ixgbe_common.c revision 331722
1/******************************************************************************
2
3  Copyright (c) 2001-2017, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: stable/11/sys/dev/ixgbe/ixgbe_common.c 331722 2018-03-29 02:50:57Z eadler $*/
34
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37#include "ixgbe_dcb.h"
38#include "ixgbe_dcb_82599.h"
39#include "ixgbe_api.h"
40
41static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47					u16 count);
48static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55					 u16 *san_mac_offset);
56static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57					     u16 words, u16 *data);
58static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59					      u16 words, u16 *data);
60static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61						 u16 offset);
62
63/**
64 *  ixgbe_init_ops_generic - Inits function ptrs
65 *  @hw: pointer to the hardware structure
66 *
67 *  Initialize the function pointers.
68 **/
69s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70{
71	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72	struct ixgbe_mac_info *mac = &hw->mac;
73	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74
75	DEBUGFUNC("ixgbe_init_ops_generic");
76
77	/* EEPROM */
78	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80	if (eec & IXGBE_EEC_PRES) {
81		eeprom->ops.read = ixgbe_read_eerd_generic;
82		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83	} else {
84		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85		eeprom->ops.read_buffer =
86				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87	}
88	eeprom->ops.write = ixgbe_write_eeprom_generic;
89	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90	eeprom->ops.validate_checksum =
91				      ixgbe_validate_eeprom_checksum_generic;
92	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95	/* MAC */
96	mac->ops.init_hw = ixgbe_init_hw_generic;
97	mac->ops.reset_hw = NULL;
98	mac->ops.start_hw = ixgbe_start_hw_generic;
99	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100	mac->ops.get_media_type = NULL;
101	mac->ops.get_supported_physical_layer = NULL;
102	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112	/* LEDs */
113	mac->ops.led_on = ixgbe_led_on_generic;
114	mac->ops.led_off = ixgbe_led_off_generic;
115	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
118
119	/* RAR, Multicast, VLAN */
120	mac->ops.set_rar = ixgbe_set_rar_generic;
121	mac->ops.clear_rar = ixgbe_clear_rar_generic;
122	mac->ops.insert_mac_addr = NULL;
123	mac->ops.set_vmdq = NULL;
124	mac->ops.clear_vmdq = NULL;
125	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128	mac->ops.enable_mc = ixgbe_enable_mc_generic;
129	mac->ops.disable_mc = ixgbe_disable_mc_generic;
130	mac->ops.clear_vfta = NULL;
131	mac->ops.set_vfta = NULL;
132	mac->ops.set_vlvf = NULL;
133	mac->ops.init_uta_tables = NULL;
134	mac->ops.enable_rx = ixgbe_enable_rx_generic;
135	mac->ops.disable_rx = ixgbe_disable_rx_generic;
136
137	/* Flow Control */
138	mac->ops.fc_enable = ixgbe_fc_enable_generic;
139	mac->ops.setup_fc = ixgbe_setup_fc_generic;
140	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
141
142	/* Link */
143	mac->ops.get_link_capabilities = NULL;
144	mac->ops.setup_link = NULL;
145	mac->ops.check_link = NULL;
146	mac->ops.dmac_config = NULL;
147	mac->ops.dmac_update_tcs = NULL;
148	mac->ops.dmac_config_tcs = NULL;
149
150	return IXGBE_SUCCESS;
151}
152
153/**
154 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155 * of flow control
156 * @hw: pointer to hardware structure
157 *
158 * This function returns TRUE if the device supports flow control
159 * autonegotiation, and FALSE if it does not.
160 *
161 **/
162bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
163{
164	bool supported = FALSE;
165	ixgbe_link_speed speed;
166	bool link_up;
167
168	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
169
170	switch (hw->phy.media_type) {
171	case ixgbe_media_type_fiber_fixed:
172	case ixgbe_media_type_fiber_qsfp:
173	case ixgbe_media_type_fiber:
174		/* flow control autoneg black list */
175		switch (hw->device_id) {
176		case IXGBE_DEV_ID_X550EM_A_SFP:
177		case IXGBE_DEV_ID_X550EM_A_SFP_N:
178		case IXGBE_DEV_ID_X550EM_A_QSFP:
179		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180			supported = FALSE;
181			break;
182		default:
183			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
184			/* if link is down, assume supported */
185			if (link_up)
186				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
187				TRUE : FALSE;
188			else
189				supported = TRUE;
190		}
191
192		break;
193	case ixgbe_media_type_backplane:
194		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
195			supported = FALSE;
196		else
197			supported = TRUE;
198		break;
199	case ixgbe_media_type_copper:
200		/* only some copper devices support flow control autoneg */
201		switch (hw->device_id) {
202		case IXGBE_DEV_ID_82599_T3_LOM:
203		case IXGBE_DEV_ID_X540T:
204		case IXGBE_DEV_ID_X540T1:
205		case IXGBE_DEV_ID_X540_BYPASS:
206		case IXGBE_DEV_ID_X550T:
207		case IXGBE_DEV_ID_X550T1:
208		case IXGBE_DEV_ID_X550EM_X_10G_T:
209		case IXGBE_DEV_ID_X550EM_A_10G_T:
210		case IXGBE_DEV_ID_X550EM_A_1G_T:
211		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
212			supported = TRUE;
213			break;
214		default:
215			supported = FALSE;
216		}
217	default:
218		break;
219	}
220
221	if (!supported)
222		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
223			      "Device %x does not support flow control autoneg",
224			      hw->device_id);
225	return supported;
226}
227
228/**
229 *  ixgbe_setup_fc_generic - Set up flow control
230 *  @hw: pointer to hardware structure
231 *
232 *  Called at init time to set up flow control.
233 **/
234s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
235{
236	s32 ret_val = IXGBE_SUCCESS;
237	u32 reg = 0, reg_bp = 0;
238	u16 reg_cu = 0;
239	bool locked = FALSE;
240
241	DEBUGFUNC("ixgbe_setup_fc_generic");
242
243	/* Validate the requested mode */
244	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
245		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
246			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
247		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
248		goto out;
249	}
250
251	/*
252	 * 10gig parts do not have a word in the EEPROM to determine the
253	 * default flow control setting, so we explicitly set it to full.
254	 */
255	if (hw->fc.requested_mode == ixgbe_fc_default)
256		hw->fc.requested_mode = ixgbe_fc_full;
257
258	/*
259	 * Set up the 1G and 10G flow control advertisement registers so the
260	 * HW will be able to do fc autoneg once the cable is plugged in.  If
261	 * we link at 10G, the 1G advertisement is harmless and vice versa.
262	 */
263	switch (hw->phy.media_type) {
264	case ixgbe_media_type_backplane:
265		/* some MAC's need RMW protection on AUTOC */
266		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
267		if (ret_val != IXGBE_SUCCESS)
268			goto out;
269
270		/* fall through - only backplane uses autoc */
271	case ixgbe_media_type_fiber_fixed:
272	case ixgbe_media_type_fiber_qsfp:
273	case ixgbe_media_type_fiber:
274		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
275
276		break;
277	case ixgbe_media_type_copper:
278		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
279				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
280		break;
281	default:
282		break;
283	}
284
285	/*
286	 * The possible values of fc.requested_mode are:
287	 * 0: Flow control is completely disabled
288	 * 1: Rx flow control is enabled (we can receive pause frames,
289	 *    but not send pause frames).
290	 * 2: Tx flow control is enabled (we can send pause frames but
291	 *    we do not support receiving pause frames).
292	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
293	 * other: Invalid.
294	 */
295	switch (hw->fc.requested_mode) {
296	case ixgbe_fc_none:
297		/* Flow control completely disabled by software override. */
298		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
299		if (hw->phy.media_type == ixgbe_media_type_backplane)
300			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
301				    IXGBE_AUTOC_ASM_PAUSE);
302		else if (hw->phy.media_type == ixgbe_media_type_copper)
303			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
304		break;
305	case ixgbe_fc_tx_pause:
306		/*
307		 * Tx Flow control is enabled, and Rx Flow control is
308		 * disabled by software override.
309		 */
310		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
311		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
312		if (hw->phy.media_type == ixgbe_media_type_backplane) {
313			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
314			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
315		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
316			reg_cu |= IXGBE_TAF_ASM_PAUSE;
317			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
318		}
319		break;
320	case ixgbe_fc_rx_pause:
321		/*
322		 * Rx Flow control is enabled and Tx Flow control is
323		 * disabled by software override. Since there really
324		 * isn't a way to advertise that we are capable of RX
325		 * Pause ONLY, we will advertise that we support both
326		 * symmetric and asymmetric Rx PAUSE, as such we fall
327		 * through to the fc_full statement.  Later, we will
328		 * disable the adapter's ability to send PAUSE frames.
329		 */
330	case ixgbe_fc_full:
331		/* Flow control (both Rx and Tx) is enabled by SW override. */
332		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
333		if (hw->phy.media_type == ixgbe_media_type_backplane)
334			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
335				  IXGBE_AUTOC_ASM_PAUSE;
336		else if (hw->phy.media_type == ixgbe_media_type_copper)
337			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
338		break;
339	default:
340		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
341			     "Flow control param set incorrectly\n");
342		ret_val = IXGBE_ERR_CONFIG;
343		goto out;
344		break;
345	}
346
347	if (hw->mac.type < ixgbe_mac_X540) {
348		/*
349		 * Enable auto-negotiation between the MAC & PHY;
350		 * the MAC will advertise clause 37 flow control.
351		 */
352		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
353		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
354
355		/* Disable AN timeout */
356		if (hw->fc.strict_ieee)
357			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
358
359		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
360		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
361	}
362
363	/*
364	 * AUTOC restart handles negotiation of 1G and 10G on backplane
365	 * and copper. There is no need to set the PCS1GCTL register.
366	 *
367	 */
368	if (hw->phy.media_type == ixgbe_media_type_backplane) {
369		reg_bp |= IXGBE_AUTOC_AN_RESTART;
370		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
371		if (ret_val)
372			goto out;
373	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
374		    (ixgbe_device_supports_autoneg_fc(hw))) {
375		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
376				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
377	}
378
379	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
380out:
381	return ret_val;
382}
383
384/**
385 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
386 *  @hw: pointer to hardware structure
387 *
388 *  Starts the hardware by filling the bus info structure and media type, clears
389 *  all on chip counters, initializes receive address registers, multicast
390 *  table, VLAN filter table, calls routine to set up link and flow control
391 *  settings, and leaves transmit and receive units disabled and uninitialized
392 **/
393s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
394{
395	s32 ret_val;
396	u32 ctrl_ext;
397	u16 device_caps;
398
399	DEBUGFUNC("ixgbe_start_hw_generic");
400
401	/* Set the media type */
402	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
403
404	/* PHY ops initialization must be done in reset_hw() */
405
406	/* Clear the VLAN filter table */
407	hw->mac.ops.clear_vfta(hw);
408
409	/* Clear statistics registers */
410	hw->mac.ops.clear_hw_cntrs(hw);
411
412	/* Set No Snoop Disable */
413	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
414	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
415	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
416	IXGBE_WRITE_FLUSH(hw);
417
418	/* Setup flow control */
419	ret_val = ixgbe_setup_fc(hw);
420	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
421		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
422		return ret_val;
423	}
424
425	/* Cache bit indicating need for crosstalk fix */
426	switch (hw->mac.type) {
427	case ixgbe_mac_82599EB:
428	case ixgbe_mac_X550EM_x:
429	case ixgbe_mac_X550EM_a:
430		hw->mac.ops.get_device_caps(hw, &device_caps);
431		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
432			hw->need_crosstalk_fix = FALSE;
433		else
434			hw->need_crosstalk_fix = TRUE;
435		break;
436	default:
437		hw->need_crosstalk_fix = FALSE;
438		break;
439	}
440
441	/* Clear adapter stopped flag */
442	hw->adapter_stopped = FALSE;
443
444	return IXGBE_SUCCESS;
445}
446
447/**
448 *  ixgbe_start_hw_gen2 - Init sequence for common device family
449 *  @hw: pointer to hw structure
450 *
451 * Performs the init sequence common to the second generation
452 * of 10 GbE devices.
453 * Devices in the second generation:
454 *     82599
455 *     X540
456 **/
457s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
458{
459	u32 i;
460	u32 regval;
461
462	/* Clear the rate limiters */
463	for (i = 0; i < hw->mac.max_tx_queues; i++) {
464		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
465		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
466	}
467	IXGBE_WRITE_FLUSH(hw);
468
469	/* Disable relaxed ordering */
470	for (i = 0; i < hw->mac.max_tx_queues; i++) {
471		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
472		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
473		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
474	}
475
476	for (i = 0; i < hw->mac.max_rx_queues; i++) {
477		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
478		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
479			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
480		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
481	}
482
483	return IXGBE_SUCCESS;
484}
485
486/**
487 *  ixgbe_init_hw_generic - Generic hardware initialization
488 *  @hw: pointer to hardware structure
489 *
490 *  Initialize the hardware by resetting the hardware, filling the bus info
491 *  structure and media type, clears all on chip counters, initializes receive
492 *  address registers, multicast table, VLAN filter table, calls routine to set
493 *  up link and flow control settings, and leaves transmit and receive units
494 *  disabled and uninitialized
495 **/
496s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
497{
498	s32 status;
499
500	DEBUGFUNC("ixgbe_init_hw_generic");
501
502	/* Reset the hardware */
503	status = hw->mac.ops.reset_hw(hw);
504
505	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
506		/* Start the HW */
507		status = hw->mac.ops.start_hw(hw);
508	}
509
510	/* Initialize the LED link active for LED blink support */
511	if (hw->mac.ops.init_led_link_act)
512		hw->mac.ops.init_led_link_act(hw);
513
514	if (status != IXGBE_SUCCESS)
515		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
516
517	return status;
518}
519
520/**
521 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
522 *  @hw: pointer to hardware structure
523 *
524 *  Clears all hardware statistics counters by reading them from the hardware
525 *  Statistics counters are clear on read.
526 **/
527s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
528{
529	u16 i = 0;
530
531	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
532
533	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
534	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
535	IXGBE_READ_REG(hw, IXGBE_ERRBC);
536	IXGBE_READ_REG(hw, IXGBE_MSPDC);
537	for (i = 0; i < 8; i++)
538		IXGBE_READ_REG(hw, IXGBE_MPC(i));
539
540	IXGBE_READ_REG(hw, IXGBE_MLFC);
541	IXGBE_READ_REG(hw, IXGBE_MRFC);
542	IXGBE_READ_REG(hw, IXGBE_RLEC);
543	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
544	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
545	if (hw->mac.type >= ixgbe_mac_82599EB) {
546		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
547		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
548	} else {
549		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
550		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
551	}
552
553	for (i = 0; i < 8; i++) {
554		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
555		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
556		if (hw->mac.type >= ixgbe_mac_82599EB) {
557			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
558			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
559		} else {
560			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
561			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
562		}
563	}
564	if (hw->mac.type >= ixgbe_mac_82599EB)
565		for (i = 0; i < 8; i++)
566			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
567	IXGBE_READ_REG(hw, IXGBE_PRC64);
568	IXGBE_READ_REG(hw, IXGBE_PRC127);
569	IXGBE_READ_REG(hw, IXGBE_PRC255);
570	IXGBE_READ_REG(hw, IXGBE_PRC511);
571	IXGBE_READ_REG(hw, IXGBE_PRC1023);
572	IXGBE_READ_REG(hw, IXGBE_PRC1522);
573	IXGBE_READ_REG(hw, IXGBE_GPRC);
574	IXGBE_READ_REG(hw, IXGBE_BPRC);
575	IXGBE_READ_REG(hw, IXGBE_MPRC);
576	IXGBE_READ_REG(hw, IXGBE_GPTC);
577	IXGBE_READ_REG(hw, IXGBE_GORCL);
578	IXGBE_READ_REG(hw, IXGBE_GORCH);
579	IXGBE_READ_REG(hw, IXGBE_GOTCL);
580	IXGBE_READ_REG(hw, IXGBE_GOTCH);
581	if (hw->mac.type == ixgbe_mac_82598EB)
582		for (i = 0; i < 8; i++)
583			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
584	IXGBE_READ_REG(hw, IXGBE_RUC);
585	IXGBE_READ_REG(hw, IXGBE_RFC);
586	IXGBE_READ_REG(hw, IXGBE_ROC);
587	IXGBE_READ_REG(hw, IXGBE_RJC);
588	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
589	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
590	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
591	IXGBE_READ_REG(hw, IXGBE_TORL);
592	IXGBE_READ_REG(hw, IXGBE_TORH);
593	IXGBE_READ_REG(hw, IXGBE_TPR);
594	IXGBE_READ_REG(hw, IXGBE_TPT);
595	IXGBE_READ_REG(hw, IXGBE_PTC64);
596	IXGBE_READ_REG(hw, IXGBE_PTC127);
597	IXGBE_READ_REG(hw, IXGBE_PTC255);
598	IXGBE_READ_REG(hw, IXGBE_PTC511);
599	IXGBE_READ_REG(hw, IXGBE_PTC1023);
600	IXGBE_READ_REG(hw, IXGBE_PTC1522);
601	IXGBE_READ_REG(hw, IXGBE_MPTC);
602	IXGBE_READ_REG(hw, IXGBE_BPTC);
603	for (i = 0; i < 16; i++) {
604		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
605		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
606		if (hw->mac.type >= ixgbe_mac_82599EB) {
607			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
608			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
609			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
610			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
611			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
612		} else {
613			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
614			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
615		}
616	}
617
618	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
619		if (hw->phy.id == 0)
620			ixgbe_identify_phy(hw);
621		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
622				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
623		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
624				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
625		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
626				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
627		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
628				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
629	}
630
631	return IXGBE_SUCCESS;
632}
633
634/**
635 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
636 *  @hw: pointer to hardware structure
637 *  @pba_num: stores the part number string from the EEPROM
638 *  @pba_num_size: part number string buffer length
639 *
640 *  Reads the part number string from the EEPROM.
