ixgbe_common.c revision 330897
1/******************************************************************************
2  SPDX-License-Identifier: BSD-3-Clause
3
4  Copyright (c) 2001-2017, Intel Corporation
5  All rights reserved.
6
7  Redistribution and use in source and binary forms, with or without
8  modification, are permitted provided that the following conditions are met:
9
10   1. Redistributions of source code must retain the above copyright notice,
11      this list of conditions and the following disclaimer.
12
13   2. Redistributions in binary form must reproduce the above copyright
14      notice, this list of conditions and the following disclaimer in the
15      documentation and/or other materials provided with the distribution.
16
17   3. Neither the name of the Intel Corporation nor the names of its
18      contributors may be used to endorse or promote products derived from
19      this software without specific prior written permission.
20
21  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  POSSIBILITY OF SUCH DAMAGE.
32
33******************************************************************************/
34/*$FreeBSD: stable/11/sys/dev/ixgbe/ixgbe_common.c 330897 2018-03-14 03:19:51Z eadler $*/
35
36#include "ixgbe_common.h"
37#include "ixgbe_phy.h"
38#include "ixgbe_dcb.h"
39#include "ixgbe_dcb_82599.h"
40#include "ixgbe_api.h"
41
42static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48					u16 count);
49static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53
54static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56					 u16 *san_mac_offset);
57static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58					     u16 words, u16 *data);
59static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60					      u16 words, u16 *data);
61static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62						 u16 offset);
63
64/**
65 *  ixgbe_init_ops_generic - Inits function ptrs
66 *  @hw: pointer to the hardware structure
67 *
68 *  Initialize the function pointers.
69 **/
70s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71{
72	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73	struct ixgbe_mac_info *mac = &hw->mac;
74	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
75
76	DEBUGFUNC("ixgbe_init_ops_generic");
77
78	/* EEPROM */
79	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81	if (eec & IXGBE_EEC_PRES) {
82		eeprom->ops.read = ixgbe_read_eerd_generic;
83		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84	} else {
85		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86		eeprom->ops.read_buffer =
87				 ixgbe_read_eeprom_buffer_bit_bang_generic;
88	}
89	eeprom->ops.write = ixgbe_write_eeprom_generic;
90	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91	eeprom->ops.validate_checksum =
92				      ixgbe_validate_eeprom_checksum_generic;
93	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95
96	/* MAC */
97	mac->ops.init_hw = ixgbe_init_hw_generic;
98	mac->ops.reset_hw = NULL;
99	mac->ops.start_hw = ixgbe_start_hw_generic;
100	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101	mac->ops.get_media_type = NULL;
102	mac->ops.get_supported_physical_layer = NULL;
103	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110	mac->ops.prot_autoc_read = prot_autoc_read_generic;
111	mac->ops.prot_autoc_write = prot_autoc_write_generic;
112
113	/* LEDs */
114	mac->ops.led_on = ixgbe_led_on_generic;
115	mac->ops.led_off = ixgbe_led_off_generic;
116	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
119
120	/* RAR, Multicast, VLAN */
121	mac->ops.set_rar = ixgbe_set_rar_generic;
122	mac->ops.clear_rar = ixgbe_clear_rar_generic;
123	mac->ops.insert_mac_addr = NULL;
124	mac->ops.set_vmdq = NULL;
125	mac->ops.clear_vmdq = NULL;
126	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
127	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
128	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
129	mac->ops.enable_mc = ixgbe_enable_mc_generic;
130	mac->ops.disable_mc = ixgbe_disable_mc_generic;
131	mac->ops.clear_vfta = NULL;
132	mac->ops.set_vfta = NULL;
133	mac->ops.set_vlvf = NULL;
134	mac->ops.init_uta_tables = NULL;
135	mac->ops.enable_rx = ixgbe_enable_rx_generic;
136	mac->ops.disable_rx = ixgbe_disable_rx_generic;
137
138	/* Flow Control */
139	mac->ops.fc_enable = ixgbe_fc_enable_generic;
140	mac->ops.setup_fc = ixgbe_setup_fc_generic;
141	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
142
143	/* Link */
144	mac->ops.get_link_capabilities = NULL;
145	mac->ops.setup_link = NULL;
146	mac->ops.check_link = NULL;
147	mac->ops.dmac_config = NULL;
148	mac->ops.dmac_update_tcs = NULL;
149	mac->ops.dmac_config_tcs = NULL;
150
151	return IXGBE_SUCCESS;
152}
153
154/**
155 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
156 * of flow control
157 * @hw: pointer to hardware structure
158 *
159 * This function returns TRUE if the device supports flow control
160 * autonegotiation, and FALSE if it does not.
161 *
162 **/
163bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
164{
165	bool supported = FALSE;
166	ixgbe_link_speed speed;
167	bool link_up;
168
169	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
170
171	switch (hw->phy.media_type) {
172	case ixgbe_media_type_fiber_fixed:
173	case ixgbe_media_type_fiber_qsfp:
174	case ixgbe_media_type_fiber:
175		/* flow control autoneg black list */
176		switch (hw->device_id) {
177		case IXGBE_DEV_ID_X550EM_A_SFP:
178		case IXGBE_DEV_ID_X550EM_A_SFP_N:
179		case IXGBE_DEV_ID_X550EM_A_QSFP:
180		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
181			supported = FALSE;
182			break;
183		default:
184			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
185			/* if link is down, assume supported */
186			if (link_up)
187				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
188				TRUE : FALSE;
189			else
190				supported = TRUE;
191		}
192
193		break;
194	case ixgbe_media_type_backplane:
195		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
196			supported = FALSE;
197		else
198			supported = TRUE;
199		break;
200	case ixgbe_media_type_copper:
201		/* only some copper devices support flow control autoneg */
202		switch (hw->device_id) {
203		case IXGBE_DEV_ID_82599_T3_LOM:
204		case IXGBE_DEV_ID_X540T:
205		case IXGBE_DEV_ID_X540T1:
206		case IXGBE_DEV_ID_X540_BYPASS:
207		case IXGBE_DEV_ID_X550T:
208		case IXGBE_DEV_ID_X550T1:
209		case IXGBE_DEV_ID_X550EM_X_10G_T:
210		case IXGBE_DEV_ID_X550EM_A_10G_T:
211		case IXGBE_DEV_ID_X550EM_A_1G_T:
212		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
213			supported = TRUE;
214			break;
215		default:
216			supported = FALSE;
217		}
218	default:
219		break;
220	}
221
222	if (!supported)
223		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
224			      "Device %x does not support flow control autoneg",
225			      hw->device_id);
226	return supported;
227}
228
229/**
230 *  ixgbe_setup_fc_generic - Set up flow control
231 *  @hw: pointer to hardware structure
232 *
233 *  Called at init time to set up flow control.
234 **/
235s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
236{
237	s32 ret_val = IXGBE_SUCCESS;
238	u32 reg = 0, reg_bp = 0;
239	u16 reg_cu = 0;
240	bool locked = FALSE;
241
242	DEBUGFUNC("ixgbe_setup_fc_generic");
243
244	/* Validate the requested mode */
245	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
246		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
247			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
248		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
249		goto out;
250	}
251
252	/*
253	 * 10gig parts do not have a word in the EEPROM to determine the
254	 * default flow control setting, so we explicitly set it to full.
255	 */
256	if (hw->fc.requested_mode == ixgbe_fc_default)
257		hw->fc.requested_mode = ixgbe_fc_full;
258
259	/*
260	 * Set up the 1G and 10G flow control advertisement registers so the
261	 * HW will be able to do fc autoneg once the cable is plugged in.  If
262	 * we link at 10G, the 1G advertisement is harmless and vice versa.
263	 */
264	switch (hw->phy.media_type) {
265	case ixgbe_media_type_backplane:
266		/* some MAC's need RMW protection on AUTOC */
267		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
268		if (ret_val != IXGBE_SUCCESS)
269			goto out;
270
271		/* fall through - only backplane uses autoc */
272	case ixgbe_media_type_fiber_fixed:
273	case ixgbe_media_type_fiber_qsfp:
274	case ixgbe_media_type_fiber:
275		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
276
277		break;
278	case ixgbe_media_type_copper:
279		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
280				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
281		break;
282	default:
283		break;
284	}
285
286	/*
287	 * The possible values of fc.requested_mode are:
288	 * 0: Flow control is completely disabled
289	 * 1: Rx flow control is enabled (we can receive pause frames,
290	 *    but not send pause frames).
291	 * 2: Tx flow control is enabled (we can send pause frames but
292	 *    we do not support receiving pause frames).
293	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
294	 * other: Invalid.
295	 */
296	switch (hw->fc.requested_mode) {
297	case ixgbe_fc_none:
298		/* Flow control completely disabled by software override. */
299		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
300		if (hw->phy.media_type == ixgbe_media_type_backplane)
301			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
302				    IXGBE_AUTOC_ASM_PAUSE);
303		else if (hw->phy.media_type == ixgbe_media_type_copper)
304			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
305		break;
306	case ixgbe_fc_tx_pause:
307		/*
308		 * Tx Flow control is enabled, and Rx Flow control is
309		 * disabled by software override.
310		 */
311		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
312		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
313		if (hw->phy.media_type == ixgbe_media_type_backplane) {
314			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
315			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
316		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
317			reg_cu |= IXGBE_TAF_ASM_PAUSE;
318			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
319		}
320		break;
321	case ixgbe_fc_rx_pause:
322		/*
323		 * Rx Flow control is enabled and Tx Flow control is
324		 * disabled by software override. Since there really
325		 * isn't a way to advertise that we are capable of RX
326		 * Pause ONLY, we will advertise that we support both
327		 * symmetric and asymmetric Rx PAUSE, as such we fall
328		 * through to the fc_full statement.  Later, we will
329		 * disable the adapter's ability to send PAUSE frames.
330		 */
331	case ixgbe_fc_full:
332		/* Flow control (both Rx and Tx) is enabled by SW override. */
333		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
334		if (hw->phy.media_type == ixgbe_media_type_backplane)
335			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
336				  IXGBE_AUTOC_ASM_PAUSE;
337		else if (hw->phy.media_type == ixgbe_media_type_copper)
338			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
339		break;
340	default:
341		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
342			     "Flow control param set incorrectly\n");
343		ret_val = IXGBE_ERR_CONFIG;
344		goto out;
345		break;
346	}
347
348	if (hw->mac.type < ixgbe_mac_X540) {
349		/*
350		 * Enable auto-negotiation between the MAC & PHY;
351		 * the MAC will advertise clause 37 flow control.
352		 */
353		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
354		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
355
356		/* Disable AN timeout */
357		if (hw->fc.strict_ieee)
358			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
359
360		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
361		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
362	}
363
364	/*
365	 * AUTOC restart handles negotiation of 1G and 10G on backplane
366	 * and copper. There is no need to set the PCS1GCTL register.
367	 *
368	 */
369	if (hw->phy.media_type == ixgbe_media_type_backplane) {
370		reg_bp |= IXGBE_AUTOC_AN_RESTART;
371		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
372		if (ret_val)
373			goto out;
374	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
375		    (ixgbe_device_supports_autoneg_fc(hw))) {
376		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
377				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
378	}
379
380	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
381out:
382	return ret_val;
383}
384
385/**
386 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
387 *  @hw: pointer to hardware structure
388 *
389 *  Starts the hardware by filling the bus info structure and media type, clears
390 *  all on chip counters, initializes receive address registers, multicast
391 *  table, VLAN filter table, calls routine to set up link and flow control
392 *  settings, and leaves transmit and receive units disabled and uninitialized
393 **/
394s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
395{
396	s32 ret_val;
397	u32 ctrl_ext;
398	u16 device_caps;
399
400	DEBUGFUNC("ixgbe_start_hw_generic");
401
402	/* Set the media type */
403	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
404
405	/* PHY ops initialization must be done in reset_hw() */
406
407	/* Clear the VLAN filter table */
408	hw->mac.ops.clear_vfta(hw);
409
410	/* Clear statistics registers */
411	hw->mac.ops.clear_hw_cntrs(hw);
412
413	/* Set No Snoop Disable */
414	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
415	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
416	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
417	IXGBE_WRITE_FLUSH(hw);
418
419	/* Setup flow control */
420	ret_val = ixgbe_setup_fc(hw);
421	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
422		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
423		return ret_val;
424	}
425
426	/* Cache bit indicating need for crosstalk fix */
427	switch (hw->mac.type) {
428	case ixgbe_mac_82599EB:
429	case ixgbe_mac_X550EM_x:
430	case ixgbe_mac_X550EM_a:
431		hw->mac.ops.get_device_caps(hw, &device_caps);
432		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
433			hw->need_crosstalk_fix = FALSE;
434		else
435			hw->need_crosstalk_fix = TRUE;
436		break;
437	default:
438		hw->need_crosstalk_fix = FALSE;
439		break;
440	}
441
442	/* Clear adapter stopped flag */
443	hw->adapter_stopped = FALSE;
444
445	return IXGBE_SUCCESS;
446}
447
448/**
449 *  ixgbe_start_hw_gen2 - Init sequence for common device family
450 *  @hw: pointer to hw structure
451 *
452 * Performs the init sequence common to the second generation
453 * of 10 GbE devices.
454 * Devices in the second generation:
455 *     82599
456 *     X540
457 **/
458s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
459{
460	u32 i;
461	u32 regval;
462
463	/* Clear the rate limiters */
464	for (i = 0; i < hw->mac.max_tx_queues; i++) {
465		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
466		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
467	}
468	IXGBE_WRITE_FLUSH(hw);
469
470	/* Disable relaxed ordering */
471	for (i = 0; i < hw->mac.max_tx_queues; i++) {
472		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
473		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
474		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
475	}
476
477	for (i = 0; i < hw->mac.max_rx_queues; i++) {
478		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
479		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
480			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
481		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
482	}
483
484	return IXGBE_SUCCESS;
485}
486
487/**
488 *  ixgbe_init_hw_generic - Generic hardware initialization
489 *  @hw: pointer to hardware structure
490 *
491 *  Initialize the hardware by resetting the hardware, filling the bus info
492 *  structure and media type, clears all on chip counters, initializes receive
493 *  address registers, multicast table, VLAN filter table, calls routine to set
494 *  up link and flow control settings, and leaves transmit and receive units
495 *  disabled and uninitialized
496 **/
497s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
498{
499	s32 status;
500
501	DEBUGFUNC("ixgbe_init_hw_generic");
502
503	/* Reset the hardware */
504	status = hw->mac.ops.reset_hw(hw);
505
506	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
507		/* Start the HW */
508		status = hw->mac.ops.start_hw(hw);
509	}
510
511	/* Initialize the LED link active for LED blink support */
512	if (hw->mac.ops.init_led_link_act)
513		hw->mac.ops.init_led_link_act(hw);
514
515	if (status != IXGBE_SUCCESS)
516		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
517
518	return status;
519}
520
521/**
522 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
523 *  @hw: pointer to hardware structure
524 *
525 *  Clears all hardware statistics counters by reading them from the hardware
526 *  Statistics counters are clear on read.
527 **/
528s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
529{
530	u16 i = 0;
531
532	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
533
534	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
535	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
536	IXGBE_READ_REG(hw, IXGBE_ERRBC);
537	IXGBE_READ_REG(hw, IXGBE_MSPDC);
538	for (i = 0; i < 8; i++)
539		IXGBE_READ_REG(hw, IXGBE_MPC(i));
540
541	IXGBE_READ_REG(hw, IXGBE_MLFC);
542	IXGBE_READ_REG(hw, IXGBE_MRFC);
543	IXGBE_READ_REG(hw, IXGBE_RLEC);
544	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
545	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
546	if (hw->mac.type >= ixgbe_mac_82599EB) {
547		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
548		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
549	} else {
550		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
551		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
552	}
553
554	for (i = 0; i < 8; i++) {
555		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
556		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
557		if (hw->mac.type >= ixgbe_mac_82599EB) {
558			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
559			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
560		} else {
561			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
562			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
563		}
564	}
565	if (hw->mac.type >= ixgbe_mac_82599EB)
566		for (i = 0; i < 8; i++)
567			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
568	IXGBE_READ_REG(hw, IXGBE_PRC64);
569	IXGBE_READ_REG(hw, IXGBE_PRC127);
570	IXGBE_READ_REG(hw, IXGBE_PRC255);
571	IXGBE_READ_REG(hw, IXGBE_PRC511);
572	IXGBE_READ_REG(hw, IXGBE_PRC1023);
573	IXGBE_READ_REG(hw, IXGBE_PRC1522);
574	IXGBE_READ_REG(hw, IXGBE_GPRC);
575	IXGBE_READ_REG(hw, IXGBE_BPRC);
576	IXGBE_READ_REG(hw, IXGBE_MPRC);
577	IXGBE_READ_REG(hw, IXGBE_GPTC);
578	IXGBE_READ_REG(hw, IXGBE_GORCL);
579	IXGBE_READ_REG(hw, IXGBE_GORCH);
580	IXGBE_READ_REG(hw, IXGBE_GOTCL);
581	IXGBE_READ_REG(hw, IXGBE_GOTCH);
582	if (hw->mac.type == ixgbe_mac_82598EB)
583		for (i = 0; i < 8; i++)
584			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
585	IXGBE_READ_REG(hw, IXGBE_RUC);
586	IXGBE_READ_REG(hw, IXGBE_RFC);
587	IXGBE_READ_REG(hw, IXGBE_ROC);
588	IXGBE_READ_REG(hw, IXGBE_RJC);
589	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
590	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
591	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
592	IXGBE_READ_REG(hw, IXGBE_TORL);
593	IXGBE_READ_REG(hw, IXGBE_TORH);
594	IXGBE_READ_REG(hw, IXGBE_TPR);
595	IXGBE_READ_REG(hw, IXGBE_TPT);
596	IXGBE_READ_REG(hw, IXGBE_PTC64);
597	IXGBE_READ_REG(hw, IXGBE_PTC127);
598	IXGBE_READ_REG(hw, IXGBE_PTC255);
599	IXGBE_READ_REG(hw, IXGBE_PTC511);
600	IXGBE_READ_REG(hw, IXGBE_PTC1023);
601	IXGBE_READ_REG(hw, IXGBE_PTC1522);
602	IXGBE_READ_REG(hw, IXGBE_MPTC);
603	IXGBE_READ_REG(hw, IXGBE_BPTC);
604	for (i = 0; i < 16; i++) {
605		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
606		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
607		if (hw->mac.type >= ixgbe_mac_82599EB) {
608			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
609			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
610			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
611			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
612			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
613		} else {
614			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
615			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
616		}
617	}
618
619	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
620		if (hw->phy.id == 0)
621			ixgbe_identify_phy(hw);
622		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
623				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
624		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
625				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
626		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
627				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
628		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
629				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
630	}
631
632	return IXGBE_SUCCESS;
633}
634
635/**
636 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
637 *  @hw: pointer to hardware structure
638 *  @pba_num: stores the part number string from the EEPROM
639 *  @pba_num_size: part number string buffer length
640 *
641 *  Reads the part number string from the EEPROM.
