always force the SDHCI_CARD_PRESENT bit on.
892	 *
893	 * XXX Workaround for gpio-based card detect...
894	 *
895	 * We don't have gpio support yet.  If there's a cd-gpios property just
896	 * force the SDHCI_CARD_PRESENT bit on for now.  If there isn't really a
897	 * card there it will fail to probe at the mmc layer and nothing bad
898	 * happens except instantiating an mmcN device for an empty slot.
899	 */
900	node = ofw_bus_get_node(dev);
901	if (OF_hasprop(node, "non-removable"))
902		sc->force_card_present = true;
903	else if (OF_hasprop(node, "cd-gpios")) {
904		/* XXX put real gpio hookup here. */
905		sc->force_card_present = true;
906	}
907#ifdef __powerpc__
908	/* Default to big-endian on powerpc */
909	protctl = RD4(sc, SDHC_PROT_CTRL);
910	protctl &= ~SDHC_PROT_EMODE_MASK;
911	if (OF_hasprop(node, "little-endian"))
912		protctl |= SDHC_PROT_EMODE_LITTLE;
913	else
914		protctl |= SDHC_PROT_EMODE_BIG;
915	WR4(sc, SDHC_PROT_CTRL, protctl);
916#endif
917
918	callout_init(&sc->r1bfix_callout, 1);
919	sdhci_init_slot(dev, &sc->slot, 0);
920
921	bus_generic_probe(dev);
922	bus_generic_attach(dev);
923
924	sdhci_start_slot(&sc->slot);
925
926	return (0);
927
928fail:
929	if (sc->intr_cookie)
930		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
931	if (sc->irq_res)
932		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
933	if (sc->mem_res)
934		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
935
936	return (err);
937}
938
939static int
940fsl_sdhci_probe(device_t dev)
941{
942
943        if (!ofw_bus_status_okay(dev))
944		return (ENXIO);
945
946	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
947	case HWTYPE_ESDHC:
948		device_set_desc(dev, "Freescale eSDHC controller");
949		return (BUS_PROBE_DEFAULT);
950	case HWTYPE_USDHC:
951		device_set_desc(dev, "Freescale uSDHC controller");
952		return (BUS_PROBE_DEFAULT);
953	default:
954		break;
955	}
956	return (ENXIO);
957}
958
959static device_method_t fsl_sdhci_methods[] = {
960	/* Device interface */
961	DEVMETHOD(device_probe,		fsl_sdhci_probe),
962	DEVMETHOD(device_attach,	fsl_sdhci_attach),
963	DEVMETHOD(device_detach,	fsl_sdhci_detach),
964
965	/* Bus interface */
966	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
967	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
968	DEVMETHOD(bus_print_child,	bus_generic_print_child),
969
970	/* MMC bridge interface */
971	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
972	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
973	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
974	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
975	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
976
977	/* SDHCI registers accessors */
978	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
979	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
980	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
981	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
982	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
983	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
984	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
985	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
986
987	{ 0, 0 }
988};
989
990static devclass_t fsl_sdhci_devclass;
991
992static driver_t fsl_sdhci_driver = {
993	"sdhci_fsl",
994	fsl_sdhci_methods,
995	sizeof(struct fsl_sdhci_softc),
996};
997
998DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass, 0, 0);
999MODULE_DEPEND(sdhci_fsl, sdhci, 1, 1, 1);
1000DRIVER_MODULE(mmc, sdhci_fsl, mmc_driver, mmc_devclass, NULL, NULL);
1001MODULE_DEPEND(sdhci_fsl, mmc, 1, 1, 1);
1002