641 **/
642s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
643				  u32 pba_num_size)
644{
645	s32 ret_val;
646	u16 data;
647	u16 pba_ptr;
648	u16 offset;
649	u16 length;
650
651	DEBUGFUNC("ixgbe_read_pba_string_generic");
652
653	if (pba_num == NULL) {
654		DEBUGOUT("PBA string buffer was null\n");
655		return IXGBE_ERR_INVALID_ARGUMENT;
656	}
657
658	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
659	if (ret_val) {
660		DEBUGOUT("NVM Read Error\n");
661		return ret_val;
662	}
663
664	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
665	if (ret_val) {
666		DEBUGOUT("NVM Read Error\n");
667		return ret_val;
668	}
669
670	/*
671	 * if data is not ptr guard the PBA must be in legacy format which
672	 * means pba_ptr is actually our second data word for the PBA number
673	 * and we can decode it into an ascii string
674	 */
675	if (data != IXGBE_PBANUM_PTR_GUARD) {
676		DEBUGOUT("NVM PBA number is not stored as string\n");
677
678		/* we will need 11 characters to store the PBA */
679		if (pba_num_size < 11) {
680			DEBUGOUT("PBA string buffer too small\n");
681			return IXGBE_ERR_NO_SPACE;
682		}
683
684		/* extract hex string from data and pba_ptr */
685		pba_num[0] = (data >> 12) & 0xF;
686		pba_num[1] = (data >> 8) & 0xF;
687		pba_num[2] = (data >> 4) & 0xF;
688		pba_num[3] = data & 0xF;
689		pba_num[4] = (pba_ptr >> 12) & 0xF;
690		pba_num[5] = (pba_ptr >> 8) & 0xF;
691		pba_num[6] = '-';
692		pba_num[7] = 0;
693		pba_num[8] = (pba_ptr >> 4) & 0xF;
694		pba_num[9] = pba_ptr & 0xF;
695
696		/* put a null character on the end of our string */
697		pba_num[10] = '\0';
698
699		/* switch all the data but the '-' to hex char */
700		for (offset = 0; offset < 10; offset++) {
701			if (pba_num[offset] < 0xA)
702				pba_num[offset] += '0';
703			else if (pba_num[offset] < 0x10)
704				pba_num[offset] += 'A' - 0xA;
705		}
706
707		return IXGBE_SUCCESS;
708	}
709
710	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
711	if (ret_val) {
712		DEBUGOUT("NVM Read Error\n");
713		return ret_val;
714	}
715
716	if (length == 0xFFFF || length == 0) {
717		DEBUGOUT("NVM PBA number section invalid length\n");
718		return IXGBE_ERR_PBA_SECTION;
719	}
720
721	/* check if pba_num buffer is big enough */
722	if (pba_num_size  < (((u32)length * 2) - 1)) {
723		DEBUGOUT("PBA string buffer too small\n");
724		return IXGBE_ERR_NO_SPACE;
725	}
726
727	/* trim pba length from start of string */
728	pba_ptr++;
729	length--;
730
731	for (offset = 0; offset < length; offset++) {
732		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
733		if (ret_val) {
734			DEBUGOUT("NVM Read Error\n");
735			return ret_val;
736		}
737		pba_num[offset * 2] = (u8)(data >> 8);
738		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
739	}
740	pba_num[offset * 2] = '\0';
741
742	return IXGBE_SUCCESS;
743}
744
745/**
746 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
747 *  @hw: pointer to hardware structure
748 *  @pba_num: stores the part number from the EEPROM
749 *
750 *  Reads the part number from the EEPROM.
751 **/
752s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
753{
754	s32 ret_val;
755	u16 data;
756
757	DEBUGFUNC("ixgbe_read_pba_num_generic");
758
759	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
760	if (ret_val) {
761		DEBUGOUT("NVM Read Error\n");
762		return ret_val;
763	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
764		DEBUGOUT("NVM Not supported\n");
765		return IXGBE_NOT_IMPLEMENTED;
766	}
767	*pba_num = (u32)(data << 16);
768
769	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
770	if (ret_val) {
771		DEBUGOUT("NVM Read Error\n");
772		return ret_val;
773	}
774	*pba_num |= data;
775
776	return IXGBE_SUCCESS;
777}
778
779/**
780 *  ixgbe_read_pba_raw
781 *  @hw: pointer to the HW structure
782 *  @eeprom_buf: optional pointer to EEPROM image
783 *  @eeprom_buf_size: size of EEPROM image in words
784 *  @max_pba_block_size: PBA block size limit
785 *  @pba: pointer to output PBA structure
786 *
787 *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
788 *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
789 *
790 **/
791s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
792		       u32 eeprom_buf_size, u16 max_pba_block_size,
793		       struct ixgbe_pba *pba)
794{
795	s32 ret_val;
796	u16 pba_block_size;
797
798	if (pba == NULL)
799		return IXGBE_ERR_PARAM;
800
801	if (eeprom_buf == NULL) {
802		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
803						     &pba->word[0]);
804		if (ret_val)
805			return ret_val;
806	} else {
807		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
808			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
809			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
810		} else {
811			return IXGBE_ERR_PARAM;
812		}
813	}
814
815	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
816		if (pba->pba_block == NULL)
817			return IXGBE_ERR_PARAM;
818
819		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
820						   eeprom_buf_size,
821						   &pba_block_size);
822		if (ret_val)
823			return ret_val;
824
825		if (pba_block_size > max_pba_block_size)
826			return IXGBE_ERR_PARAM;
827
828		if (eeprom_buf == NULL) {
829			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
830							     pba_block_size,
831							     pba->pba_block);
832			if (ret_val)
833				return ret_val;
834		} else {
835			if (eeprom_buf_size > (u32)(pba->word[1] +
836					      pba_block_size)) {
837				memcpy(pba->pba_block,
838				       &eeprom_buf[pba->word[1]],
839				       pba_block_size * sizeof(u16));
840			} else {
841				return IXGBE_ERR_PARAM;
842			}
843		}
844	}
845
846	return IXGBE_SUCCESS;
847}
848
849/**
850 *  ixgbe_write_pba_raw
851 *  @hw: pointer to the HW structure
852 *  @eeprom_buf: optional pointer to EEPROM image
853 *  @eeprom_buf_size: size of EEPROM image in words
854 *  @pba: pointer to PBA structure
855 *
856 *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
857 *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
858 *
859 **/
860s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
861			u32 eeprom_buf_size, struct ixgbe_pba *pba)
862{
863	s32 ret_val;
864
865	if (pba == NULL)
866		return IXGBE_ERR_PARAM;
867
868	if (eeprom_buf == NULL) {
869		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
870						      &pba->word[0]);
871		if (ret_val)
872			return ret_val;
873	} else {
874		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
875			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
876			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
877		} else {
878			return IXGBE_ERR_PARAM;
879		}
880	}
881
882	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
883		if (pba->pba_block == NULL)
884			return IXGBE_ERR_PARAM;
885
886		if (eeprom_buf == NULL) {
887			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
888							      pba->pba_block[0],
889							      pba->pba_block);
890			if (ret_val)
891				return ret_val;
892		} else {
893			if (eeprom_buf_size > (u32)(pba->word[1] +
894					      pba->pba_block[0])) {
895				memcpy(&eeprom_buf[pba->word[1]],
896				       pba->pba_block,
897				       pba->pba_block[0] * sizeof(u16));
898			} else {
899				return IXGBE_ERR_PARAM;
900			}
901		}
902	}
903
904	return IXGBE_SUCCESS;
905}
906
907/**
908 *  ixgbe_get_pba_block_size
909 *  @hw: pointer to the HW structure
910 *  @eeprom_buf: optional pointer to EEPROM image
911 *  @eeprom_buf_size: size of EEPROM image in words
912 *  @pba_data_size: pointer to output variable
913 *
914 *  Returns the size of the PBA block in words. Function operates on EEPROM
915 *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
916 *  EEPROM device.
917 *
918 **/
919s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
920			     u32 eeprom_buf_size, u16 *pba_block_size)
921{
922	s32 ret_val;
923	u16 pba_word[2];
924	u16 length;
925
926	DEBUGFUNC("ixgbe_get_pba_block_size");
927
928	if (eeprom_buf == NULL) {
929		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
930						     &pba_word[0]);
931		if (ret_val)
932			return ret_val;
933	} else {
934		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
935			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
936			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
937		} else {
938			return IXGBE_ERR_PARAM;
939		}
940	}
941
942	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
943		if (eeprom_buf == NULL) {
944			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
945						      &length);
946			if (ret_val)
947				return ret_val;
948		} else {
949			if (eeprom_buf_size > pba_word[1])
950				length = eeprom_buf[pba_word[1] + 0];
951			else
952				return IXGBE_ERR_PARAM;
953		}
954
955		if (length == 0xFFFF || length == 0)
956			return IXGBE_ERR_PBA_SECTION;
957	} else {
958		/* PBA number in legacy format, there is no PBA Block. */
959		length = 0;
960	}
961
962	if (pba_block_size != NULL)
963		*pba_block_size = length;
964
965	return IXGBE_SUCCESS;
966}
967
968/**
969 *  ixgbe_get_mac_addr_generic - Generic get MAC address
970 *  @hw: pointer to hardware structure
971 *  @mac_addr: Adapter MAC address
972 *
973 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
974 *  A reset of the adapter must be performed prior to calling this function
975 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
976 **/
977s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
978{
979	u32 rar_high;
980	u32 rar_low;
981	u16 i;
982
983	DEBUGFUNC("ixgbe_get_mac_addr_generic");
984
985	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
986	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
987
988	for (i = 0; i < 4; i++)
989		mac_addr[i] = (u8)(rar_low >> (i*8));
990
991	for (i = 0; i < 2; i++)
992		mac_addr[i+4] = (u8)(rar_high >> (i*8));
993
994	return IXGBE_SUCCESS;
995}
996
997/**
998 *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
999 *  @hw: pointer to hardware structure
1000 *  @link_status: the link status returned by the PCI config space
1001 *
1002 *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1003 **/
1004void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1005{
1006	struct ixgbe_mac_info *mac = &hw->mac;
1007
1008	if (hw->bus.type == ixgbe_bus_type_unknown)
1009		hw->bus.type = ixgbe_bus_type_pci_express;
1010
1011	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1012	case IXGBE_PCI_LINK_WIDTH_1:
1013		hw->bus.width = ixgbe_bus_width_pcie_x1;
1014		break;
1015	case IXGBE_PCI_LINK_WIDTH_2:
1016		hw->bus.width = ixgbe_bus_width_pcie_x2;
1017		break;
1018	case IXGBE_PCI_LINK_WIDTH_4:
1019		hw->bus.width = ixgbe_bus_width_pcie_x4;
1020		break;
1021	case IXGBE_PCI_LINK_WIDTH_8:
1022		hw->bus.width = ixgbe_bus_width_pcie_x8;
1023		break;
1024	default:
1025		hw->bus.width = ixgbe_bus_width_unknown;
1026		break;
1027	}
1028
1029	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1030	case IXGBE_PCI_LINK_SPEED_2500:
1031		hw->bus.speed = ixgbe_bus_speed_2500;
1032		break;
1033	case IXGBE_PCI_LINK_SPEED_5000:
1034		hw->bus.speed = ixgbe_bus_speed_5000;
1035		break;
1036	case IXGBE_PCI_LINK_SPEED_8000:
1037		hw->bus.speed = ixgbe_bus_speed_8000;
1038		break;
1039	default:
1040		hw->bus.speed = ixgbe_bus_speed_unknown;
1041		break;
1042	}
1043
1044	mac->ops.set_lan_id(hw);
1045}
1046
1047/**
1048 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1049 *  @hw: pointer to hardware structure
1050 *
1051 *  Gets the PCI bus info (speed, width, type) then calls helper function to
1052 *  store this data within the ixgbe_hw structure.
1053 **/
1054s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1055{
1056	u16 link_status;
1057
1058	DEBUGFUNC("ixgbe_get_bus_info_generic");
1059
1060	/* Get the negotiated link width and speed from PCI config space */
1061	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1062
1063	ixgbe_set_pci_config_data_generic(hw, link_status);
1064
1065	return IXGBE_SUCCESS;
1066}
1067
1068/**
1069 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1070 *  @hw: pointer to the HW structure
1071 *
1072 *  Determines the LAN function id by reading memory-mapped registers and swaps
1073 *  the port value if requested, and set MAC instance for devices that share
1074 *  CS4227.
1075 **/
1076void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1077{
1078	struct ixgbe_bus_info *bus = &hw->bus;
1079	u32 reg;
1080	u16 ee_ctrl_4;
1081
1082	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1083
1084	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1085	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1086	bus->lan_id = (u8)bus->func;
1087
1088	/* check for a port swap */
1089	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1090	if (reg & IXGBE_FACTPS_LFS)
1091		bus->func ^= 0x1;
1092
1093	/* Get MAC instance from EEPROM for configuring CS4227 */
1094	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1095		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1096		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1097				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1098	}
1099}
1100
1101/**
1102 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1103 *  @hw: pointer to hardware structure
1104 *
1105 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1106 *  disables transmit and receive units. The adapter_stopped flag is used by
1107 *  the shared code and drivers to determine if the adapter is in a stopped
1108 *  state and should not touch the hardware.
1109 **/
1110s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1111{
1112	u32 reg_val;
1113	u16 i;
1114
1115	DEBUGFUNC("ixgbe_stop_adapter_generic");
1116
1117	/*
1118	 * Set the adapter_stopped flag so other driver functions stop touching
1119	 * the hardware
1120	 */
1121	hw->adapter_stopped = TRUE;
1122
1123	/* Disable the receive unit */
1124	ixgbe_disable_rx(hw);
1125
1126	/* Clear interrupt mask to stop interrupts from being generated */
1127	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1128
1129	/* Clear any pending interrupts, flush previous writes */
1130	IXGBE_READ_REG(hw, IXGBE_EICR);
1131
1132	/* Disable the transmit unit.  Each queue must be disabled. */
1133	for (i = 0; i < hw->mac.max_tx_queues; i++)
1134		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1135
1136	/* Disable the receive unit by stopping each queue */
1137	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1138		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1139		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1140		reg_val |= IXGBE_RXDCTL_SWFLSH;
1141		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1142	}
1143
1144	/* flush all queues disables */
1145	IXGBE_WRITE_FLUSH(hw);
1146	msec_delay(2);
1147
1148	/*
1149	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1150	 * access and verify no pending requests
1151	 */
1152	return ixgbe_disable_pcie_master(hw);
1153}
1154
1155/**
1156 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1157 *  @hw: pointer to hardware structure
1158 *
1159 *  Store the index for the link active LED. This will be used to support
1160 *  blinking the LED.
1161 **/
1162s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1163{
1164	struct ixgbe_mac_info *mac = &hw->mac;
1165	u32 led_reg, led_mode;
1166	u8 i;
1167
1168	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1169
1170	/* Get LED link active from the LEDCTL register */
1171	for (i = 0; i < 4; i++) {
1172		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1173
1174		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1175		     IXGBE_LED_LINK_ACTIVE) {
1176			mac->led_link_act = i;
1177			return IXGBE_SUCCESS;
1178		}
1179	}
1180
1181	/*
1182	 * If LEDCTL register does not have the LED link active set, then use
1183	 * known MAC defaults.
1184	 */
1185	switch (hw->mac.type) {
1186	case ixgbe_mac_X550EM_a:
1187	case ixgbe_mac_X550EM_x:
1188		mac->led_link_act = 1;
1189		break;
1190	default:
1191		mac->led_link_act = 2;
1192	}
1193	return IXGBE_SUCCESS;
1194}
1195
1196/**
1197 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1198 *  @hw: pointer to hardware structure
1199 *  @index: led number to turn on
1200 **/
1201s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1202{
1203	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1204
1205	DEBUGFUNC("ixgbe_led_on_generic");
1206
1207	if (index > 3)
1208		return IXGBE_ERR_PARAM;
1209
1210	/* To turn on the LED, set mode to ON. */
1211	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1212	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1213	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1214	IXGBE_WRITE_FLUSH(hw);
1215
1216	return IXGBE_SUCCESS;
1217}
1218
1219/**
1220 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1221 *  @hw: pointer to hardware structure
1222 *  @index: led number to turn off
1223 **/
1224s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1225{
1226	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1227
1228	DEBUGFUNC("ixgbe_led_off_generic");
1229
1230	if (index > 3)
1231		return IXGBE_ERR_PARAM;
1232
1233	/* To turn off the LED, set mode to OFF. */
1234	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1235	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1236	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1237	IXGBE_WRITE_FLUSH(hw);
1238
1239	return IXGBE_SUCCESS;
1240}
1241
1242/**
1243 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1244 *  @hw: pointer to hardware structure
1245 *
1246 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1247 *  ixgbe_hw struct in order to set up EEPROM access.
1248 **/
1249s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1250{
1251	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1252	u32 eec;
1253	u16 eeprom_size;
1254
1255	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1256
1257	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1258		eeprom->type = ixgbe_eeprom_none;
1259		/* Set default semaphore delay to 10ms which is a well
1260		 * tested value */
1261		eeprom->semaphore_delay = 10;
1262		/* Clear EEPROM page size, it will be initialized as needed */
1263		eeprom->word_page_size = 0;
1264
1265		/*
1266		 * Check for EEPROM present first.
1267		 * If not present leave as none
1268		 */
1269		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1270		if (eec & IXGBE_EEC_PRES) {
1271			eeprom->type = ixgbe_eeprom_spi;
1272
1273			/*
1274			 * SPI EEPROM is assumed here.  This code would need to
1275			 * change if a future EEPROM is not SPI.
1276			 */
1277			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1278					    IXGBE_EEC_SIZE_SHIFT);
1279			eeprom->word_size = 1 << (eeprom_size +
1280					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1281		}
1282
1283		if (eec & IXGBE_EEC_ADDR_SIZE)
1284			eeprom->address_bits = 16;
1285		else
1286			eeprom->address_bits = 8;
1287		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1288			  "%d\n", eeprom->type, eeprom->word_size,
1289			  eeprom->address_bits);
1290	}
1291
1292	return IXGBE_SUCCESS;
1293}
1294
1295/**
1296 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1297 *  @hw: pointer to hardware structure
1298 *  @offset: offset within the EEPROM to write
1299 *  @words: number of word(s)
1300 *  @data: 16 bit word(s) to write to EEPROM
1301 *
1302 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1303 **/
1304s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1305					       u16 words, u16 *data)
1306{
1307	s32 status = IXGBE_SUCCESS;
1308	u16 i, count;
1309
1310	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1311
1312	hw->eeprom.ops.init_params(hw);
1313
1314	if (words == 0) {
1315		status = IXGBE_ERR_INVALID_ARGUMENT;
1316		goto out;
1317	}
1318
1319	if (offset + words > hw->eeprom.word_size) {
1320		status = IXGBE_ERR_EEPROM;
1321		goto out;
1322	}
1323
1324	/*
1325	 * The EEPROM page size cannot be queried from the chip. We do lazy
1326	 * initialization. It is worth to do that when we write large buffer.