642 **/
643s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
644				  u32 pba_num_size)
645{
646	s32 ret_val;
647	u16 data;
648	u16 pba_ptr;
649	u16 offset;
650	u16 length;
651
652	DEBUGFUNC("ixgbe_read_pba_string_generic");
653
654	if (pba_num == NULL) {
655		DEBUGOUT("PBA string buffer was null\n");
656		return IXGBE_ERR_INVALID_ARGUMENT;
657	}
658
659	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
660	if (ret_val) {
661		DEBUGOUT("NVM Read Error\n");
662		return ret_val;
663	}
664
665	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
666	if (ret_val) {
667		DEBUGOUT("NVM Read Error\n");
668		return ret_val;
669	}
670
671	/*
672	 * if data is not ptr guard the PBA must be in legacy format which
673	 * means pba_ptr is actually our second data word for the PBA number
674	 * and we can decode it into an ascii string
675	 */
676	if (data != IXGBE_PBANUM_PTR_GUARD) {
677		DEBUGOUT("NVM PBA number is not stored as string\n");
678
679		/* we will need 11 characters to store the PBA */
680		if (pba_num_size < 11) {
681			DEBUGOUT("PBA string buffer too small\n");
682			return IXGBE_ERR_NO_SPACE;
683		}
684
685		/* extract hex string from data and pba_ptr */
686		pba_num[0] = (data >> 12) & 0xF;
687		pba_num[1] = (data >> 8) & 0xF;
688		pba_num[2] = (data >> 4) & 0xF;
689		pba_num[3] = data & 0xF;
690		pba_num[4] = (pba_ptr >> 12) & 0xF;
691		pba_num[5] = (pba_ptr >> 8) & 0xF;
692		pba_num[6] = '-';
693		pba_num[7] = 0;
694		pba_num[8] = (pba_ptr >> 4) & 0xF;
695		pba_num[9] = pba_ptr & 0xF;
696
697		/* put a null character on the end of our string */
698		pba_num[10] = '\0';
699
700		/* switch all the data but the '-' to hex char */
701		for (offset = 0; offset < 10; offset++) {
702			if (pba_num[offset] < 0xA)
703				pba_num[offset] += '0';
704			else if (pba_num[offset] < 0x10)
705				pba_num[offset] += 'A' - 0xA;
706		}
707
708		return IXGBE_SUCCESS;
709	}
710
711	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
712	if (ret_val) {
713		DEBUGOUT("NVM Read Error\n");
714		return ret_val;
715	}
716
717	if (length == 0xFFFF || length == 0) {
718		DEBUGOUT("NVM PBA number section invalid length\n");
719		return IXGBE_ERR_PBA_SECTION;
720	}
721
722	/* check if pba_num buffer is big enough */
723	if (pba_num_size  < (((u32)length * 2) - 1)) {
724		DEBUGOUT("PBA string buffer too small\n");
725		return IXGBE_ERR_NO_SPACE;
726	}
727
728	/* trim pba length from start of string */
729	pba_ptr++;
730	length--;
731
732	for (offset = 0; offset < length; offset++) {
733		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
734		if (ret_val) {
735			DEBUGOUT("NVM Read Error\n");
736			return ret_val;
737		}
738		pba_num[offset * 2] = (u8)(data >> 8);
739		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
740	}
741	pba_num[offset * 2] = '\0';
742
743	return IXGBE_SUCCESS;
744}
745
746/**
747 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
748 *  @hw: pointer to hardware structure
749 *  @pba_num: stores the part number from the EEPROM
750 *
751 *  Reads the part number from the EEPROM.
752 **/
753s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
754{
755	s32 ret_val;
756	u16 data;
757
758	DEBUGFUNC("ixgbe_read_pba_num_generic");
759
760	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
761	if (ret_val) {
762		DEBUGOUT("NVM Read Error\n");
763		return ret_val;
764	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
765		DEBUGOUT("NVM Not supported\n");
766		return IXGBE_NOT_IMPLEMENTED;
767	}
768	*pba_num = (u32)(data << 16);
769
770	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
771	if (ret_val) {
772		DEBUGOUT("NVM Read Error\n");
773		return ret_val;
774	}
775	*pba_num |= data;
776
777	return IXGBE_SUCCESS;
778}
779
780/**
781 *  ixgbe_read_pba_raw
782 *  @hw: pointer to the HW structure
783 *  @eeprom_buf: optional pointer to EEPROM image
784 *  @eeprom_buf_size: size of EEPROM image in words
785 *  @max_pba_block_size: PBA block size limit
786 *  @pba: pointer to output PBA structure
787 *
788 *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
789 *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
790 *
791 **/
792s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
793		       u32 eeprom_buf_size, u16 max_pba_block_size,
794		       struct ixgbe_pba *pba)
795{
796	s32 ret_val;
797	u16 pba_block_size;
798
799	if (pba == NULL)
800		return IXGBE_ERR_PARAM;
801
802	if (eeprom_buf == NULL) {
803		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
804						     &pba->word[0]);
805		if (ret_val)
806			return ret_val;
807	} else {
808		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
809			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
810			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
811		} else {
812			return IXGBE_ERR_PARAM;
813		}
814	}
815
816	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
817		if (pba->pba_block == NULL)
818			return IXGBE_ERR_PARAM;
819
820		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
821						   eeprom_buf_size,
822						   &pba_block_size);
823		if (ret_val)
824			return ret_val;
825
826		if (pba_block_size > max_pba_block_size)
827			return IXGBE_ERR_PARAM;
828
829		if (eeprom_buf == NULL) {
830			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
831							     pba_block_size,
832							     pba->pba_block);
833			if (ret_val)
834				return ret_val;
835		} else {
836			if (eeprom_buf_size > (u32)(pba->word[1] +
837					      pba_block_size)) {
838				memcpy(pba->pba_block,
839				       &eeprom_buf[pba->word[1]],
840				       pba_block_size * sizeof(u16));
841			} else {
842				return IXGBE_ERR_PARAM;
843			}
844		}
845	}
846
847	return IXGBE_SUCCESS;
848}
849
850/**
851 *  ixgbe_write_pba_raw
852 *  @hw: pointer to the HW structure
853 *  @eeprom_buf: optional pointer to EEPROM image
854 *  @eeprom_buf_size: size of EEPROM image in words
855 *  @pba: pointer to PBA structure
856 *
857 *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
858 *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
859 *
860 **/
861s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
862			u32 eeprom_buf_size, struct ixgbe_pba *pba)
863{
864	s32 ret_val;
865
866	if (pba == NULL)
867		return IXGBE_ERR_PARAM;
868
869	if (eeprom_buf == NULL) {
870		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
871						      &pba->word[0]);
872		if (ret_val)
873			return ret_val;
874	} else {
875		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
876			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
877			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
878		} else {
879			return IXGBE_ERR_PARAM;
880		}
881	}
882
883	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
884		if (pba->pba_block == NULL)
885			return IXGBE_ERR_PARAM;
886
887		if (eeprom_buf == NULL) {
888			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
889							      pba->pba_block[0],
890							      pba->pba_block);
891			if (ret_val)
892				return ret_val;
893		} else {
894			if (eeprom_buf_size > (u32)(pba->word[1] +
895					      pba->pba_block[0])) {
896				memcpy(&eeprom_buf[pba->word[1]],
897				       pba->pba_block,
898				       pba->pba_block[0] * sizeof(u16));
899			} else {
900				return IXGBE_ERR_PARAM;
901			}
902		}
903	}
904
905	return IXGBE_SUCCESS;
906}
907
908/**
909 *  ixgbe_get_pba_block_size
910 *  @hw: pointer to the HW structure
911 *  @eeprom_buf: optional pointer to EEPROM image
912 *  @eeprom_buf_size: size of EEPROM image in words
913 *  @pba_data_size: pointer to output variable
914 *
915 *  Returns the size of the PBA block in words. Function operates on EEPROM
916 *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
917 *  EEPROM device.
918 *
919 **/
920s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
921			     u32 eeprom_buf_size, u16 *pba_block_size)
922{
923	s32 ret_val;
924	u16 pba_word[2];
925	u16 length;
926
927	DEBUGFUNC("ixgbe_get_pba_block_size");
928
929	if (eeprom_buf == NULL) {
930		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
931						     &pba_word[0]);
932		if (ret_val)
933			return ret_val;
934	} else {
935		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
936			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
937			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
938		} else {
939			return IXGBE_ERR_PARAM;
940		}
941	}
942
943	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
944		if (eeprom_buf == NULL) {
945			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
946						      &length);
947			if (ret_val)
948				return ret_val;
949		} else {
950			if (eeprom_buf_size > pba_word[1])
951				length = eeprom_buf[pba_word[1] + 0];
952			else
953				return IXGBE_ERR_PARAM;
954		}
955
956		if (length == 0xFFFF || length == 0)
957			return IXGBE_ERR_PBA_SECTION;
958	} else {
959		/* PBA number in legacy format, there is no PBA Block. */
960		length = 0;
961	}
962
963	if (pba_block_size != NULL)
964		*pba_block_size = length;
965
966	return IXGBE_SUCCESS;
967}
968
969/**
970 *  ixgbe_get_mac_addr_generic - Generic get MAC address
971 *  @hw: pointer to hardware structure
972 *  @mac_addr: Adapter MAC address
973 *
974 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
975 *  A reset of the adapter must be performed prior to calling this function
976 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
977 **/
978s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
979{
980	u32 rar_high;
981	u32 rar_low;
982	u16 i;
983
984	DEBUGFUNC("ixgbe_get_mac_addr_generic");
985
986	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
987	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
988
989	for (i = 0; i < 4; i++)
990		mac_addr[i] = (u8)(rar_low >> (i*8));
991
992	for (i = 0; i < 2; i++)
993		mac_addr[i+4] = (u8)(rar_high >> (i*8));
994
995	return IXGBE_SUCCESS;
996}
997
998/**
999 *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1000 *  @hw: pointer to hardware structure
1001 *  @link_status: the link status returned by the PCI config space
1002 *
1003 *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1004 **/
1005void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1006{
1007	struct ixgbe_mac_info *mac = &hw->mac;
1008
1009	if (hw->bus.type == ixgbe_bus_type_unknown)
1010		hw->bus.type = ixgbe_bus_type_pci_express;
1011
1012	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1013	case IXGBE_PCI_LINK_WIDTH_1:
1014		hw->bus.width = ixgbe_bus_width_pcie_x1;
1015		break;
1016	case IXGBE_PCI_LINK_WIDTH_2:
1017		hw->bus.width = ixgbe_bus_width_pcie_x2;
1018		break;
1019	case IXGBE_PCI_LINK_WIDTH_4:
1020		hw->bus.width = ixgbe_bus_width_pcie_x4;
1021		break;
1022	case IXGBE_PCI_LINK_WIDTH_8:
1023		hw->bus.width = ixgbe_bus_width_pcie_x8;
1024		break;
1025	default:
1026		hw->bus.width = ixgbe_bus_width_unknown;
1027		break;
1028	}
1029
1030	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1031	case IXGBE_PCI_LINK_SPEED_2500:
1032		hw->bus.speed = ixgbe_bus_speed_2500;
1033		break;
1034	case IXGBE_PCI_LINK_SPEED_5000:
1035		hw->bus.speed = ixgbe_bus_speed_5000;
1036		break;
1037	case IXGBE_PCI_LINK_SPEED_8000:
1038		hw->bus.speed = ixgbe_bus_speed_8000;
1039		break;
1040	default:
1041		hw->bus.speed = ixgbe_bus_speed_unknown;
1042		break;
1043	}
1044
1045	mac->ops.set_lan_id(hw);
1046}
1047
1048/**
1049 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1050 *  @hw: pointer to hardware structure
1051 *
1052 *  Gets the PCI bus info (speed, width, type) then calls helper function to
1053 *  store this data within the ixgbe_hw structure.
1054 **/
1055s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1056{
1057	u16 link_status;
1058
1059	DEBUGFUNC("ixgbe_get_bus_info_generic");
1060
1061	/* Get the negotiated link width and speed from PCI config space */
1062	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1063
1064	ixgbe_set_pci_config_data_generic(hw, link_status);
1065
1066	return IXGBE_SUCCESS;
1067}
1068
1069/**
1070 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1071 *  @hw: pointer to the HW structure
1072 *
1073 *  Determines the LAN function id by reading memory-mapped registers and swaps
1074 *  the port value if requested, and set MAC instance for devices that share
1075 *  CS4227.
1076 **/
1077void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1078{
1079	struct ixgbe_bus_info *bus = &hw->bus;
1080	u32 reg;
1081	u16 ee_ctrl_4;
1082
1083	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1084
1085	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1086	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1087	bus->lan_id = (u8)bus->func;
1088
1089	/* check for a port swap */
1090	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1091	if (reg & IXGBE_FACTPS_LFS)
1092		bus->func ^= 0x1;
1093
1094	/* Get MAC instance from EEPROM for configuring CS4227 */
1095	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1096		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1097		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1098				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1099	}
1100}
1101
1102/**
1103 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1104 *  @hw: pointer to hardware structure
1105 *
1106 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1107 *  disables transmit and receive units. The adapter_stopped flag is used by
1108 *  the shared code and drivers to determine if the adapter is in a stopped
1109 *  state and should not touch the hardware.
1110 **/
1111s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1112{
1113	u32 reg_val;
1114	u16 i;
1115
1116	DEBUGFUNC("ixgbe_stop_adapter_generic");
1117
1118	/*
1119	 * Set the adapter_stopped flag so other driver functions stop touching
1120	 * the hardware
1121	 */
1122	hw->adapter_stopped = TRUE;
1123
1124	/* Disable the receive unit */
1125	ixgbe_disable_rx(hw);
1126
1127	/* Clear interrupt mask to stop interrupts from being generated */
1128	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1129
1130	/* Clear any pending interrupts, flush previous writes */
1131	IXGBE_READ_REG(hw, IXGBE_EICR);
1132
1133	/* Disable the transmit unit.  Each queue must be disabled. */
1134	for (i = 0; i < hw->mac.max_tx_queues; i++)
1135		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1136
1137	/* Disable the receive unit by stopping each queue */
1138	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1139		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1140		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1141		reg_val |= IXGBE_RXDCTL_SWFLSH;
1142		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1143	}
1144
1145	/* flush all queues disables */
1146	IXGBE_WRITE_FLUSH(hw);
1147	msec_delay(2);
1148
1149	/*
1150	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1151	 * access and verify no pending requests
1152	 */
1153	return ixgbe_disable_pcie_master(hw);
1154}
1155
1156/**
1157 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1158 *  @hw: pointer to hardware structure
1159 *
1160 *  Store the index for the link active LED. This will be used to support
1161 *  blinking the LED.
1162 **/
1163s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1164{
1165	struct ixgbe_mac_info *mac = &hw->mac;
1166	u32 led_reg, led_mode;
1167	u8 i;
1168
1169	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1170
1171	/* Get LED link active from the LEDCTL register */
1172	for (i = 0; i < 4; i++) {
1173		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1174
1175		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1176		     IXGBE_LED_LINK_ACTIVE) {
1177			mac->led_link_act = i;
1178			return IXGBE_SUCCESS;
1179		}
1180	}
1181
1182	/*
1183	 * If LEDCTL register does not have the LED link active set, then use
1184	 * known MAC defaults.
1185	 */
1186	switch (hw->mac.type) {
1187	case ixgbe_mac_X550EM_a:
1188	case ixgbe_mac_X550EM_x:
1189		mac->led_link_act = 1;
1190		break;
1191	default:
1192		mac->led_link_act = 2;
1193	}
1194	return IXGBE_SUCCESS;
1195}
1196
1197/**
1198 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1199 *  @hw: pointer to hardware structure
1200 *  @index: led number to turn on
1201 **/
1202s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1203{
1204	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1205
1206	DEBUGFUNC("ixgbe_led_on_generic");
1207
1208	if (index > 3)
1209		return IXGBE_ERR_PARAM;
1210
1211	/* To turn on the LED, set mode to ON. */
1212	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1213	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1214	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1215	IXGBE_WRITE_FLUSH(hw);
1216
1217	return IXGBE_SUCCESS;
1218}
1219
1220/**
1221 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1222 *  @hw: pointer to hardware structure
1223 *  @index: led number to turn off
1224 **/
1225s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1226{
1227	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1228
1229	DEBUGFUNC("ixgbe_led_off_generic");
1230
1231	if (index > 3)
1232		return IXGBE_ERR_PARAM;
1233
1234	/* To turn off the LED, set mode to OFF. */
1235	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1236	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1237	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1238	IXGBE_WRITE_FLUSH(hw);
1239
1240	return IXGBE_SUCCESS;
1241}
1242
1243/**
1244 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1245 *  @hw: pointer to hardware structure
1246 *
1247 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1248 *  ixgbe_hw struct in order to set up EEPROM access.
1249 **/
1250s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1251{
1252	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1253	u32 eec;
1254	u16 eeprom_size;
1255
1256	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1257
1258	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1259		eeprom->type = ixgbe_eeprom_none;
1260		/* Set default semaphore delay to 10ms which is a well
1261		 * tested value */
1262		eeprom->semaphore_delay = 10;
1263		/* Clear EEPROM page size, it will be initialized as needed */
1264		eeprom->word_page_size = 0;
1265
1266		/*
1267		 * Check for EEPROM present first.
1268		 * If not present leave as none
1269		 */
1270		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1271		if (eec & IXGBE_EEC_PRES) {
1272			eeprom->type = ixgbe_eeprom_spi;
1273
1274			/*
1275			 * SPI EEPROM is assumed here.  This code would need to
1276			 * change if a future EEPROM is not SPI.