1327	 */
1328	if ((hw->eeprom.word_page_size == 0) &&
1329	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1330		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1331
1332	/*
1333	 * We cannot hold synchronization semaphores for too long
1334	 * to avoid other entity starvation. However it is more efficient
1335	 * to read in bursts than synchronizing access for each word.
1336	 */
1337	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1338		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1339			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1340		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1341							    count, &data[i]);
1342
1343		if (status != IXGBE_SUCCESS)
1344			break;
1345	}
1346
1347out:
1348	return status;
1349}
1350
1351/**
1352 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1353 *  @hw: pointer to hardware structure
1354 *  @offset: offset within the EEPROM to be written to
1355 *  @words: number of word(s)
1356 *  @data: 16 bit word(s) to be written to the EEPROM
1357 *
1358 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1359 *  EEPROM will most likely contain an invalid checksum.
1360 **/
1361static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1362					      u16 words, u16 *data)
1363{
1364	s32 status;
1365	u16 word;
1366	u16 page_size;
1367	u16 i;
1368	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1369
1370	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1371
1372	/* Prepare the EEPROM for writing  */
1373	status = ixgbe_acquire_eeprom(hw);
1374
1375	if (status == IXGBE_SUCCESS) {
1376		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1377			ixgbe_release_eeprom(hw);
1378			status = IXGBE_ERR_EEPROM;
1379		}
1380	}
1381
1382	if (status == IXGBE_SUCCESS) {
1383		for (i = 0; i < words; i++) {
1384			ixgbe_standby_eeprom(hw);
1385
1386			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1387			ixgbe_shift_out_eeprom_bits(hw,
1388						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1389						   IXGBE_EEPROM_OPCODE_BITS);
1390
1391			ixgbe_standby_eeprom(hw);
1392
1393			/*
1394			 * Some SPI eeproms use the 8th address bit embedded
1395			 * in the opcode
1396			 */
1397			if ((hw->eeprom.address_bits == 8) &&
1398			    ((offset + i) >= 128))
1399				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1400
1401			/* Send the Write command (8-bit opcode + addr) */
1402			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1403						    IXGBE_EEPROM_OPCODE_BITS);
1404			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1405						    hw->eeprom.address_bits);
1406
1407			page_size = hw->eeprom.word_page_size;
1408
1409			/* Send the data in burst via SPI*/
1410			do {
1411				word = data[i];
1412				word = (word >> 8) | (word << 8);
1413				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1414
1415				if (page_size == 0)
1416					break;
1417
1418				/* do not wrap around page */
1419				if (((offset + i) & (page_size - 1)) ==
1420				    (page_size - 1))
1421					break;
1422			} while (++i < words);
1423
1424			ixgbe_standby_eeprom(hw);
1425			msec_delay(10);
1426		}
1427		/* Done with writing - release the EEPROM */
1428		ixgbe_release_eeprom(hw);
1429	}
1430
1431	return status;
1432}
1433
1434/**
1435 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1436 *  @hw: pointer to hardware structure
1437 *  @offset: offset within the EEPROM to be written to
1438 *  @data: 16 bit word to be written to the EEPROM
1439 *
1440 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1441 *  EEPROM will most likely contain an invalid checksum.
1442 **/
1443s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1444{
1445	s32 status;
1446
1447	DEBUGFUNC("ixgbe_write_eeprom_generic");
1448
1449	hw->eeprom.ops.init_params(hw);
1450
1451	if (offset >= hw->eeprom.word_size) {
1452		status = IXGBE_ERR_EEPROM;
1453		goto out;
1454	}
1455
1456	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1457
1458out:
1459	return status;
1460}
1461
1462/**
1463 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1464 *  @hw: pointer to hardware structure
1465 *  @offset: offset within the EEPROM to be read
1466 *  @data: read 16 bit words(s) from EEPROM
1467 *  @words: number of word(s)
1468 *
1469 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1470 **/
1471s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1472					      u16 words, u16 *data)
1473{
1474	s32 status = IXGBE_SUCCESS;
1475	u16 i, count;
1476
1477	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1478
1479	hw->eeprom.ops.init_params(hw);
1480
1481	if (words == 0) {
1482		status = IXGBE_ERR_INVALID_ARGUMENT;
1483		goto out;
1484	}
1485
1486	if (offset + words > hw->eeprom.word_size) {
1487		status = IXGBE_ERR_EEPROM;
1488		goto out;
1489	}
1490
1491	/*
1492	 * We cannot hold synchronization semaphores for too long
1493	 * to avoid other entity starvation. However it is more efficient
1494	 * to read in bursts than synchronizing access for each word.
1495	 */
1496	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1497		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1498			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1499
1500		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1501							   count, &data[i]);
1502
1503		if (status != IXGBE_SUCCESS)
1504			break;
1505	}
1506
1507out:
1508	return status;
1509}
1510
1511/**
1512 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1513 *  @hw: pointer to hardware structure
1514 *  @offset: offset within the EEPROM to be read
1515 *  @words: number of word(s)
1516 *  @data: read 16 bit word(s) from EEPROM
1517 *
1518 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1519 **/
1520static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1521					     u16 words, u16 *data)
1522{
1523	s32 status;
1524	u16 word_in;
1525	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1526	u16 i;
1527
1528	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1529
1530	/* Prepare the EEPROM for reading  */
1531	status = ixgbe_acquire_eeprom(hw);
1532
1533	if (status == IXGBE_SUCCESS) {
1534		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1535			ixgbe_release_eeprom(hw);
1536			status = IXGBE_ERR_EEPROM;
1537		}
1538	}
1539
1540	if (status == IXGBE_SUCCESS) {
1541		for (i = 0; i < words; i++) {
1542			ixgbe_standby_eeprom(hw);
1543			/*
1544			 * Some SPI eeproms use the 8th address bit embedded
1545			 * in the opcode
1546			 */
1547			if ((hw->eeprom.address_bits == 8) &&
1548			    ((offset + i) >= 128))
1549				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1550
1551			/* Send the READ command (opcode + addr) */
1552			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1553						    IXGBE_EEPROM_OPCODE_BITS);
1554			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1555						    hw->eeprom.address_bits);
1556
1557			/* Read the data. */
1558			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1559			data[i] = (word_in >> 8) | (word_in << 8);
1560		}
1561
1562		/* End this read operation */
1563		ixgbe_release_eeprom(hw);
1564	}
1565
1566	return status;
1567}
1568
1569/**
1570 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1571 *  @hw: pointer to hardware structure
1572 *  @offset: offset within the EEPROM to be read
1573 *  @data: read 16 bit value from EEPROM
1574 *
1575 *  Reads 16 bit value from EEPROM through bit-bang method
1576 **/
1577s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1578				       u16 *data)
1579{
1580	s32 status;
1581
1582	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1583
1584	hw->eeprom.ops.init_params(hw);
1585
1586	if (offset >= hw->eeprom.word_size) {
1587		status = IXGBE_ERR_EEPROM;
1588		goto out;
1589	}
1590
1591	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1592
1593out:
1594	return status;
1595}
1596
1597/**
1598 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1599 *  @hw: pointer to hardware structure
1600 *  @offset: offset of word in the EEPROM to read
1601 *  @words: number of word(s)
1602 *  @data: 16 bit word(s) from the EEPROM
1603 *
1604 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1605 **/
1606s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1607				   u16 words, u16 *data)
1608{
1609	u32 eerd;
1610	s32 status = IXGBE_SUCCESS;
1611	u32 i;
1612
1613	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1614
1615	hw->eeprom.ops.init_params(hw);
1616
1617	if (words == 0) {
1618		status = IXGBE_ERR_INVALID_ARGUMENT;
1619		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1620		goto out;
1621	}
1622
1623	if (offset >= hw->eeprom.word_size) {
1624		status = IXGBE_ERR_EEPROM;
1625		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1626		goto out;
1627	}
1628
1629	for (i = 0; i < words; i++) {
1630		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1631		       IXGBE_EEPROM_RW_REG_START;
1632
1633		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1634		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1635
1636		if (status == IXGBE_SUCCESS) {
1637			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1638				   IXGBE_EEPROM_RW_REG_DATA);
1639		} else {
1640			DEBUGOUT("Eeprom read timed out\n");
1641			goto out;
1642		}
1643	}
1644out:
1645	return status;
1646}
1647
1648/**
1649 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1650 *  @hw: pointer to hardware structure
1651 *  @offset: offset within the EEPROM to be used as a scratch pad
1652 *
1653 *  Discover EEPROM page size by writing marching data at given offset.
1654 *  This function is called only when we are writing a new large buffer
1655 *  at given offset so the data would be overwritten anyway.
1656 **/
1657static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1658						 u16 offset)
1659{
1660	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1661	s32 status = IXGBE_SUCCESS;
1662	u16 i;
1663
1664	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1665
1666	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1667		data[i] = i;
1668
1669	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1670	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1671					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1672	hw->eeprom.word_page_size = 0;
1673	if (status != IXGBE_SUCCESS)
1674		goto out;
1675
1676	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1677	if (status != IXGBE_SUCCESS)
1678		goto out;
1679
1680	/*
1681	 * When writing in burst more than the actual page size
1682	 * EEPROM address wraps around current page.
1683	 */
1684	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1685
1686	DEBUGOUT1("Detected EEPROM page size = %d words.",
1687		  hw->eeprom.word_page_size);
1688out:
1689	return status;
1690}
1691
1692/**
1693 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1694 *  @hw: pointer to hardware structure
1695 *  @offset: offset of  word in the EEPROM to read
1696 *  @data: word read from the EEPROM
1697 *
1698 *  Reads a 16 bit word from the EEPROM using the EERD register.
1699 **/
1700s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1701{
1702	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1703}
1704
1705/**
1706 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1707 *  @hw: pointer to hardware structure
1708 *  @offset: offset of  word in the EEPROM to write
1709 *  @words: number of word(s)
1710 *  @data: word(s) write to the EEPROM
1711 *
1712 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1713 **/
1714s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1715				    u16 words, u16 *data)
1716{
1717	u32 eewr;
1718	s32 status = IXGBE_SUCCESS;
1719	u16 i;
1720
1721	DEBUGFUNC("ixgbe_write_eewr_generic");
1722
1723	hw->eeprom.ops.init_params(hw);
1724
1725	if (words == 0) {
1726		status = IXGBE_ERR_INVALID_ARGUMENT;
1727		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1728		goto out;
1729	}
1730
1731	if (offset >= hw->eeprom.word_size) {
1732		status = IXGBE_ERR_EEPROM;
1733		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1734		goto out;
1735	}
1736
1737	for (i = 0; i < words; i++) {
1738		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1739			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1740			IXGBE_EEPROM_RW_REG_START;
1741
1742		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1743		if (status != IXGBE_SUCCESS) {
1744			DEBUGOUT("Eeprom write EEWR timed out\n");
1745			goto out;
1746		}
1747
1748		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1749
1750		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1751		if (status != IXGBE_SUCCESS) {
1752			DEBUGOUT("Eeprom write EEWR timed out\n");
1753			goto out;
1754		}
1755	}
1756
1757out:
1758	return status;
1759}
1760
1761/**
1762 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1763 *  @hw: pointer to hardware structure
1764 *  @offset: offset of  word in the EEPROM to write
1765 *  @data: word write to the EEPROM
1766 *
1767 *  Write a 16 bit word to the EEPROM using the EEWR register.
1768 **/
1769s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1770{
1771	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1772}
1773
1774/**
1775 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1776 *  @hw: pointer to hardware structure
1777 *  @ee_reg: EEPROM flag for polling
1778 *
1779 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1780 *  read or write is done respectively.
1781 **/
1782s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1783{
1784	u32 i;
1785	u32 reg;
1786	s32 status = IXGBE_ERR_EEPROM;
1787
1788	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1789
1790	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1791		if (ee_reg == IXGBE_NVM_POLL_READ)
1792			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1793		else
1794			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1795
1796		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1797			status = IXGBE_SUCCESS;
1798			break;
1799		}
1800		usec_delay(5);
1801	}
1802
1803	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1804		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1805			     "EEPROM read/write done polling timed out");
1806
1807	return status;
1808}
1809
1810/**
1811 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1812 *  @hw: pointer to hardware structure
1813 *
1814 *  Prepares EEPROM for access using bit-bang method. This function should
1815 *  be called before issuing a command to the EEPROM.
1816 **/
1817static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1818{
1819	s32 status = IXGBE_SUCCESS;
1820	u32 eec;
1821	u32 i;
1822
1823	DEBUGFUNC("ixgbe_acquire_eeprom");
1824
1825	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1826	    != IXGBE_SUCCESS)
1827		status = IXGBE_ERR_SWFW_SYNC;
1828
1829	if (status == IXGBE_SUCCESS) {
1830		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1831
1832		/* Request EEPROM Access */
1833		eec |= IXGBE_EEC_REQ;
1834		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1835
1836		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1837			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1838			if (eec & IXGBE_EEC_GNT)
1839				break;
1840			usec_delay(5);
1841		}
1842
1843		/* Release if grant not acquired */
1844		if (!(eec & IXGBE_EEC_GNT)) {
1845			eec &= ~IXGBE_EEC_REQ;
1846			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1847			DEBUGOUT("Could not acquire EEPROM grant\n");
1848
1849			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1850			status = IXGBE_ERR_EEPROM;
1851		}
1852
1853		/* Setup EEPROM for Read/Write */
1854		if (status == IXGBE_SUCCESS) {
1855			/* Clear CS and SK */
1856			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1857			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1858			IXGBE_WRITE_FLUSH(hw);
1859			usec_delay(1);
1860		}
1861	}
1862	return status;
1863}
1864
1865/**
1866 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1867 *  @hw: pointer to hardware structure
1868 *
1869 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1870 **/
1871static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1872{
1873	s32 status = IXGBE_ERR_EEPROM;
1874	u32 timeout = 2000;
1875	u32 i;
1876	u32 swsm;
1877
1878	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1879
1880
1881	/* Get SMBI software semaphore between device drivers first */
1882	for (i = 0; i < timeout; i++) {
1883		/*
1884		 * If the SMBI bit is 0 when we read it, then the bit will be
1885		 * set and we have the semaphore
1886		 */
1887		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1888		if (!(swsm & IXGBE_SWSM_SMBI)) {
1889			status = IXGBE_SUCCESS;
1890			break;
1891		}
1892		usec_delay(50);
1893	}
1894
1895	if (i == timeout) {
1896		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1897			 "not granted.\n");
1898		/*
1899		 * this release is particularly important because our attempts
1900		 * above to get the semaphore may have succeeded, and if there
1901		 * was a timeout, we should unconditionally clear the semaphore
1902		 * bits to free the driver to make progress
1903		 */
1904		ixgbe_release_eeprom_semaphore(hw);
1905
1906		usec_delay(50);
1907		/*
1908		 * one last try
1909		 * If the SMBI bit is 0 when we read it, then the bit will be
1910		 * set and we have the semaphore
1911		 */
1912		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913		if (!(swsm & IXGBE_SWSM_SMBI))
1914			status = IXGBE_SUCCESS;
1915	}
1916
1917	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1918	if (status == IXGBE_SUCCESS) {
1919		for (i = 0; i < timeout; i++) {
1920			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1921
1922			/* Set the SW EEPROM semaphore bit to request access */
1923			swsm |= IXGBE_SWSM_SWESMBI;
1924			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1925
1926			/*
1927			 * If we set the bit successfully then we got the
1928			 * semaphore.
1929			 */
1930			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1931			if (swsm & IXGBE_SWSM_SWESMBI)
1932				break;
1933
1934			usec_delay(50);
1935		}
1936
1937		/*
1938		 * Release semaphores and return error if SW EEPROM semaphore
1939		 * was not granted because we don't have access to the EEPROM
1940		 */
1941		if (i >= timeout) {
1942			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1943			    "SWESMBI Software EEPROM semaphore not granted.\n");
1944			ixgbe_release_eeprom_semaphore(hw);
1945			status = IXGBE_ERR_EEPROM;
1946		}
1947	} else {
1948		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1949			     "Software semaphore SMBI between device drivers "
1950			     "not granted.\n");
1951	}
1952
1953	return status;
1954}
1955
1956/**
1957 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1958 *  @hw: pointer to hardware structure
1959 *
1960 *  This function clears hardware semaphore bits.
1961 **/
1962static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1963{
1964	u32 swsm;
1965
1966	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1967
1968	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1969
1970	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1971	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1972	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1973	IXGBE_WRITE_FLUSH(hw);
1974}
1975
1976/**
1977 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1978 *  @hw: pointer to hardware structure
1979 **/
1980static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1981{
1982	s32 status = IXGBE_SUCCESS;
1983	u16 i;
1984	u8 spi_stat_reg;
1985
1986	DEBUGFUNC("ixgbe_ready_eeprom");
1987
1988	/*
1989	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1990	 * EEPROM will signal that the command has been completed by clearing
1991	 * bit 0 of the internal status register.  If it's not cleared within
1992	 * 5 milliseconds, then error out.
1993	 */
1994	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1995		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1996					    IXGBE_EEPROM_OPCODE_BITS);
1997		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1998		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1999			break;
2000
2001		usec_delay(5);
2002		ixgbe_standby_eeprom(hw);
2003	};
2004
2005	/*
2006	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2007	 * devices (and only 0-5mSec on 5V devices)
2008	 */
2009	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2010		DEBUGOUT("SPI EEPROM Status error\n");
2011		status = IXGBE_ERR_EEPROM;
2012	}
2013
2014	return status;
2015}
2016
2017/**
2018 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2019 *  @hw: pointer to hardware structure
2020 **/
2021static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2022{
2023	u32 eec;
2024
2025	DEBUGFUNC("ixgbe_standby_eeprom");
2026
2027	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2028
2029	/* Toggle CS to flush commands */
2030	eec |= IXGBE_EEC_CS;
2031	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032	IXGBE_WRITE_FLUSH(hw);
2033	usec_delay(1);
2034	eec &= ~IXGBE_EEC_CS;
2035	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036	IXGBE_WRITE_FLUSH(hw);
2037	usec_delay(1);
2038}
2039
2040/**
2041 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2042 *  @hw: pointer to hardware structure
2043 *  @data: data to send to the EEPROM
2044 *  @count: number of bits to shift out
2045 **/
2046static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2047					u16 count)
2048{
2049	u32 eec;
2050	u32 mask;
2051	u32 i;
2052
2053	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2054
2055	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2056
2057	/*
2058	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2059	 * one bit at a time.  Determine the starting bit based on count
2060	 */
2061	mask = 0x01 << (count - 1);
2062
2063	for (i = 0; i < count; i++) {
2064		/*
2065		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2066		 * "1", and then raising and then lowering the clock (the SK
2067		 * bit controls the clock input to the EEPROM).  A "0" is
2068		 * shifted out to the EEPROM by setting "DI" to "0" and then
2069		 * raising and then lowering the clock.
2070		 */
2071		if (data & mask)
2072			eec |= IXGBE_EEC_DI;
2073		else
2074			eec &= ~IXGBE_EEC_DI;
2075
2076		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2077		IXGBE_WRITE_FLUSH(hw);
2078
2079		usec_delay(1);
2080
2081		ixgbe_raise_eeprom_clk(hw, &eec);
2082		ixgbe_lower_eeprom_clk(hw, &eec);
2083
2084		/*
2085		 * Shift mask to signify next bit of data to shift in to the
2086		 * EEPROM
2087		 */
2088		mask = mask >> 1;
2089	};
2090
2091	/* We leave the "DI" bit set to "0" when we leave this routine. */
2092	eec &= ~IXGBE_EEC_DI;
2093	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2094	IXGBE_WRITE_FLUSH(hw);
2095}
2096
2097/**
2098 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2099 *  @hw: pointer to hardware structure
2100 **/
2101static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2102{
2103	u32 eec;
2104	u32 i;
2105	u16 data = 0;
2106
2107	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2108
2109	/*
2110	 * In order to read a register from the EEPROM, we need to shift
2111	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2112	 * the clock input to the EEPROM (setting the SK bit), and then reading
2113	 * the value of the "DO" bit.  During this "shifting in" process the
2114	 * "DI" bit should always be clear.
2115	 */
2116	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2117
2118	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2119
2120	for (i = 0; i < count; i++) {
2121		data = data << 1;
2122		ixgbe_raise_eeprom_clk(hw, &eec);
2123
2124		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2125
2126		eec &= ~(IXGBE_EEC_DI);
2127		if (eec & IXGBE_EEC_DO)
2128			data |= 1;
2129
2130		ixgbe_lower_eeprom_clk(hw, &eec);
2131	}
2132
2133	return data;
2134}
2135
2136/**
2137 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2138 *  @hw: pointer to hardware structure
2139 *  @eec: EEC register's current value
2140 **/
2141static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2142{
2143	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2144
2145	/*
2146	 * Raise the clock input to the EEPROM
2147	 * (setting the SK bit), then delay
2148	 */
2149	*eec = *eec | IXGBE_EEC_SK;
2150	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2151	IXGBE_WRITE_FLUSH(hw);
2152	usec_delay(1);
2153}
2154
2155/**
2156 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2157 *  @hw: pointer to hardware structure
2158 *  @eecd: EECD's current value
2159 **/
2160static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2161{
2162	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2163
2164	/*
2165	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2166	 * delay
2167	 */
2168	*eec = *eec & ~IXGBE_EEC_SK;
2169	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2170	IXGBE_WRITE_FLUSH(hw);
2171	usec_delay(1);
2172}
2173
2174/**
2175 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2176 *  @hw: pointer to hardware structure
2177 **/
2178static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2179{
2180	u32 eec;
2181
2182	DEBUGFUNC("ixgbe_release_eeprom");
2183
2184	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2185
2186	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2187	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2188
2189	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2190	IXGBE_WRITE_FLUSH(hw);
2191
2192	usec_delay(1);
2193
2194	/* Stop requesting EEPROM access */
2195	eec &= ~IXGBE_EEC_REQ;
2196	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2197
2198	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2199
2200	/* Delay before attempt to obtain semaphore again to allow FW access */
2201	msec_delay(hw->eeprom.semaphore_delay);
2202}
2203
2204/**
2205 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2206 *  @hw: pointer to hardware structure
2207 *
2208 *  Returns a negative error code on error, or the 16-bit checksum
2209 **/
2210s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2211{
2212	u16 i;
2213	u16 j;
2214	u16 checksum = 0;
2215	u16 length = 0;
2216	u16 pointer = 0;
2217	u16 word = 0;
2218
2219	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2220
2221	/* Include 0x0-0x3F in the checksum */
2222	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2223		if (hw->eeprom.ops.read(hw, i, &word)) {
2224			DEBUGOUT("EEPROM read failed\n");
2225			return IXGBE_ERR_EEPROM;
2226		}
2227		checksum += word;
2228	}
2229
2230	/* Include all data from pointers except for the fw pointer */
2231	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2232		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2233			DEBUGOUT("EEPROM read failed\n");
2234			return IXGBE_ERR_EEPROM;
2235		}
2236
2237		/* If the pointer seems invalid */
2238		if (pointer == 0xFFFF || pointer == 0)
2239			continue;
2240
2241		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2242			DEBUGOUT("EEPROM read failed\n");
2243			return IXGBE_ERR_EEPROM;
2244		}
2245
2246		if (length == 0xFFFF || length == 0)
2247			continue;
2248
2249		for (j = pointer + 1; j <= pointer + length; j++) {
2250			if (hw->eeprom.ops.read(hw, j, &word)) {
2251				DEBUGOUT("EEPROM read failed\n");
2252				return IXGBE_ERR_EEPROM;
2253			}
2254			checksum += word;
2255		}
2256	}
2257
2258	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2259
2260	return (s32)checksum;
2261}
2262
2263/**
2264 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2265 *  @hw: pointer to hardware structure
2266 *  @checksum_val: calculated checksum
2267 *
2268 *  Performs checksum calculation and validates the EEPROM checksum.  If the
2269 *  caller does not need checksum_val, the value can be NULL.
2270 **/
2271s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2272					   u16 *checksum_val)
2273{
2274	s32 status;
2275	u16 checksum;
2276	u16 read_checksum = 0;
2277
2278	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2279
2280	/* Read the first word from the EEPROM. If this times out or fails, do
2281	 * not continue or we could be in for a very long wait while every
2282	 * EEPROM read fails
2283	 */
2284	status = hw->eeprom.ops.read(hw, 0, &checksum);
2285	if (status) {
2286		DEBUGOUT("EEPROM read failed\n");
2287		return status;
2288	}
2289
2290	status = hw->eeprom.ops.calc_checksum(hw);
2291	if (status < 0)
2292		return status;
2293
2294	checksum = (u16)(status & 0xffff);
2295
2296	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2297	if (status) {
2298		DEBUGOUT("EEPROM read failed\n");
2299		return status;
2300	}
2301
2302	/* Verify read checksum from EEPROM is the same as
2303	 * calculated checksum
2304	 */
2305	if (read_checksum != checksum)
2306		status = IXGBE_ERR_EEPROM_CHECKSUM;
2307
2308	/* If the user cares, return the calculated checksum */
2309	if (checksum_val)
2310		*checksum_val = checksum;
2311
2312	return status;
2313}
2314
2315/**
2316 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2317 *  @hw: pointer to hardware structure
2318 **/
2319s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2320{
2321	s32 status;
2322	u16 checksum;
2323
2324	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2325
2326	/* Read the first word from the EEPROM. If this times out or fails, do
2327	 * not continue or we could be in for a very long wait while every
2328	 * EEPROM read fails
2329	 */
2330	status = hw->eeprom.ops.read(hw, 0, &checksum);
2331	if (status) {
2332		DEBUGOUT("EEPROM read failed\n");
2333		return status;
2334	}
2335
2336	status = hw->eeprom.ops.calc_checksum(hw);
2337	if (status < 0)
2338		return status;
2339
2340	checksum = (u16)(status & 0xffff);
2341
2342	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2343
2344	return status;
2345}
2346
2347/**
2348 *  ixgbe_validate_mac_addr - Validate MAC address
2349 *  @mac_addr: pointer to MAC address.
2350 *
2351 *  Tests a MAC address to ensure it is a valid Individual Address.
2352 **/
2353s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2354{
2355	s32 status = IXGBE_SUCCESS;
2356
2357	DEBUGFUNC("ixgbe_validate_mac_addr");
2358
2359	/* Make sure it is not a multicast address */
2360	if (IXGBE_IS_MULTICAST(mac_addr)) {
2361		status = IXGBE_ERR_INVALID_MAC_ADDR;
2362	/* Not a broadcast address */
2363	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2364		status = IXGBE_ERR_INVALID_MAC_ADDR;
2365	/* Reject the zero address */
2366	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2367		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2368		status = IXGBE_ERR_INVALID_MAC_ADDR;
2369	}
2370	return status;
2371}
2372
2373/**
2374 *  ixgbe_set_rar_generic - Set Rx address register
2375 *  @hw: pointer to hardware structure
2376 *  @index: Receive address register to write
2377 *  @addr: Address to put into receive address register
2378 *  @vmdq: VMDq "set" or "pool" index
2379 *  @enable_addr: set flag that address is active
2380 *
2381 *  Puts an ethernet address into a receive address register.
2382 **/
2383s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2384			  u32 enable_addr)
2385{
2386	u32 rar_low, rar_high;
2387	u32 rar_entries = hw->mac.num_rar_entries;
2388
2389	DEBUGFUNC("ixgbe_set_rar_generic");
2390
2391	/* Make sure we are using a valid rar index range */
2392	if (index >= rar_entries) {
2393		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2394			     "RAR index %d is out of range.\n", index);
2395		return IXGBE_ERR_INVALID_ARGUMENT;
2396	}
2397
2398	/* setup VMDq pool selection before this RAR gets enabled */
2399	hw->mac.ops.set_vmdq(hw, index, vmdq);
2400
2401	/*
2402	 * HW expects these in little endian so we reverse the byte
2403	 * order from network order (big endian) to little endian
2404	 */
2405	rar_low = ((u32)addr[0] |
2406		   ((u32)addr[1] << 8) |
2407		   ((u32)addr[2] << 16) |
2408		   ((u32)addr[3] << 24));
2409	/*
2410	 * Some parts put the VMDq setting in the extra RAH bits,
2411	 * so save everything except the lower 16 bits that hold part
2412	 * of the address and the address valid bit.
2413	 */
2414	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2415	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2416	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2417
2418	if (enable_addr != 0)
2419		rar_high |= IXGBE_RAH_AV;
2420
2421	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2422	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2423
2424	return IXGBE_SUCCESS;
2425}
2426
2427/**
2428 *  ixgbe_clear_rar_generic - Remove Rx address register
2429 *  @hw: pointer to hardware structure
2430 *  @index: Receive address register to write
2431 *
2432 *  Clears an ethernet address from a receive address register.
2433 **/
2434s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2435{
2436	u32 rar_high;
2437	u32 rar_entries = hw->mac.num_rar_entries;
2438
2439	DEBUGFUNC("ixgbe_clear_rar_generic");
2440
2441	/* Make sure we are using a valid rar index range */
2442	if (index >= rar_entries) {
2443		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2444			     "RAR index %d is out of range.\n", index);
2445		return IXGBE_ERR_INVALID_ARGUMENT;
2446	}
2447
2448	/*
2449	 * Some parts put the VMDq setting in the extra RAH bits,
2450	 * so save everything except the lower 16 bits that hold part
2451	 * of the address and the address valid bit.
2452	 */
2453	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2454	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2455
2456	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2457	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2458
2459	/* clear VMDq pool/queue selection for this RAR */
2460	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2461
2462	return IXGBE_SUCCESS;
2463}
2464
2465/**
2466 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2467 *  @hw: pointer to hardware structure
2468 *
2469 *  Places the MAC address in receive address register 0 and clears the rest
2470 *  of the receive address registers. Clears the multicast table. Assumes
2471 *  the receiver is in reset when the routine is called.
2472 **/
2473s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2474{
2475	u32 i;
2476	u32 rar_entries = hw->mac.num_rar_entries;
2477
2478	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2479
2480	/*
2481	 * If the current mac address is valid, assume it is a software override
2482	 * to the permanent address.
2483	 * Otherwise, use the permanent address from the eeprom.
2484	 */
2485	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2486	    IXGBE_ERR_INVALID_MAC_ADDR) {
2487		/* Get the MAC address from the RAR0 for later reference */
2488		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2489
2490		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2491			  hw->mac.addr[0], hw->mac.addr[1],
2492			  hw->mac.addr[2]);
2493		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2494			  hw->mac.addr[4], hw->mac.addr[5]);
2495	} else {
2496		/* Setup the receive address. */
2497		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2498		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2499			  hw->mac.addr[0], hw->mac.addr[1],
2500			  hw->mac.addr[2]);
2501		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2502			  hw->mac.addr[4], hw->mac.addr[5]);
2503
2504		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2505	}
2506
2507	/* clear VMDq pool/queue selection for RAR 0 */
2508	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2509
2510	hw->addr_ctrl.overflow_promisc = 0;
2511
2512	hw->addr_ctrl.rar_used_count = 1;
2513
2514	/* Zero out the other receive addresses. */
2515	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2516	for (i = 1; i < rar_entries; i++) {
2517		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2518		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2519	}
2520
2521	/* Clear the MTA */
2522	hw->addr_ctrl.mta_in_use = 0;
2523	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2524
2525	DEBUGOUT(" Clearing MTA\n");
2526	for (i = 0; i < hw->mac.mcft_size; i++)
2527		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2528
2529	ixgbe_init_uta_tables(hw);
2530
2531	return IXGBE_SUCCESS;
2532}
2533
2534/**
2535 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2536 *  @hw: pointer to hardware structure
2537 *  @addr: new address
2538 *
2539 *  Adds it to unused receive address register or goes into promiscuous mode.
2540 **/
2541void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2542{
2543	u32 rar_entries = hw->mac.num_rar_entries;
2544	u32 rar;
2545
2546	DEBUGFUNC("ixgbe_add_uc_addr");
2547
2548	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2549		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2550
2551	/*
2552	 * Place this address in the RAR if there is room,
2553	 * else put the controller into promiscuous mode
2554	 */
2555	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2556		rar = hw->addr_ctrl.rar_used_count;
2557		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2558		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2559		hw->addr_ctrl.rar_used_count++;
2560	} else {
2561		hw->addr_ctrl.overflow_promisc++;
2562	}
2563
2564	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2565}
2566
2567/**
2568 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2569 *  @hw: pointer to hardware structure
2570 *  @addr_list: the list of new addresses
2571 *  @addr_count: number of addresses
2572 *  @next: iterator function to walk the address list
2573 *
2574 *  The given list replaces any existing list.  Clears the secondary addrs from
2575 *  receive address registers.  Uses unused receive address registers for the
2576 *  first secondary addresses, and falls back to promiscuous mode as needed.
2577 *
2578 *  Drivers using secondary unicast addresses must set user_set_promisc when
2579 *  manually putting the device into promiscuous mode.
2580 **/
2581s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2582				      u32 addr_count, ixgbe_mc_addr_itr next)
2583{
2584	u8 *addr;
2585	u32 i;
2586	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2587	u32 uc_addr_in_use;
2588	u32 fctrl;
2589	u32 vmdq;
2590
2591	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2592
2593	/*
2594	 * Clear accounting of old secondary address list,
2595	 * don't count RAR[0]
2596	 */
2597	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2598	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2599	hw->addr_ctrl.overflow_promisc = 0;
2600
2601	/* Zero out the other receive addresses */
2602	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2603	for (i = 0; i < uc_addr_in_use; i++) {
2604		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2605		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2606	}
2607
2608	/* Add the new addresses */
2609	for (i = 0; i < addr_count; i++) {
2610		DEBUGOUT(" Adding the secondary addresses:\n");
2611		addr = next(hw, &addr_list, &vmdq);
2612		ixgbe_add_uc_addr(hw, addr, vmdq);
2613	}
2614
2615	if (hw->addr_ctrl.overflow_promisc) {
2616		/* enable promisc if not already in overflow or set by user */
2617		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2618			DEBUGOUT(" Entering address overflow promisc mode\n");
2619			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2620			fctrl |= IXGBE_FCTRL_UPE;
2621			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2622		}
2623	} else {
2624		/* only disable if set by overflow, not by user */
2625		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2626			DEBUGOUT(" Leaving address overflow promisc mode\n");
2627			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2628			fctrl &= ~IXGBE_FCTRL_UPE;
2629			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2630		}
2631	}
2632
2633	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2634	return IXGBE_SUCCESS;
2635}
2636
2637/**
2638 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2639 *  @hw: pointer to hardware structure
2640 *  @mc_addr: the multicast address
2641 *
2642 *  Extracts the 12 bits, from a multicast address, to determine which
2643 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2644 *  incoming rx multicast addresses, to determine the bit-vector to check in
2645 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2646 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2647 *  to mc_filter_type.
2648 **/
2649static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2650{
2651	u32 vector = 0;
2652
2653	DEBUGFUNC("ixgbe_mta_vector");
2654
2655	switch (hw->mac.mc_filter_type) {
2656	case 0:   /* use bits [47:36] of the address */
2657		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2658		break;
2659	case 1:   /* use bits [46:35] of the address */
2660		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2661		break;
2662	case 2:   /* use bits [45:34] of the address */
2663		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2664		break;
2665	case 3:   /* use bits [43:32] of the address */
2666		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2667		break;
2668	default:  /* Invalid mc_filter_type */
2669		DEBUGOUT("MC filter type param set incorrectly\n");
2670		ASSERT(0);
2671		break;
2672	}
2673
2674	/* vector can only be 12-bits or boundary will be exceeded */
2675	vector &= 0xFFF;
2676	return vector;
2677}
2678
2679/**
2680 *  ixgbe_set_mta - Set bit-vector in multicast table
2681 *  @hw: pointer to hardware structure
2682 *  @hash_value: Multicast address hash value
2683 *
2684 *  Sets the bit-vector in the multicast table.