1277			 */
1278			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1279					    IXGBE_EEC_SIZE_SHIFT);
1280			eeprom->word_size = 1 << (eeprom_size +
1281					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1282		}
1283
1284		if (eec & IXGBE_EEC_ADDR_SIZE)
1285			eeprom->address_bits = 16;
1286		else
1287			eeprom->address_bits = 8;
1288		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1289			  "%d\n", eeprom->type, eeprom->word_size,
1290			  eeprom->address_bits);
1291	}
1292
1293	return IXGBE_SUCCESS;
1294}
1295
1296/**
1297 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1298 *  @hw: pointer to hardware structure
1299 *  @offset: offset within the EEPROM to write
1300 *  @words: number of word(s)
1301 *  @data: 16 bit word(s) to write to EEPROM
1302 *
1303 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1304 **/
1305s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1306					       u16 words, u16 *data)
1307{
1308	s32 status = IXGBE_SUCCESS;
1309	u16 i, count;
1310
1311	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1312
1313	hw->eeprom.ops.init_params(hw);
1314
1315	if (words == 0) {
1316		status = IXGBE_ERR_INVALID_ARGUMENT;
1317		goto out;
1318	}
1319
1320	if (offset + words > hw->eeprom.word_size) {
1321		status = IXGBE_ERR_EEPROM;
1322		goto out;
1323	}
1324
1325	/*
1326	 * The EEPROM page size cannot be queried from the chip. We do lazy
1327	 * initialization. It is worth to do that when we write large buffer.
1328	 */
1329	if ((hw->eeprom.word_page_size == 0) &&
1330	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1331		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1332
1333	/*
1334	 * We cannot hold synchronization semaphores for too long
1335	 * to avoid other entity starvation. However it is more efficient
1336	 * to read in bursts than synchronizing access for each word.
1337	 */
1338	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1339		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1340			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1341		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1342							    count, &data[i]);
1343
1344		if (status != IXGBE_SUCCESS)
1345			break;
1346	}
1347
1348out:
1349	return status;
1350}
1351
1352/**
1353 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1354 *  @hw: pointer to hardware structure
1355 *  @offset: offset within the EEPROM to be written to
1356 *  @words: number of word(s)
1357 *  @data: 16 bit word(s) to be written to the EEPROM
1358 *
1359 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1360 *  EEPROM will most likely contain an invalid checksum.
1361 **/
1362static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1363					      u16 words, u16 *data)
1364{
1365	s32 status;
1366	u16 word;
1367	u16 page_size;
1368	u16 i;
1369	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1370
1371	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1372
1373	/* Prepare the EEPROM for writing  */
1374	status = ixgbe_acquire_eeprom(hw);
1375
1376	if (status == IXGBE_SUCCESS) {
1377		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1378			ixgbe_release_eeprom(hw);
1379			status = IXGBE_ERR_EEPROM;
1380		}
1381	}
1382
1383	if (status == IXGBE_SUCCESS) {
1384		for (i = 0; i < words; i++) {
1385			ixgbe_standby_eeprom(hw);
1386
1387			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1388			ixgbe_shift_out_eeprom_bits(hw,
1389						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1390						   IXGBE_EEPROM_OPCODE_BITS);
1391
1392			ixgbe_standby_eeprom(hw);
1393
1394			/*
1395			 * Some SPI eeproms use the 8th address bit embedded
1396			 * in the opcode
1397			 */
1398			if ((hw->eeprom.address_bits == 8) &&
1399			    ((offset + i) >= 128))
1400				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1401
1402			/* Send the Write command (8-bit opcode + addr) */
1403			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1404						    IXGBE_EEPROM_OPCODE_BITS);
1405			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1406						    hw->eeprom.address_bits);
1407
1408			page_size = hw->eeprom.word_page_size;
1409
1410			/* Send the data in burst via SPI*/
1411			do {
1412				word = data[i];
1413				word = (word >> 8) | (word << 8);
1414				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1415
1416				if (page_size == 0)
1417					break;
1418
1419				/* do not wrap around page */
1420				if (((offset + i) & (page_size - 1)) ==
1421				    (page_size - 1))
1422					break;
1423			} while (++i < words);
1424
1425			ixgbe_standby_eeprom(hw);
1426			msec_delay(10);
1427		}
1428		/* Done with writing - release the EEPROM */
1429		ixgbe_release_eeprom(hw);
1430	}
1431
1432	return status;
1433}
1434
1435/**
1436 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1437 *  @hw: pointer to hardware structure
1438 *  @offset: offset within the EEPROM to be written to
1439 *  @data: 16 bit word to be written to the EEPROM
1440 *
1441 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1442 *  EEPROM will most likely contain an invalid checksum.
1443 **/
1444s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1445{
1446	s32 status;
1447
1448	DEBUGFUNC("ixgbe_write_eeprom_generic");
1449
1450	hw->eeprom.ops.init_params(hw);
1451
1452	if (offset >= hw->eeprom.word_size) {
1453		status = IXGBE_ERR_EEPROM;
1454		goto out;
1455	}
1456
1457	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1458
1459out:
1460	return status;
1461}
1462
1463/**
1464 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1465 *  @hw: pointer to hardware structure
1466 *  @offset: offset within the EEPROM to be read
1467 *  @data: read 16 bit words(s) from EEPROM
1468 *  @words: number of word(s)
1469 *
1470 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1471 **/
1472s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1473					      u16 words, u16 *data)
1474{
1475	s32 status = IXGBE_SUCCESS;
1476	u16 i, count;
1477
1478	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1479
1480	hw->eeprom.ops.init_params(hw);
1481
1482	if (words == 0) {
1483		status = IXGBE_ERR_INVALID_ARGUMENT;
1484		goto out;
1485	}
1486
1487	if (offset + words > hw->eeprom.word_size) {
1488		status = IXGBE_ERR_EEPROM;
1489		goto out;
1490	}
1491
1492	/*
1493	 * We cannot hold synchronization semaphores for too long
1494	 * to avoid other entity starvation. However it is more efficient
1495	 * to read in bursts than synchronizing access for each word.
1496	 */
1497	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1498		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1499			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1500
1501		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1502							   count, &data[i]);
1503
1504		if (status != IXGBE_SUCCESS)
1505			break;
1506	}
1507
1508out:
1509	return status;
1510}
1511
1512/**
1513 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1514 *  @hw: pointer to hardware structure
1515 *  @offset: offset within the EEPROM to be read
1516 *  @words: number of word(s)
1517 *  @data: read 16 bit word(s) from EEPROM
1518 *
1519 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1520 **/
1521static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1522					     u16 words, u16 *data)
1523{
1524	s32 status;
1525	u16 word_in;
1526	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1527	u16 i;
1528
1529	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1530
1531	/* Prepare the EEPROM for reading  */
1532	status = ixgbe_acquire_eeprom(hw);
1533
1534	if (status == IXGBE_SUCCESS) {
1535		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1536			ixgbe_release_eeprom(hw);
1537			status = IXGBE_ERR_EEPROM;
1538		}
1539	}
1540
1541	if (status == IXGBE_SUCCESS) {
1542		for (i = 0; i < words; i++) {
1543			ixgbe_standby_eeprom(hw);
1544			/*
1545			 * Some SPI eeproms use the 8th address bit embedded
1546			 * in the opcode
1547			 */
1548			if ((hw->eeprom.address_bits == 8) &&
1549			    ((offset + i) >= 128))
1550				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1551
1552			/* Send the READ command (opcode + addr) */
1553			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1554						    IXGBE_EEPROM_OPCODE_BITS);
1555			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1556						    hw->eeprom.address_bits);
1557
1558			/* Read the data. */
1559			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1560			data[i] = (word_in >> 8) | (word_in << 8);
1561		}
1562
1563		/* End this read operation */
1564		ixgbe_release_eeprom(hw);
1565	}
1566
1567	return status;
1568}
1569
1570/**
1571 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1572 *  @hw: pointer to hardware structure
1573 *  @offset: offset within the EEPROM to be read
1574 *  @data: read 16 bit value from EEPROM
1575 *
1576 *  Reads 16 bit value from EEPROM through bit-bang method
1577 **/
1578s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1579				       u16 *data)
1580{
1581	s32 status;
1582
1583	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1584
1585	hw->eeprom.ops.init_params(hw);
1586
1587	if (offset >= hw->eeprom.word_size) {
1588		status = IXGBE_ERR_EEPROM;
1589		goto out;
1590	}
1591
1592	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1593
1594out:
1595	return status;
1596}
1597
1598/**
1599 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1600 *  @hw: pointer to hardware structure
1601 *  @offset: offset of word in the EEPROM to read
1602 *  @words: number of word(s)
1603 *  @data: 16 bit word(s) from the EEPROM
1604 *
1605 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1606 **/
1607s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1608				   u16 words, u16 *data)
1609{
1610	u32 eerd;
1611	s32 status = IXGBE_SUCCESS;
1612	u32 i;
1613
1614	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1615
1616	hw->eeprom.ops.init_params(hw);
1617
1618	if (words == 0) {
1619		status = IXGBE_ERR_INVALID_ARGUMENT;
1620		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1621		goto out;
1622	}
1623
1624	if (offset >= hw->eeprom.word_size) {
1625		status = IXGBE_ERR_EEPROM;
1626		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1627		goto out;
1628	}
1629
1630	for (i = 0; i < words; i++) {
1631		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1632		       IXGBE_EEPROM_RW_REG_START;
1633
1634		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1635		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1636
1637		if (status == IXGBE_SUCCESS) {
1638			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1639				   IXGBE_EEPROM_RW_REG_DATA);
1640		} else {
1641			DEBUGOUT("Eeprom read timed out\n");
1642			goto out;
1643		}
1644	}
1645out:
1646	return status;
1647}
1648
1649/**
1650 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1651 *  @hw: pointer to hardware structure
1652 *  @offset: offset within the EEPROM to be used as a scratch pad
1653 *
1654 *  Discover EEPROM page size by writing marching data at given offset.
1655 *  This function is called only when we are writing a new large buffer
1656 *  at given offset so the data would be overwritten anyway.
1657 **/
1658static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1659						 u16 offset)
1660{
1661	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1662	s32 status = IXGBE_SUCCESS;
1663	u16 i;
1664
1665	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1666
1667	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1668		data[i] = i;
1669
1670	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1671	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1672					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1673	hw->eeprom.word_page_size = 0;
1674	if (status != IXGBE_SUCCESS)
1675		goto out;
1676
1677	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1678	if (status != IXGBE_SUCCESS)
1679		goto out;
1680
1681	/*
1682	 * When writing in burst more than the actual page size
1683	 * EEPROM address wraps around current page.
1684	 */
1685	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1686
1687	DEBUGOUT1("Detected EEPROM page size = %d words.",
1688		  hw->eeprom.word_page_size);
1689out:
1690	return status;
1691}
1692
1693/**
1694 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1695 *  @hw: pointer to hardware structure
1696 *  @offset: offset of  word in the EEPROM to read
1697 *  @data: word read from the EEPROM
1698 *
1699 *  Reads a 16 bit word from the EEPROM using the EERD register.
1700 **/
1701s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1702{
1703	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1704}
1705
1706/**
1707 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1708 *  @hw: pointer to hardware structure
1709 *  @offset: offset of  word in the EEPROM to write
1710 *  @words: number of word(s)
1711 *  @data: word(s) write to the EEPROM
1712 *
1713 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1714 **/
1715s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1716				    u16 words, u16 *data)
1717{
1718	u32 eewr;
1719	s32 status = IXGBE_SUCCESS;
1720	u16 i;
1721
1722	DEBUGFUNC("ixgbe_write_eewr_generic");
1723
1724	hw->eeprom.ops.init_params(hw);
1725
1726	if (words == 0) {
1727		status = IXGBE_ERR_INVALID_ARGUMENT;
1728		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1729		goto out;
1730	}
1731
1732	if (offset >= hw->eeprom.word_size) {
1733		status = IXGBE_ERR_EEPROM;
1734		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1735		goto out;
1736	}
1737
1738	for (i = 0; i < words; i++) {
1739		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1740			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1741			IXGBE_EEPROM_RW_REG_START;
1742
1743		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1744		if (status != IXGBE_SUCCESS) {
1745			DEBUGOUT("Eeprom write EEWR timed out\n");
1746			goto out;
1747		}
1748
1749		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1750
1751		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1752		if (status != IXGBE_SUCCESS) {
1753			DEBUGOUT("Eeprom write EEWR timed out\n");
1754			goto out;
1755		}
1756	}
1757
1758out:
1759	return status;
1760}
1761
1762/**
1763 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1764 *  @hw: pointer to hardware structure
1765 *  @offset: offset of  word in the EEPROM to write
1766 *  @data: word write to the EEPROM
1767 *
1768 *  Write a 16 bit word to the EEPROM using the EEWR register.
1769 **/
1770s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1771{
1772	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1773}
1774
1775/**
1776 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1777 *  @hw: pointer to hardware structure
1778 *  @ee_reg: EEPROM flag for polling
1779 *
1780 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1781 *  read or write is done respectively.
1782 **/
1783s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1784{
1785	u32 i;
1786	u32 reg;
1787	s32 status = IXGBE_ERR_EEPROM;
1788
1789	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1790
1791	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1792		if (ee_reg == IXGBE_NVM_POLL_READ)
1793			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1794		else
1795			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1796
1797		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1798			status = IXGBE_SUCCESS;
1799			break;
1800		}
1801		usec_delay(5);
1802	}
1803
1804	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1805		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1806			     "EEPROM read/write done polling timed out");
1807
1808	return status;
1809}
1810
1811/**
1812 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1813 *  @hw: pointer to hardware structure
1814 *
1815 *  Prepares EEPROM for access using bit-bang method. This function should
1816 *  be called before issuing a command to the EEPROM.
1817 **/
1818static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1819{
1820	s32 status = IXGBE_SUCCESS;
1821	u32 eec;
1822	u32 i;
1823
1824	DEBUGFUNC("ixgbe_acquire_eeprom");
1825
1826	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1827	    != IXGBE_SUCCESS)
1828		status = IXGBE_ERR_SWFW_SYNC;
1829
1830	if (status == IXGBE_SUCCESS) {
1831		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1832
1833		/* Request EEPROM Access */
1834		eec |= IXGBE_EEC_REQ;
1835		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1836
1837		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1838			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1839			if (eec & IXGBE_EEC_GNT)
1840				break;
1841			usec_delay(5);
1842		}
1843
1844		/* Release if grant not acquired */
1845		if (!(eec & IXGBE_EEC_GNT)) {
1846			eec &= ~IXGBE_EEC_REQ;
1847			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1848			DEBUGOUT("Could not acquire EEPROM grant\n");
1849
1850			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1851			status = IXGBE_ERR_EEPROM;
1852		}
1853
1854		/* Setup EEPROM for Read/Write */
1855		if (status == IXGBE_SUCCESS) {
1856			/* Clear CS and SK */
1857			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1858			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1859			IXGBE_WRITE_FLUSH(hw);
1860			usec_delay(1);
1861		}
1862	}
1863	return status;
1864}
1865
1866/**
1867 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1868 *  @hw: pointer to hardware structure
1869 *
1870 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1871 **/
1872static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1873{
1874	s32 status = IXGBE_ERR_EEPROM;
1875	u32 timeout = 2000;
1876	u32 i;
1877	u32 swsm;
1878
1879	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1880
1881
1882	/* Get SMBI software semaphore between device drivers first */
1883	for (i = 0; i < timeout; i++) {
1884		/*
1885		 * If the SMBI bit is 0 when we read it, then the bit will be
1886		 * set and we have the semaphore
1887		 */
1888		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1889		if (!(swsm & IXGBE_SWSM_SMBI)) {
1890			status = IXGBE_SUCCESS;
1891			break;
1892		}
1893		usec_delay(50);
1894	}
1895
1896	if (i == timeout) {
1897		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1898			 "not granted.\n");
1899		/*
1900		 * this release is particularly important because our attempts
1901		 * above to get the semaphore may have succeeded, and if there
1902		 * was a timeout, we should unconditionally clear the semaphore
1903		 * bits to free the driver to make progress
1904		 */
1905		ixgbe_release_eeprom_semaphore(hw);
1906
1907		usec_delay(50);
1908		/*
1909		 * one last try
1910		 * If the SMBI bit is 0 when we read it, then the bit will be
1911		 * set and we have the semaphore
1912		 */
1913		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1914		if (!(swsm & IXGBE_SWSM_SMBI))
1915			status = IXGBE_SUCCESS;
1916	}
1917
1918	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1919	if (status == IXGBE_SUCCESS) {
1920		for (i = 0; i < timeout; i++) {
1921			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1922
1923			/* Set the SW EEPROM semaphore bit to request access */
1924			swsm |= IXGBE_SWSM_SWESMBI;
1925			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1926
1927			/*
1928			 * If we set the bit successfully then we got the
1929			 * semaphore.
1930			 */
1931			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1932			if (swsm & IXGBE_SWSM_SWESMBI)
1933				break;
1934
1935			usec_delay(50);
1936		}
1937
1938		/*
1939		 * Release semaphores and return error if SW EEPROM semaphore
1940		 * was not granted because we don't have access to the EEPROM
1941		 */
1942		if (i >= timeout) {
1943			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1944			    "SWESMBI Software EEPROM semaphore not granted.\n");
1945			ixgbe_release_eeprom_semaphore(hw);
1946			status = IXGBE_ERR_EEPROM;
1947		}
1948	} else {
1949		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1950			     "Software semaphore SMBI between device drivers "
1951			     "not granted.\n");
1952	}
1953
1954	return status;
1955}
1956
1957/**
1958 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1959 *  @hw: pointer to hardware structure
1960 *
1961 *  This function clears hardware semaphore bits.
1962 **/
1963static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1964{
1965	u32 swsm;
1966
1967	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1968
1969	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1970
1971	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1972	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1973	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1974	IXGBE_WRITE_FLUSH(hw);
1975}
1976
1977/**
1978 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1979 *  @hw: pointer to hardware structure
1980 **/
1981static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1982{
1983	s32 status = IXGBE_SUCCESS;
1984	u16 i;
1985	u8 spi_stat_reg;
1986
1987	DEBUGFUNC("ixgbe_ready_eeprom");
1988
1989	/*
1990	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1991	 * EEPROM will signal that the command has been completed by clearing
1992	 * bit 0 of the internal status register.  If it's not cleared within
1993	 * 5 milliseconds, then error out.