2685 **/
2686void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2687{
2688	u32 vector;
2689	u32 vector_bit;
2690	u32 vector_reg;
2691
2692	DEBUGFUNC("ixgbe_set_mta");
2693
2694	hw->addr_ctrl.mta_in_use++;
2695
2696	vector = ixgbe_mta_vector(hw, mc_addr);
2697	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2698
2699	/*
2700	 * The MTA is a register array of 128 32-bit registers. It is treated
2701	 * like an array of 4096 bits.  We want to set bit
2702	 * BitArray[vector_value]. So we figure out what register the bit is
2703	 * in, read it, OR in the new bit, then write back the new value.  The
2704	 * register is determined by the upper 7 bits of the vector value and
2705	 * the bit within that register are determined by the lower 5 bits of
2706	 * the value.
2707	 */
2708	vector_reg = (vector >> 5) & 0x7F;
2709	vector_bit = vector & 0x1F;
2710	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2711}
2712
2713/**
2714 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2715 *  @hw: pointer to hardware structure
2716 *  @mc_addr_list: the list of new multicast addresses
2717 *  @mc_addr_count: number of addresses
2718 *  @next: iterator function to walk the multicast address list
2719 *  @clear: flag, when set clears the table beforehand
2720 *
2721 *  When the clear flag is set, the given list replaces any existing list.
2722 *  Hashes the given addresses into the multicast table.
2723 **/
2724s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2725				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2726				      bool clear)
2727{
2728	u32 i;
2729	u32 vmdq;
2730
2731	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2732
2733	/*
2734	 * Set the new number of MC addresses that we are being requested to
2735	 * use.
2736	 */
2737	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2738	hw->addr_ctrl.mta_in_use = 0;
2739
2740	/* Clear mta_shadow */
2741	if (clear) {
2742		DEBUGOUT(" Clearing MTA\n");
2743		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2744	}
2745
2746	/* Update mta_shadow */
2747	for (i = 0; i < mc_addr_count; i++) {
2748		DEBUGOUT(" Adding the multicast addresses:\n");
2749		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2750	}
2751
2752	/* Enable mta */
2753	for (i = 0; i < hw->mac.mcft_size; i++)
2754		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2755				      hw->mac.mta_shadow[i]);
2756
2757	if (hw->addr_ctrl.mta_in_use > 0)
2758		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2759				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2760
2761	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2762	return IXGBE_SUCCESS;
2763}
2764
2765/**
2766 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2767 *  @hw: pointer to hardware structure
2768 *
2769 *  Enables multicast address in RAR and the use of the multicast hash table.
2770 **/
2771s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2772{
2773	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2774
2775	DEBUGFUNC("ixgbe_enable_mc_generic");
2776
2777	if (a->mta_in_use > 0)
2778		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2779				hw->mac.mc_filter_type);
2780
2781	return IXGBE_SUCCESS;
2782}
2783
2784/**
2785 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2786 *  @hw: pointer to hardware structure
2787 *
2788 *  Disables multicast address in RAR and the use of the multicast hash table.
2789 **/
2790s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2791{
2792	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2793
2794	DEBUGFUNC("ixgbe_disable_mc_generic");
2795
2796	if (a->mta_in_use > 0)
2797		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2798
2799	return IXGBE_SUCCESS;
2800}
2801
2802/**
2803 *  ixgbe_fc_enable_generic - Enable flow control
2804 *  @hw: pointer to hardware structure
2805 *
2806 *  Enable flow control according to the current settings.
2807 **/
2808s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2809{
2810	s32 ret_val = IXGBE_SUCCESS;
2811	u32 mflcn_reg, fccfg_reg;
2812	u32 reg;
2813	u32 fcrtl, fcrth;
2814	int i;
2815
2816	DEBUGFUNC("ixgbe_fc_enable_generic");
2817
2818	/* Validate the water mark configuration */
2819	if (!hw->fc.pause_time) {
2820		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2821		goto out;
2822	}
2823
2824	/* Low water mark of zero causes XOFF floods */
2825	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2826		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2827		    hw->fc.high_water[i]) {
2828			if (!hw->fc.low_water[i] ||
2829			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2830				DEBUGOUT("Invalid water mark configuration\n");
2831				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2832				goto out;
2833			}
2834		}
2835	}
2836
2837	/* Negotiate the fc mode to use */
2838	hw->mac.ops.fc_autoneg(hw);
2839
2840	/* Disable any previous flow control settings */
2841	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2842	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2843
2844	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2845	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2846
2847	/*
2848	 * The possible values of fc.current_mode are:
2849	 * 0: Flow control is completely disabled
2850	 * 1: Rx flow control is enabled (we can receive pause frames,
2851	 *    but not send pause frames).
2852	 * 2: Tx flow control is enabled (we can send pause frames but
2853	 *    we do not support receiving pause frames).
2854	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2855	 * other: Invalid.
2856	 */
2857	switch (hw->fc.current_mode) {
2858	case ixgbe_fc_none:
2859		/*
2860		 * Flow control is disabled by software override or autoneg.
2861		 * The code below will actually disable it in the HW.
2862		 */
2863		break;
2864	case ixgbe_fc_rx_pause:
2865		/*
2866		 * Rx Flow control is enabled and Tx Flow control is
2867		 * disabled by software override. Since there really
2868		 * isn't a way to advertise that we are capable of RX
2869		 * Pause ONLY, we will advertise that we support both
2870		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2871		 * disable the adapter's ability to send PAUSE frames.
2872		 */
2873		mflcn_reg |= IXGBE_MFLCN_RFCE;
2874		break;
2875	case ixgbe_fc_tx_pause:
2876		/*
2877		 * Tx Flow control is enabled, and Rx Flow control is
2878		 * disabled by software override.
2879		 */
2880		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2881		break;
2882	case ixgbe_fc_full:
2883		/* Flow control (both Rx and Tx) is enabled by SW override. */
2884		mflcn_reg |= IXGBE_MFLCN_RFCE;
2885		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2886		break;
2887	default:
2888		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2889			     "Flow control param set incorrectly\n");
2890		ret_val = IXGBE_ERR_CONFIG;
2891		goto out;
2892		break;
2893	}
2894
2895	/* Set 802.3x based flow control settings. */
2896	mflcn_reg |= IXGBE_MFLCN_DPF;
2897	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2898	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2899
2900
2901	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2902	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2903		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2904		    hw->fc.high_water[i]) {
2905			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2906			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2907			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2908		} else {
2909			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2910			/*
2911			 * In order to prevent Tx hangs when the internal Tx
2912			 * switch is enabled we must set the high water mark
2913			 * to the Rx packet buffer size - 24KB.  This allows
2914			 * the Tx switch to function even under heavy Rx
2915			 * workloads.
2916			 */
2917			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2918		}
2919
2920		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2921	}
2922
2923	/* Configure pause time (2 TCs per register) */
2924	reg = hw->fc.pause_time * 0x00010001;
2925	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2926		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2927
2928	/* Configure flow control refresh threshold value */
2929	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2930
2931out:
2932	return ret_val;
2933}
2934
2935/**
2936 *  ixgbe_negotiate_fc - Negotiate flow control
2937 *  @hw: pointer to hardware structure
2938 *  @adv_reg: flow control advertised settings
2939 *  @lp_reg: link partner's flow control settings
2940 *  @adv_sym: symmetric pause bit in advertisement
2941 *  @adv_asm: asymmetric pause bit in advertisement
2942 *  @lp_sym: symmetric pause bit in link partner advertisement
2943 *  @lp_asm: asymmetric pause bit in link partner advertisement
2944 *
2945 *  Find the intersection between advertised settings and link partner's
2946 *  advertised settings
2947 **/
2948s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2949		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2950{
2951	if ((!(adv_reg)) ||  (!(lp_reg))) {
2952		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2953			     "Local or link partner's advertised flow control "
2954			     "settings are NULL. Local: %x, link partner: %x\n",
2955			     adv_reg, lp_reg);
2956		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2957	}
2958
2959	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2960		/*
2961		 * Now we need to check if the user selected Rx ONLY
2962		 * of pause frames.  In this case, we had to advertise
2963		 * FULL flow control because we could not advertise RX
2964		 * ONLY. Hence, we must now check to see if we need to
2965		 * turn OFF the TRANSMISSION of PAUSE frames.
2966		 */
2967		if (hw->fc.requested_mode == ixgbe_fc_full) {
2968			hw->fc.current_mode = ixgbe_fc_full;
2969			DEBUGOUT("Flow Control = FULL.\n");
2970		} else {
2971			hw->fc.current_mode = ixgbe_fc_rx_pause;
2972			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2973		}
2974	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2975		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2976		hw->fc.current_mode = ixgbe_fc_tx_pause;
2977		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2978	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2979		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2980		hw->fc.current_mode = ixgbe_fc_rx_pause;
2981		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2982	} else {
2983		hw->fc.current_mode = ixgbe_fc_none;
2984		DEBUGOUT("Flow Control = NONE.\n");
2985	}
2986	return IXGBE_SUCCESS;
2987}
2988
2989/**
2990 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2991 *  @hw: pointer to hardware structure
2992 *
2993 *  Enable flow control according on 1 gig fiber.
2994 **/
2995static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2996{
2997	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2998	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2999
3000	/*
3001	 * On multispeed fiber at 1g, bail out if
3002	 * - link is up but AN did not complete, or if
3003	 * - link is up and AN completed but timed out
3004	 */
3005
3006	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3007	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3008	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3009		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3010		goto out;
3011	}
3012
3013	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3014	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3015
3016	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3017				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3018				      IXGBE_PCS1GANA_ASM_PAUSE,
3019				      IXGBE_PCS1GANA_SYM_PAUSE,
3020				      IXGBE_PCS1GANA_ASM_PAUSE);
3021
3022out:
3023	return ret_val;
3024}
3025
3026/**
3027 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3028 *  @hw: pointer to hardware structure
3029 *
3030 *  Enable flow control according to IEEE clause 37.
3031 **/
3032static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3033{
3034	u32 links2, anlp1_reg, autoc_reg, links;
3035	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3036
3037	/*
3038	 * On backplane, bail out if
3039	 * - backplane autoneg was not completed, or if
3040	 * - we are 82599 and link partner is not AN enabled
3041	 */
3042	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3043	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3044		DEBUGOUT("Auto-Negotiation did not complete\n");
3045		goto out;
3046	}
3047
3048	if (hw->mac.type == ixgbe_mac_82599EB) {
3049		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3050		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3051			DEBUGOUT("Link partner is not AN enabled\n");
3052			goto out;
3053		}
3054	}
3055	/*
3056	 * Read the 10g AN autoc and LP ability registers and resolve
3057	 * local flow control settings accordingly
3058	 */
3059	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3060	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3061
3062	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3063		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3064		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3065
3066out:
3067	return ret_val;
3068}
3069
3070/**
3071 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3072 *  @hw: pointer to hardware structure
3073 *
3074 *  Enable flow control according to IEEE clause 37.
3075 **/
3076static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3077{
3078	u16 technology_ability_reg = 0;
3079	u16 lp_technology_ability_reg = 0;
3080
3081	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3082			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3083			     &technology_ability_reg);
3084	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3085			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3086			     &lp_technology_ability_reg);
3087
3088	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3089				  (u32)lp_technology_ability_reg,
3090				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3091				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3092}
3093
3094/**
3095 *  ixgbe_fc_autoneg - Configure flow control
3096 *  @hw: pointer to hardware structure
3097 *
3098 *  Compares our advertised flow control capabilities to those advertised by
3099 *  our link partner, and determines the proper flow control mode to use.
3100 **/
3101void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3102{
3103	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3104	ixgbe_link_speed speed;
3105	bool link_up;
3106
3107	DEBUGFUNC("ixgbe_fc_autoneg");
3108
3109	/*
3110	 * AN should have completed when the cable was plugged in.
3111	 * Look for reasons to bail out.  Bail out if:
3112	 * - FC autoneg is disabled, or if
3113	 * - link is not up.
3114	 */
3115	if (hw->fc.disable_fc_autoneg) {
3116		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3117			     "Flow control autoneg is disabled");
3118		goto out;
3119	}
3120
3121	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3122	if (!link_up) {
3123		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3124		goto out;
3125	}
3126
3127	switch (hw->phy.media_type) {
3128	/* Autoneg flow control on fiber adapters */
3129	case ixgbe_media_type_fiber_fixed:
3130	case ixgbe_media_type_fiber_qsfp:
3131	case ixgbe_media_type_fiber:
3132		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3133			ret_val = ixgbe_fc_autoneg_fiber(hw);
3134		break;
3135
3136	/* Autoneg flow control on backplane adapters */
3137	case ixgbe_media_type_backplane:
3138		ret_val = ixgbe_fc_autoneg_backplane(hw);
3139		break;
3140
3141	/* Autoneg flow control on copper adapters */
3142	case ixgbe_media_type_copper:
3143		if (ixgbe_device_supports_autoneg_fc(hw))
3144			ret_val = ixgbe_fc_autoneg_copper(hw);
3145		break;
3146
3147	default:
3148		break;
3149	}
3150
3151out:
3152	if (ret_val == IXGBE_SUCCESS) {
3153		hw->fc.fc_was_autonegged = TRUE;
3154	} else {
3155		hw->fc.fc_was_autonegged = FALSE;
3156		hw->fc.current_mode = hw->fc.requested_mode;
3157	}
3158}
3159
3160/*
3161 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3162 * @hw: pointer to hardware structure
3163 *
3164 * System-wide timeout range is encoded in PCIe Device Control2 register.
3165 *
3166 * Add 10% to specified maximum and return the number of times to poll for
3167 * completion timeout, in units of 100 microsec.  Never return less than
3168 * 800 = 80 millisec.
3169 */
3170static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3171{
3172	s16 devctl2;
3173	u32 pollcnt;
3174
3175	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3176	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3177
3178	switch (devctl2) {
3179	case IXGBE_PCIDEVCTRL2_65_130ms:
3180		pollcnt = 1300;		/* 130 millisec */
3181		break;
3182	case IXGBE_PCIDEVCTRL2_260_520ms:
3183		pollcnt = 5200;		/* 520 millisec */
3184		break;
3185	case IXGBE_PCIDEVCTRL2_1_2s:
3186		pollcnt = 20000;	/* 2 sec */
3187		break;
3188	case IXGBE_PCIDEVCTRL2_4_8s:
3189		pollcnt = 80000;	/* 8 sec */
3190		break;
3191	case IXGBE_PCIDEVCTRL2_17_34s:
3192		pollcnt = 34000;	/* 34 sec */
3193		break;
3194	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3195	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3196	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3197	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3198	default:
3199		pollcnt = 800;		/* 80 millisec minimum */
3200		break;
3201	}
3202
3203	/* add 10% to spec maximum */
3204	return (pollcnt * 11) / 10;
3205}
3206
3207/**
3208 *  ixgbe_disable_pcie_master - Disable PCI-express master access
3209 *  @hw: pointer to hardware structure
3210 *
3211 *  Disables PCI-Express master access and verifies there are no pending
3212 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3213 *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3214 *  is returned signifying master requests disabled.
3215 **/
3216s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3217{
3218	s32 status = IXGBE_SUCCESS;
3219	u32 i, poll;
3220	u16 value;
3221
3222	DEBUGFUNC("ixgbe_disable_pcie_master");
3223
3224	/* Always set this bit to ensure any future transactions are blocked */
3225	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3226
3227	/* Exit if master requests are blocked */
3228	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3229	    IXGBE_REMOVED(hw->hw_addr))
3230		goto out;
3231
3232	/* Poll for master request bit to clear */
3233	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3234		usec_delay(100);
3235		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3236			goto out;
3237	}
3238
3239	/*
3240	 * Two consecutive resets are required via CTRL.RST per datasheet
3241	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3242	 * of this need.  The first reset prevents new master requests from
3243	 * being issued by our device.  We then must wait 1usec or more for any
3244	 * remaining completions from the PCIe bus to trickle in, and then reset
3245	 * again to clear out any effects they may have had on our device.
3246	 */
3247	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3248	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3249
3250	if (hw->mac.type >= ixgbe_mac_X550)
3251		goto out;
3252
3253	/*
3254	 * Before proceeding, make sure that the PCIe block does not have
3255	 * transactions pending.
3256	 */
3257	poll = ixgbe_pcie_timeout_poll(hw);
3258	for (i = 0; i < poll; i++) {
3259		usec_delay(100);
3260		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3261		if (IXGBE_REMOVED(hw->hw_addr))
3262			goto out;
3263		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3264			goto out;
3265	}
3266
3267	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3268		     "PCIe transaction pending bit also did not clear.\n");
3269	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3270
3271out:
3272	return status;
3273}
3274
3275/**
3276 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3277 *  @hw: pointer to hardware structure
3278 *  @mask: Mask to specify which semaphore to acquire
3279 *
3280 *  Acquires the SWFW semaphore through the GSSR register for the specified
3281 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3282 **/
3283s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3284{
3285	u32 gssr = 0;
3286	u32 swmask = mask;
3287	u32 fwmask = mask << 5;
3288	u32 timeout = 200;
3289	u32 i;
3290
3291	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3292
3293	for (i = 0; i < timeout; i++) {
3294		/*
3295		 * SW NVM semaphore bit is used for access to all
3296		 * SW_FW_SYNC bits (not just NVM)
3297		 */
3298		if (ixgbe_get_eeprom_semaphore(hw))
3299			return IXGBE_ERR_SWFW_SYNC;
3300
3301		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3302		if (!(gssr & (fwmask | swmask))) {
3303			gssr |= swmask;
3304			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3305			ixgbe_release_eeprom_semaphore(hw);
3306			return IXGBE_SUCCESS;
3307		} else {
3308			/* Resource is currently in use by FW or SW */
3309			ixgbe_release_eeprom_semaphore(hw);
3310			msec_delay(5);
3311		}
3312	}
3313
3314	/* If time expired clear the bits holding the lock and retry */
3315	if (gssr & (fwmask | swmask))
3316		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3317
3318	msec_delay(5);
3319	return IXGBE_ERR_SWFW_SYNC;
3320}
3321
3322/**
3323 *  ixgbe_release_swfw_sync - Release SWFW semaphore
3324 *  @hw: pointer to hardware structure
3325 *  @mask: Mask to specify which semaphore to release
3326 *
3327 *  Releases the SWFW semaphore through the GSSR register for the specified
3328 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3329 **/
3330void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3331{
3332	u32 gssr;
3333	u32 swmask = mask;
3334
3335	DEBUGFUNC("ixgbe_release_swfw_sync");
3336
3337	ixgbe_get_eeprom_semaphore(hw);
3338
3339	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3340	gssr &= ~swmask;
3341	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3342
3343	ixgbe_release_eeprom_semaphore(hw);
3344}
3345
3346/**
3347 *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3348 *  @hw: pointer to hardware structure
3349 *
3350 *  Stops the receive data path and waits for the HW to internally empty
3351 *  the Rx security block
3352 **/
3353s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3354{
3355#define IXGBE_MAX_SECRX_POLL 40
3356
3357	int i;
3358	int secrxreg;
3359
3360	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3361
3362
3363	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3364	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3365	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3366	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3367		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3368		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3369			break;
3370		else
3371			/* Use interrupt-safe sleep just in case */
3372			usec_delay(1000);
3373	}
3374
3375	/* For informational purposes only */
3376	if (i >= IXGBE_MAX_SECRX_POLL)
3377		DEBUGOUT("Rx unit being enabled before security "
3378			 "path fully disabled.  Continuing with init.\n");
3379
3380	return IXGBE_SUCCESS;
3381}
3382
3383/**
3384 *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3385 *  @hw: pointer to hardware structure
3386 *  @reg_val: Value we read from AUTOC
3387 *
3388 *  The default case requires no protection so just to the register read.
3389 */
3390s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3391{
3392	*locked = FALSE;
3393	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3394	return IXGBE_SUCCESS;
3395}
3396
3397/**
3398 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3399 * @hw: pointer to hardware structure
3400 * @reg_val: value to write to AUTOC
3401 * @locked: bool to indicate whether the SW/FW lock was already taken by
3402 *           previous read.
3403 *
3404 * The default case requires no protection so just to the register write.
3405 */
3406s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3407{
3408	UNREFERENCED_1PARAMETER(locked);
3409
3410	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3411	return IXGBE_SUCCESS;
3412}
3413
3414/**
3415 *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3416 *  @hw: pointer to hardware structure
3417 *
3418 *  Enables the receive data path.
3419 **/
3420s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3421{
3422	u32 secrxreg;
3423
3424	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3425
3426	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3427	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3428	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3429	IXGBE_WRITE_FLUSH(hw);
3430
3431	return IXGBE_SUCCESS;
3432}
3433
3434/**
3435 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3436 *  @hw: pointer to hardware structure
3437 *  @regval: register value to write to RXCTRL
3438 *
3439 *  Enables the Rx DMA unit
3440 **/
3441s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3442{
3443	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3444
3445	if (regval & IXGBE_RXCTRL_RXEN)
3446		ixgbe_enable_rx(hw);
3447	else
3448		ixgbe_disable_rx(hw);
3449
3450	return IXGBE_SUCCESS;
3451}
3452
3453/**
3454 *  ixgbe_blink_led_start_generic - Blink LED based on index.
3455 *  @hw: pointer to hardware structure
3456 *  @index: led number to blink
3457 **/
3458s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3459{
3460	ixgbe_link_speed speed = 0;
3461	bool link_up = 0;
3462	u32 autoc_reg = 0;
3463	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3464	s32 ret_val = IXGBE_SUCCESS;
3465	bool locked = FALSE;
3466
3467	DEBUGFUNC("ixgbe_blink_led_start_generic");
3468
3469	if (index > 3)
3470		return IXGBE_ERR_PARAM;
3471
3472	/*
3473	 * Link must be up to auto-blink the LEDs;
3474	 * Force it if link is down.
3475	 */
3476	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3477
3478	if (!link_up) {
3479		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3480		if (ret_val != IXGBE_SUCCESS)
3481			goto out;
3482
3483		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3484		autoc_reg |= IXGBE_AUTOC_FLU;
3485
3486		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3487		if (ret_val != IXGBE_SUCCESS)
3488			goto out;
3489
3490		IXGBE_WRITE_FLUSH(hw);
3491		msec_delay(10);
3492	}
3493
3494	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3495	led_reg |= IXGBE_LED_BLINK(index);
3496	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3497	IXGBE_WRITE_FLUSH(hw);
3498
3499out:
3500	return ret_val;
3501}
3502
3503/**
3504 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3505 *  @hw: pointer to hardware structure
3506 *  @index: led number to stop blinking
3507 **/
3508s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3509{
3510	u32 autoc_reg = 0;
3511	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3512	s32 ret_val = IXGBE_SUCCESS;
3513	bool locked = FALSE;
3514
3515	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3516
3517	if (index > 3)
3518		return IXGBE_ERR_PARAM;
3519
3520
3521	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3522	if (ret_val != IXGBE_SUCCESS)
3523		goto out;
3524
3525	autoc_reg &= ~IXGBE_AUTOC_FLU;
3526	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3527
3528	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3529	if (ret_val != IXGBE_SUCCESS)
3530		goto out;
3531
3532	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3533	led_reg &= ~IXGBE_LED_BLINK(index);
3534	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3535	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3536	IXGBE_WRITE_FLUSH(hw);
3537
3538out:
3539	return ret_val;
3540}
3541
3542/**
3543 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3544 *  @hw: pointer to hardware structure
3545 *  @san_mac_offset: SAN MAC address offset
3546 *
3547 *  This function will read the EEPROM location for the SAN MAC address
3548 *  pointer, and returns the value at that location.  This is used in both
3549 *  get and set mac_addr routines.
3550 **/
3551static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3552					 u16 *san_mac_offset)
3553{
3554	s32 ret_val;
3555
3556	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3557
3558	/*
3559	 * First read the EEPROM pointer to see if the MAC addresses are
3560	 * available.
3561	 */
3562	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3563				      san_mac_offset);
3564	if (ret_val) {
3565		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3566			      "eeprom at offset %d failed",
3567			      IXGBE_SAN_MAC_ADDR_PTR);
3568	}
3569
3570	return ret_val;
3571}
3572
3573/**
3574 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3575 *  @hw: pointer to hardware structure
3576 *  @san_mac_addr: SAN MAC address
3577 *
3578 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3579 *  per-port, so set_lan_id() must be called before reading the addresses.
3580 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3581 *  upon for non-SFP connections, so we must call it here.
3582 **/
3583s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3584{
3585	u16 san_mac_data, san_mac_offset;
3586	u8 i;
3587	s32 ret_val;
3588
3589	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3590
3591	/*
3592	 * First read the EEPROM pointer to see if the MAC addresses are
3593	 * available.  If they're not, no point in calling set_lan_id() here.
3594	 */
3595	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3596	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3597		goto san_mac_addr_out;
3598
3599	/* make sure we know which port we need to program */
3600	hw->mac.ops.set_lan_id(hw);
3601	/* apply the port offset to the address offset */
3602	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3603			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3604	for (i = 0; i < 3; i++) {
3605		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3606					      &san_mac_data);
3607		if (ret_val) {
3608			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3609				      "eeprom read at offset %d failed",
3610				      san_mac_offset);
3611			goto san_mac_addr_out;
3612		}
3613		san_mac_addr[i * 2] = (u8)(san_mac_data);
3614		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3615		san_mac_offset++;
3616	}
3617	return IXGBE_SUCCESS;
3618
3619san_mac_addr_out:
3620	/*
3621	 * No addresses available in this EEPROM.  It's not an
3622	 * error though, so just wipe the local address and return.
3623	 */
3624	for (i = 0; i < 6; i++)
3625		san_mac_addr[i] = 0xFF;
3626	return IXGBE_SUCCESS;
3627}
3628
3629/**
3630 *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3631 *  @hw: pointer to hardware structure
3632 *  @san_mac_addr: SAN MAC address
3633 *
3634 *  Write a SAN MAC address to the EEPROM.
3635 **/
3636s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3637{
3638	s32 ret_val;
3639	u16 san_mac_data, san_mac_offset;
3640	u8 i;
3641
3642	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3643
3644	/* Look for SAN mac address pointer.  If not defined, return */
3645	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3646	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3647		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3648
3649	/* Make sure we know which port we need to write */
3650	hw->mac.ops.set_lan_id(hw);
3651	/* Apply the port offset to the address offset */
3652	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3653			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3654
3655	for (i = 0; i < 3; i++) {
3656		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3657		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3658		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3659		san_mac_offset++;
3660	}
3661
3662	return IXGBE_SUCCESS;
3663}
3664
3665/**
3666 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3667 *  @hw: pointer to hardware structure
3668 *
3669 *  Read PCIe configuration space, and get the MSI-X vector count from
3670 *  the capabilities table.
3671 **/
3672u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3673{
3674	u16 msix_count = 1;
3675	u16 max_msix_count;
3676	u16 pcie_offset;
3677
3678	switch (hw->mac.type) {
3679	case ixgbe_mac_82598EB:
3680		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3681		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3682		break;
3683	case ixgbe_mac_82599EB:
3684	case ixgbe_mac_X540:
3685	case ixgbe_mac_X550:
3686	case ixgbe_mac_X550EM_x:
3687	case ixgbe_mac_X550EM_a:
3688		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3689		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3690		break;
3691	default:
3692		return msix_count;
3693	}
3694
3695	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3696	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3697	if (IXGBE_REMOVED(hw->hw_addr))
3698		msix_count = 0;
3699	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3700
3701	/* MSI-X count is zero-based in HW */
3702	msix_count++;
3703
3704	if (msix_count > max_msix_count)
3705		msix_count = max_msix_count;
3706
3707	return msix_count;
3708}
3709
3710/**
3711 *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3712 *  @hw: pointer to hardware structure
3713 *  @addr: Address to put into receive address register
3714 *  @vmdq: VMDq pool to assign
3715 *
3716 *  Puts an ethernet address into a receive address register, or
3717 *  finds the rar that it is aleady in; adds to the pool list
3718 **/
3719s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3720{
3721	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3722	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3723	u32 rar;
3724	u32 rar_low, rar_high;
3725	u32 addr_low, addr_high;
3726
3727	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3728
3729	/* swap bytes for HW little endian */
3730	addr_low  = addr[0] | (addr[1] << 8)
3731			    | (addr[2] << 16)
3732			    | (addr[3] << 24);
3733	addr_high = addr[4] | (addr[5] << 8);
3734
3735	/*
3736	 * Either find the mac_id in rar or find the first empty space.
3737	 * rar_highwater points to just after the highest currently used
3738	 * rar in order to shorten the search.  It grows when we add a new
3739	 * rar to the top.
3740	 */
3741	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3742		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3743
3744		if (((IXGBE_RAH_AV & rar_high) == 0)
3745		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3746			first_empty_rar = rar;
3747		} else if ((rar_high & 0xFFFF) == addr_high) {
3748			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3749			if (rar_low == addr_low)
3750				break;    /* found it already in the rars */
3751		}
3752	}
3753
3754	if (rar < hw->mac.rar_highwater) {
3755		/* already there so just add to the pool bits */
3756		ixgbe_set_vmdq(hw, rar, vmdq);
3757	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3758		/* stick it into first empty RAR slot we found */
3759		rar = first_empty_rar;
3760		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3761	} else if (rar == hw->mac.rar_highwater) {
3762		/* add it to the top of the list and inc the highwater mark */
3763		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3764		hw->mac.rar_highwater++;
3765	} else if (rar >= hw->mac.num_rar_entries) {
3766		return IXGBE_ERR_INVALID_MAC_ADDR;
3767	}
3768
3769	/*
3770	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3771	 * remains cleared to be sure default pool packets will get delivered
3772	 */
3773	if (rar == 0)
3774		ixgbe_clear_vmdq(hw, rar, 0);
3775
3776	return rar;
3777}
3778
3779/**
3780 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3781 *  @hw: pointer to hardware struct
3782 *  @rar: receive address register index to disassociate
3783 *  @vmdq: VMDq pool index to remove from the rar
3784 **/
3785s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3786{
3787	u32 mpsar_lo, mpsar_hi;
3788	u32 rar_entries = hw->mac.num_rar_entries;
3789
3790	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3791
3792	/* Make sure we are using a valid rar index range */
3793	if (rar >= rar_entries) {
3794		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3795			     "RAR index %d is out of range.\n", rar);
3796		return IXGBE_ERR_INVALID_ARGUMENT;
3797	}
3798
3799	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3800	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3801
3802	if (IXGBE_REMOVED(hw->hw_addr))
3803		goto done;
3804
3805	if (!mpsar_lo && !mpsar_hi)
3806		goto done;
3807
3808	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3809		if (mpsar_lo) {
3810			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3811			mpsar_lo = 0;
3812		}
3813		if (mpsar_hi) {
3814			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3815			mpsar_hi = 0;
3816		}
3817	} else if (vmdq < 32) {
3818		mpsar_lo &= ~(1 << vmdq);
3819		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3820	} else {
3821		mpsar_hi &= ~(1 << (vmdq - 32));
3822		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3823	}
3824
3825	/* was that the last pool using this rar? */
3826	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3827	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3828		hw->mac.ops.clear_rar(hw, rar);
3829done:
3830	return IXGBE_SUCCESS;
3831}
3832
3833/**
3834 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3835 *  @hw: pointer to hardware struct
3836 *  @rar: receive address register index to associate with a VMDq index
3837 *  @vmdq: VMDq pool index
3838 **/
3839s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3840{
3841	u32 mpsar;
3842	u32 rar_entries = hw->mac.num_rar_entries;
3843
3844	DEBUGFUNC("ixgbe_set_vmdq_generic");
3845
3846	/* Make sure we are using a valid rar index range */
3847	if (rar >= rar_entries) {
3848		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3849			     "RAR index %d is out of range.\n", rar);
3850		return IXGBE_ERR_INVALID_ARGUMENT;
3851	}
3852
3853	if (vmdq < 32) {
3854		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3855		mpsar |= 1 << vmdq;
3856		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3857	} else {
3858		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3859		mpsar |= 1 << (vmdq - 32);
3860		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3861	}
3862	return IXGBE_SUCCESS;
3863}
3864
3865/**
3866 *  This function should only be involved in the IOV mode.
3867 *  In IOV mode, Default pool is next pool after the number of
3868 *  VFs advertized and not 0.
3869 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3870 *
3871 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3872 *  @hw: pointer to hardware struct
3873 *  @vmdq: VMDq pool index
3874 **/
3875s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3876{
3877	u32 rar = hw->mac.san_mac_rar_index;
3878
3879	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3880
3881	if (vmdq < 32) {
3882		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3883		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3884	} else {
3885		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3886		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3887	}
3888
3889	return IXGBE_SUCCESS;
3890}
3891
3892/**
3893 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3894 *  @hw: pointer to hardware structure
3895 **/
3896s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3897{
3898	int i;
3899
3900	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3901	DEBUGOUT(" Clearing UTA\n");
3902
3903	for (i = 0; i < 128; i++)
3904		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3905
3906	return IXGBE_SUCCESS;
3907}
3908
3909/**
3910 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3911 *  @hw: pointer to hardware structure
3912 *  @vlan: VLAN id to write to VLAN filter
3913 *
3914 *  return the VLVF index where this VLAN id should be placed
3915 *
3916 **/
3917s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3918{
3919	s32 regindex, first_empty_slot;
3920	u32 bits;
3921
3922	/* short cut the special case */
3923	if (vlan == 0)
3924		return 0;
3925
3926	/* if vlvf_bypass is set we don't want to use an empty slot, we
3927	 * will simply bypass the VLVF if there are no entries present in the
3928	 * VLVF that contain our VLAN
3929	 */
3930	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3931
3932	/* add VLAN enable bit for comparison */
3933	vlan |= IXGBE_VLVF_VIEN;
3934
3935	/* Search for the vlan id in the VLVF entries. Save off the first empty
3936	 * slot found along the way.
3937	 *
3938	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3939	 */
3940	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3941		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3942		if (bits == vlan)
3943			return regindex;
3944		if (!first_empty_slot && !bits)
3945			first_empty_slot = regindex;
3946	}
3947
3948	/* If we are here then we didn't find the VLAN.  Return first empty
3949	 * slot we found during our search, else error.
3950	 */
3951	if (!first_empty_slot)
3952		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3953
3954	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3955}
3956
3957/**
3958 *  ixgbe_set_vfta_generic - Set VLAN filter table
3959 *  @hw: pointer to hardware structure
3960 *  @vlan: VLAN id to write to VLAN filter
3961 *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3962 *  @vlan_on: boolean flag to turn on/off VLAN
3963 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3964 *
3965 *  Turn on/off specified VLAN in the VLAN filter table.
3966 **/
3967s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3968			   bool vlan_on, bool vlvf_bypass)
3969{
3970	u32 regidx, vfta_delta, vfta;
3971	s32 ret_val;
3972
3973	DEBUGFUNC("ixgbe_set_vfta_generic");
3974
3975	if (vlan > 4095 || vind > 63)
3976		return IXGBE_ERR_PARAM;
3977
3978	/*
3979	 * this is a 2 part operation - first the VFTA, then the
3980	 * VLVF and VLVFB if VT Mode is set
3981	 * We don't write the VFTA until we know the VLVF part succeeded.
3982	 */
3983
3984	/* Part 1
3985	 * The VFTA is a bitstring made up of 128 32-bit registers
3986	 * that enable the particular VLAN id, much like the MTA:
3987	 *    bits[11-5]: which register
3988	 *    bits[4-0]:  which bit in the register
3989	 */
3990	regidx = vlan / 32;
3991	vfta_delta = 1 << (vlan % 32);
3992	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3993
3994	/*
3995	 * vfta_delta represents the difference between the current value
3996	 * of vfta and the value we want in the register.  Since the diff
3997	 * is an XOR mask we can just update the vfta using an XOR
3998	 */
3999	vfta_delta &= vlan_on ? ~vfta : vfta;
4000	vfta ^= vfta_delta;
4001
4002	/* Part 2
4003	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4004	 */
4005	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4006					 vfta, vlvf_bypass);
4007	if (ret_val != IXGBE_SUCCESS) {
4008		if (vlvf_bypass)
4009			goto vfta_update;
4010		return ret_val;
4011	}
4012
4013vfta_update:
4014	/* Update VFTA now that we are ready for traffic */
4015	if (vfta_delta)
4016		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4017
4018	return IXGBE_SUCCESS;
4019}
4020
4021/**
4022 *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4023 *  @hw: pointer to hardware structure
4024 *  @vlan: VLAN id to write to VLAN filter
4025 *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4026 *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4027 *  @vfta_delta: pointer to the difference between the current value of VFTA
4028 *		 and the desired value
4029 *  @vfta: the desired value of the VFTA
4030 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4031 *
4032 *  Turn on/off specified bit in VLVF table.