1994	 */
1995	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1996		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1997					    IXGBE_EEPROM_OPCODE_BITS);
1998		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1999		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2000			break;
2001
2002		usec_delay(5);
2003		ixgbe_standby_eeprom(hw);
2004	};
2005
2006	/*
2007	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2008	 * devices (and only 0-5mSec on 5V devices)
2009	 */
2010	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2011		DEBUGOUT("SPI EEPROM Status error\n");
2012		status = IXGBE_ERR_EEPROM;
2013	}
2014
2015	return status;
2016}
2017
2018/**
2019 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2020 *  @hw: pointer to hardware structure
2021 **/
2022static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2023{
2024	u32 eec;
2025
2026	DEBUGFUNC("ixgbe_standby_eeprom");
2027
2028	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2029
2030	/* Toggle CS to flush commands */
2031	eec |= IXGBE_EEC_CS;
2032	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2033	IXGBE_WRITE_FLUSH(hw);
2034	usec_delay(1);
2035	eec &= ~IXGBE_EEC_CS;
2036	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2037	IXGBE_WRITE_FLUSH(hw);
2038	usec_delay(1);
2039}
2040
2041/**
2042 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2043 *  @hw: pointer to hardware structure
2044 *  @data: data to send to the EEPROM
2045 *  @count: number of bits to shift out
2046 **/
2047static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2048					u16 count)
2049{
2050	u32 eec;
2051	u32 mask;
2052	u32 i;
2053
2054	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2055
2056	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2057
2058	/*
2059	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2060	 * one bit at a time.  Determine the starting bit based on count
2061	 */
2062	mask = 0x01 << (count - 1);
2063
2064	for (i = 0; i < count; i++) {
2065		/*
2066		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2067		 * "1", and then raising and then lowering the clock (the SK
2068		 * bit controls the clock input to the EEPROM).  A "0" is
2069		 * shifted out to the EEPROM by setting "DI" to "0" and then
2070		 * raising and then lowering the clock.
2071		 */
2072		if (data & mask)
2073			eec |= IXGBE_EEC_DI;
2074		else
2075			eec &= ~IXGBE_EEC_DI;
2076
2077		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2078		IXGBE_WRITE_FLUSH(hw);
2079
2080		usec_delay(1);
2081
2082		ixgbe_raise_eeprom_clk(hw, &eec);
2083		ixgbe_lower_eeprom_clk(hw, &eec);
2084
2085		/*
2086		 * Shift mask to signify next bit of data to shift in to the
2087		 * EEPROM
2088		 */
2089		mask = mask >> 1;
2090	};
2091
2092	/* We leave the "DI" bit set to "0" when we leave this routine. */
2093	eec &= ~IXGBE_EEC_DI;
2094	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2095	IXGBE_WRITE_FLUSH(hw);
2096}
2097
2098/**
2099 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2100 *  @hw: pointer to hardware structure
2101 **/
2102static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2103{
2104	u32 eec;
2105	u32 i;
2106	u16 data = 0;
2107
2108	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2109
2110	/*
2111	 * In order to read a register from the EEPROM, we need to shift
2112	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2113	 * the clock input to the EEPROM (setting the SK bit), and then reading
2114	 * the value of the "DO" bit.  During this "shifting in" process the
2115	 * "DI" bit should always be clear.
2116	 */
2117	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2118
2119	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2120
2121	for (i = 0; i < count; i++) {
2122		data = data << 1;
2123		ixgbe_raise_eeprom_clk(hw, &eec);
2124
2125		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2126
2127		eec &= ~(IXGBE_EEC_DI);
2128		if (eec & IXGBE_EEC_DO)
2129			data |= 1;
2130
2131		ixgbe_lower_eeprom_clk(hw, &eec);
2132	}
2133
2134	return data;
2135}
2136
2137/**
2138 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2139 *  @hw: pointer to hardware structure
2140 *  @eec: EEC register's current value
2141 **/
2142static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2143{
2144	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2145
2146	/*
2147	 * Raise the clock input to the EEPROM
2148	 * (setting the SK bit), then delay
2149	 */
2150	*eec = *eec | IXGBE_EEC_SK;
2151	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2152	IXGBE_WRITE_FLUSH(hw);
2153	usec_delay(1);
2154}
2155
2156/**
2157 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2158 *  @hw: pointer to hardware structure
2159 *  @eecd: EECD's current value
2160 **/
2161static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2162{
2163	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2164
2165	/*
2166	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2167	 * delay
2168	 */
2169	*eec = *eec & ~IXGBE_EEC_SK;
2170	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2171	IXGBE_WRITE_FLUSH(hw);
2172	usec_delay(1);
2173}
2174
2175/**
2176 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2177 *  @hw: pointer to hardware structure
2178 **/
2179static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2180{
2181	u32 eec;
2182
2183	DEBUGFUNC("ixgbe_release_eeprom");
2184
2185	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2186
2187	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2188	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2189
2190	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2191	IXGBE_WRITE_FLUSH(hw);
2192
2193	usec_delay(1);
2194
2195	/* Stop requesting EEPROM access */
2196	eec &= ~IXGBE_EEC_REQ;
2197	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2198
2199	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2200
2201	/* Delay before attempt to obtain semaphore again to allow FW access */
2202	msec_delay(hw->eeprom.semaphore_delay);
2203}
2204
2205/**
2206 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2207 *  @hw: pointer to hardware structure
2208 *
2209 *  Returns a negative error code on error, or the 16-bit checksum
2210 **/
2211s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2212{
2213	u16 i;
2214	u16 j;
2215	u16 checksum = 0;
2216	u16 length = 0;
2217	u16 pointer = 0;
2218	u16 word = 0;
2219
2220	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2221
2222	/* Include 0x0-0x3F in the checksum */
2223	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2224		if (hw->eeprom.ops.read(hw, i, &word)) {
2225			DEBUGOUT("EEPROM read failed\n");
2226			return IXGBE_ERR_EEPROM;
2227		}
2228		checksum += word;
2229	}
2230
2231	/* Include all data from pointers except for the fw pointer */
2232	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2233		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2234			DEBUGOUT("EEPROM read failed\n");
2235			return IXGBE_ERR_EEPROM;
2236		}
2237
2238		/* If the pointer seems invalid */
2239		if (pointer == 0xFFFF || pointer == 0)
2240			continue;
2241
2242		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2243			DEBUGOUT("EEPROM read failed\n");
2244			return IXGBE_ERR_EEPROM;
2245		}
2246
2247		if (length == 0xFFFF || length == 0)
2248			continue;
2249
2250		for (j = pointer + 1; j <= pointer + length; j++) {
2251			if (hw->eeprom.ops.read(hw, j, &word)) {
2252				DEBUGOUT("EEPROM read failed\n");
2253				return IXGBE_ERR_EEPROM;
2254			}
2255			checksum += word;
2256		}
2257	}
2258
2259	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2260
2261	return (s32)checksum;
2262}
2263
2264/**
2265 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2266 *  @hw: pointer to hardware structure
2267 *  @checksum_val: calculated checksum
2268 *
2269 *  Performs checksum calculation and validates the EEPROM checksum.  If the
2270 *  caller does not need checksum_val, the value can be NULL.
2271 **/
2272s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2273					   u16 *checksum_val)
2274{
2275	s32 status;
2276	u16 checksum;
2277	u16 read_checksum = 0;
2278
2279	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2280
2281	/* Read the first word from the EEPROM. If this times out or fails, do
2282	 * not continue or we could be in for a very long wait while every
2283	 * EEPROM read fails
2284	 */
2285	status = hw->eeprom.ops.read(hw, 0, &checksum);
2286	if (status) {
2287		DEBUGOUT("EEPROM read failed\n");
2288		return status;
2289	}
2290
2291	status = hw->eeprom.ops.calc_checksum(hw);
2292	if (status < 0)
2293		return status;
2294
2295	checksum = (u16)(status & 0xffff);
2296
2297	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2298	if (status) {
2299		DEBUGOUT("EEPROM read failed\n");
2300		return status;
2301	}
2302
2303	/* Verify read checksum from EEPROM is the same as
2304	 * calculated checksum
2305	 */
2306	if (read_checksum != checksum)
2307		status = IXGBE_ERR_EEPROM_CHECKSUM;
2308
2309	/* If the user cares, return the calculated checksum */
2310	if (checksum_val)
2311		*checksum_val = checksum;
2312
2313	return status;
2314}
2315
2316/**
2317 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2318 *  @hw: pointer to hardware structure
2319 **/
2320s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2321{
2322	s32 status;
2323	u16 checksum;
2324
2325	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2326
2327	/* Read the first word from the EEPROM. If this times out or fails, do
2328	 * not continue or we could be in for a very long wait while every
2329	 * EEPROM read fails
2330	 */
2331	status = hw->eeprom.ops.read(hw, 0, &checksum);
2332	if (status) {
2333		DEBUGOUT("EEPROM read failed\n");
2334		return status;
2335	}
2336
2337	status = hw->eeprom.ops.calc_checksum(hw);
2338	if (status < 0)
2339		return status;
2340
2341	checksum = (u16)(status & 0xffff);
2342
2343	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2344
2345	return status;
2346}
2347
2348/**
2349 *  ixgbe_validate_mac_addr - Validate MAC address
2350 *  @mac_addr: pointer to MAC address.
2351 *
2352 *  Tests a MAC address to ensure it is a valid Individual Address.
2353 **/
2354s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2355{
2356	s32 status = IXGBE_SUCCESS;
2357
2358	DEBUGFUNC("ixgbe_validate_mac_addr");
2359
2360	/* Make sure it is not a multicast address */
2361	if (IXGBE_IS_MULTICAST(mac_addr)) {
2362		status = IXGBE_ERR_INVALID_MAC_ADDR;
2363	/* Not a broadcast address */
2364	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2365		status = IXGBE_ERR_INVALID_MAC_ADDR;
2366	/* Reject the zero address */
2367	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2368		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2369		status = IXGBE_ERR_INVALID_MAC_ADDR;
2370	}
2371	return status;
2372}
2373
2374/**
2375 *  ixgbe_set_rar_generic - Set Rx address register
2376 *  @hw: pointer to hardware structure
2377 *  @index: Receive address register to write
2378 *  @addr: Address to put into receive address register
2379 *  @vmdq: VMDq "set" or "pool" index
2380 *  @enable_addr: set flag that address is active
2381 *
2382 *  Puts an ethernet address into a receive address register.
2383 **/
2384s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2385			  u32 enable_addr)
2386{
2387	u32 rar_low, rar_high;
2388	u32 rar_entries = hw->mac.num_rar_entries;
2389
2390	DEBUGFUNC("ixgbe_set_rar_generic");
2391
2392	/* Make sure we are using a valid rar index range */
2393	if (index >= rar_entries) {
2394		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2395			     "RAR index %d is out of range.\n", index);
2396		return IXGBE_ERR_INVALID_ARGUMENT;
2397	}
2398
2399	/* setup VMDq pool selection before this RAR gets enabled */
2400	hw->mac.ops.set_vmdq(hw, index, vmdq);
2401
2402	/*
2403	 * HW expects these in little endian so we reverse the byte
2404	 * order from network order (big endian) to little endian
2405	 */
2406	rar_low = ((u32)addr[0] |
2407		   ((u32)addr[1] << 8) |
2408		   ((u32)addr[2] << 16) |
2409		   ((u32)addr[3] << 24));
2410	/*
2411	 * Some parts put the VMDq setting in the extra RAH bits,
2412	 * so save everything except the lower 16 bits that hold part
2413	 * of the address and the address valid bit.
2414	 */
2415	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2416	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2417	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2418
2419	if (enable_addr != 0)
2420		rar_high |= IXGBE_RAH_AV;
2421
2422	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2423	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2424
2425	return IXGBE_SUCCESS;
2426}
2427
2428/**
2429 *  ixgbe_clear_rar_generic - Remove Rx address register
2430 *  @hw: pointer to hardware structure
2431 *  @index: Receive address register to write
2432 *
2433 *  Clears an ethernet address from a receive address register.
2434 **/
2435s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2436{
2437	u32 rar_high;
2438	u32 rar_entries = hw->mac.num_rar_entries;
2439
2440	DEBUGFUNC("ixgbe_clear_rar_generic");
2441
2442	/* Make sure we are using a valid rar index range */
2443	if (index >= rar_entries) {
2444		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2445			     "RAR index %d is out of range.\n", index);
2446		return IXGBE_ERR_INVALID_ARGUMENT;
2447	}
2448
2449	/*
2450	 * Some parts put the VMDq setting in the extra RAH bits,
2451	 * so save everything except the lower 16 bits that hold part
2452	 * of the address and the address valid bit.
2453	 */
2454	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2455	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2456
2457	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2458	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2459
2460	/* clear VMDq pool/queue selection for this RAR */
2461	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2462
2463	return IXGBE_SUCCESS;
2464}
2465
2466/**
2467 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2468 *  @hw: pointer to hardware structure
2469 *
2470 *  Places the MAC address in receive address register 0 and clears the rest
2471 *  of the receive address registers. Clears the multicast table. Assumes
2472 *  the receiver is in reset when the routine is called.
2473 **/
2474s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2475{
2476	u32 i;
2477	u32 rar_entries = hw->mac.num_rar_entries;
2478
2479	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2480
2481	/*
2482	 * If the current mac address is valid, assume it is a software override
2483	 * to the permanent address.
2484	 * Otherwise, use the permanent address from the eeprom.
2485	 */
2486	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2487	    IXGBE_ERR_INVALID_MAC_ADDR) {
2488		/* Get the MAC address from the RAR0 for later reference */
2489		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2490
2491		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2492			  hw->mac.addr[0], hw->mac.addr[1],
2493			  hw->mac.addr[2]);
2494		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2495			  hw->mac.addr[4], hw->mac.addr[5]);
2496	} else {
2497		/* Setup the receive address. */
2498		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2499		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2500			  hw->mac.addr[0], hw->mac.addr[1],
2501			  hw->mac.addr[2]);
2502		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2503			  hw->mac.addr[4], hw->mac.addr[5]);
2504
2505		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2506	}
2507
2508	/* clear VMDq pool/queue selection for RAR 0 */
2509	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2510
2511	hw->addr_ctrl.overflow_promisc = 0;
2512
2513	hw->addr_ctrl.rar_used_count = 1;
2514
2515	/* Zero out the other receive addresses. */
2516	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2517	for (i = 1; i < rar_entries; i++) {
2518		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2519		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2520	}
2521
2522	/* Clear the MTA */
2523	hw->addr_ctrl.mta_in_use = 0;
2524	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2525
2526	DEBUGOUT(" Clearing MTA\n");
2527	for (i = 0; i < hw->mac.mcft_size; i++)
2528		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2529
2530	ixgbe_init_uta_tables(hw);
2531
2532	return IXGBE_SUCCESS;
2533}
2534
2535/**
2536 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2537 *  @hw: pointer to hardware structure
2538 *  @addr: new address
2539 *
2540 *  Adds it to unused receive address register or goes into promiscuous mode.
2541 **/
2542void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2543{
2544	u32 rar_entries = hw->mac.num_rar_entries;
2545	u32 rar;
2546
2547	DEBUGFUNC("ixgbe_add_uc_addr");
2548
2549	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2550		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2551
2552	/*
2553	 * Place this address in the RAR if there is room,
2554	 * else put the controller into promiscuous mode
2555	 */
2556	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2557		rar = hw->addr_ctrl.rar_used_count;
2558		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2559		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2560		hw->addr_ctrl.rar_used_count++;
2561	} else {
2562		hw->addr_ctrl.overflow_promisc++;
2563	}
2564
2565	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2566}
2567
2568/**
2569 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2570 *  @hw: pointer to hardware structure
2571 *  @addr_list: the list of new addresses
2572 *  @addr_count: number of addresses
2573 *  @next: iterator function to walk the address list
2574 *
2575 *  The given list replaces any existing list.  Clears the secondary addrs from
2576 *  receive address registers.  Uses unused receive address registers for the
2577 *  first secondary addresses, and falls back to promiscuous mode as needed.
2578 *
2579 *  Drivers using secondary unicast addresses must set user_set_promisc when
2580 *  manually putting the device into promiscuous mode.
2581 **/
2582s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2583				      u32 addr_count, ixgbe_mc_addr_itr next)
2584{
2585	u8 *addr;
2586	u32 i;
2587	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2588	u32 uc_addr_in_use;
2589	u32 fctrl;
2590	u32 vmdq;
2591
2592	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2593
2594	/*
2595	 * Clear accounting of old secondary address list,
2596	 * don't count RAR[0]
2597	 */
2598	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2599	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2600	hw->addr_ctrl.overflow_promisc = 0;
2601
2602	/* Zero out the other receive addresses */
2603	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2604	for (i = 0; i < uc_addr_in_use; i++) {
2605		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2606		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2607	}
2608
2609	/* Add the new addresses */
2610	for (i = 0; i < addr_count; i++) {
2611		DEBUGOUT(" Adding the secondary addresses:\n");
2612		addr = next(hw, &addr_list, &vmdq);
2613		ixgbe_add_uc_addr(hw, addr, vmdq);
2614	}
2615
2616	if (hw->addr_ctrl.overflow_promisc) {
2617		/* enable promisc if not already in overflow or set by user */
2618		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2619			DEBUGOUT(" Entering address overflow promisc mode\n");
2620			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2621			fctrl |= IXGBE_FCTRL_UPE;
2622			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2623		}
2624	} else {
2625		/* only disable if set by overflow, not by user */
2626		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2627			DEBUGOUT(" Leaving address overflow promisc mode\n");
2628			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2629			fctrl &= ~IXGBE_FCTRL_UPE;
2630			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2631		}
2632	}
2633
2634	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2635	return IXGBE_SUCCESS;
2636}
2637
2638/**
2639 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2640 *  @hw: pointer to hardware structure
2641 *  @mc_addr: the multicast address
2642 *
2643 *  Extracts the 12 bits, from a multicast address, to determine which
2644 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2645 *  incoming rx multicast addresses, to determine the bit-vector to check in
2646 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2647 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2648 *  to mc_filter_type.
2649 **/
2650static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2651{
2652	u32 vector = 0;
2653
2654	DEBUGFUNC("ixgbe_mta_vector");
2655
2656	switch (hw->mac.mc_filter_type) {
2657	case 0:   /* use bits [47:36] of the address */
2658		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2659		break;
2660	case 1:   /* use bits [46:35] of the address */
2661		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2662		break;
2663	case 2:   /* use bits [45:34] of the address */
2664		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2665		break;
2666	case 3:   /* use bits [43:32] of the address */
2667		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2668		break;
2669	default:  /* Invalid mc_filter_type */
2670		DEBUGOUT("MC filter type param set incorrectly\n");
2671		ASSERT(0);
2672		break;
2673	}
2674
2675	/* vector can only be 12-bits or boundary will be exceeded */
2676	vector &= 0xFFF;
2677	return vector;
2678}
2679
2680/**
2681 *  ixgbe_set_mta - Set bit-vector in multicast table
2682 *  @hw: pointer to hardware structure
2683 *  @hash_value: Multicast address hash value
2684 *
2685 *  Sets the bit-vector in the multicast table.