4033 **/
4034s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4035			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4036			   bool vlvf_bypass)
4037{
4038	u32 bits;
4039	s32 vlvf_index;
4040
4041	DEBUGFUNC("ixgbe_set_vlvf_generic");
4042
4043	if (vlan > 4095 || vind > 63)
4044		return IXGBE_ERR_PARAM;
4045
4046	/* If VT Mode is set
4047	 *   Either vlan_on
4048	 *     make sure the vlan is in VLVF
4049	 *     set the vind bit in the matching VLVFB
4050	 *   Or !vlan_on
4051	 *     clear the pool bit and possibly the vind
4052	 */
4053	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4054		return IXGBE_SUCCESS;
4055
4056	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4057	if (vlvf_index < 0)
4058		return vlvf_index;
4059
4060	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4061
4062	/* set the pool bit */
4063	bits |= 1 << (vind % 32);
4064	if (vlan_on)
4065		goto vlvf_update;
4066
4067	/* clear the pool bit */
4068	bits ^= 1 << (vind % 32);
4069
4070	if (!bits &&
4071	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4072		/* Clear VFTA first, then disable VLVF.  Otherwise
4073		 * we run the risk of stray packets leaking into
4074		 * the PF via the default pool
4075		 */
4076		if (*vfta_delta)
4077			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4078
4079		/* disable VLVF and clear remaining bit from pool */
4080		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4081		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4082
4083		return IXGBE_SUCCESS;
4084	}
4085
4086	/* If there are still bits set in the VLVFB registers
4087	 * for the VLAN ID indicated we need to see if the
4088	 * caller is requesting that we clear the VFTA entry bit.
4089	 * If the caller has requested that we clear the VFTA
4090	 * entry bit but there are still pools/VFs using this VLAN
4091	 * ID entry then ignore the request.  We're not worried
4092	 * about the case where we're turning the VFTA VLAN ID
4093	 * entry bit on, only when requested to turn it off as
4094	 * there may be multiple pools and/or VFs using the
4095	 * VLAN ID entry.  In that case we cannot clear the
4096	 * VFTA bit until all pools/VFs using that VLAN ID have also
4097	 * been cleared.  This will be indicated by "bits" being
4098	 * zero.
4099	 */
4100	*vfta_delta = 0;
4101
4102vlvf_update:
4103	/* record pool change and enable VLAN ID if not already enabled */
4104	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4105	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4106
4107	return IXGBE_SUCCESS;
4108}
4109
4110/**
4111 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4112 *  @hw: pointer to hardware structure
4113 *
4114 *  Clears the VLAN filer table, and the VMDq index associated with the filter
4115 **/
4116s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4117{
4118	u32 offset;
4119
4120	DEBUGFUNC("ixgbe_clear_vfta_generic");
4121
4122	for (offset = 0; offset < hw->mac.vft_size; offset++)
4123		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4124
4125	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4126		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4127		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4128		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4129	}
4130
4131	return IXGBE_SUCCESS;
4132}
4133
4134/**
4135 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4136 *  @hw: pointer to hardware structure
4137 *
4138 *  Contains the logic to identify if we need to verify link for the
4139 *  crosstalk fix
4140 **/
4141static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4142{
4143
4144	/* Does FW say we need the fix */
4145	if (!hw->need_crosstalk_fix)
4146		return FALSE;
4147
4148	/* Only consider SFP+ PHYs i.e. media type fiber */
4149	switch (hw->mac.ops.get_media_type(hw)) {
4150	case ixgbe_media_type_fiber:
4151	case ixgbe_media_type_fiber_qsfp:
4152		break;
4153	default:
4154		return FALSE;
4155	}
4156
4157	return TRUE;
4158}
4159
4160/**
4161 *  ixgbe_check_mac_link_generic - Determine link and speed status
4162 *  @hw: pointer to hardware structure
4163 *  @speed: pointer to link speed
4164 *  @link_up: TRUE when link is up
4165 *  @link_up_wait_to_complete: bool used to wait for link up or not
4166 *
4167 *  Reads the links register to determine if link is up and the current speed
4168 **/
4169s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4170				 bool *link_up, bool link_up_wait_to_complete)
4171{
4172	u32 links_reg, links_orig;
4173	u32 i;
4174
4175	DEBUGFUNC("ixgbe_check_mac_link_generic");
4176
4177	/* If Crosstalk fix enabled do the sanity check of making sure
4178	 * the SFP+ cage is full.
4179	 */
4180	if (ixgbe_need_crosstalk_fix(hw)) {
4181		u32 sfp_cage_full;
4182
4183		switch (hw->mac.type) {
4184		case ixgbe_mac_82599EB:
4185			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4186					IXGBE_ESDP_SDP2;
4187			break;
4188		case ixgbe_mac_X550EM_x:
4189		case ixgbe_mac_X550EM_a:
4190			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4191					IXGBE_ESDP_SDP0;
4192			break;
4193		default:
4194			/* sanity check - No SFP+ devices here */
4195			sfp_cage_full = FALSE;
4196			break;
4197		}
4198
4199		if (!sfp_cage_full) {
4200			*link_up = FALSE;
4201			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4202			return IXGBE_SUCCESS;
4203		}
4204	}
4205
4206	/* clear the old state */
4207	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4208
4209	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4210
4211	if (links_orig != links_reg) {
4212		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4213			  links_orig, links_reg);
4214	}
4215
4216	if (link_up_wait_to_complete) {
4217		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4218			if (links_reg & IXGBE_LINKS_UP) {
4219				*link_up = TRUE;
4220				break;
4221			} else {
4222				*link_up = FALSE;
4223			}
4224			msec_delay(100);
4225			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4226		}
4227	} else {
4228		if (links_reg & IXGBE_LINKS_UP)
4229			*link_up = TRUE;
4230		else
4231			*link_up = FALSE;
4232	}
4233
4234	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4235	case IXGBE_LINKS_SPEED_10G_82599:
4236		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4237		if (hw->mac.type >= ixgbe_mac_X550) {
4238			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4239				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4240		}
4241		break;
4242	case IXGBE_LINKS_SPEED_1G_82599:
4243		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4244		break;
4245	case IXGBE_LINKS_SPEED_100_82599:
4246		*speed = IXGBE_LINK_SPEED_100_FULL;
4247		if (hw->mac.type == ixgbe_mac_X550) {
4248			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4249				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4250		}
4251		break;
4252	case IXGBE_LINKS_SPEED_10_X550EM_A:
4253		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4254		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4255		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
4256			*speed = IXGBE_LINK_SPEED_10_FULL;
4257		}
4258		break;
4259	default:
4260		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4261	}
4262
4263	return IXGBE_SUCCESS;
4264}
4265
4266/**
4267 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4268 *  the EEPROM
4269 *  @hw: pointer to hardware structure
4270 *  @wwnn_prefix: the alternative WWNN prefix
4271 *  @wwpn_prefix: the alternative WWPN prefix
4272 *
4273 *  This function will read the EEPROM from the alternative SAN MAC address
4274 *  block to check the support for the alternative WWNN/WWPN prefix support.
4275 **/
4276s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4277				 u16 *wwpn_prefix)
4278{
4279	u16 offset, caps;
4280	u16 alt_san_mac_blk_offset;
4281
4282	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4283
4284	/* clear output first */
4285	*wwnn_prefix = 0xFFFF;
4286	*wwpn_prefix = 0xFFFF;
4287
4288	/* check if alternative SAN MAC is supported */
4289	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4290	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4291		goto wwn_prefix_err;
4292
4293	if ((alt_san_mac_blk_offset == 0) ||
4294	    (alt_san_mac_blk_offset == 0xFFFF))
4295		goto wwn_prefix_out;
4296
4297	/* check capability in alternative san mac address block */
4298	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4299	if (hw->eeprom.ops.read(hw, offset, &caps))
4300		goto wwn_prefix_err;
4301	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4302		goto wwn_prefix_out;
4303
4304	/* get the corresponding prefix for WWNN/WWPN */
4305	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4306	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4307		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4308			      "eeprom read at offset %d failed", offset);
4309	}
4310
4311	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4312	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4313		goto wwn_prefix_err;
4314
4315wwn_prefix_out:
4316	return IXGBE_SUCCESS;
4317
4318wwn_prefix_err:
4319	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4320		      "eeprom read at offset %d failed", offset);
4321	return IXGBE_SUCCESS;
4322}
4323
4324/**
4325 *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4326 *  @hw: pointer to hardware structure
4327 *  @bs: the fcoe boot status
4328 *
4329 *  This function will read the FCOE boot status from the iSCSI FCOE block
4330 **/
4331s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4332{
4333	u16 offset, caps, flags;
4334	s32 status;
4335
4336	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4337
4338	/* clear output first */
4339	*bs = ixgbe_fcoe_bootstatus_unavailable;
4340
4341	/* check if FCOE IBA block is present */
4342	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4343	status = hw->eeprom.ops.read(hw, offset, &caps);
4344	if (status != IXGBE_SUCCESS)
4345		goto out;
4346
4347	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4348		goto out;
4349
4350	/* check if iSCSI FCOE block is populated */
4351	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4352	if (status != IXGBE_SUCCESS)
4353		goto out;
4354
4355	if ((offset == 0) || (offset == 0xFFFF))
4356		goto out;
4357
4358	/* read fcoe flags in iSCSI FCOE block */
4359	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4360	status = hw->eeprom.ops.read(hw, offset, &flags);
4361	if (status != IXGBE_SUCCESS)
4362		goto out;
4363
4364	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4365		*bs = ixgbe_fcoe_bootstatus_enabled;
4366	else
4367		*bs = ixgbe_fcoe_bootstatus_disabled;
4368
4369out:
4370	return status;
4371}
4372
4373/**
4374 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4375 *  @hw: pointer to hardware structure
4376 *  @enable: enable or disable switch for MAC anti-spoofing
4377 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4378 *
4379 **/
4380void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4381{
4382	int vf_target_reg = vf >> 3;
4383	int vf_target_shift = vf % 8;
4384	u32 pfvfspoof;
4385
4386	if (hw->mac.type == ixgbe_mac_82598EB)
4387		return;
4388
4389	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4390	if (enable)
4391		pfvfspoof |= (1 << vf_target_shift);
4392	else
4393		pfvfspoof &= ~(1 << vf_target_shift);
4394	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4395}
4396
4397/**
4398 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4399 *  @hw: pointer to hardware structure
4400 *  @enable: enable or disable switch for VLAN anti-spoofing
4401 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4402 *
4403 **/
4404void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4405{
4406	int vf_target_reg = vf >> 3;
4407	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4408	u32 pfvfspoof;
4409
4410	if (hw->mac.type == ixgbe_mac_82598EB)
4411		return;
4412
4413	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4414	if (enable)
4415		pfvfspoof |= (1 << vf_target_shift);
4416	else
4417		pfvfspoof &= ~(1 << vf_target_shift);
4418	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4419}
4420
4421/**
4422 *  ixgbe_get_device_caps_generic - Get additional device capabilities
4423 *  @hw: pointer to hardware structure
4424 *  @device_caps: the EEPROM word with the extra device capabilities
4425 *
4426 *  This function will read the EEPROM location for the device capabilities,
4427 *  and return the word through device_caps.
4428 **/
4429s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4430{
4431	DEBUGFUNC("ixgbe_get_device_caps_generic");
4432
4433	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4434
4435	return IXGBE_SUCCESS;
4436}
4437
4438/**
4439 *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4440 *  @hw: pointer to hardware structure
4441 *
4442 **/
4443void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4444{
4445	u32 regval;
4446	u32 i;
4447
4448	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4449
4450	/* Enable relaxed ordering */
4451	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4452		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4453		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4454		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4455	}
4456
4457	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4458		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4459		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4460			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4461		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4462	}
4463
4464}
4465
4466/**
4467 *  ixgbe_calculate_checksum - Calculate checksum for buffer
4468 *  @buffer: pointer to EEPROM
4469 *  @length: size of EEPROM to calculate a checksum for
4470 *  Calculates the checksum for some buffer on a specified length.  The
4471 *  checksum calculated is returned.
4472 **/
4473u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4474{
4475	u32 i;
4476	u8 sum = 0;
4477
4478	DEBUGFUNC("ixgbe_calculate_checksum");
4479
4480	if (!buffer)
4481		return 0;
4482
4483	for (i = 0; i < length; i++)
4484		sum += buffer[i];
4485
4486	return (u8) (0 - sum);
4487}
4488
4489/**
4490 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4491 *  @hw: pointer to the HW structure
4492 *  @buffer: command to write and where the return status will be placed
4493 *  @length: length of buffer, must be multiple of 4 bytes
4494 *  @timeout: time in ms to wait for command completion
4495 *
4496 *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4497 *  else returns semaphore error when encountering an error acquiring
4498 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4499 *
4500 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4501 *  by the caller.
4502 **/
4503s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4504		       u32 timeout)
4505{
4506	u32 hicr, i, fwsts;
4507	u16 dword_len;
4508
4509	DEBUGFUNC("ixgbe_hic_unlocked");
4510
4511	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4512		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4513		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4514	}
4515
4516	/* Set bit 9 of FWSTS clearing FW reset indication */
4517	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4518	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4519
4520	/* Check that the host interface is enabled. */
4521	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4522	if (!(hicr & IXGBE_HICR_EN)) {
4523		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4524		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4525	}
4526
4527	/* Calculate length in DWORDs. We must be DWORD aligned */
4528	if (length % sizeof(u32)) {
4529		DEBUGOUT("Buffer length failure, not aligned to dword");
4530		return IXGBE_ERR_INVALID_ARGUMENT;
4531	}
4532
4533	dword_len = length >> 2;
4534
4535	/* The device driver writes the relevant command block
4536	 * into the ram area.
4537	 */
4538	for (i = 0; i < dword_len; i++)
4539		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4540				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4541
4542	/* Setting this bit tells the ARC that a new command is pending. */
4543	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4544
4545	for (i = 0; i < timeout; i++) {
4546		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4547		if (!(hicr & IXGBE_HICR_C))
4548			break;
4549		msec_delay(1);
4550	}
4551
4552	/* Check command completion */
4553	if ((timeout && i == timeout) ||
4554	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4555		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4556			     "Command has failed with no status valid.\n");
4557		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4558	}
4559
4560	return IXGBE_SUCCESS;
4561}
4562
4563/**
4564 *  ixgbe_host_interface_command - Issue command to manageability block
4565 *  @hw: pointer to the HW structure
4566 *  @buffer: contains the command to write and where the return status will
4567 *   be placed
4568 *  @length: length of buffer, must be multiple of 4 bytes
4569 *  @timeout: time in ms to wait for command completion
4570 *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4571 *   Needed because FW structures are big endian and decoding of
4572 *   these fields can be 8 bit or 16 bit based on command. Decoding
4573 *   is not easily understood without making a table of commands.
4574 *   So we will leave this up to the caller to read back the data
4575 *   in these cases.
4576 *
4577 *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4578 *  else returns semaphore error when encountering an error acquiring
4579 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4580 **/
4581s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4582				 u32 length, u32 timeout, bool return_data)
4583{
4584	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4585	u16 dword_len;
4586	u16 buf_len;
4587	s32 status;
4588	u32 bi;
4589
4590	DEBUGFUNC("ixgbe_host_interface_command");
4591
4592	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4593		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4594		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4595	}
4596
4597	/* Take management host interface semaphore */
4598	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4599	if (status)
4600		return status;
4601
4602	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4603	if (status)
4604		goto rel_out;
4605
4606	if (!return_data)
4607		goto rel_out;
4608
4609	/* Calculate length in DWORDs */
4610	dword_len = hdr_size >> 2;
4611
4612	/* first pull in the header so we know the buffer length */
4613	for (bi = 0; bi < dword_len; bi++) {
4614		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4615		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4616	}
4617
4618	/* If there is any thing in data position pull it in */
4619	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4620	if (!buf_len)
4621		goto rel_out;
4622
4623	if (length < buf_len + hdr_size) {
4624		DEBUGOUT("Buffer not large enough for reply message.\n");
4625		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4626		goto rel_out;
4627	}
4628
4629	/* Calculate length in DWORDs, add 3 for odd lengths */
4630	dword_len = (buf_len + 3) >> 2;
4631
4632	/* Pull in the rest of the buffer (bi is where we left off) */
4633	for (; bi <= dword_len; bi++) {
4634		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4635		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4636	}
4637
4638rel_out:
4639	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4640
4641	return status;
4642}
4643
4644/**
4645 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4646 *  @hw: pointer to the HW structure
4647 *  @maj: driver version major number
4648 *  @min: driver version minor number
4649 *  @build: driver version build number
4650 *  @sub: driver version sub build number
4651 *
4652 *  Sends driver version number to firmware through the manageability
4653 *  block.  On success return IXGBE_SUCCESS
4654 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4655 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4656 **/
4657s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4658				 u8 build, u8 sub, u16 len,
4659				 const char *driver_ver)
4660{
4661	struct ixgbe_hic_drv_info fw_cmd;
4662	int i;
4663	s32 ret_val = IXGBE_SUCCESS;
4664
4665	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4666	UNREFERENCED_2PARAMETER(len, driver_ver);
4667
4668	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4669	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4670	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4671	fw_cmd.port_num = (u8)hw->bus.func;
4672	fw_cmd.ver_maj = maj;
4673	fw_cmd.ver_min = min;
4674	fw_cmd.ver_build = build;
4675	fw_cmd.ver_sub = sub;
4676	fw_cmd.hdr.checksum = 0;
4677	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4678				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4679	fw_cmd.pad = 0;
4680	fw_cmd.pad2 = 0;
4681
4682	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4683		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4684						       sizeof(fw_cmd),
4685						       IXGBE_HI_COMMAND_TIMEOUT,
4686						       TRUE);
4687		if (ret_val != IXGBE_SUCCESS)
4688			continue;
4689
4690		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4691		    FW_CEM_RESP_STATUS_SUCCESS)
4692			ret_val = IXGBE_SUCCESS;
4693		else
4694			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4695
4696		break;
4697	}
4698
4699	return ret_val;
4700}
4701
4702/**
4703 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4704 * @hw: pointer to hardware structure
4705 * @num_pb: number of packet buffers to allocate
4706 * @headroom: reserve n KB of headroom
4707 * @strategy: packet buffer allocation strategy
4708 **/
4709void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4710			     int strategy)
4711{
4712	u32 pbsize = hw->mac.rx_pb_size;
4713	int i = 0;
4714	u32 rxpktsize, txpktsize, txpbthresh;
4715
4716	/* Reserve headroom */
4717	pbsize -= headroom;
4718
4719	if (!num_pb)
4720		num_pb = 1;
4721
4722	/* Divide remaining packet buffer space amongst the number of packet
4723	 * buffers requested using supplied strategy.