2686 **/
2687void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2688{
2689	u32 vector;
2690	u32 vector_bit;
2691	u32 vector_reg;
2692
2693	DEBUGFUNC("ixgbe_set_mta");
2694
2695	hw->addr_ctrl.mta_in_use++;
2696
2697	vector = ixgbe_mta_vector(hw, mc_addr);
2698	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2699
2700	/*
2701	 * The MTA is a register array of 128 32-bit registers. It is treated
2702	 * like an array of 4096 bits.  We want to set bit
2703	 * BitArray[vector_value]. So we figure out what register the bit is
2704	 * in, read it, OR in the new bit, then write back the new value.  The
2705	 * register is determined by the upper 7 bits of the vector value and
2706	 * the bit within that register are determined by the lower 5 bits of
2707	 * the value.
2708	 */
2709	vector_reg = (vector >> 5) & 0x7F;
2710	vector_bit = vector & 0x1F;
2711	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2712}
2713
2714/**
2715 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2716 *  @hw: pointer to hardware structure
2717 *  @mc_addr_list: the list of new multicast addresses
2718 *  @mc_addr_count: number of addresses
2719 *  @next: iterator function to walk the multicast address list
2720 *  @clear: flag, when set clears the table beforehand
2721 *
2722 *  When the clear flag is set, the given list replaces any existing list.
2723 *  Hashes the given addresses into the multicast table.
2724 **/
2725s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2726				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2727				      bool clear)
2728{
2729	u32 i;
2730	u32 vmdq;
2731
2732	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2733
2734	/*
2735	 * Set the new number of MC addresses that we are being requested to
2736	 * use.
2737	 */
2738	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2739	hw->addr_ctrl.mta_in_use = 0;
2740
2741	/* Clear mta_shadow */
2742	if (clear) {
2743		DEBUGOUT(" Clearing MTA\n");
2744		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2745	}
2746
2747	/* Update mta_shadow */
2748	for (i = 0; i < mc_addr_count; i++) {
2749		DEBUGOUT(" Adding the multicast addresses:\n");
2750		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2751	}
2752
2753	/* Enable mta */
2754	for (i = 0; i < hw->mac.mcft_size; i++)
2755		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2756				      hw->mac.mta_shadow[i]);
2757
2758	if (hw->addr_ctrl.mta_in_use > 0)
2759		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2760				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2761
2762	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2763	return IXGBE_SUCCESS;
2764}
2765
2766/**
2767 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2768 *  @hw: pointer to hardware structure
2769 *
2770 *  Enables multicast address in RAR and the use of the multicast hash table.
2771 **/
2772s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2773{
2774	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2775
2776	DEBUGFUNC("ixgbe_enable_mc_generic");
2777
2778	if (a->mta_in_use > 0)
2779		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2780				hw->mac.mc_filter_type);
2781
2782	return IXGBE_SUCCESS;
2783}
2784
2785/**
2786 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2787 *  @hw: pointer to hardware structure
2788 *
2789 *  Disables multicast address in RAR and the use of the multicast hash table.
2790 **/
2791s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2792{
2793	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2794
2795	DEBUGFUNC("ixgbe_disable_mc_generic");
2796
2797	if (a->mta_in_use > 0)
2798		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2799
2800	return IXGBE_SUCCESS;
2801}
2802
2803/**
2804 *  ixgbe_fc_enable_generic - Enable flow control
2805 *  @hw: pointer to hardware structure
2806 *
2807 *  Enable flow control according to the current settings.
2808 **/
2809s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2810{
2811	s32 ret_val = IXGBE_SUCCESS;
2812	u32 mflcn_reg, fccfg_reg;
2813	u32 reg;
2814	u32 fcrtl, fcrth;
2815	int i;
2816
2817	DEBUGFUNC("ixgbe_fc_enable_generic");
2818
2819	/* Validate the water mark configuration */
2820	if (!hw->fc.pause_time) {
2821		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2822		goto out;
2823	}
2824
2825	/* Low water mark of zero causes XOFF floods */
2826	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2827		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2828		    hw->fc.high_water[i]) {
2829			if (!hw->fc.low_water[i] ||
2830			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2831				DEBUGOUT("Invalid water mark configuration\n");
2832				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2833				goto out;
2834			}
2835		}
2836	}
2837
2838	/* Negotiate the fc mode to use */
2839	hw->mac.ops.fc_autoneg(hw);
2840
2841	/* Disable any previous flow control settings */
2842	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2843	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2844
2845	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2846	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2847
2848	/*
2849	 * The possible values of fc.current_mode are:
2850	 * 0: Flow control is completely disabled
2851	 * 1: Rx flow control is enabled (we can receive pause frames,
2852	 *    but not send pause frames).
2853	 * 2: Tx flow control is enabled (we can send pause frames but
2854	 *    we do not support receiving pause frames).
2855	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2856	 * other: Invalid.
2857	 */
2858	switch (hw->fc.current_mode) {
2859	case ixgbe_fc_none:
2860		/*
2861		 * Flow control is disabled by software override or autoneg.
2862		 * The code below will actually disable it in the HW.
2863		 */
2864		break;
2865	case ixgbe_fc_rx_pause:
2866		/*
2867		 * Rx Flow control is enabled and Tx Flow control is
2868		 * disabled by software override. Since there really
2869		 * isn't a way to advertise that we are capable of RX
2870		 * Pause ONLY, we will advertise that we support both
2871		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2872		 * disable the adapter's ability to send PAUSE frames.
2873		 */
2874		mflcn_reg |= IXGBE_MFLCN_RFCE;
2875		break;
2876	case ixgbe_fc_tx_pause:
2877		/*
2878		 * Tx Flow control is enabled, and Rx Flow control is
2879		 * disabled by software override.
2880		 */
2881		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2882		break;
2883	case ixgbe_fc_full:
2884		/* Flow control (both Rx and Tx) is enabled by SW override. */
2885		mflcn_reg |= IXGBE_MFLCN_RFCE;
2886		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2887		break;
2888	default:
2889		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2890			     "Flow control param set incorrectly\n");
2891		ret_val = IXGBE_ERR_CONFIG;
2892		goto out;
2893		break;
2894	}
2895
2896	/* Set 802.3x based flow control settings. */
2897	mflcn_reg |= IXGBE_MFLCN_DPF;
2898	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2899	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2900
2901
2902	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2903	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2904		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2905		    hw->fc.high_water[i]) {
2906			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2907			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2908			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2909		} else {
2910			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2911			/*
2912			 * In order to prevent Tx hangs when the internal Tx
2913			 * switch is enabled we must set the high water mark
2914			 * to the Rx packet buffer size - 24KB.  This allows
2915			 * the Tx switch to function even under heavy Rx
2916			 * workloads.
2917			 */
2918			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2919		}
2920
2921		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2922	}
2923
2924	/* Configure pause time (2 TCs per register) */
2925	reg = hw->fc.pause_time * 0x00010001;
2926	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2927		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2928
2929	/* Configure flow control refresh threshold value */
2930	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2931
2932out:
2933	return ret_val;
2934}
2935
2936/**
2937 *  ixgbe_negotiate_fc - Negotiate flow control
2938 *  @hw: pointer to hardware structure
2939 *  @adv_reg: flow control advertised settings
2940 *  @lp_reg: link partner's flow control settings
2941 *  @adv_sym: symmetric pause bit in advertisement
2942 *  @adv_asm: asymmetric pause bit in advertisement
2943 *  @lp_sym: symmetric pause bit in link partner advertisement
2944 *  @lp_asm: asymmetric pause bit in link partner advertisement
2945 *
2946 *  Find the intersection between advertised settings and link partner's
2947 *  advertised settings
2948 **/
2949s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2950		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2951{
2952	if ((!(adv_reg)) ||  (!(lp_reg))) {
2953		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2954			     "Local or link partner's advertised flow control "
2955			     "settings are NULL. Local: %x, link partner: %x\n",
2956			     adv_reg, lp_reg);
2957		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2958	}
2959
2960	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2961		/*
2962		 * Now we need to check if the user selected Rx ONLY
2963		 * of pause frames.  In this case, we had to advertise
2964		 * FULL flow control because we could not advertise RX
2965		 * ONLY. Hence, we must now check to see if we need to
2966		 * turn OFF the TRANSMISSION of PAUSE frames.
2967		 */
2968		if (hw->fc.requested_mode == ixgbe_fc_full) {
2969			hw->fc.current_mode = ixgbe_fc_full;
2970			DEBUGOUT("Flow Control = FULL.\n");
2971		} else {
2972			hw->fc.current_mode = ixgbe_fc_rx_pause;
2973			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2974		}
2975	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2976		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2977		hw->fc.current_mode = ixgbe_fc_tx_pause;
2978		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2979	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2980		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2981		hw->fc.current_mode = ixgbe_fc_rx_pause;
2982		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2983	} else {
2984		hw->fc.current_mode = ixgbe_fc_none;
2985		DEBUGOUT("Flow Control = NONE.\n");
2986	}
2987	return IXGBE_SUCCESS;
2988}
2989
2990/**
2991 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2992 *  @hw: pointer to hardware structure
2993 *
2994 *  Enable flow control according on 1 gig fiber.
2995 **/
2996static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2997{
2998	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2999	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3000
3001	/*
3002	 * On multispeed fiber at 1g, bail out if
3003	 * - link is up but AN did not complete, or if
3004	 * - link is up and AN completed but timed out
3005	 */
3006
3007	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3008	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3009	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3010		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3011		goto out;
3012	}
3013
3014	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3015	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3016
3017	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3018				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3019				      IXGBE_PCS1GANA_ASM_PAUSE,
3020				      IXGBE_PCS1GANA_SYM_PAUSE,
3021				      IXGBE_PCS1GANA_ASM_PAUSE);
3022
3023out:
3024	return ret_val;
3025}
3026
3027/**
3028 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3029 *  @hw: pointer to hardware structure
3030 *
3031 *  Enable flow control according to IEEE clause 37.
3032 **/
3033static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3034{
3035	u32 links2, anlp1_reg, autoc_reg, links;
3036	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3037
3038	/*
3039	 * On backplane, bail out if
3040	 * - backplane autoneg was not completed, or if
3041	 * - we are 82599 and link partner is not AN enabled
3042	 */
3043	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3044	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3045		DEBUGOUT("Auto-Negotiation did not complete\n");
3046		goto out;
3047	}
3048
3049	if (hw->mac.type == ixgbe_mac_82599EB) {
3050		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3051		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3052			DEBUGOUT("Link partner is not AN enabled\n");
3053			goto out;
3054		}
3055	}
3056	/*
3057	 * Read the 10g AN autoc and LP ability registers and resolve
3058	 * local flow control settings accordingly
3059	 */
3060	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3061	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3062
3063	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3064		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3065		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3066
3067out:
3068	return ret_val;
3069}
3070
3071/**
3072 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3073 *  @hw: pointer to hardware structure
3074 *
3075 *  Enable flow control according to IEEE clause 37.
3076 **/
3077static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3078{
3079	u16 technology_ability_reg = 0;
3080	u16 lp_technology_ability_reg = 0;
3081
3082	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3083			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3084			     &technology_ability_reg);
3085	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3086			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3087			     &lp_technology_ability_reg);
3088
3089	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3090				  (u32)lp_technology_ability_reg,
3091				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3092				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3093}
3094
3095/**
3096 *  ixgbe_fc_autoneg - Configure flow control
3097 *  @hw: pointer to hardware structure
3098 *
3099 *  Compares our advertised flow control capabilities to those advertised by
3100 *  our link partner, and determines the proper flow control mode to use.
3101 **/
3102void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3103{
3104	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3105	ixgbe_link_speed speed;
3106	bool link_up;
3107
3108	DEBUGFUNC("ixgbe_fc_autoneg");
3109
3110	/*
3111	 * AN should have completed when the cable was plugged in.
3112	 * Look for reasons to bail out.  Bail out if:
3113	 * - FC autoneg is disabled, or if
3114	 * - link is not up.
3115	 */
3116	if (hw->fc.disable_fc_autoneg) {
3117		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3118			     "Flow control autoneg is disabled");
3119		goto out;
3120	}
3121
3122	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3123	if (!link_up) {
3124		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3125		goto out;
3126	}
3127
3128	switch (hw->phy.media_type) {
3129	/* Autoneg flow control on fiber adapters */
3130	case ixgbe_media_type_fiber_fixed:
3131	case ixgbe_media_type_fiber_qsfp:
3132	case ixgbe_media_type_fiber:
3133		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3134			ret_val = ixgbe_fc_autoneg_fiber(hw);
3135		break;
3136
3137	/* Autoneg flow control on backplane adapters */
3138	case ixgbe_media_type_backplane:
3139		ret_val = ixgbe_fc_autoneg_backplane(hw);
3140		break;
3141
3142	/* Autoneg flow control on copper adapters */
3143	case ixgbe_media_type_copper:
3144		if (ixgbe_device_supports_autoneg_fc(hw))
3145			ret_val = ixgbe_fc_autoneg_copper(hw);
3146		break;
3147
3148	default:
3149		break;
3150	}
3151
3152out:
3153	if (ret_val == IXGBE_SUCCESS) {
3154		hw->fc.fc_was_autonegged = TRUE;
3155	} else {
3156		hw->fc.fc_was_autonegged = FALSE;
3157		hw->fc.current_mode = hw->fc.requested_mode;
3158	}
3159}
3160
3161/*
3162 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3163 * @hw: pointer to hardware structure
3164 *
3165 * System-wide timeout range is encoded in PCIe Device Control2 register.
3166 *
3167 * Add 10% to specified maximum and return the number of times to poll for
3168 * completion timeout, in units of 100 microsec.  Never return less than
3169 * 800 = 80 millisec.
3170 */
3171static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3172{
3173	s16 devctl2;
3174	u32 pollcnt;
3175
3176	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3177	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3178
3179	switch (devctl2) {
3180	case IXGBE_PCIDEVCTRL2_65_130ms:
3181		pollcnt = 1300;		/* 130 millisec */
3182		break;
3183	case IXGBE_PCIDEVCTRL2_260_520ms:
3184		pollcnt = 5200;		/* 520 millisec */
3185		break;
3186	case IXGBE_PCIDEVCTRL2_1_2s:
3187		pollcnt = 20000;	/* 2 sec */
3188		break;
3189	case IXGBE_PCIDEVCTRL2_4_8s:
3190		pollcnt = 80000;	/* 8 sec */
3191		break;
3192	case IXGBE_PCIDEVCTRL2_17_34s:
3193		pollcnt = 34000;	/* 34 sec */
3194		break;
3195	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3196	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3197	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3198	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3199	default:
3200		pollcnt = 800;		/* 80 millisec minimum */
3201		break;
3202	}
3203
3204	/* add 10% to spec maximum */
3205	return (pollcnt * 11) / 10;
3206}
3207
3208/**
3209 *  ixgbe_disable_pcie_master - Disable PCI-express master access
3210 *  @hw: pointer to hardware structure
3211 *
3212 *  Disables PCI-Express master access and verifies there are no pending
3213 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3214 *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3215 *  is returned signifying master requests disabled.
3216 **/
3217s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3218{
3219	s32 status = IXGBE_SUCCESS;
3220	u32 i, poll;
3221	u16 value;
3222
3223	DEBUGFUNC("ixgbe_disable_pcie_master");
3224
3225	/* Always set this bit to ensure any future transactions are blocked */
3226	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3227
3228	/* Exit if master requests are blocked */
3229	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3230	    IXGBE_REMOVED(hw->hw_addr))
3231		goto out;
3232
3233	/* Poll for master request bit to clear */
3234	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3235		usec_delay(100);
3236		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3237			goto out;
3238	}
3239
3240	/*
3241	 * Two consecutive resets are required via CTRL.RST per datasheet
3242	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3243	 * of this need.  The first reset prevents new master requests from
3244	 * being issued by our device.  We then must wait 1usec or more for any
3245	 * remaining completions from the PCIe bus to trickle in, and then reset
3246	 * again to clear out any effects they may have had on our device.
3247	 */
3248	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3249	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3250
3251	if (hw->mac.type >= ixgbe_mac_X550)
3252		goto out;
3253
3254	/*
3255	 * Before proceeding, make sure that the PCIe block does not have
3256	 * transactions pending.
3257	 */
3258	poll = ixgbe_pcie_timeout_poll(hw);
3259	for (i = 0; i < poll; i++) {
3260		usec_delay(100);
3261		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3262		if (IXGBE_REMOVED(hw->hw_addr))
3263			goto out;
3264		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3265			goto out;
3266	}
3267
3268	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3269		     "PCIe transaction pending bit also did not clear.\n");
3270	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3271
3272out:
3273	return status;
3274}
3275
3276/**
3277 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3278 *  @hw: pointer to hardware structure
3279 *  @mask: Mask to specify which semaphore to acquire
3280 *
3281 *  Acquires the SWFW semaphore through the GSSR register for the specified
3282 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3283 **/
3284s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3285{
3286	u32 gssr = 0;
3287	u32 swmask = mask;
3288	u32 fwmask = mask << 5;
3289	u32 timeout = 200;
3290	u32 i;
3291
3292	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3293
3294	for (i = 0; i < timeout; i++) {
3295		/*
3296		 * SW NVM semaphore bit is used for access to all
3297		 * SW_FW_SYNC bits (not just NVM)
3298		 */
3299		if (ixgbe_get_eeprom_semaphore(hw))
3300			return IXGBE_ERR_SWFW_SYNC;
3301
3302		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3303		if (!(gssr & (fwmask | swmask))) {
3304			gssr |= swmask;
3305			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3306			ixgbe_release_eeprom_semaphore(hw);
3307			return IXGBE_SUCCESS;
3308		} else {
3309			/* Resource is currently in use by FW or SW */
3310			ixgbe_release_eeprom_semaphore(hw);
3311			msec_delay(5);
3312		}
3313	}
3314
3315	/* If time expired clear the bits holding the lock and retry */
3316	if (gssr & (fwmask | swmask))
3317		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3318
3319	msec_delay(5);
3320	return IXGBE_ERR_SWFW_SYNC;
3321}
3322
3323/**
3324 *  ixgbe_release_swfw_sync - Release SWFW semaphore
3325 *  @hw: pointer to hardware structure
3326 *  @mask: Mask to specify which semaphore to release
3327 *
3328 *  Releases the SWFW semaphore through the GSSR register for the specified
3329 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3330 **/
3331void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3332{
3333	u32 gssr;
3334	u32 swmask = mask;
3335
3336	DEBUGFUNC("ixgbe_release_swfw_sync");
3337
3338	ixgbe_get_eeprom_semaphore(hw);
3339
3340	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3341	gssr &= ~swmask;
3342	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3343
3344	ixgbe_release_eeprom_semaphore(hw);
3345}
3346
3347/**
3348 *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3349 *  @hw: pointer to hardware structure
3350 *
3351 *  Stops the receive data path and waits for the HW to internally empty
3352 *  the Rx security block
3353 **/
3354s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3355{
3356#define IXGBE_MAX_SECRX_POLL 40
3357
3358	int i;
3359	int secrxreg;
3360
3361	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3362
3363
3364	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3365	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3366	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3367	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3368		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3369		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3370			break;
3371		else
3372			/* Use interrupt-safe sleep just in case */
3373			usec_delay(1000);
3374	}
3375
3376	/* For informational purposes only */
3377	if (i >= IXGBE_MAX_SECRX_POLL)
3378		DEBUGOUT("Rx unit being enabled before security "
3379			 "path fully disabled.  Continuing with init.\n");
3380
3381	return IXGBE_SUCCESS;
3382}
3383
3384/**
3385 *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3386 *  @hw: pointer to hardware structure
3387 *  @reg_val: Value we read from AUTOC
3388 *
3389 *  The default case requires no protection so just to the register read.
3390 */
3391s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3392{
3393	*locked = FALSE;
3394	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3395	return IXGBE_SUCCESS;
3396}
3397
3398/**
3399 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3400 * @hw: pointer to hardware structure
3401 * @reg_val: value to write to AUTOC
3402 * @locked: bool to indicate whether the SW/FW lock was already taken by
3403 *           previous read.
3404 *
3405 * The default case requires no protection so just to the register write.
3406 */
3407s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3408{
3409	UNREFERENCED_1PARAMETER(locked);
3410
3411	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3412	return IXGBE_SUCCESS;
3413}
3414
3415/**
3416 *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3417 *  @hw: pointer to hardware structure
3418 *
3419 *  Enables the receive data path.
3420 **/
3421s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3422{
3423	u32 secrxreg;
3424
3425	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3426
3427	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3428	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3429	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3430	IXGBE_WRITE_FLUSH(hw);
3431
3432	return IXGBE_SUCCESS;
3433}
3434
3435/**
3436 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3437 *  @hw: pointer to hardware structure
3438 *  @regval: register value to write to RXCTRL
3439 *
3440 *  Enables the Rx DMA unit
3441 **/
3442s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3443{
3444	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3445
3446	if (regval & IXGBE_RXCTRL_RXEN)
3447		ixgbe_enable_rx(hw);
3448	else
3449		ixgbe_disable_rx(hw);
3450
3451	return IXGBE_SUCCESS;
3452}
3453
3454/**
3455 *  ixgbe_blink_led_start_generic - Blink LED based on index.
3456 *  @hw: pointer to hardware structure
3457 *  @index: led number to blink
3458 **/
3459s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3460{
3461	ixgbe_link_speed speed = 0;
3462	bool link_up = 0;
3463	u32 autoc_reg = 0;
3464	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3465	s32 ret_val = IXGBE_SUCCESS;
3466	bool locked = FALSE;
3467
3468	DEBUGFUNC("ixgbe_blink_led_start_generic");
3469
3470	if (index > 3)
3471		return IXGBE_ERR_PARAM;
3472
3473	/*
3474	 * Link must be up to auto-blink the LEDs;
3475	 * Force it if link is down.
3476	 */
3477	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3478
3479	if (!link_up) {
3480		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3481		if (ret_val != IXGBE_SUCCESS)
3482			goto out;
3483
3484		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3485		autoc_reg |= IXGBE_AUTOC_FLU;
3486
3487		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3488		if (ret_val != IXGBE_SUCCESS)
3489			goto out;
3490
3491		IXGBE_WRITE_FLUSH(hw);
3492		msec_delay(10);
3493	}
3494
3495	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3496	led_reg |= IXGBE_LED_BLINK(index);
3497	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3498	IXGBE_WRITE_FLUSH(hw);
3499
3500out:
3501	return ret_val;
3502}
3503
3504/**
3505 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3506 *  @hw: pointer to hardware structure
3507 *  @index: led number to stop blinking
3508 **/
3509s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3510{
3511	u32 autoc_reg = 0;
3512	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3513	s32 ret_val = IXGBE_SUCCESS;
3514	bool locked = FALSE;
3515
3516	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3517
3518	if (index > 3)
3519		return IXGBE_ERR_PARAM;
3520
3521
3522	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3523	if (ret_val != IXGBE_SUCCESS)
3524		goto out;
3525
3526	autoc_reg &= ~IXGBE_AUTOC_FLU;
3527	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3528
3529	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3530	if (ret_val != IXGBE_SUCCESS)
3531		goto out;
3532
3533	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3534	led_reg &= ~IXGBE_LED_BLINK(index);
3535	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3536	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3537	IXGBE_WRITE_FLUSH(hw);
3538
3539out:
3540	return ret_val;
3541}
3542
3543/**
3544 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3545 *  @hw: pointer to hardware structure
3546 *  @san_mac_offset: SAN MAC address offset
3547 *
3548 *  This function will read the EEPROM location for the SAN MAC address
3549 *  pointer, and returns the value at that location.  This is used in both
3550 *  get and set mac_addr routines.
3551 **/
3552static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3553					 u16 *san_mac_offset)
3554{
3555	s32 ret_val;
3556
3557	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3558
3559	/*
3560	 * First read the EEPROM pointer to see if the MAC addresses are
3561	 * available.
3562	 */
3563	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3564				      san_mac_offset);
3565	if (ret_val) {
3566		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3567			      "eeprom at offset %d failed",
3568			      IXGBE_SAN_MAC_ADDR_PTR);
3569	}
3570
3571	return ret_val;
3572}
3573
3574/**
3575 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3576 *  @hw: pointer to hardware structure
3577 *  @san_mac_addr: SAN MAC address
3578 *
3579 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3580 *  per-port, so set_lan_id() must be called before reading the addresses.
3581 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3582 *  upon for non-SFP connections, so we must call it here.
3583 **/
3584s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3585{
3586	u16 san_mac_data, san_mac_offset;
3587	u8 i;
3588	s32 ret_val;
3589
3590	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3591
3592	/*
3593	 * First read the EEPROM pointer to see if the MAC addresses are
3594	 * available.  If they're not, no point in calling set_lan_id() here.
3595	 */
3596	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3597	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3598		goto san_mac_addr_out;
3599
3600	/* make sure we know which port we need to program */
3601	hw->mac.ops.set_lan_id(hw);
3602	/* apply the port offset to the address offset */
3603	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3604			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3605	for (i = 0; i < 3; i++) {
3606		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3607					      &san_mac_data);
3608		if (ret_val) {
3609			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3610				      "eeprom read at offset %d failed",
3611				      san_mac_offset);
3612			goto san_mac_addr_out;
3613		}
3614		san_mac_addr[i * 2] = (u8)(san_mac_data);
3615		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3616		san_mac_offset++;
3617	}
3618	return IXGBE_SUCCESS;
3619
3620san_mac_addr_out:
3621	/*
3622	 * No addresses available in this EEPROM.  It's not an
3623	 * error though, so just wipe the local address and return.
3624	 */
3625	for (i = 0; i < 6; i++)
3626		san_mac_addr[i] = 0xFF;
3627	return IXGBE_SUCCESS;
3628}
3629
3630/**
3631 *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3632 *  @hw: pointer to hardware structure
3633 *  @san_mac_addr: SAN MAC address
3634 *
3635 *  Write a SAN MAC address to the EEPROM.
3636 **/
3637s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3638{
3639	s32 ret_val;
3640	u16 san_mac_data, san_mac_offset;
3641	u8 i;
3642
3643	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3644
3645	/* Look for SAN mac address pointer.  If not defined, return */
3646	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3647	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3648		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3649
3650	/* Make sure we know which port we need to write */
3651	hw->mac.ops.set_lan_id(hw);
3652	/* Apply the port offset to the address offset */
3653	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3654			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3655
3656	for (i = 0; i < 3; i++) {
3657		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3658		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3659		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3660		san_mac_offset++;
3661	}
3662
3663	return IXGBE_SUCCESS;
3664}
3665
3666/**
3667 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3668 *  @hw: pointer to hardware structure
3669 *
3670 *  Read PCIe configuration space, and get the MSI-X vector count from
3671 *  the capabilities table.
3672 **/
3673u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3674{
3675	u16 msix_count = 1;
3676	u16 max_msix_count;
3677	u16 pcie_offset;
3678
3679	switch (hw->mac.type) {
3680	case ixgbe_mac_82598EB:
3681		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3682		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3683		break;
3684	case ixgbe_mac_82599EB:
3685	case ixgbe_mac_X540:
3686	case ixgbe_mac_X550:
3687	case ixgbe_mac_X550EM_x:
3688	case ixgbe_mac_X550EM_a:
3689		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3690		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3691		break;
3692	default:
3693		return msix_count;
3694	}
3695
3696	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3697	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3698	if (IXGBE_REMOVED(hw->hw_addr))
3699		msix_count = 0;
3700	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3701
3702	/* MSI-X count is zero-based in HW */
3703	msix_count++;
3704
3705	if (msix_count > max_msix_count)
3706		msix_count = max_msix_count;
3707
3708	return msix_count;
3709}
3710
3711/**
3712 *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3713 *  @hw: pointer to hardware structure
3714 *  @addr: Address to put into receive address register
3715 *  @vmdq: VMDq pool to assign
3716 *
3717 *  Puts an ethernet address into a receive address register, or
3718 *  finds the rar that it is aleady in; adds to the pool list
3719 **/
3720s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3721{
3722	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3723	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3724	u32 rar;
3725	u32 rar_low, rar_high;
3726	u32 addr_low, addr_high;
3727
3728	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3729
3730	/* swap bytes for HW little endian */
3731	addr_low  = addr[0] | (addr[1] << 8)
3732			    | (addr[2] << 16)
3733			    | (addr[3] << 24);
3734	addr_high = addr[4] | (addr[5] << 8);
3735
3736	/*
3737	 * Either find the mac_id in rar or find the first empty space.
3738	 * rar_highwater points to just after the highest currently used
3739	 * rar in order to shorten the search.  It grows when we add a new
3740	 * rar to the top.
3741	 */
3742	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3743		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3744
3745		if (((IXGBE_RAH_AV & rar_high) == 0)
3746		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3747			first_empty_rar = rar;
3748		} else if ((rar_high & 0xFFFF) == addr_high) {
3749			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3750			if (rar_low == addr_low)
3751				break;    /* found it already in the rars */
3752		}
3753	}
3754
3755	if (rar < hw->mac.rar_highwater) {
3756		/* already there so just add to the pool bits */
3757		ixgbe_set_vmdq(hw, rar, vmdq);
3758	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3759		/* stick it into first empty RAR slot we found */
3760		rar = first_empty_rar;
3761		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3762	} else if (rar == hw->mac.rar_highwater) {
3763		/* add it to the top of the list and inc the highwater mark */
3764		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3765		hw->mac.rar_highwater++;
3766	} else if (rar >= hw->mac.num_rar_entries) {
3767		return IXGBE_ERR_INVALID_MAC_ADDR;
3768	}
3769
3770	/*
3771	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3772	 * remains cleared to be sure default pool packets will get delivered
3773	 */
3774	if (rar == 0)
3775		ixgbe_clear_vmdq(hw, rar, 0);
3776
3777	return rar;
3778}
3779
3780/**
3781 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3782 *  @hw: pointer to hardware struct
3783 *  @rar: receive address register index to disassociate
3784 *  @vmdq: VMDq pool index to remove from the rar
3785 **/
3786s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3787{
3788	u32 mpsar_lo, mpsar_hi;
3789	u32 rar_entries = hw->mac.num_rar_entries;
3790
3791	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3792
3793	/* Make sure we are using a valid rar index range */
3794	if (rar >= rar_entries) {
3795		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3796			     "RAR index %d is out of range.\n", rar);
3797		return IXGBE_ERR_INVALID_ARGUMENT;
3798	}
3799
3800	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3801	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3802
3803	if (IXGBE_REMOVED(hw->hw_addr))
3804		goto done;
3805
3806	if (!mpsar_lo && !mpsar_hi)
3807		goto done;
3808
3809	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3810		if (mpsar_lo) {
3811			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3812			mpsar_lo = 0;
3813		}
3814		if (mpsar_hi) {
3815			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3816			mpsar_hi = 0;
3817		}
3818	} else if (vmdq < 32) {
3819		mpsar_lo &= ~(1 << vmdq);
3820		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3821	} else {
3822		mpsar_hi &= ~(1 << (vmdq - 32));
3823		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3824	}
3825
3826	/* was that the last pool using this rar? */
3827	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3828	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3829		hw->mac.ops.clear_rar(hw, rar);
3830done:
3831	return IXGBE_SUCCESS;
3832}
3833
3834/**
3835 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3836 *  @hw: pointer to hardware struct
3837 *  @rar: receive address register index to associate with a VMDq index
3838 *  @vmdq: VMDq pool index
3839 **/
3840s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3841{
3842	u32 mpsar;
3843	u32 rar_entries = hw->mac.num_rar_entries;
3844
3845	DEBUGFUNC("ixgbe_set_vmdq_generic");
3846
3847	/* Make sure we are using a valid rar index range */
3848	if (rar >= rar_entries) {
3849		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3850			     "RAR index %d is out of range.\n", rar);
3851		return IXGBE_ERR_INVALID_ARGUMENT;
3852	}
3853
3854	if (vmdq < 32) {
3855		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3856		mpsar |= 1 << vmdq;
3857		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3858	} else {
3859		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3860		mpsar |= 1 << (vmdq - 32);
3861		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3862	}
3863	return IXGBE_SUCCESS;
3864}
3865
3866/**
3867 *  This function should only be involved in the IOV mode.
3868 *  In IOV mode, Default pool is next pool after the number of
3869 *  VFs advertized and not 0.
3870 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3871 *
3872 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3873 *  @hw: pointer to hardware struct
3874 *  @vmdq: VMDq pool index
3875 **/
3876s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3877{
3878	u32 rar = hw->mac.san_mac_rar_index;
3879
3880	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3881
3882	if (vmdq < 32) {
3883		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3884		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3885	} else {
3886		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3887		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3888	}
3889
3890	return IXGBE_SUCCESS;
3891}
3892
3893/**
3894 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3895 *  @hw: pointer to hardware structure
3896 **/
3897s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3898{
3899	int i;
3900
3901	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3902	DEBUGOUT(" Clearing UTA\n");
3903
3904	for (i = 0; i < 128; i++)
3905		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3906
3907	return IXGBE_SUCCESS;
3908}
3909
3910/**
3911 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3912 *  @hw: pointer to hardware structure
3913 *  @vlan: VLAN id to write to VLAN filter
3914 *
3915 *  return the VLVF index where this VLAN id should be placed
3916 *
3917 **/
3918s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3919{
3920	s32 regindex, first_empty_slot;
3921	u32 bits;
3922
3923	/* short cut the special case */
3924	if (vlan == 0)
3925		return 0;
3926
3927	/* if vlvf_bypass is set we don't want to use an empty slot, we
3928	 * will simply bypass the VLVF if there are no entries present in the
3929	 * VLVF that contain our VLAN
3930	 */
3931	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3932
3933	/* add VLAN enable bit for comparison */
3934	vlan |= IXGBE_VLVF_VIEN;
3935
3936	/* Search for the vlan id in the VLVF entries. Save off the first empty
3937	 * slot found along the way.
3938	 *
3939	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3940	 */
3941	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3942		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3943		if (bits == vlan)
3944			return regindex;
3945		if (!first_empty_slot && !bits)
3946			first_empty_slot = regindex;
3947	}
3948
3949	/* If we are here then we didn't find the VLAN.  Return first empty
3950	 * slot we found during our search, else error.
3951	 */
3952	if (!first_empty_slot)
3953		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3954
3955	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3956}
3957
3958/**
3959 *  ixgbe_set_vfta_generic - Set VLAN filter table
3960 *  @hw: pointer to hardware structure
3961 *  @vlan: VLAN id to write to VLAN filter
3962 *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3963 *  @vlan_on: boolean flag to turn on/off VLAN
3964 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3965 *
3966 *  Turn on/off specified VLAN in the VLAN filter table.
3967 **/
3968s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3969			   bool vlan_on, bool vlvf_bypass)
3970{
3971	u32 regidx, vfta_delta, vfta;
3972	s32 ret_val;
3973
3974	DEBUGFUNC("ixgbe_set_vfta_generic");
3975
3976	if (vlan > 4095 || vind > 63)
3977		return IXGBE_ERR_PARAM;
3978
3979	/*
3980	 * this is a 2 part operation - first the VFTA, then the
3981	 * VLVF and VLVFB if VT Mode is set
3982	 * We don't write the VFTA until we know the VLVF part succeeded.
3983	 */
3984
3985	/* Part 1
3986	 * The VFTA is a bitstring made up of 128 32-bit registers
3987	 * that enable the particular VLAN id, much like the MTA:
3988	 *    bits[11-5]: which register
3989	 *    bits[4-0]:  which bit in the register
3990	 */
3991	regidx = vlan / 32;
3992	vfta_delta = 1 << (vlan % 32);
3993	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3994
3995	/*
3996	 * vfta_delta represents the difference between the current value
3997	 * of vfta and the value we want in the register.  Since the diff
3998	 * is an XOR mask we can just update the vfta using an XOR
3999	 */
4000	vfta_delta &= vlan_on ? ~vfta : vfta;
4001	vfta ^= vfta_delta;
4002
4003	/* Part 2
4004	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4005	 */
4006	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4007					 vfta, vlvf_bypass);
4008	if (ret_val != IXGBE_SUCCESS) {
4009		if (vlvf_bypass)
4010			goto vfta_update;
4011		return ret_val;
4012	}
4013
4014vfta_update:
4015	/* Update VFTA now that we are ready for traffic */
4016	if (vfta_delta)
4017		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4018
4019	return IXGBE_SUCCESS;
4020}
4021
4022/**
4023 *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4024 *  @hw: pointer to hardware structure
4025 *  @vlan: VLAN id to write to VLAN filter
4026 *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4027 *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4028 *  @vfta_delta: pointer to the difference between the current value of VFTA
4029 *		 and the desired value
4030 *  @vfta: the desired value of the VFTA
4031 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4032 *
4033 *  Turn on/off specified bit in VLVF table.