4724	 */
4725	switch (strategy) {
4726	case PBA_STRATEGY_WEIGHTED:
4727		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4728		 * buffer with 5/8 of the packet buffer space.
4729		 */
4730		rxpktsize = (pbsize * 5) / (num_pb * 4);
4731		pbsize -= rxpktsize * (num_pb / 2);
4732		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4733		for (; i < (num_pb / 2); i++)
4734			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4735		/* fall through - configure remaining packet buffers */
4736	case PBA_STRATEGY_EQUAL:
4737		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4738		for (; i < num_pb; i++)
4739			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4740		break;
4741	default:
4742		break;
4743	}
4744
4745	/* Only support an equally distributed Tx packet buffer strategy. */
4746	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4747	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4748	for (i = 0; i < num_pb; i++) {
4749		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4750		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4751	}
4752
4753	/* Clear unused TCs, if any, to zero buffer size*/
4754	for (; i < IXGBE_MAX_PB; i++) {
4755		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4756		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4757		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4758	}
4759}
4760
4761/**
4762 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4763 * @hw: pointer to the hardware structure
4764 *
4765 * The 82599 and x540 MACs can experience issues if TX work is still pending
4766 * when a reset occurs.  This function prevents this by flushing the PCIe
4767 * buffers on the system.
4768 **/
4769void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4770{
4771	u32 gcr_ext, hlreg0, i, poll;
4772	u16 value;
4773
4774	/*
4775	 * If double reset is not requested then all transactions should
4776	 * already be clear and as such there is no work to do
4777	 */
4778	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4779		return;
4780
4781	/*
4782	 * Set loopback enable to prevent any transmits from being sent
4783	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4784	 * has already been cleared.
4785	 */
4786	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4787	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4788
4789	/* Wait for a last completion before clearing buffers */
4790	IXGBE_WRITE_FLUSH(hw);
4791	msec_delay(3);
4792
4793	/*
4794	 * Before proceeding, make sure that the PCIe block does not have
4795	 * transactions pending.
4796	 */
4797	poll = ixgbe_pcie_timeout_poll(hw);
4798	for (i = 0; i < poll; i++) {
4799		usec_delay(100);
4800		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4801		if (IXGBE_REMOVED(hw->hw_addr))
4802			goto out;
4803		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4804			goto out;
4805	}
4806
4807out:
4808	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4809	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4810	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4811			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4812
4813	/* Flush all writes and allow 20usec for all transactions to clear */
4814	IXGBE_WRITE_FLUSH(hw);
4815	usec_delay(20);
4816
4817	/* restore previous register values */
4818	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4819	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4820}
4821
4822/**
4823 *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4824 *
4825 *  @hw: pointer to hardware structure
4826 *  @cmd: Command we send to the FW
4827 *  @status: The reply from the FW
4828 *
4829 *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4830 **/
4831#define IXGBE_BYPASS_BB_WAIT 1
4832s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4833{
4834	int i;
4835	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4836	u32 esdp;
4837
4838	if (!status)
4839		return IXGBE_ERR_PARAM;
4840
4841	*status = 0;
4842
4843	/* SDP vary by MAC type */
4844	switch (hw->mac.type) {
4845	case ixgbe_mac_82599EB:
4846		sck = IXGBE_ESDP_SDP7;
4847		sdi = IXGBE_ESDP_SDP0;
4848		sdo = IXGBE_ESDP_SDP6;
4849		dir_sck = IXGBE_ESDP_SDP7_DIR;
4850		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4851		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4852		break;
4853	case ixgbe_mac_X540:
4854		sck = IXGBE_ESDP_SDP2;
4855		sdi = IXGBE_ESDP_SDP0;
4856		sdo = IXGBE_ESDP_SDP1;
4857		dir_sck = IXGBE_ESDP_SDP2_DIR;
4858		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4859		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4860		break;
4861	default:
4862		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4863	}
4864
4865	/* Set SDP pins direction */
4866	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4867	esdp |= dir_sck;	/* SCK as output */
4868	esdp |= dir_sdi;	/* SDI as output */
4869	esdp &= ~dir_sdo;	/* SDO as input */
4870	esdp |= sck;
4871	esdp |= sdi;
4872	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4873	IXGBE_WRITE_FLUSH(hw);
4874	msec_delay(IXGBE_BYPASS_BB_WAIT);
4875
4876	/* Generate start condition */
4877	esdp &= ~sdi;
4878	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4879	IXGBE_WRITE_FLUSH(hw);
4880	msec_delay(IXGBE_BYPASS_BB_WAIT);
4881
4882	esdp &= ~sck;
4883	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4884	IXGBE_WRITE_FLUSH(hw);
4885	msec_delay(IXGBE_BYPASS_BB_WAIT);
4886
4887	/* Clock out the new control word and clock in the status */
4888	for (i = 0; i < 32; i++) {
4889		if ((cmd >> (31 - i)) & 0x01) {
4890			esdp |= sdi;
4891			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4892		} else {
4893			esdp &= ~sdi;
4894			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4895		}
4896		IXGBE_WRITE_FLUSH(hw);
4897		msec_delay(IXGBE_BYPASS_BB_WAIT);
4898
4899		esdp |= sck;
4900		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4901		IXGBE_WRITE_FLUSH(hw);
4902		msec_delay(IXGBE_BYPASS_BB_WAIT);
4903
4904		esdp &= ~sck;
4905		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4906		IXGBE_WRITE_FLUSH(hw);
4907		msec_delay(IXGBE_BYPASS_BB_WAIT);
4908
4909		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4910		if (esdp & sdo)
4911			*status = (*status << 1) | 0x01;
4912		else
4913			*status = (*status << 1) | 0x00;
4914		msec_delay(IXGBE_BYPASS_BB_WAIT);
4915	}
4916
4917	/* stop condition */
4918	esdp |= sck;
4919	esdp &= ~sdi;
4920	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4921	IXGBE_WRITE_FLUSH(hw);
4922	msec_delay(IXGBE_BYPASS_BB_WAIT);
4923
4924	esdp |= sdi;
4925	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4926	IXGBE_WRITE_FLUSH(hw);
4927
4928	/* set the page bits to match the cmd that the status it belongs to */
4929	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4930
4931	return IXGBE_SUCCESS;
4932}
4933
4934/**
4935 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4936 *
4937 * If we send a write we can't be sure it took until we can read back
4938 * that same register.  It can be a problem as some of the feilds may
4939 * for valid reasons change inbetween the time wrote the register and
4940 * we read it again to verify.  So this function check everything we
4941 * can check and then assumes it worked.
4942 *
4943 * @u32 in_reg - The register cmd for the bit-bang read.
4944 * @u32 out_reg - The register returned from a bit-bang read.
4945 **/
4946bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4947{
4948	u32 mask;
4949
4950	/* Page must match for all control pages */
4951	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4952		return FALSE;
4953
4954	switch (in_reg & BYPASS_PAGE_M) {
4955	case BYPASS_PAGE_CTL0:
4956		/* All the following can't change since the last write
4957		 *  - All the event actions
4958		 *  - The timeout value
4959		 */
4960		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4961		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4962		       BYPASS_WDTIMEOUT_M |
4963		       BYPASS_WDT_VALUE_M;
4964		if ((out_reg & mask) != (in_reg & mask))
4965			return FALSE;
4966
4967		/* 0x0 is never a valid value for bypass status */
4968		if (!(out_reg & BYPASS_STATUS_OFF_M))
4969			return FALSE;
4970		break;
4971	case BYPASS_PAGE_CTL1:
4972		/* All the following can't change since the last write
4973		 *  - time valid bit
4974		 *  - time we last sent
4975		 */
4976		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4977		if ((out_reg & mask) != (in_reg & mask))
4978			return FALSE;
4979		break;
4980	case BYPASS_PAGE_CTL2:
4981		/* All we can check in this page is control number
4982		 * which is already done above.
4983		 */
4984		break;
4985	}
4986
4987	/* We are as sure as we can be return TRUE */
4988	return TRUE;
4989}
4990
4991/**
4992 *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4993 *
4994 *  @hw: pointer to hardware structure
4995 *  @cmd: The control word we are setting.
4996 *  @event: The event we are setting in the FW.  This also happens to
4997 *	    be the mask for the event we are setting (handy)
4998 *  @action: The action we set the event to in the FW. This is in a
4999 *	     bit field that happens to be what we want to put in
5000 *	     the event spot (also handy)
5001 **/
5002s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5003			     u32 action)
5004{
5005	u32 by_ctl = 0;
5006	u32 cmd, verify;
5007	u32 count = 0;
5008
5009	/* Get current values */
5010	cmd = ctrl;	/* just reading only need control number */
5011	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5012		return IXGBE_ERR_INVALID_ARGUMENT;
5013
5014	/* Set to new action */
5015	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5016	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5017		return IXGBE_ERR_INVALID_ARGUMENT;
5018
5019	/* Page 0 force a FW eeprom write which is slow so verify */
5020	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5021		verify = BYPASS_PAGE_CTL0;
5022		do {
5023			if (count++ > 5)
5024				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5025
5026			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5027				return IXGBE_ERR_INVALID_ARGUMENT;
5028		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5029	} else {
5030		/* We have give the FW time for the write to stick */
5031		msec_delay(100);
5032	}
5033
5034	return IXGBE_SUCCESS;
5035}
5036
5037/**
5038 *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5039 *
5040 *  @hw: pointer to hardware structure
5041 *  @addr: The bypass eeprom address to read.
5042 *  @value: The 8b of data at the address above.
5043 **/
5044s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5045{
5046	u32 cmd;
5047	u32 status;
5048
5049
5050	/* send the request */
5051	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5052	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5053	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5054		return IXGBE_ERR_INVALID_ARGUMENT;
5055
5056	/* We have give the FW time for the write to stick */
5057	msec_delay(100);
5058
5059	/* now read the results */
5060	cmd &= ~BYPASS_WE;
5061	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5062		return IXGBE_ERR_INVALID_ARGUMENT;
5063
5064	*value = status & BYPASS_CTL2_DATA_M;
5065
5066	return IXGBE_SUCCESS;
5067}
5068
5069
5070/**
5071 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5072 * @hw: pointer to hardware structure
5073 * @map: pointer to u8 arr for returning map
5074 *
5075 * Read the rtrup2tc HW register and resolve its content into map
5076 **/
5077void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5078{
5079	u32 reg, i;
5080
5081	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5082	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5083		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5084			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5085	return;
5086}
5087
5088void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5089{
5090	u32 pfdtxgswc;
5091	u32 rxctrl;
5092
5093	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5094	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5095		if (hw->mac.type != ixgbe_mac_82598EB) {
5096			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5097			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5098				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5099				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5100				hw->mac.set_lben = TRUE;
5101			} else {
5102				hw->mac.set_lben = FALSE;
5103			}
5104		}
5105		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5106		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5107	}
5108}
5109
5110void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5111{
5112	u32 pfdtxgswc;
5113	u32 rxctrl;
5114
5115	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5116	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5117
5118	if (hw->mac.type != ixgbe_mac_82598EB) {
5119		if (hw->mac.set_lben) {
5120			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5121			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5122			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5123			hw->mac.set_lben = FALSE;
5124		}
5125	}
5126}
5127
5128/**
5129 * ixgbe_mng_present - returns TRUE when management capability is present
5130 * @hw: pointer to hardware structure
5131 */
5132bool ixgbe_mng_present(struct ixgbe_hw *hw)
5133{
5134	u32 fwsm;
5135
5136	if (hw->mac.type < ixgbe_mac_82599EB)
5137		return FALSE;
5138
5139	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5140	fwsm &= IXGBE_FWSM_MODE_MASK;
5141	return fwsm == IXGBE_FWSM_FW_MODE_PT;
5142}
5143
5144/**
5145 * ixgbe_mng_enabled - Is the manageability engine enabled?
5146 * @hw: pointer to hardware structure
5147 *
5148 * Returns TRUE if the manageability engine is enabled.
5149 **/
5150bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5151{
5152	u32 fwsm, manc, factps;
5153
5154	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5155	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5156		return FALSE;
5157
5158	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5159	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5160		return FALSE;
5161
5162	if (hw->mac.type <= ixgbe_mac_X540) {
5163		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5164		if (factps & IXGBE_FACTPS_MNGCG)
5165			return FALSE;
5166	}
5167
5168	return TRUE;
5169}
5170
5171/**
5172 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5173 *  @hw: pointer to hardware structure
5174 *  @speed: new link speed
5175 *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5176 *
5177 *  Set the link speed in the MAC and/or PHY register and restarts link.
5178 **/
5179s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5180					  ixgbe_link_speed speed,
5181					  bool autoneg_wait_to_complete)
5182{
5183	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5184	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5185	s32 status = IXGBE_SUCCESS;
5186	u32 speedcnt = 0;
5187	u32 i = 0;
5188	bool autoneg, link_up = FALSE;
5189
5190	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5191
5192	/* Mask off requested but non-supported speeds */
5193	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5194	if (status != IXGBE_SUCCESS)
5195		return status;
5196
5197	speed &= link_speed;
5198
5199	/* Try each speed one by one, highest priority first.  We do this in
5200	 * software because 10Gb fiber doesn't support speed autonegotiation.
5201	 */
5202	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5203		speedcnt++;
5204		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5205
5206		/* Set the module link speed */
5207		switch (hw->phy.media_type) {
5208		case ixgbe_media_type_fiber_fixed:
5209		case ixgbe_media_type_fiber:
5210			ixgbe_set_rate_select_speed(hw,
5211						    IXGBE_LINK_SPEED_10GB_FULL);
5212			break;
5213		case ixgbe_media_type_fiber_qsfp:
5214			/* QSFP module automatically detects MAC link speed */
5215			break;
5216		default:
5217			DEBUGOUT("Unexpected media type.\n");
5218			break;
5219		}
5220
5221		/* Allow module to change analog characteristics (1G->10G) */
5222		msec_delay(40);
5223
5224		status = ixgbe_setup_mac_link(hw,
5225					      IXGBE_LINK_SPEED_10GB_FULL,
5226					      autoneg_wait_to_complete);
5227		if (status != IXGBE_SUCCESS)
5228			return status;
5229
5230		/* Flap the Tx laser if it has not already been done */
5231		ixgbe_flap_tx_laser(hw);
5232
5233		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5234		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5235		 * attempted.  82599 uses the same timing for 10g SFI.
5236		 */
5237		for (i = 0; i < 5; i++) {
5238			/* Wait for the link partner to also set speed */
5239			msec_delay(100);
5240
5241			/* If we have link, just jump out */
5242			status = ixgbe_check_link(hw, &link_speed,
5243						  &link_up, FALSE);
5244			if (status != IXGBE_SUCCESS)
5245				return status;
5246
5247			if (link_up)
5248				goto out;
5249		}
5250	}
5251
5252	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5253		speedcnt++;
5254		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5255			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5256
5257		/* Set the module link speed */
5258		switch (hw->phy.media_type) {
5259		case ixgbe_media_type_fiber_fixed:
5260		case ixgbe_media_type_fiber:
5261			ixgbe_set_rate_select_speed(hw,
5262						    IXGBE_LINK_SPEED_1GB_FULL);
5263			break;
5264		case ixgbe_media_type_fiber_qsfp:
5265			/* QSFP module automatically detects link speed */
5266			break;
5267		default:
5268			DEBUGOUT("Unexpected media type.\n");
5269			break;
5270		}
5271
5272		/* Allow module to change analog characteristics (10G->1G) */
5273		msec_delay(40);
5274
5275		status = ixgbe_setup_mac_link(hw,
5276					      IXGBE_LINK_SPEED_1GB_FULL,
5277					      autoneg_wait_to_complete);
5278		if (status != IXGBE_SUCCESS)
5279			return status;
5280
5281		/* Flap the Tx laser if it has not already been done */
5282		ixgbe_flap_tx_laser(hw);
5283
5284		/* Wait for the link partner to also set speed */
5285		msec_delay(100);
5286
5287		/* If we have link, just jump out */
5288		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5289		if (status != IXGBE_SUCCESS)
5290			return status;
5291
5292		if (link_up)
5293			goto out;
5294	}
5295
5296	/* We didn't get link.  Configure back to the highest speed we tried,
5297	 * (if there was more than one).  We call ourselves back with just the
5298	 * single highest speed that the user requested.
5299	 */
5300	if (speedcnt > 1)
5301		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5302						      highest_link_speed,
5303						      autoneg_wait_to_complete);
5304
5305out:
5306	/* Set autoneg_advertised value based on input link speed */
5307	hw->phy.autoneg_advertised = 0;
5308
5309	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5310		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5311
5312	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5313		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5314
5315	return status;
5316}
5317
5318/**
5319 *  ixgbe_set_soft_rate_select_speed - Set module link speed
5320 *  @hw: pointer to hardware structure
5321 *  @speed: link speed to set
5322 *
5323 *  Set module link speed via the soft rate select.
5324 */
5325void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5326					ixgbe_link_speed speed)
5327{
5328	s32 status;
5329	u8 rs, eeprom_data;
5330
5331	switch (speed) {
5332	case IXGBE_LINK_SPEED_10GB_FULL:
5333		/* one bit mask same as setting on */
5334		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5335		break;
5336	case IXGBE_LINK_SPEED_1GB_FULL:
5337		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5338		break;
5339	default:
5340		DEBUGOUT("Invalid fixed module speed\n");
5341		return;
5342	}
5343
5344	/* Set RS0 */
5345	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5346					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5347					   &eeprom_data);
5348	if (status) {
5349		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5350		goto out;
5351	}
5352
5353	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5354
5355	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5356					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5357					    eeprom_data);
5358	if (status) {
5359		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5360		goto out;
5361	}
5362
5363	/* Set RS1 */
5364	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5365					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5366					   &eeprom_data);
5367	if (status) {
5368		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5369		goto out;
5370	}
5371
5372	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5373
5374	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5375					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5376					    eeprom_data);
5377	if (status) {
5378		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5379		goto out;
5380	}
5381out:
5382	return;
5383}
5384