4034 **/
4035s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4036			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4037			   bool vlvf_bypass)
4038{
4039	u32 bits;
4040	s32 vlvf_index;
4041
4042	DEBUGFUNC("ixgbe_set_vlvf_generic");
4043
4044	if (vlan > 4095 || vind > 63)
4045		return IXGBE_ERR_PARAM;
4046
4047	/* If VT Mode is set
4048	 *   Either vlan_on
4049	 *     make sure the vlan is in VLVF
4050	 *     set the vind bit in the matching VLVFB
4051	 *   Or !vlan_on
4052	 *     clear the pool bit and possibly the vind
4053	 */
4054	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4055		return IXGBE_SUCCESS;
4056
4057	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4058	if (vlvf_index < 0)
4059		return vlvf_index;
4060
4061	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4062
4063	/* set the pool bit */
4064	bits |= 1 << (vind % 32);
4065	if (vlan_on)
4066		goto vlvf_update;
4067
4068	/* clear the pool bit */
4069	bits ^= 1 << (vind % 32);
4070
4071	if (!bits &&
4072	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4073		/* Clear VFTA first, then disable VLVF.  Otherwise
4074		 * we run the risk of stray packets leaking into
4075		 * the PF via the default pool
4076		 */
4077		if (*vfta_delta)
4078			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4079
4080		/* disable VLVF and clear remaining bit from pool */
4081		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4082		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4083
4084		return IXGBE_SUCCESS;
4085	}
4086
4087	/* If there are still bits set in the VLVFB registers
4088	 * for the VLAN ID indicated we need to see if the
4089	 * caller is requesting that we clear the VFTA entry bit.
4090	 * If the caller has requested that we clear the VFTA
4091	 * entry bit but there are still pools/VFs using this VLAN
4092	 * ID entry then ignore the request.  We're not worried
4093	 * about the case where we're turning the VFTA VLAN ID
4094	 * entry bit on, only when requested to turn it off as
4095	 * there may be multiple pools and/or VFs using the
4096	 * VLAN ID entry.  In that case we cannot clear the
4097	 * VFTA bit until all pools/VFs using that VLAN ID have also
4098	 * been cleared.  This will be indicated by "bits" being
4099	 * zero.
4100	 */
4101	*vfta_delta = 0;
4102
4103vlvf_update:
4104	/* record pool change and enable VLAN ID if not already enabled */
4105	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4106	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4107
4108	return IXGBE_SUCCESS;
4109}
4110
4111/**
4112 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4113 *  @hw: pointer to hardware structure
4114 *
4115 *  Clears the VLAN filer table, and the VMDq index associated with the filter
4116 **/
4117s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4118{
4119	u32 offset;
4120
4121	DEBUGFUNC("ixgbe_clear_vfta_generic");
4122
4123	for (offset = 0; offset < hw->mac.vft_size; offset++)
4124		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4125
4126	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4127		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4128		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4129		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4130	}
4131
4132	return IXGBE_SUCCESS;
4133}
4134
4135/**
4136 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4137 *  @hw: pointer to hardware structure
4138 *
4139 *  Contains the logic to identify if we need to verify link for the
4140 *  crosstalk fix
4141 **/
4142static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4143{
4144
4145	/* Does FW say we need the fix */
4146	if (!hw->need_crosstalk_fix)
4147		return FALSE;
4148
4149	/* Only consider SFP+ PHYs i.e. media type fiber */
4150	switch (hw->mac.ops.get_media_type(hw)) {
4151	case ixgbe_media_type_fiber:
4152	case ixgbe_media_type_fiber_qsfp:
4153		break;
4154	default:
4155		return FALSE;
4156	}
4157
4158	return TRUE;
4159}
4160
4161/**
4162 *  ixgbe_check_mac_link_generic - Determine link and speed status
4163 *  @hw: pointer to hardware structure
4164 *  @speed: pointer to link speed
4165 *  @link_up: TRUE when link is up
4166 *  @link_up_wait_to_complete: bool used to wait for link up or not
4167 *
4168 *  Reads the links register to determine if link is up and the current speed
4169 **/
4170s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4171				 bool *link_up, bool link_up_wait_to_complete)
4172{
4173	u32 links_reg, links_orig;
4174	u32 i;
4175
4176	DEBUGFUNC("ixgbe_check_mac_link_generic");
4177
4178	/* If Crosstalk fix enabled do the sanity check of making sure
4179	 * the SFP+ cage is full.
4180	 */
4181	if (ixgbe_need_crosstalk_fix(hw)) {
4182		u32 sfp_cage_full;
4183
4184		switch (hw->mac.type) {
4185		case ixgbe_mac_82599EB:
4186			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4187					IXGBE_ESDP_SDP2;
4188			break;
4189		case ixgbe_mac_X550EM_x:
4190		case ixgbe_mac_X550EM_a:
4191			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4192					IXGBE_ESDP_SDP0;
4193			break;
4194		default:
4195			/* sanity check - No SFP+ devices here */
4196			sfp_cage_full = FALSE;
4197			break;
4198		}
4199
4200		if (!sfp_cage_full) {
4201			*link_up = FALSE;
4202			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4203			return IXGBE_SUCCESS;
4204		}
4205	}
4206
4207	/* clear the old state */
4208	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4209
4210	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4211
4212	if (links_orig != links_reg) {
4213		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4214			  links_orig, links_reg);
4215	}
4216
4217	if (link_up_wait_to_complete) {
4218		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4219			if (links_reg & IXGBE_LINKS_UP) {
4220				*link_up = TRUE;
4221				break;
4222			} else {
4223				*link_up = FALSE;
4224			}
4225			msec_delay(100);
4226			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4227		}
4228	} else {
4229		if (links_reg & IXGBE_LINKS_UP)
4230			*link_up = TRUE;
4231		else
4232			*link_up = FALSE;
4233	}
4234
4235	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4236	case IXGBE_LINKS_SPEED_10G_82599:
4237		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4238		if (hw->mac.type >= ixgbe_mac_X550) {
4239			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4240				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4241		}
4242		break;
4243	case IXGBE_LINKS_SPEED_1G_82599:
4244		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4245		break;
4246	case IXGBE_LINKS_SPEED_100_82599:
4247		*speed = IXGBE_LINK_SPEED_100_FULL;
4248		if (hw->mac.type == ixgbe_mac_X550) {
4249			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4250				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4251		}
4252		break;
4253	case IXGBE_LINKS_SPEED_10_X550EM_A:
4254		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4255		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4256		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
4257			*speed = IXGBE_LINK_SPEED_10_FULL;
4258		}
4259		break;
4260	default:
4261		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4262	}
4263
4264	return IXGBE_SUCCESS;
4265}
4266
4267/**
4268 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4269 *  the EEPROM
4270 *  @hw: pointer to hardware structure
4271 *  @wwnn_prefix: the alternative WWNN prefix
4272 *  @wwpn_prefix: the alternative WWPN prefix
4273 *
4274 *  This function will read the EEPROM from the alternative SAN MAC address
4275 *  block to check the support for the alternative WWNN/WWPN prefix support.
4276 **/
4277s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4278				 u16 *wwpn_prefix)
4279{
4280	u16 offset, caps;
4281	u16 alt_san_mac_blk_offset;
4282
4283	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4284
4285	/* clear output first */
4286	*wwnn_prefix = 0xFFFF;
4287	*wwpn_prefix = 0xFFFF;
4288
4289	/* check if alternative SAN MAC is supported */
4290	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4291	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4292		goto wwn_prefix_err;
4293
4294	if ((alt_san_mac_blk_offset == 0) ||
4295	    (alt_san_mac_blk_offset == 0xFFFF))
4296		goto wwn_prefix_out;
4297
4298	/* check capability in alternative san mac address block */
4299	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4300	if (hw->eeprom.ops.read(hw, offset, &caps))
4301		goto wwn_prefix_err;
4302	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4303		goto wwn_prefix_out;
4304
4305	/* get the corresponding prefix for WWNN/WWPN */
4306	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4307	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4308		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4309			      "eeprom read at offset %d failed", offset);
4310	}
4311
4312	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4313	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4314		goto wwn_prefix_err;
4315
4316wwn_prefix_out:
4317	return IXGBE_SUCCESS;
4318
4319wwn_prefix_err:
4320	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4321		      "eeprom read at offset %d failed", offset);
4322	return IXGBE_SUCCESS;
4323}
4324
4325/**
4326 *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4327 *  @hw: pointer to hardware structure
4328 *  @bs: the fcoe boot status
4329 *
4330 *  This function will read the FCOE boot status from the iSCSI FCOE block
4331 **/
4332s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4333{
4334	u16 offset, caps, flags;
4335	s32 status;
4336
4337	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4338
4339	/* clear output first */
4340	*bs = ixgbe_fcoe_bootstatus_unavailable;
4341
4342	/* check if FCOE IBA block is present */
4343	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4344	status = hw->eeprom.ops.read(hw, offset, &caps);
4345	if (status != IXGBE_SUCCESS)
4346		goto out;
4347
4348	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4349		goto out;
4350
4351	/* check if iSCSI FCOE block is populated */
4352	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4353	if (status != IXGBE_SUCCESS)
4354		goto out;
4355
4356	if ((offset == 0) || (offset == 0xFFFF))
4357		goto out;
4358
4359	/* read fcoe flags in iSCSI FCOE block */
4360	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4361	status = hw->eeprom.ops.read(hw, offset, &flags);
4362	if (status != IXGBE_SUCCESS)
4363		goto out;
4364
4365	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4366		*bs = ixgbe_fcoe_bootstatus_enabled;
4367	else
4368		*bs = ixgbe_fcoe_bootstatus_disabled;
4369
4370out:
4371	return status;
4372}
4373
4374/**
4375 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4376 *  @hw: pointer to hardware structure
4377 *  @enable: enable or disable switch for MAC anti-spoofing
4378 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4379 *
4380 **/
4381void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4382{
4383	int vf_target_reg = vf >> 3;
4384	int vf_target_shift = vf % 8;
4385	u32 pfvfspoof;
4386
4387	if (hw->mac.type == ixgbe_mac_82598EB)
4388		return;
4389
4390	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4391	if (enable)
4392		pfvfspoof |= (1 << vf_target_shift);
4393	else
4394		pfvfspoof &= ~(1 << vf_target_shift);
4395	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4396}
4397
4398/**
4399 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4400 *  @hw: pointer to hardware structure
4401 *  @enable: enable or disable switch for VLAN anti-spoofing
4402 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4403 *
4404 **/
4405void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4406{
4407	int vf_target_reg = vf >> 3;
4408	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4409	u32 pfvfspoof;
4410
4411	if (hw->mac.type == ixgbe_mac_82598EB)
4412		return;
4413
4414	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4415	if (enable)
4416		pfvfspoof |= (1 << vf_target_shift);
4417	else
4418		pfvfspoof &= ~(1 << vf_target_shift);
4419	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4420}
4421
4422/**
4423 *  ixgbe_get_device_caps_generic - Get additional device capabilities
4424 *  @hw: pointer to hardware structure
4425 *  @device_caps: the EEPROM word with the extra device capabilities
4426 *
4427 *  This function will read the EEPROM location for the device capabilities,
4428 *  and return the word through device_caps.
4429 **/
4430s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4431{
4432	DEBUGFUNC("ixgbe_get_device_caps_generic");
4433
4434	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4435
4436	return IXGBE_SUCCESS;
4437}
4438
4439/**
4440 *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4441 *  @hw: pointer to hardware structure
4442 *
4443 **/
4444void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4445{
4446	u32 regval;
4447	u32 i;
4448
4449	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4450
4451	/* Enable relaxed ordering */
4452	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4453		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4454		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4455		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4456	}
4457
4458	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4459		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4460		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4461			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4462		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4463	}
4464
4465}
4466
4467/**
4468 *  ixgbe_calculate_checksum - Calculate checksum for buffer
4469 *  @buffer: pointer to EEPROM
4470 *  @length: size of EEPROM to calculate a checksum for
4471 *  Calculates the checksum for some buffer on a specified length.  The
4472 *  checksum calculated is returned.
4473 **/
4474u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4475{
4476	u32 i;
4477	u8 sum = 0;
4478
4479	DEBUGFUNC("ixgbe_calculate_checksum");
4480
4481	if (!buffer)
4482		return 0;
4483
4484	for (i = 0; i < length; i++)
4485		sum += buffer[i];
4486
4487	return (u8) (0 - sum);
4488}
4489
4490/**
4491 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4492 *  @hw: pointer to the HW structure
4493 *  @buffer: command to write and where the return status will be placed
4494 *  @length: length of buffer, must be multiple of 4 bytes
4495 *  @timeout: time in ms to wait for command completion
4496 *
4497 *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4498 *  else returns semaphore error when encountering an error acquiring
4499 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4500 *
4501 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4502 *  by the caller.
4503 **/
4504s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4505		       u32 timeout)
4506{
4507	u32 hicr, i, fwsts;
4508	u16 dword_len;
4509
4510	DEBUGFUNC("ixgbe_hic_unlocked");
4511
4512	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4513		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4514		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4515	}
4516
4517	/* Set bit 9 of FWSTS clearing FW reset indication */
4518	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4519	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4520
4521	/* Check that the host interface is enabled. */
4522	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4523	if (!(hicr & IXGBE_HICR_EN)) {
4524		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4525		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4526	}
4527
4528	/* Calculate length in DWORDs. We must be DWORD aligned */
4529	if (length % sizeof(u32)) {
4530		DEBUGOUT("Buffer length failure, not aligned to dword");
4531		return IXGBE_ERR_INVALID_ARGUMENT;
4532	}
4533
4534	dword_len = length >> 2;
4535
4536	/* The device driver writes the relevant command block
4537	 * into the ram area.
4538	 */
4539	for (i = 0; i < dword_len; i++)
4540		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4541				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4542
4543	/* Setting this bit tells the ARC that a new command is pending. */
4544	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4545
4546	for (i = 0; i < timeout; i++) {
4547		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4548		if (!(hicr & IXGBE_HICR_C))
4549			break;
4550		msec_delay(1);
4551	}
4552
4553	/* Check command completion */
4554	if ((timeout && i == timeout) ||
4555	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4556		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4557			     "Command has failed with no status valid.\n");
4558		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4559	}
4560
4561	return IXGBE_SUCCESS;
4562}
4563
4564/**
4565 *  ixgbe_host_interface_command - Issue command to manageability block
4566 *  @hw: pointer to the HW structure
4567 *  @buffer: contains the command to write and where the return status will
4568 *   be placed
4569 *  @length: length of buffer, must be multiple of 4 bytes
4570 *  @timeout: time in ms to wait for command completion
4571 *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4572 *   Needed because FW structures are big endian and decoding of
4573 *   these fields can be 8 bit or 16 bit based on command. Decoding
4574 *   is not easily understood without making a table of commands.
4575 *   So we will leave this up to the caller to read back the data
4576 *   in these cases.
4577 *
4578 *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4579 *  else returns semaphore error when encountering an error acquiring
4580 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4581 **/
4582s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4583				 u32 length, u32 timeout, bool return_data)
4584{
4585	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4586	u16 dword_len;
4587	u16 buf_len;
4588	s32 status;
4589	u32 bi;
4590
4591	DEBUGFUNC("ixgbe_host_interface_command");
4592
4593	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4594		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4595		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4596	}
4597
4598	/* Take management host interface semaphore */
4599	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4600	if (status)
4601		return status;
4602
4603	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4604	if (status)
4605		goto rel_out;
4606
4607	if (!return_data)
4608		goto rel_out;
4609
4610	/* Calculate length in DWORDs */
4611	dword_len = hdr_size >> 2;
4612
4613	/* first pull in the header so we know the buffer length */
4614	for (bi = 0; bi < dword_len; bi++) {
4615		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4616		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4617	}
4618
4619	/* If there is any thing in data position pull it in */
4620	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4621	if (!buf_len)
4622		goto rel_out;
4623
4624	if (length < buf_len + hdr_size) {
4625		DEBUGOUT("Buffer not large enough for reply message.\n");
4626		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4627		goto rel_out;
4628	}
4629
4630	/* Calculate length in DWORDs, add 3 for odd lengths */
4631	dword_len = (buf_len + 3) >> 2;
4632
4633	/* Pull in the rest of the buffer (bi is where we left off) */
4634	for (; bi <= dword_len; bi++) {
4635		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4636		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4637	}
4638
4639rel_out:
4640	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4641
4642	return status;
4643}
4644
4645/**
4646 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4647 *  @hw: pointer to the HW structure
4648 *  @maj: driver version major number
4649 *  @min: driver version minor number
4650 *  @build: driver version build number
4651 *  @sub: driver version sub build number
4652 *
4653 *  Sends driver version number to firmware through the manageability
4654 *  block.  On success return IXGBE_SUCCESS
4655 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4656 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4657 **/
4658s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4659				 u8 build, u8 sub, u16 len,
4660				 const char *driver_ver)
4661{
4662	struct ixgbe_hic_drv_info fw_cmd;
4663	int i;
4664	s32 ret_val = IXGBE_SUCCESS;
4665
4666	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4667	UNREFERENCED_2PARAMETER(len, driver_ver);
4668
4669	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4670	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4671	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4672	fw_cmd.port_num = (u8)hw->bus.func;
4673	fw_cmd.ver_maj = maj;
4674	fw_cmd.ver_min = min;
4675	fw_cmd.ver_build = build;
4676	fw_cmd.ver_sub = sub;
4677	fw_cmd.hdr.checksum = 0;
4678	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4679				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4680	fw_cmd.pad = 0;
4681	fw_cmd.pad2 = 0;
4682
4683	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4684		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4685						       sizeof(fw_cmd),
4686						       IXGBE_HI_COMMAND_TIMEOUT,
4687						       TRUE);
4688		if (ret_val != IXGBE_SUCCESS)
4689			continue;
4690
4691		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4692		    FW_CEM_RESP_STATUS_SUCCESS)
4693			ret_val = IXGBE_SUCCESS;
4694		else
4695			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4696
4697		break;
4698	}
4699
4700	return ret_val;
4701}
4702
4703/**
4704 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4705 * @hw: pointer to hardware structure
4706 * @num_pb: number of packet buffers to allocate
4707 * @headroom: reserve n KB of headroom
4708 * @strategy: packet buffer allocation strategy
4709 **/
4710void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4711			     int strategy)
4712{
4713	u32 pbsize = hw->mac.rx_pb_size;
4714	int i = 0;
4715	u32 rxpktsize, txpktsize, txpbthresh;
4716
4717	/* Reserve headroom */
4718	pbsize -= headroom;
4719
4720	if (!num_pb)
4721		num_pb = 1;
4722
4723	/* Divide remaining packet buffer space amongst the number of packet
4724	 * buffers requested using supplied strategy.
4725	 */
4726	switch (strategy) {
4727	case PBA_STRATEGY_WEIGHTED:
4728		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4729		 * buffer with 5/8 of the packet buffer space.
4730		 */
4731		rxpktsize = (pbsize * 5) / (num_pb * 4);
4732		pbsize -= rxpktsize * (num_pb / 2);
4733		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4734		for (; i < (num_pb / 2); i++)
4735			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4736		/* fall through - configure remaining packet buffers */
4737	case PBA_STRATEGY_EQUAL:
4738		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4739		for (; i < num_pb; i++)
4740			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4741		break;
4742	default:
4743		break;
4744	}
4745
4746	/* Only support an equally distributed Tx packet buffer strategy. */
4747	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4748	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4749	for (i = 0; i < num_pb; i++) {
4750		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4751		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4752	}
4753
4754	/* Clear unused TCs, if any, to zero buffer size*/
4755	for (; i < IXGBE_MAX_PB; i++) {
4756		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4757		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4758		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4759	}
4760}
4761
4762/**
4763 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4764 * @hw: pointer to the hardware structure
4765 *
4766 * The 82599 and x540 MACs can experience issues if TX work is still pending
4767 * when a reset occurs.  This function prevents this by flushing the PCIe
4768 * buffers on the system.
4769 **/
4770void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4771{
4772	u32 gcr_ext, hlreg0, i, poll;
4773	u16 value;
4774
4775	/*
4776	 * If double reset is not requested then all transactions should
4777	 * already be clear and as such there is no work to do
4778	 */
4779	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4780		return;
4781
4782	/*
4783	 * Set loopback enable to prevent any transmits from being sent
4784	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4785	 * has already been cleared.
4786	 */
4787	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4788	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4789
4790	/* Wait for a last completion before clearing buffers */
4791	IXGBE_WRITE_FLUSH(hw);
4792	msec_delay(3);
4793
4794	/*
4795	 * Before proceeding, make sure that the PCIe block does not have
4796	 * transactions pending.
4797	 */
4798	poll = ixgbe_pcie_timeout_poll(hw);
4799	for (i = 0; i < poll; i++) {
4800		usec_delay(100);
4801		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4802		if (IXGBE_REMOVED(hw->hw_addr))
4803			goto out;
4804		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4805			goto out;
4806	}
4807
4808out:
4809	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4810	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4811	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4812			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4813
4814	/* Flush all writes and allow 20usec for all transactions to clear */
4815	IXGBE_WRITE_FLUSH(hw);
4816	usec_delay(20);
4817
4818	/* restore previous register values */
4819	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4820	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4821}
4822
4823/**
4824 *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4825 *
4826 *  @hw: pointer to hardware structure
4827 *  @cmd: Command we send to the FW
4828 *  @status: The reply from the FW
4829 *
4830 *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4831 **/
4832#define IXGBE_BYPASS_BB_WAIT 1
4833s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4834{
4835	int i;
4836	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4837	u32 esdp;
4838
4839	if (!status)
4840		return IXGBE_ERR_PARAM;
4841
4842	*status = 0;
4843
4844	/* SDP vary by MAC type */
4845	switch (hw->mac.type) {
4846	case ixgbe_mac_82599EB:
4847		sck = IXGBE_ESDP_SDP7;
4848		sdi = IXGBE_ESDP_SDP0;
4849		sdo = IXGBE_ESDP_SDP6;
4850		dir_sck = IXGBE_ESDP_SDP7_DIR;
4851		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4852		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4853		break;
4854	case ixgbe_mac_X540:
4855		sck = IXGBE_ESDP_SDP2;
4856		sdi = IXGBE_ESDP_SDP0;
4857		sdo = IXGBE_ESDP_SDP1;
4858		dir_sck = IXGBE_ESDP_SDP2_DIR;
4859		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4860		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4861		break;
4862	default:
4863		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4864	}
4865
4866	/* Set SDP pins direction */
4867	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4868	esdp |= dir_sck;	/* SCK as output */
4869	esdp |= dir_sdi;	/* SDI as output */
4870	esdp &= ~dir_sdo;	/* SDO as input */
4871	esdp |= sck;
4872	esdp |= sdi;
4873	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4874	IXGBE_WRITE_FLUSH(hw);
4875	msec_delay(IXGBE_BYPASS_BB_WAIT);
4876
4877	/* Generate start condition */
4878	esdp &= ~sdi;
4879	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4880	IXGBE_WRITE_FLUSH(hw);
4881	msec_delay(IXGBE_BYPASS_BB_WAIT);
4882
4883	esdp &= ~sck;
4884	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4885	IXGBE_WRITE_FLUSH(hw);
4886	msec_delay(IXGBE_BYPASS_BB_WAIT);
4887
4888	/* Clock out the new control word and clock in the status */
4889	for (i = 0; i < 32; i++) {
4890		if ((cmd >> (31 - i)) & 0x01) {
4891			esdp |= sdi;
4892			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4893		} else {
4894			esdp &= ~sdi;
4895			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4896		}
4897		IXGBE_WRITE_FLUSH(hw);
4898		msec_delay(IXGBE_BYPASS_BB_WAIT);
4899
4900		esdp |= sck;
4901		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4902		IXGBE_WRITE_FLUSH(hw);
4903		msec_delay(IXGBE_BYPASS_BB_WAIT);
4904
4905		esdp &= ~sck;
4906		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4907		IXGBE_WRITE_FLUSH(hw);
4908		msec_delay(IXGBE_BYPASS_BB_WAIT);
4909
4910		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4911		if (esdp & sdo)
4912			*status = (*status << 1) | 0x01;
4913		else
4914			*status = (*status << 1) | 0x00;
4915		msec_delay(IXGBE_BYPASS_BB_WAIT);
4916	}
4917
4918	/* stop condition */
4919	esdp |= sck;
4920	esdp &= ~sdi;
4921	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4922	IXGBE_WRITE_FLUSH(hw);
4923	msec_delay(IXGBE_BYPASS_BB_WAIT);
4924
4925	esdp |= sdi;
4926	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4927	IXGBE_WRITE_FLUSH(hw);
4928
4929	/* set the page bits to match the cmd that the status it belongs to */
4930	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4931
4932	return IXGBE_SUCCESS;
4933}
4934
4935/**
4936 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4937 *
4938 * If we send a write we can't be sure it took until we can read back
4939 * that same register.  It can be a problem as some of the feilds may
4940 * for valid reasons change inbetween the time wrote the register and
4941 * we read it again to verify.  So this function check everything we
4942 * can check and then assumes it worked.
4943 *
4944 * @u32 in_reg - The register cmd for the bit-bang read.
4945 * @u32 out_reg - The register returned from a bit-bang read.
4946 **/
4947bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4948{
4949	u32 mask;
4950
4951	/* Page must match for all control pages */
4952	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4953		return FALSE;
4954
4955	switch (in_reg & BYPASS_PAGE_M) {
4956	case BYPASS_PAGE_CTL0:
4957		/* All the following can't change since the last write
4958		 *  - All the event actions
4959		 *  - The timeout value
4960		 */
4961		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4962		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4963		       BYPASS_WDTIMEOUT_M |
4964		       BYPASS_WDT_VALUE_M;
4965		if ((out_reg & mask) != (in_reg & mask))
4966			return FALSE;
4967
4968		/* 0x0 is never a valid value for bypass status */
4969		if (!(out_reg & BYPASS_STATUS_OFF_M))
4970			return FALSE;
4971		break;
4972	case BYPASS_PAGE_CTL1:
4973		/* All the following can't change since the last write
4974		 *  - time valid bit
4975		 *  - time we last sent
4976		 */
4977		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4978		if ((out_reg & mask) != (in_reg & mask))
4979			return FALSE;
4980		break;
4981	case BYPASS_PAGE_CTL2:
4982		/* All we can check in this page is control number
4983		 * which is already done above.
4984		 */
4985		break;
4986	}
4987
4988	/* We are as sure as we can be return TRUE */
4989	return TRUE;
4990}
4991
4992/**
4993 *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4994 *
4995 *  @hw: pointer to hardware structure
4996 *  @cmd: The control word we are setting.
4997 *  @event: The event we are setting in the FW.  This also happens to
4998 *	    be the mask for the event we are setting (handy)
4999 *  @action: The action we set the event to in the FW. This is in a
5000 *	     bit field that happens to be what we want to put in
5001 *	     the event spot (also handy)
5002 **/
5003s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5004			     u32 action)
5005{
5006	u32 by_ctl = 0;
5007	u32 cmd, verify;
5008	u32 count = 0;
5009
5010	/* Get current values */
5011	cmd = ctrl;	/* just reading only need control number */
5012	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5013		return IXGBE_ERR_INVALID_ARGUMENT;
5014
5015	/* Set to new action */
5016	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5017	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5018		return IXGBE_ERR_INVALID_ARGUMENT;
5019
5020	/* Page 0 force a FW eeprom write which is slow so verify */
5021	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5022		verify = BYPASS_PAGE_CTL0;
5023		do {
5024			if (count++ > 5)
5025				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5026
5027			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5028				return IXGBE_ERR_INVALID_ARGUMENT;
5029		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5030	} else {
5031		/* We have give the FW time for the write to stick */
5032		msec_delay(100);
5033	}
5034
5035	return IXGBE_SUCCESS;
5036}
5037
5038/**
5039 *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5040 *
5041 *  @hw: pointer to hardware structure
5042 *  @addr: The bypass eeprom address to read.
5043 *  @value: The 8b of data at the address above.
5044 **/
5045s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5046{
5047	u32 cmd;
5048	u32 status;
5049
5050
5051	/* send the request */
5052	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5053	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5054	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5055		return IXGBE_ERR_INVALID_ARGUMENT;
5056
5057	/* We have give the FW time for the write to stick */
5058	msec_delay(100);
5059
5060	/* now read the results */
5061	cmd &= ~BYPASS_WE;
5062	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5063		return IXGBE_ERR_INVALID_ARGUMENT;
5064
5065	*value = status & BYPASS_CTL2_DATA_M;
5066
5067	return IXGBE_SUCCESS;
5068}
5069
5070
5071/**
5072 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5073 * @hw: pointer to hardware structure
5074 * @map: pointer to u8 arr for returning map
5075 *
5076 * Read the rtrup2tc HW register and resolve its content into map
5077 **/
5078void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5079{
5080	u32 reg, i;
5081
5082	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5083	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5084		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5085			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5086	return;
5087}
5088
5089void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5090{
5091	u32 pfdtxgswc;
5092	u32 rxctrl;
5093
5094	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5095	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5096		if (hw->mac.type != ixgbe_mac_82598EB) {
5097			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5098			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5099				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5100				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5101				hw->mac.set_lben = TRUE;
5102			} else {
5103				hw->mac.set_lben = FALSE;
5104			}
5105		}
5106		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5107		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5108	}
5109}
5110
5111void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5112{
5113	u32 pfdtxgswc;
5114	u32 rxctrl;
5115
5116	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5117	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5118
5119	if (hw->mac.type != ixgbe_mac_82598EB) {
5120		if (hw->mac.set_lben) {
5121			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5122			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5123			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5124			hw->mac.set_lben = FALSE;
5125		}
5126	}
5127}
5128
5129/**
5130 * ixgbe_mng_present - returns TRUE when management capability is present
5131 * @hw: pointer to hardware structure
5132 */
5133bool ixgbe_mng_present(struct ixgbe_hw *hw)
5134{
5135	u32 fwsm;
5136
5137	if (hw->mac.type < ixgbe_mac_82599EB)
5138		return FALSE;
5139
5140	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5141	fwsm &= IXGBE_FWSM_MODE_MASK;
5142	return fwsm == IXGBE_FWSM_FW_MODE_PT;
5143}
5144
5145/**
5146 * ixgbe_mng_enabled - Is the manageability engine enabled?
5147 * @hw: pointer to hardware structure
5148 *
5149 * Returns TRUE if the manageability engine is enabled.
5150 **/
5151bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5152{
5153	u32 fwsm, manc, factps;
5154
5155	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5156	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5157		return FALSE;
5158
5159	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5160	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5161		return FALSE;
5162
5163	if (hw->mac.type <= ixgbe_mac_X540) {
5164		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5165		if (factps & IXGBE_FACTPS_MNGCG)
5166			return FALSE;
5167	}
5168
5169	return TRUE;
5170}
5171
5172/**
5173 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5174 *  @hw: pointer to hardware structure
5175 *  @speed: new link speed
5176 *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5177 *
5178 *  Set the link speed in the MAC and/or PHY register and restarts link.
5179 **/
5180s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5181					  ixgbe_link_speed speed,
5182					  bool autoneg_wait_to_complete)
5183{
5184	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5185	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5186	s32 status = IXGBE_SUCCESS;
5187	u32 speedcnt = 0;
5188	u32 i = 0;
5189	bool autoneg, link_up = FALSE;
5190
5191	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5192
5193	/* Mask off requested but non-supported speeds */
5194	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5195	if (status != IXGBE_SUCCESS)
5196		return status;
5197
5198	speed &= link_speed;
5199
5200	/* Try each speed one by one, highest priority first.  We do this in
5201	 * software because 10Gb fiber doesn't support speed autonegotiation.
5202	 */
5203	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5204		speedcnt++;
5205		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5206
5207		/* Set the module link speed */
5208		switch (hw->phy.media_type) {
5209		case ixgbe_media_type_fiber_fixed:
5210		case ixgbe_media_type_fiber:
5211			ixgbe_set_rate_select_speed(hw,
5212						    IXGBE_LINK_SPEED_10GB_FULL);
5213			break;
5214		case ixgbe_media_type_fiber_qsfp:
5215			/* QSFP module automatically detects MAC link speed */
5216			break;
5217		default:
5218			DEBUGOUT("Unexpected media type.\n");
5219			break;
5220		}
5221
5222		/* Allow module to change analog characteristics (1G->10G) */
5223		msec_delay(40);
5224
5225		status = ixgbe_setup_mac_link(hw,
5226					      IXGBE_LINK_SPEED_10GB_FULL,
5227					      autoneg_wait_to_complete);
5228		if (status != IXGBE_SUCCESS)
5229			return status;
5230
5231		/* Flap the Tx laser if it has not already been done */
5232		ixgbe_flap_tx_laser(hw);
5233
5234		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5235		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5236		 * attempted.  82599 uses the same timing for 10g SFI.
5237		 */
5238		for (i = 0; i < 5; i++) {
5239			/* Wait for the link partner to also set speed */
5240			msec_delay(100);
5241
5242			/* If we have link, just jump out */
5243			status = ixgbe_check_link(hw, &link_speed,
5244						  &link_up, FALSE);
5245			if (status != IXGBE_SUCCESS)
5246				return status;
5247
5248			if (link_up)
5249				goto out;
5250		}
5251	}
5252
5253	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5254		speedcnt++;
5255		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5256			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5257
5258		/* Set the module link speed */
5259		switch (hw->phy.media_type) {
5260		case ixgbe_media_type_fiber_fixed:
5261		case ixgbe_media_type_fiber:
5262			ixgbe_set_rate_select_speed(hw,
5263						    IXGBE_LINK_SPEED_1GB_FULL);
5264			break;
5265		case ixgbe_media_type_fiber_qsfp:
5266			/* QSFP module automatically detects link speed */
5267			break;
5268		default:
5269			DEBUGOUT("Unexpected media type.\n");
5270			break;
5271		}
5272
5273		/* Allow module to change analog characteristics (10G->1G) */
5274		msec_delay(40);
5275
5276		status = ixgbe_setup_mac_link(hw,
5277					      IXGBE_LINK_SPEED_1GB_FULL,
5278					      autoneg_wait_to_complete);
5279		if (status != IXGBE_SUCCESS)
5280			return status;
5281
5282		/* Flap the Tx laser if it has not already been done */
5283		ixgbe_flap_tx_laser(hw);
5284
5285		/* Wait for the link partner to also set speed */
5286		msec_delay(100);
5287
5288		/* If we have link, just jump out */
5289		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5290		if (status != IXGBE_SUCCESS)
5291			return status;
5292
5293		if (link_up)
5294			goto out;
5295	}
5296
5297	/* We didn't get link.  Configure back to the highest speed we tried,
5298	 * (if there was more than one).  We call ourselves back with just the
5299	 * single highest speed that the user requested.
5300	 */
5301	if (speedcnt > 1)
5302		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5303						      highest_link_speed,
5304						      autoneg_wait_to_complete);
5305
5306out:
5307	/* Set autoneg_advertised value based on input link speed */
5308	hw->phy.autoneg_advertised = 0;
5309
5310	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5311		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5312
5313	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5314		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5315
5316	return status;
5317}
5318
5319/**
5320 *  ixgbe_set_soft_rate_select_speed - Set module link speed
5321 *  @hw: pointer to hardware structure
5322 *  @speed: link speed to set
5323 *
5324 *  Set module link speed via the soft rate select.
5325 */
5326void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5327					ixgbe_link_speed speed)
5328{
5329	s32 status;
5330	u8 rs, eeprom_data;
5331
5332	switch (speed) {
5333	case IXGBE_LINK_SPEED_10GB_FULL:
5334		/* one bit mask same as setting on */
5335		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5336		break;
5337	case IXGBE_LINK_SPEED_1GB_FULL:
5338		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5339		break;
5340	default:
5341		DEBUGOUT("Invalid fixed module speed\n");
5342		return;
5343	}
5344
5345	/* Set RS0 */
5346	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5347					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5348					   &eeprom_data);
5349	if (status) {
5350		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5351		goto out;
5352	}
5353
5354	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5355
5356	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5357					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5358					    eeprom_data);
5359	if (status) {
5360		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5361		goto out;
5362	}
5363
5364	/* Set RS1 */
5365	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5366					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5367					   &eeprom_data);
5368	if (status) {
5369		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5370		goto out;
5371	}
5372
5373	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5374
5375	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5376					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5377					    eeprom_data);
5378	if (status) {
5379		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5380		goto out;
5381	}
5382out:
5383	return;
5384}
5385